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Abstract

We study the dilute A
(2)
2 loop models on the geometry of a strip of width N . Two families of

boundary conditions are known to satisfy the boundary Yang-Baxter equation. Fixing the boundary
condition on the two ends of the strip leads to four models. We construct the fusion hierarchy of
commuting transfer matrices for the model as well as its T - and Y -systems, for these four boundary
conditions and with a generic crossing parameter λ. For λ/π rational and thus q = −e4iλ a root
of unity, we prove a linear relation satisfied by the fused transfer matrices that closes the fusion
hierarchy into a finite system. The fusion relations allow us to compute the two leading terms in the
large-N expansion of the free energy, namely the bulk and boundary free energies. These are found
to be in agreement with numerical data obtained for small N . The present work complements a
previous study (A. Morin-Duchesne, P.A. Pearce, J. Stat. Mech. (2019)) that investigated the dilute

A
(2)
2 loop models with periodic boundary conditions.
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1 Introduction

Loop models have historically played a central role in deepening our understanding of critical statistical
models on two-dimensional lattices [1]. The loops are random curves that typically arise in the study
of models with local degrees of freedom, by considering the curves drawn on the lattice by collections of
these local objects and thus elevating the model to one with non-local observables. Examples include
the contour curves of percolation clusters, Ising spin domains or spanning trees. The formulation of
these problems in terms of a transfer matrix or Hamiltonian treats one of the two spatial directions as a
time direction along which evolution runs in discrete steps. The various quantities of interest are then
expressible in terms of the eigenvalues and eigenstates of these operators. If the model is Yang-Baxter
integrable [2], then its transfer matrix and Hamiltonian are elements of larger commuting families and
various techniques allow one to compute the eigenvalues and eigenstates.

Loop models are also intimately tied with vertex models, and likewise to Interaction-Round-a-Face
models like the Restricted Solid-on-Solid (RSOS) models. Many interesting features of these models
emerge in the continuum scaling limit, where the size N of the lattice is sent to infinity. Theoretical and
numerical studies show that in this limit, the spectrum of the transfer matrix, after proper scaling, is
described by characters of the Virasoro algebra. The central charge c of the underlying conformal field
theory (CFT) then depends on the model considered. For instance, it depends on the loop fugacity β
for the loop models, on the quantum group parameter q for the vertex models, and on the number L
of allowed heights in the RSOS models. If c is a rational number, then the CFT describing the scaling
limit of these models is either rational or logarithmic. The latter case is particularly interesting, with
indecomposable yet reducible representations and non-trivial Jordan cells for the dilation operator [3–5].
These structures are not fully understood, so this provides in itself a good physical motivation to pursue
the study of these models. But the models defined on finite lattices are also rich in algebraic structures,
some of which still remain to be unraveled.

The elementary building blocks for the loops models are the face operators (or Ř matrices in
the language of vertex models), which take the form of linear combinations of diagrams weighted
by Boltzmann weights. The model is integrable if these weights are chosen so that the Yang-Baxter
equation is satisfied. This in turn ensures the existence of a one-parameter family of commuting transfer
matrices. Solutions to the Yang-Baxter equations are often labeled by affine Lie algebras [6, 7], with
the most studied cases corresponding to the low-rank algebras A

(1)
1 , A

(1)
2 and A

(2)
2 . Thanks to a large

body of work on the dense A
(1)
1 loop model and the related six-vertex models, it is fair to say that their

sℓ(2) integrability structures are now well understood [2, 8–11].
This article focuses on the dilute loop model in the A(2)

2 family, a model with a richer structure
also often referred to as the dilute O(n) loop model. Its Boltzmann weights were obtained by
Nienhuis [12], and Izergin and Korepin [13]. Some of these weights can be negative, curtailing an
immediate interpretation within statistical physics, but also leading to unexpected behavior in the
scaling limit [14]. Here we investigate these loop models defined on the geometry of the strip, with
boundary face operators satisfying the boundary Yang-Baxter equation. Two solutions were given by
Batchelor and Yung [15], and further studied by Dubail, Jacobsen and Saleur [16]. We label them by
S and C (for sine and cosine). Both sides of the strip may have different boundary conditions, so a
total of four models will be studied throughout, namely those with identical boundary conditions on
the two sides (SS and CC), and those with mixed ones (SC and CS). We also mention that the current
work complements an earlier study [17] of the dilute A

(2)
2 loop model defined with periodic boundary

conditions.
The transfer matrix that we investigate for the loop model on the strip, denoted D(u), takes

the form of a linear combination of connectivity diagrams. As such, it is an element of the dilute
Temperley-Lieb algebra dTLN (β) [18–21], a generalisation of the Temperley-Lieb algebra [22,23] where
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the loops are dilute instead of dense. The transfer matrix depends on a spectral parameter u and
a crossing parameter λ, with the latter parameterizing the loop fugacity as β = −2 cos 4λ. It is
a Laurent polynomial in eiu whose coefficients are elements of dTLN (β). The commutativity relation
[D(u),D(v)] = 0, typical of integrable models, allows one to show that these coefficients are commuting
conserved quantities.

In this paper, we construct the fusion hierarchy of transfer matrices Dm,n(u) for the A
(2)
2 loop

model on the strip, with D1,0(u) = D(u). These transfer matrices satisfy relations that allow us to
write each Dm,n(u) as a function of the elementary transfer matrices D(u + kλ) with k ∈ Z. This
directly ensures that [Dm,n(u),D(u)] = 0. Moreover, the construction is done in such a way that each
member of the hierarchy is a Laurent polynomial in eiu, which implies that its coefficients are also
conserved quantities. This process might seem vacuous as the resulting fused matrices Dm,n(u) do not
create new commuting quantities, since they are algebraically related to those of D(u). The power
of the hierarchy is instead revealed for λ/π ∈ Q. In this case, the fused transfer matrices satisfy a
linear closure relation that turns the hierarchy into a finite system. Since the fused matrices of the
hierarchy commute, they can be diagonalized simultaneously and the closure relation thus translates
into a functional relation satisfied by the eigenvalues of these matrices. Equivalently, this system can
be recast in a unique functional polynomial equation satisfied by D(u). This identity lives in the
algebra dTLN (β), but is also satisfied by replacing D(u) by any of its eigenvalues. This is Baxter’s
celebrated method [2] of functional equations, to extract physical quantities from transfer matrices.
The techniques that were developed to solve these systems of equations [24–27] are intimately related
to the thermodynamic Bethe ansatz.

The outline of the paper is as follows. In Section 2, we review the definition of the dilute Temperley-
Lieb algebra and of its standard modules. Section 3 defines the dilute A(2)

2 loop model in terms of its face
and boundary operators and their integrable Boltzmann weights. It also gives a list of the local relations
that they satisfy and reviews the definition of some projectors defined in [17]. In Section 4, we define
first the fundamental transfer matrixD(u), and subsequently the fused transfer matrices Dm,n(u) using
the fusion hierarchy relations that they satisfy. This longer section also discusses several key properties
of the transfer matrices, in particular some alternate but equivalent definitions of these objects, the
reduction relations that they satisfy at certain special values of u, and their behavior in the braid limit
u → i∞. Finally, Section 4 also shows that the fusion hierarchy can be recast in terms of a T -system
and a Y -system. The proof that the fused transfer matrices are Laurent polynomials contains new
ideas not seen before for other models, and is the topic of Section 5. Then in Section 6, we set λ/π ∈ Q

and prove the closure relation of the fusion hierarchy. With the polynomiality of the fused matrices
established, the closure relation takes the form of an identity between Laurent polynomials in eiu with
coefficients in the dilute Temperley-Lieb algebra. The strategy for the proof consists in checking the
identity at a finite number of points. This section also discusses the closure for the Y -system. Some of
the proofs of Sections 4 and 6 are direct whereas others are longer and are gathered in Appendix A.
Finally, Section 7 shows the physical relevance of the functional relations of the hierarchy by computing
the bulk free energies (obtained previously by Warnaar, Batchelor and Nienhuis [28]) and the boundary
free energies (which to our knowledge are new). Section 8 offers some concluding remarks.

2 The dilute Temperley-Lieb algebra

The words planar algebras [23] refer to a broad set of algebras whose elements are diagrams known
as tangles. One of their main features is that tangles are multiplied by concatenation. Specific rules
to be performed upon concatenation will lead to different algebras. The present section is devoted
to the description of the rules defining the dilute Temperley-Lieb algebra dTLN (β) and its standard
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representations.

2.1 Definition of the algebra

Similarly to the dense loop model and its underlying Temperley-Lieb algebra TLN (β), the dilute A
(2)
2

loop model is defined using the dilute Temperley-Lieb algebra dTLN (β). The algebras dTLN (β) form
a family of associative unital algebras labelled by a positive integer N and a parameter β ∈ C. The
present section introduces a diagrammatic presentation of dTLN (β) and some of its properties. More
details and its basic representation theory are given in [21].

The construction of the basic objects, the connectivities, goes as follows. Let N ∈ N. A rectangle
with N nodes on the bottom edge and N other ones on the top edge is drawn. A set of non-intersecting
planar loop segments is also drawn to connect a subset of the nodes in pairs. The loop segments are
constrained to stay within the borders of the rectangle and to have each end tied to one of the 2N
nodes. A node may be left unconnected and is then said to be vacant. Here are two connectivities with
N = 6, with the loop segments depicted as solid blue lines and the vacancies as solid black circles:

c1 = , c2 = . (2.1)

The numbers of vacancies on the two sides of a connectivity always have the same parity by the
requirement that loop segments have both ends connected.

As a vector space, the algebra dTLN (β) is the formal linear span over C of connectivities. The
product c1c2 of two connectivities is defined via concatenation. To compute it, the connectivity c2 is
drawn above c1. The inner edges and nodes of the rectangles are identified and then removed. The
resulting loop segments might have loose ends in the middle of the diagram or might be closed to form
a loop. The following rules are then applied to obtain a connectivity. If a loop segment ends at a
vacancy, the result is set to zero. If loop segments join to form a loop, it is removed and the diagram
is multiplied by a factor β. Otherwise, the loop segments are contracted and the resulting connectivity
is read off directly. Here are two examples:

c1c2 = = β , c2c1 = = 0 . (2.2)

The algebra dTLN (β) is associative and non-commutative. There is a unit element, I, which is the
sum of 2N connectivities:

I = · · ·

1 2 3 N−1 N

, = + . (2.3)

The dimension of dTLN (β) was computed in [21] using the resemblance with the Temperley-Lieb algebra
TLN (β):

dim dTLN (β) =

N∑

k=0

1

k + 1

(
2k

k

)(
2n

2k

)
= M2N , (2.4)

where M2N is the 2N -th Motzkin number. It can also be written as

dim dTLN (β) =

(
2N

0

)

2

−

(
2N

2

)

2

(2.5)
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where the trinomial coefficients are defined by

(x+ 1 + x−1)N =

N∑

k=−N

(
N

k

)

2

xk. (2.6)

2.2 Standard modules

Several key results about loop models can be obtained using the standard modules over the dilute
Temperley-Lieb algebra. The set of standard modules on dTLN (β) is {Wd

N , 0 6 d 6 N}, where the
parameters N and β are as above and d is the defect number introduced below.

A basis for the standard module Wd
N is constituted of link states. To construct a link state, a

horizontal line is drawn with N marked nodes. A set of non-intersecting loop segments is added above
the horizontal line, each one either connecting two nodes together or connecting a node to infinity
above. A loop segment of the second type is called a defect, and the number of defects is denoted d.
Like those in a connectivity, the nodes of a link state may be left vacant. The formal linear combinations
of link diagrams forms a vector space WN , and the link states with a fixed d, with 0 6 d 6 N , span a
subspace that will be the standard module Wd

N for the action to be defined below. For example, here
are the link states generating the vector spaces of the modules Wd

3 with d = 0, 1, 2, 3:

W3
3 : , W2

3 : ,

W1
3 : , (2.7)

W0
3 : .

There is a natural action of dTLN (β) on the vector space Wd
N . If c is a connectivity and w a link

state, the action of c on w is computed similarly as the product of two connectivities in dTLN (β). The
link state w is drawn above c and the nodes on the upper edge of the rectangle are identified with
those of the link state and then removed. The resulting connectivity is read directly starting from the
lower edge of c. Some rules apply. First, if a loop segment is connected to a vacancy, the result is
zero. Second, if the concatenation reduces the number of defects, the result of the action is set to zero.
Third, any closed loop created by the concatenation is removed from the diagram and the remaining
link state is multiplied by the factor βℓ, where ℓ is the number of loops. The following are examples of
the action of connectivities of dTL4(β) on link states in W0

4, W
3
4 and W1

4 respectively:

= 0 , = 0 and = β . (2.8)

The dimension of the module Wd
N is

dimWd
N =

(
N

k

)

2

−

(
N

k + 2

)

2

. (2.9)

The standard modules Wd
N are indecomposable for all N and d with 0 6 d 6 N . The structure of

the module Wd
N depends on the value of β = q + q−1. The parameter q is said to be generic when it

is not a root of unity. For generic values of q, each Wd
N is irreducible. When q is a root of unity, the

module Wd
N is indecomposable but not always irreducible. When it is not, it is instead the quotient IdN

of Wd
N by its radical that is irreducible. These quotients form a complete set of isomorphism classes
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of irreducible modules of dTLN (β). Let us describe the roots of unity case in more detail. For a given
value of q, an integer d is said to be critical if q2(d+1) = 1. For d critical, Wd

N is irreducible. Let d be
non critical and dc be the smallest critical integer larger than d. We define d+ as the integer obtained
from the reflection of d with respect to dc, namely d+ = 2dc − d. Similarly, we define the integer d− by
a reflection of d across the largest critical integer d′c smaller than d, that is d− = 2d′c− d. The sequence
{. . . , d−−, d−, d, d+, d++, . . . } is then infinite in both directions. To study the structure of Wd

N at a root
of unity, we truncate this sequence by keeping only the elements in the range [0, N ]. This truncated
sequence is called the orbit of d. Being in the same orbit is an equivalence relation. If both d and d+
are in the truncated sequence, then there is a non-zero morphism Wd+

N → Wd
N , and Wd

N is reducible.

It has two composition factors, IdN and Id
+

N , and its Loewy diagram is IdN → Id
+

N . The algebra dTLN (β)
can be seen as a module over itself. This is the regular representation and it can be decomposed into
a direct sum of indecomposable modules. All the elements in this direct sum that contain composition
factors that arise in the set of standard modules We

N , with e in the orbit of a given d, are said to
form a block. Similarly, an indecomposable dTLN -module may only have composition factors IeN with
their labels e belonging to the same orbit. They are then naturally associated to the block labeled by
this orbit. Non-trivial homomorphism and extension groups exist only between the indecomposables
associated to the same block. (See [21] for more details.)

3 Integrable face and boundary operators

The transfer matrix of the dilute A
(2)
2 loop models is constructed out of two building blocks: the face

operator and the boundary operator. The present section introduces these operators and lists some of
their properties.

3.1 Definition of the operators

An elementary tile is a square with a single node on each edge. Like for a connectivity, these nodes may
be connected in pairs by non-intersecting loop segments or stay vacant. There are then nine elementary
tiles. The face operator is a linear combination of these nine tiles:

u = ρ1(u) + ρ2(u) + ρ3(u) + ρ4(u) + ρ5(u)

+ρ6(u) + ρ7(u) + ρ8(u) + ρ9(u) ,

(3.1)

where black circles indicate vacancies, as in Section 2. The small quarter arc in the lower-left corner of
the left-hand side indicates the orientation to be given to the diagrams. For instance, a face operator
with the arc in the lower-right corner would have all the diagrams rotated counter-clockwise by 90◦. The
factors ρi(u) of the elementary tiles are interpreted as local Boltzmann weights. They are parameterized
by u, the spectral parameter, and λ, the crossing parameter. They are

ρ1(u) = sin(2λ) sin(3λ) + sin(u) sin(3λ− u) , ρ2,3(u) = sin(2λ) sin(3λ− u) ,

ρ4,5(u) = sin(2λ) sin(u) , ρ6,7(u) = sin(u) sin(3λ− u) , (3.2)

ρ8(u) = sin(2λ− u) sin(3λ− u) , ρ9(u) = − sin(u) sin(λ− u) .

The crossing parameter also parameterizes the fugacity of contractible loops as

β = −2 cos(4λ) . (3.3)
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The weights ρi(u) are real for u, λ ∈ R. Note however that the positivity constraint is relaxed as they
can be negative. Our normalization of these local weights is different than that of [17]. The present
choice removes the singularities at λ = π

3 ,
π
2 ,

2π
3 . The crossing parameter is said to be generic if λ

π /∈ Q,

whereas otherwise λ
π ∈ Q and thus q = −e4iλ is a root of unity.

The face operator can be seen as an element of dTL2(β) by fixing a direction of action, that is, from
two adjacent nodes that would appear at the top of the connectivities, to the remaining two adjacent
nodes, that would be at the bottom [4]. The face operator can also be seen as an element of dTLN (β)
acting non-trivially on the adjacent nodes i and i+ 1, with 1 6 i < N . Then for each j different from
i and i + 1, the j-th nodes on the top and bottom of the connectivity are connected by a unit link
(represented by a dashed line in (2.3)).

The boundary operator is a linear combination of two elementary triangular tiles:

u = δ
(
3λ
2 − u

)
+ δ

(
3λ
2 + u

)
. (3.4)

With the triangles pointing rightward as in the equation above, the boundary operator has one node
on each diagonal edge but none on the vertical one. We consider two possible choices for the function
δ(u), which we refer to as the sine (S) and cosine (C) boundary conditions. For simplicity and to
underline the links between the S and C cases, we also introduce the function δ̄(u) for each case:

S: δ(u) = sin(u) , δ̄(u) = cos(u) ,

C: δ(u) = cos(u) , δ̄(u) = sin(u) .
(3.5)

In the following sections, when no ambiguity is possible, we use the short-hand notations

uk = u+ kλ , s(αuk) = sin(α(u+ kλ)) , c(αuk) = cos(α(u+ kλ)) . (3.6)

We note that the normalisation of the function s(αuk) used here differs from the one used in [17].
The weights (3.2) in the face operator and those (3.5) in the boundary one are not arbitrary. They

are chosen to satisfy algebraic constraints, among them the Yang-Baxter equations, that lead to the
integrability of the models defined in the next section. They were studied in [12, 13] for the weight of
the face operator and in [15,16] for the boundary ones.

3.2 Diagrammatic properties of the face operator

Many useful properties are satisfied by the face operator or a concatenation of a few of them. Some
are valid only at given values of the spectral parameter u. Those reviewed here are well-known (see
for example [17]) and thus stated without proof. These identities are derived in the planar version
of the dilute Temperley-Lieb algebra [23]. In this context, diagrammatic objects like face operators
are glued together, sometimes with the dashed loop segment (2.3) that acts as the identity, and the
outside of the diagram has a number of free nodes. These relations can then be used to simplify larger
diagrams where a member of one of the identities appears. They can also be converted into identities
in dTLN (β).

The crossing symmetry

u = 3λ−u (3.7)

links the face operator evaluated at u to the one rotated by 90◦ and evaluated at 3λ−u. The inversion
relation

u −u = ρ8(u)ρ8(−u) (3.8)
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shows that the concatenation of two face operators, evaluated at u and −u respectively, is a multiple
of the identity. This operator is thus invertible as long as ρ8(u)ρ8(−u) 6= 0, that is, when u 6= ±2λ or
±3λ.

The Yang-Baxter equation plays a crucial role in the proof of the integrability of loop models and
is given by

u− v

v

u

= u− v

u

v

. (3.9)

At some values of the spectral parameter, the face operator factorizes into the product of two
tangles. Those values are referred to as degeneration points in [17]. At u = 0 and u = 3λ, the two
tangles are triangles that carry the identity arc:

0 = s(2λ)s(3λ) , 3λ = s(2λ)s(3λ) . (3.10)

At u = λ and u = 2λ, these tangles are

λ = s(λ)s(2λ) , 2λ = s(λ)s(2λ) , (3.11)

where the black triangle is

= 2 c(λ) + + + . (3.12)

In contrast with the boundary operator (3.4) that has two nodes, one on each shorter side, the black
triangle tangle has three nodes, one per side. The crossing symmetry (u ↔ 3λ − u) links these
degeneration points into pairs.

There are also other local relations where a collection of face operators attached together are
evaluated at values of the spectral parameter that differ by 2λ or 3λ, and then have a simpler form
in terms of fewer tangles. In particular, the next two relations are known as push-through properties,
as they both involve the propagation from right to left of a triangular tile through a pair of face
operators. These tangles are those defined above, namely the identity arc and the black triangle,
respectively. Using the short-hand notation (3.6), these relations are

u2

u0

= −s(u−3)s(u2) u1 , (3.13a)

u3

u0

= s(u2)s(u−2)s(u3)s(u−3) . (3.13b)

To obtain the similar push-through properties for a propagation from left to right, one must simply
rotate the whole stacks of tangles by 180◦.

A last property links the face operators at u and u+ π. Following [29], we define a gauge operator
on one site. It is depicted as a white box:

= (−1) + . (3.14)
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The following periodicity property then holds:

u+ π = u = u . (3.15)

Finally, we recall that some projectors for the dilute A
(2)
2 loop model were constructed in [17]. Here

we only introduce the first two non-trivial ones, P 2,0 and P 1,1, defined as

2
,0 = − , 1
,1 = − , (3.16)

where

=
s2(2λ)

s(4λ)s(5λ)
−

s(2λ)s(3λ)

s(4λ)s(5λ)
−

s(2λ)

s(4λ)
+

s(2λ)s(3λ)

s(λ)s(4λ)
, (3.17a)

=
s(2λ)s(3λ)s(7λ)

s(λ)s(5λ)s(6λ)
+

s(2λ)s(3λ)

s(5λ)s(6λ)
. (3.17b)

We have the relations

= , = 1, 2
,0 = 0, 1
,1 = 0. (3.18)

The first two identities are used to show that P 2,0 and P 1,1 are indeed projectors.

3.3 Diagrammatic properties of the boundary operators

Similar relations involving boundary operators (3.4) also exist. Some of them involve only boundary
operators, whereas others apply to particular combinations of boundary operators and face operators.
The first relation is the crossing symmetry at the boundary. It is a diagrammatic relation that links
boundary operators evaluated at u and 3λ− u:

3λ−u 3λ− 2u =
ρ8(2u− 3λ)δ̄(u− λ

2 )

δ̄(5λ2 − u)
u . (3.19)

In these equations and in others below, the boundary operators are chosen to be of S or C types and the
functions δ(u) and δ̄(u) are set accordingly from (3.5). The boundary operator type S or C stays the
same when an equality between tangles is presented. We also note that the function in the right-hand

10



side in fact does not have any pole in u, as the zero in the denominator is cancelled by a zero in the
numerator for both the S and C functions. The next relation is the inversion relation at the boundary :

−uu = δ(3λ2 − u)δ(3λ2 + u) . (3.20)

The boundary operators also satisfy boundary Yang-Baxter equations. For example, the left one is

u− vu

3λ−(u+v)

v

=

u− v

v

3λ−(u+v)

u

. (3.21)

It is by solving this equation that the expressions (3.4) for the boundary tile were obtained in [15,16].
The previous identities are similar to those appearing in other models, for instance in the dense loop

models (see for example [4]). In contrast, the following relations are particular to the dilute models.
They are analogous to the factorization and push-through properties of the face operator. They do not
apply to the boundary operator itself but to specific combinations of tangles which include boundary
operators. These combinations will be interpreted as boundary conditions for the first fused transfer
matrices in Section 4.3. The combinations are

3λ−u2

2u− λ

3λ−u0

,

u2

λ− 2u

u0

, (3.22a)

3λ−u3

2u

3λ−u0

,

u3

−2u

u0

. (3.22b)

The combinations are grouped in pairs linked by crossing symmetry. Starting from any member of a
pair, changing the evaluation point respectively as u 7→ λ − u for (3.22a) and as u 7→ −u for (3.22b)
and then applying a 180◦ rotation gives the second member. The combinations are also invariant under
u 7→ u+ π. An important property of these combinations is that, similarly to (3.10) and (3.11) for the
face operator, they factorize at some specific values of u into products of tangles that involve either a
black triangle or an identity arc. The remarkable values of u at which this occurs depend on the type
S or C of the boundary operators.

11



The following remarkable evaluations apply to the combinations in (3.22a), with these objects
rewritten as a collection of operators involving black triangles. The evaluations are presented for the
rightward pointing triangle, and only the tangles necessary for the factorization are drawn. There are
four different values of u for each boundary operator of type S or C. The type of boundary is always
specified, and SC indicates that both are allowed. These evaluations are

S u =
λ

2
: C u =

λ

2
+

π

2
:

λ
2

0

= p1

5λ
2

λ

2
−

π

2

π

= p1

5λ

2
−

π

2

(3.23a)

S u =
3λ

2
: C u =

3λ

2
+

π

2
:

−λ
2

2λ

3λ
2

= p2

−
λ

2
−

π

2

2λ+ π

3λ

2
−

π

2

= p2 (3.23b)

SC u = λ : SC u = λ+
π

2
:

0

λ

= p3

−π
2

λ+ π

= p4 . (3.23c)

The weights are

p1 =
s(λ)s(2λ)s(3λ)

2s(5λ)
, p2 = s(λ)s2(2λ)s(3λ) , (3.24a)

p3 = s(λ)s(2λ)δ
(
3λ
2

)
, p4 = s(λ)s(2λ)δ

(
3λ
2 − π

2

)
. (3.24b)

As an example, we give the steps leading to the first identity in (3.23a), marking each equal sign by
the identity used:

λ
2

0

(3.10)
= s(2λ)s(3λ)

λ
2

12



(3.19)
=

s(2λ)s(3λ)δ̄(2λ)

δ̄(0)ρ8(−2λ)

5λ
2 2λ

(3.11)
= p1

5λ
2

. (3.25)

The next remarkable evaluations apply to the objects in (3.22b), and the resulting diagrams involve
an identity arc. There are only two such values of u for each type of boundary operator. These relations
are

SC u = 0 : SC u =
π

2
:

0

0

= q1

−π
2

π

= q2 (3.26)

A third evaluation point is worth mentioning even if no identity arc is factored. It cancels the
combination (3.22b) because a loop segment connects to a vacancy:

S u =
3λ

2
: C u =

3λ

2
+

π

2
:

−3λ
2

3λ

3λ
2

= q3 = 0

−
3λ

2
−

π

2

3λ+ π

3λ

2
−

π

2

= q3 = 0 . (3.27)

The weights in the previous identities are:

q1 = s(2λ)s(3λ)δ
(
3λ
2

)
, q2 = s(2λ)s(3λ)δ

(
3λ
2 − π

2

)
, q3 = s(2λ)s3(3λ) . (3.28)

We note that all these identities for the boundary operators of type C can be recovered from those of
type S from the relation

u

(C)

= u− π
2

(S)

. (3.29)

There are also push-through properties associated to the combinations (3.22), which we refer to as
boundary reflection properties. Let us recall that the push-through properties (3.13a) and (3.13b) both
include a pair of face operators whose evaluation points differ by 2λ or 3λ. The boundary reflection
properties include similar shifts, but now in the evaluation points of the boundary operators. The
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first combination in (3.22a) contains two boundary operators shifted by 2λ and satisfies a reflection
property for the black triangle for both S and C cases:

3λ−u2

2u− λ

3λ−u0

= 2s(2u−3)δ(u−5/2)δ̄(
λ
2 − u)δ(u1/2)

3λ−u1

. (3.30)

The second reflection property applies to the first object (3.22b), to which an identity arc factor is
attached. Similarly to (3.13b), this combination contains two boundary operators shifted by 3λ and
holds for both S and C cases:

3λ−u3

2u

3λ−u0

= −2s(2u−3)δ(u−5/2)δ(u−3/2)δ̄(u−1/2)δ(u3/2) . (3.31)

A straightforward method to prove (3.30) and (3.31) is to expand each operator in terms of its
elementary tiles, and then compute the resulting connectivities using the rules stated in Section 2
for the concatenation of diagrams. The coefficients of identical connectivities are added together and
simplified. Then the proof consists of checking that identical connectivities on the two sides of the
equation have equal coefficients. This method is direct but cumbersome and cannot be easily applied
to calculations implying a large number of tangles.

A second method to prove the previous properties will also play an important role in the following
sections. A quick presentation is in order. The weights appearing in the face and boundary operators
are trigonometric functions, and the spectral parameter u always appears linearly in their arguments.
Seen as functions of the new variable z = eiu, these operators are thus Laurent polynomials of the form∑

−m6i6mCiz
i for some linear combination of tangles Ci and some integer m. Since the weights in the

boundary operator contain a single trigonometric function, the boundary triangles in the tangles on the
left-hand side of (3.30) and (3.31) account for polynomials in z of maximal degree m = 1. The weights
ρi have either one or two trigonometric functions whose arguments are linear in u. The face operator in
the two tangles is evaluated at 2u− λ or 2u and its coefficients will be polynomials of maximal degree
up to m = 4. The other faces in the tangles, namely the black triangles and the triangles containing the
identity strand, do not depend on u (or z). The tangles in the boundary reflection properties are thus
polynomials of the form

∑
−m6i6m Ciz

i with m = 6. To determine the coefficients Ci, it is sufficient
to check the equality at 2m+ 1 distinct values of z.

As stated earlier, the combinations (3.22) are invariant under u 7→ u+π. Because the black triangle
and the identity arc do not depend on u, the left-hand side of (3.30) and (3.31) are also invariant under
this transformation. However, u and u+ π respectively lead to z1 = eiu and z2 = ei(u+π) = −z1, which
are not equal. Each evaluation in u with Re(u) ∈ [0, π) thus gives us two values of z, and it is sufficient
to check m+ 1 values of u in this domain.
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Combinations of tangles are easier to compute if the value of the spectral parameter u is such that
(i) one of the sides of the identity vanishes trivially or (ii) diagrammatic properties can be used. As an
example, one can consider the following evaluation points for (3.30) for the boundary of type S:

(i): −
λ

2
,
λ

2
+

π

2
,
5λ

2
, 3λ, 3λ+

π

2
, (ii):

λ

2
,
3λ

2
, λ, λ+

π

2
. (3.32)

The right hand side of (3.30) vanishes when evaluated at the points (i), and the identities (3.23a),
(3.23b) and (3.23c) can be used for the evaluations at points (ii). We do not present the remaining
explicit computations. All those points are distinct for λ generic and thus give more than the seven
verifications needed. The push-through property (3.30) then extends to all λ by continuity.

This technique for proving tangle identities is based on a polynomial argument and was introduced
in [17], replacing the usual diagrammatic method that consists in expanding all the diagrams and
verifying the identity for all u.

4 Commuting transfer matrices

The previous sections prepared the ground for introducing the family of commuting transfer matrices
of the A

(2)
2 loop models on the geometry of the strip. In Section 4.1, we introduce the fundamental

transfer matrix of the model D(u) = D1,0(u). In Section 4.2, we give a recursive definition of the
fused transfer matrices Dm,n(u), based on the fusion hierarchy relations and valid for all m,n. Then
Section 4.3 gives a second equivalent definition for D2,0(u) and D1,1(u) that is diagrammatic. In
Section 4.4, we discuss a formulation of Dm,n(u) in terms of the determinant of a matrix of size m+n
whose entries are proportional to I or D(u+ kλ), with k ∈ Z. In Section 4.5, we show that the fused
transfer matrices Dm,0(u) with the spectral parameter u specialized to certain special values satisfy
reduction relations. In Section 4.6, we discuss the braid limits u → ±i∞ of the face and boundary
operators and of the fused transfer matrices. Finally, Section 4.7 derives the T -systems and Y -systems
of equations for this integrable hierarchy of commuting transfer matrices. The technical proofs of some
properties of the fused transfer matrices are relegated to Appendix A. In the proofs here and in the
appendix, we assume when needed that the parameter λ is generic, that is, eiλ is not a root of unity.
The results then extend to roots of unity as the identities under study are between Laurent polynomials
in both the variables eiu and eiλ.

4.1 Fundamental transfer tangle

In this section, we define the fundamental transfer matrix D(u) and discuss some of its important
properties. As a first step towards this goal, let us define the following tangle built from 2N face
operators and two boundary operators:

D̃(u) =

. . .

. . .

u+ξ(1) u+ξ(2) u+ξ(N)

u−ξ(1) u−ξ(2) u−ξ(N)

u3λ− u . (4.1)

The tangle D̃(u) is an element of dTLN (β): there are N nodes on its upper edge and N on its lower
edge. The tangle depends on the crossing parameter λ, the spectral parameter u and the number of
sites N . These parameters λ and N will be fixed throughout, so we only write the dependence on the
spectral parameter u explicitly. Each column is assigned an arbitrary inhomogeneity ξ(j). We note
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that the subscript j in parenthesis is a column label and not a shift in the evaluation of the spectrum
parameter. Note that, using crossing symmetry, the arcs in the upper tiles can be moved to the left
lower corners at the expense of changing the evaluation points from u+ ξ(j) to 3λ−u− ξ(j). The proofs
of certain results below will assume that ξ(j1) 6= ξ(j2), however by continuity these results will also hold

when two inhomogeneities (or more) coincide. The homogeneous transfer tangle is obtained from D̃(u)
by setting ξ(j) → 0 for all j.

The boundary operators are chosen in (3.5) to be either of S or C type, and this choice can be
different for the two boundaries. This leads to four possible boundary conditions for the transfer
tangles, that we gather in two groups: (i) identical, for SS and CC, and (ii) mixed, for SC and CS. For
instance, SC refers to the choice S for the left boundary and to C for the right boundary.

The diagrammatic properties introduced in Section 3 result in important properties satisfied by
D̃(u). The first one is a crossing symmetry which ties the evaluations of the spectral parameter at
u and 3λ − u. The proof follows closely the similar proof given in [30] for Interaction-Round-a-Face
models and is a direct consequence of (3.7), (3.8) and (3.19). The crossing symmetry takes different
forms depending on the choice of boundaries:

SS and CC D̃(u) = D̃(3λ− u) , (4.2a)

SC s
(
u− λ

2

)
c
(
5λ
2 − u

)
D̃(u) = c

(
u− λ

2

)
s
(
5λ
2 − u

)
D̃(3λ− u) , (4.2b)

CS c
(
u− λ

2

)
s
(
5λ
2 − u

)
D̃(u) = s

(
u− λ

2

)
c
(
5λ
2 − u

)
D̃(3λ− u) . (4.2c)

Note that the pairs of trigonometric factors on the left and right sides of (4.2b) and (4.2c) are themselves
tied by the crossing symmetry u 7→ 3λ− u.

Because D̃(u) is a Laurent polynomial in z = eiu, it has no poles for z ∈ C×. We then deduce from
(4.2b) and (4.2c) that D̃(u) has overall trigonometric factors in the mixed cases. It is convenient to
define a renormalized tangle where these factors are removed. The reduced matrices D(u) are defined
in the four cases as1

SS: D(u) = −D̃(u) , CC: D(u) = −D̃(u) , (4.3a)

SC: D(u) =
D̃(u)

c
(
u− λ

2

)
s
(
5λ
2 − u

) , CS: D(u) =
D̃(u)

s
(
u− λ

2

)
c
(
5λ
2 − u

) . (4.3b)

We shall refer to D(u) as the fundamental transfer tangle (or transfer matrix). Its symmetry properties
can be expressed uniformly for all choices of boundary conditions:

crossing symmetry D(u) = D(3λ− u) , (4.4a)

commutativity [D(u),D(v)] = 0 , (4.4b)

periodicity D(u) = D(u+ π) . (4.4c)

The relation (4.4b) is the commutation of two transfer tangles with different spectral parameters. It
embodies the integrability of the model and can be proved diagrammatically with (3.8) and the Yang-
Baxter equations (3.9) and (3.21). The arguments follow those in section 3.4 of [30]. The periodicity
property (4.4c) is a consequence of the gauge transformation (3.15).

Another feature of the fundamental transfer matrix is that it evaluates to a multiple of the identity

1The minus sign for SS and CC is included for convenience, so that the fusion hierarchy relations of Section 4.2 are
written in a uniform way.
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at certain special values of u:

D(0) = f(2λ)f(3λ)I ×
s(6λ)

s(2λ)
×





−
s(3λ/2)c(λ/2)s(5λ/2)

c(3λ/2)
SS,

c(3λ/2)s(λ/2)c(5λ/2)

s(3λ/2)
CC,

1 SC and CS,

(4.5a)

D(π2 ) = f(2λ+ π
2 )f(3λ+ π

2 )I ×
s(6λ)

s(2λ)
×





c(3λ/2)s(λ/2)c(5λ/2)

s(3λ/2)
SS,

−
s(3λ/2)c(λ/2)s(5λ/2)

c(3λ/2)
CC,

1 SC and CS,

(4.5b)

where

f(u) =

N∏

j=1

s
(
u− ξ(j)

)
s
(
u+ ξ(j)

)
. (4.6)

To obtain these results, one applies the push-through property (3.13b) subsequently N times to (4.1)
specified at u = 0, π2 , and then evaluates the constant diagrams

3λ 0 and 3λ− π
2

π
2 . (4.7)

Of course, because of the crossing symmetry and periodicity, D(u) also evaluates to a multiple of the
identity at u = 3λ, π, 3λ+ π

2 , etc.

It directly follows from the definition (4.1) that D̃(u) is a Laurent polynomial in z = eiu:

D̃(u) =

4N+2∑

j=−(4N+2)

Cjz
j , (4.8)

with coefficients Cj that are elements of dTLN (β) that depend on λ. As discussed in Section 3.3,
the degree is fixed by the number of tiles used in the diagrammatic definition. A centered Laurent
polynomial such as the one in (4.8) is said to have maximal power maxP = 4N + 2. A consequence of
the definitions (4.3) is that the maximal power of D(u) depends on the type of boundary:

identical: maxP(D(u)) = 4N + 2, mixed: maxP(D(u)) = 4N. (4.9)

We also remark that, because maxP (s(uk− ξ(j))) = 1 for all j, the maximal power of the function f(u)
is 2N . Moreover, all zeros of f(u) are distinct for generic inhomogeneities, an observation that will be
useful in the following.

4.2 Fusion hierarchy of fused transfer tangles Dm,n(u)

The fused transfer tangles Dm,n(u) for the A
(2)
2 loop models form a commuting family of dTLN (β)

elements. The fused tangles are labelled by pairs of integers (m,n) and depicted on a lattice in
Figure 1. The fundamental transfer matrix considered as an element of this larger set is labelled as

D(u) = D1,0(u) . (4.10)
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..
.

..
.

..
.

Dm,0

4N + 2m
D4,1

6N + 12
D5,2

6N + 16
D6,3

6N + 20

. . .

..
.

D2,0

4N + 4
D3,1

6N + 10
D4,2

6N + 14
D5,3

6N + 18

. . .

D1,0

4N + 2
D2,1

6N + 8
D3,2

6N + 12
D4,3

6N + 16

. . . Dm,n

6N + 2(m+ n) + 2

I

0
D1,1

6N + 6
D2,2

6N + 10
D3,3

6N + 14
D4,4

6N + 18

. . .

D0,1

4N + 2
D1,2

6N + 8
D2,3

6N + 12
D3,4

6N + 16
D4,5

6N + 20

. . .

...
...

...
...

...

Figure 1: The fused transfer matrices and their maximal power (maxP) for identical boundary
conditions (SS and CC). The elements near the boundary of the wedge, between the dotted lines,
are the fused transfer tangles Dm,0(u) and D0,n(u) and their maxP behaves differently to those of the
elements Dm,n(u), for m,n > 1. For mixed boundary conditions (SC and CS), the maximal powers
are 4N for the fused tangles Dm,0(u) or D0,n(u) and 6N for Dm,n(u) with m,n > 1. The index of the
tangles Dm,n(u) are exchanged upon reflection with respect to the horizontal line.

The conjugate fundamental transfer tangle is defined by

D0,1(u) = D1,0(u+ λ) . (4.11)

Let us introduce the additional short-hand notations

D
m,n
k = Dm,n(u+ kλ) , fk = f(uk) . (4.12)

Two techniques were previously used to introduce transfer tangles of loop models with higher
fusion indices. For some models, a diagrammatic definition is possible in terms of the appropriate
projectors. The recursive relations can then be directly derived by diagrammatic manipulations that

use the recursive definition of these projectors. This was achieved for the A
(1)
1 and A

(1)
2 loop models,

in [10] and [29] respectively.
For the A

(2)
2 loop models, the appropriate projectors are not all known. An alternative technique

was used in [17]: a set of fusion hierarchy relations are written down, these are used as a recursive
definition of the fused transfer tangles, and then the desired properties are shown to hold. In this
section, we employ the second technique to define the transfer matrices Dm,n(u), with the desired
properties given in (4.17a) – (4.17d).

The fused matrices depend on the choice of boundary conditions for D1,0(u) and therefore on the
corresponding functions defined in (3.5). To express the upcoming equations (4.15) in a unified manner
for all boundary conditions, we introduce four functions in Table 1, namely w(u), w̄(u), w(m)(uk) and
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w̄(n)(uk), that differ according to the boundary conditions chosen for D1,0(u). We stress in particular
that the functions δ(u) and w(u) are not the same. Indeed, the transfer matrix contains two boundary
operators, which may or may not be assigned the same choice of δ(u). In contrast, the functions w(u)
and w̄(u) are associated to a pair of boundary conditions for D(u).

w(u) w̄(u) w(m)(u) w̄(n)(u)

SS s(u) c(u) s(u+mπ
2 ) c(u+ nπ

2 )
CC c(u) s(u) c(u+mπ

2 ) s(u+ nπ
2 )

SC 1 1 1 1
CS 1 1 1 1

Table 1: The weights for the four choices of boundary conditions.

The structure of the fusion hierarchy for the strip geometry is analogous to that of the periodic one
(see the set of equations (5.11) in [17]): the shifts in the f functions are identical and the recursion
formula for the transfer tangle Dm,n(u) involves the same tangles obtained at a previous step. However,
a large number of boundary weights need to be included for the present case with a double-row transfer
matrix with boundary operators. Here are the coefficients appearing in the recursive formulas:

α0(u) = w(u−3/2)w̄(u1/2)f(u−2)

α1(m,u) = s(2um−2)s(2u2m−5)w
(m)(um−5/2)w̄

(−1)(u2m−9/2)f(u2m−5)f(u2m−4) (4.13a)

α2(m,u) = s(2um−4)s(2u2m−3)w
(m−1)(um−7/2)w̄(u2m−7/2)

α3(m,u) = s(2um−5)s(2u2m−2)w̄(u2m−9/2)w(u2m−5/2)f(u2m−2)

β0(m,u) = f(u2m)f(u2m+1)

β1(m,n, u) = s(2um+n−2)s(2/u2n−2)f(u2m−2)

β2(m,n, u) = s(2um−2)s(2/un−2)w
(m)(um−5/2)w

(n)(/un−5/2) (4.13b)

β3(m,n, u) = s(2um−4)s(2/un−4)w̄
(m)(um−7/2)w̄

(n)(/un−7/2)

× w̄(u2m−3/2)w̄(/u2n−3/2)w(u2m−1/2)w(/u2n−1/2).

Equation (4.4a) states the crossing symmetry of the fundamental tangle D1,0(u). As will be seen below,
the fused tangles Dm,n(u) satisfy a crossing symmetry extending (4.17a), with a shift that depends on
the fusion indices. This symmetry will describe how Dm,n(u) behaves under

u 7→ /u = (4− 2m− 2n)λ− u . (4.14)

This new variable /u already appears in several of the functions βj . The fusion hierarchy relations
defining Dm,n(u) are expressed in terms of the functions αi and the βj, and their form depends
crucially on the position of the label (m,n) in Figure 1, namely:

(i) for the elements near the wedge of the region:

α1(2, u)D2,0
0 = α2(2, u)D1,0

0 D
1,0
2 − α3(2, u)α0(u−1)D

0,1
0 , (4.15a)

β1(1, 1, u)D1,1
0 = β2(1, 1, u)D1,0

0 D
0,1
2 − β3(1, 1, u)β0(1, u)β0(1, /u)I , (4.15b)

α1(2, /u)D
0,2
0 = α2(2, /u)D

0,1
0 D

0,1
2 − α3(2, /u)α0(/u−1)D

1,0
2 , (4.15c)
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(ii) for the elements at the boundary of the region:

α1(m,u)Dm,0
0 = α2(m,u)Dm−1,0

0 D
1,0
2m−2 − α3(m,u)Dm−2,1

0 , m > 2 , (4.15d)

α1(n, /u)D
0,n
0 = α2(n, /u)D

0,1
0 D

0,n−1
2 − α3(n, /u)D

1,n−2
2 , n > 2 , (4.15e)

(iii) for the elements adjacent to a boundary elements:

β1(m, 1, u)Dm,1
0 = β2(m, 1, u)Dm,0

0 D
0,1
2m − β3(m, 1, u)β0(m,u)Dm−1,0

0 , m > 1 , (4.15f)

β1(n, 1, /u)D
1,n
0 = β2(n, 1, /u)D

1,0
0 D

0,n
2 − β3(n, 1, /u)β0(n, /u)D

0,n−1
4 , n > 1 , (4.15g)

(iv) elsewhere:

β1(m,n, u)Dm,n
0 = β2(m,n, u)Dm,0

0 D
0,n
2m − β3(m,n, u)Dm−1,0

0 D
0,n−1
2m+2 , m, n > 1. (4.15h)

All matrices are evaluated at u in (4.15). The coefficients αi apply to the boundary segments of the
region shown in Figure 1 and the coefficients βi are for every other fused tangles (anywhere inside
the region). We note that the fusion hierarchy relations are divided in these many cases because of
the different maximal degrees of the transfer tangles Dm,0(u) and D0,n(u) compared to Dm,n(u) with
m,n > 1. The functions αi and βj then compensate for these degrees accordingly: α1, α2, α3 and β0

for the relations labeled by pairs (m,n) near the boundary of the wedge in Figure 1, and α0 and β0

near the corner.
In (4.15), /u sometimes appears as the evaluation point for some functions αi. The integers m and n

needed to compute /u are then the ones of the fused tangle created by the fusion hierarchy, that is, the
one appearing on the left-hand side of each equation. The m and n in the definition of /u are thus the
same throughout a given equation. The notation /u is handy, but somewhat dangerous as the operation
u 7→ /u does not commute with that of shifting u 7→ uk = u+kλ. Unless stated otherwise, the operation
u 7→ /u in these expressions is the last to be performed. For example, the function α0(/u−1) appears in
(4.15c) where m = 0 and n = 2 and thus /u = −u. This function for SS boundary conditions is

α0(/u−1) = α0(u−1)
∣∣
u 7→/u=−u

=
(
w(u−3/2)w̄(u1/2)f(u−2)

)
−1

∣∣
u 7→/u=−u

= s(u− 5λ
2 )c(u − λ

2 )f(u− 3λ)
∣∣
u 7→/u=−u

(4.16)

= −s(u+ 5λ
2 )c(u+ λ

2 )f(u+ 3λ) ,

where we used f(−u) = f(u).
The weights βj appear in pairs invariant under u 7→ (4−2m+2n)λ−u and m ↔ n. For this reason,

a relation between Dm,n(u) and Dn,m(/u) becomes apparent, at least for the pair of equations (4.15f)
and (4.15g), and for the fused tangles defined with (4.15h). This property, the generalization of the
crossing symmetry (4.4a), is proved in Appendix A.1. Thus, any two tangles Dm,n(u) and Dn,m(u)
that appear in Figure 1 as mirror images through the horizontal line are related by crossing-symmetry.

Figure 1 also gives the maximal power maxP of the fused tangles for identical boundary conditions
(SS or CC) in the variable z = eiu introduced earlier. These maximal degrees should be contrasted
with those of the periodic case obtained in [17]. In the latter case, fused matrices have different
polynomial degrees: the ones with labels on a boundary of the region have maxP = 2N , and all the
others have maxP = 3N . For the strip geometry, the cases of identical and mixed boundaries need to be
distinguished. The mixed cases behave in a way similar to the periodic geometry: the maximal powers
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of the fused transfer matrices are respectively 4N and 6N on the boundary and inside the region. The
identical cases do not behave as nicely, and the maximal power of Dm,n(u) increases linearly with the
fusion indices, as 4N + 2m for the cases (m, 0) and (0,m), and as 6N + 2(m+ n) + 2 for (m,n) with
m,n > 1.

The fused matrices satisfy the following properties for all fusion indices m,n:

crossing symmetry Dm,n(u) = Dn,m((4− 2m− 2n)λ− u), (4.17a)

commutativity [Dm,n(u),Dm′,n′

(v)] = 0, (4.17b)

periodicity Dm,n(u) = Dm,n(u+ π), (4.17c)

conjugacy D0,n(u) = Dn,0(u+ λ), (4.17d)

polynomiality The coefficients of Dm,n(u) are Laurent polynomials in z. (4.17e)

These equations generalize the properties (4.4a) to (4.4c) of the tangle D1,0(u). The first one is
the crossing symmetry discussed above and its proof is given in Appendix A.1. The second is the
commutation that holds for any integers m,n,m′, n′ and spectral parameters u, v. This property follows
directly from (4.4b), since the fused transfer tangles are all expressible in terms of the fundamental
transfer tangle evaluated at different values of u. The third one, the periodicity, follows similarly from
(4.4c). The proof of the conjugacy linking D0,n(u) and Dn,0(u + λ) is non-trivial and relegated to
Appendix A.2. Likewise, the polynomial properties Dm,n(u) are not obvious and will be the topic of
Section 5.

4.3 Diagrammatic definition of D2,0(u) and D1,1(u)

In this section, we focus on the first fused transfer matrices D2,0(u) and D1,1(u), for which the
projectors P 2,0 and P 1,1 are known [17]. This allows us to give a diagrammatic definition for these two
transfer matrices:

D2,0(u) =
1

Z2,0(u)

. . .

. . .

u2+ξ(1) u2+ξ(2) u2+ξ(N)

u0+ξ(1) u0+ξ(2) u0+ξ(N)

u2

. . .

. . .

u2−ξ(1) u2−ξ(2) u2−ξ(N)

u0−ξ(1) u0−ξ(2) u0−ξ(N)

u0

3λ−u2

2u− λ

3λ−u0

λ− 2u

2
,0

, (4.18a)

D1,1(u) =
1

Z1,1(u)

. . .

. . .

u3+ξ(1) u3+ξ(2) u3+ξ(N)

u0+ξ(1) u0+ξ(2) u0+ξ(N)

u3

. . .

. . .

u3−ξ(1) u3−ξ(2) u3−ξ(N)

u0−ξ(1) u0−ξ(2) u0−ξ(N)

u0

3λ−u3

2u

3λ−u0

−2u

1
,1

, (4.18b)
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where

Z2,0(u) = 4s(2u−1)s(2u0)δL(u−3/2)δL(u−1/2)δR(u−1/2)δR(u1/2)f(u−1)f(u0)

×

{
−1 SS and CC,

δL(u−5/2)δL(u1/2)δR(u−3/2)δR(u3/2) SC and CS,
(4.19a)

Z1,1(u) = 4s(2u0)
2δL(

3λ
2 − u)δR(

3λ
2 + u)f(u0)

×

{
−1 SS and CC,

δL(
λ
2 + u)δR(

λ
2 − u)δL(

3λ
2 + u)δR(

3λ
2 − u)δL(

5λ
2 − u)δR(

5λ
2 + u) SC and CS.

(4.19b)

Here we add subscripts L and R to the functions δ(u) to distinguish contributions coming from the left
and right boundaries, thus allowing us to treat all four choices of boundary conditions simultaneously.

We now show that these definitions are equivalent to those presented in Section 4.2. In each case,
expanding the projector as in (3.16) produces two terms:

Z2,0(u)D2,0(u) = AI −AII , Z1,1(u)D1,1(u) = BI −BII . (4.20)

Using the notation

u− ξ = u−ξ(1) u−ξ(2) · · · u−ξ(N) , u+ ξ = u+ξ(1) u+ξ(2) · · · u+ξ(N) , (4.21)

we rewrite AI as

AI =

u0 + ξ

u2 + ξ
u2

u0 − ξ

u2 − ξ
u0

3λ−u2

3λ−u0

λ− 2u2u− λ =

u2 − ξ

u2 + ξ
u2

u0 − ξ

u0 + ξ
u0

3λ−u2

3λ−u0

λ− 2u2u− λ

= ρ8(2u− λ)ρ8(λ− 2u)

u2 − ξ

u2 + ξ
u2

u0 − ξ

u0 + ξ
u0

3λ−u2

3λ−u0

= ρ8(2u− λ)ρ8(λ− 2u)D̃
1,0
0 D̃

1,0
2 , (4.22)

where we first applied the Yang-Baxter equation and then the inversion identity. For AII, we write

AII =

u0 + ξ

u2 + ξ
u2

u0 − ξ

u2 − ξ
u0

3λ−u2

2u− λ

3λ−u0

λ− 2u

1

= ℓ(u)

u0 + ξ

u2 + ξ
u2

u0 − ξ

u2 − ξ
u0

3λ−u1

1

λ− 2u
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= ℓ(u)t(u)

u1 + ξ

u0 − ξ

u2 − ξ

3λ−u1

1

u2

λ− 2u

u0

= ℓ(u)t(u)r(u)

u1 + ξ

u0 − ξ

u2 − ξ

3λ−u1

1

u1

= ℓ(u)t(u)r(u)b(u) u1 + ξ

u1 − ξ

3λ−u1

1 u1

= ℓ(u)t(u)r(u)b(u)D̃
0,1
0 . (4.23)

Here we applied the push-through property N times on the top and bottom of the diagram, at the
third and fifth equality. The resulting functions t(u) and b(u) are obtained from (3.13a) and satisfy
t(u)b(u) = f(u−3)f(u2). Similarly, the factors ℓ(u) and r(u) arose at the second and fourth equality
from the application of the boundary reflection property on the left and right boundary, respectively,
and are read off from (3.30):

ℓ(u) = 2s(2u−3)δL(u−5/2)δ̄L(
λ
2 − u)δL(u1/2), r(u) = ℓ(λ− u)

∣∣
δL→δR

. (4.24)

Finally, we used (3.18) at the last step and obtained D̃
1,0
1 = D̃

0,1
0 . The final result is an identity relating

D
2,0
0 , D1,0

0 D
1,0
2 and D

0,1
0 which precisely reproduces (4.15a) after simplification of the trigonometric

prefactors.
The same arguments can be applied to compute BI and BII, leading to

BI = ρ8(2u)ρ8(−2u)D̃
1,0
0 D̃

1,0
3 , BII = ℓ̃(u)t̃(u)r̃(u)b̃(u)I , (4.25)

with t̃(u)b̃(u) = f(u−3)f(u−2)f(u2)f(u3) and the functions ℓ̃(u) and r̃(u) = ℓ̃(−u)|δL→δR read off
from (3.31). After simplification of the prefactors, the resulting relation is found to be exactly (4.15b).
This then confirms that the recursive and diagrammatic definitions are equivalent, for both D2,0(u)
and D1,1(u).

We stress that we still have not proven that D2,0(u) and D1,1(u) are Laurent polynomials in z = eiu.
Indeed, both the recursive and diagrammatic definitions involve denominators written in terms of
trigonometric functions of u that could potentially lead to singularities. Showing the polynomiality of
the fused transfer matrices is a non-trivial task which is addressed in Section 5. Finally, we note that
it is also possible to give diagrammatic definitions of Dm,0(u) for m > 2 using the projectors in the
Appendix A of [17], however these expressions are not needed in this paper.

4.4 Determinantal form of the fused tangles

The fusion relations define recursively the fused transfer tangles as polynomials in the elementary
transfer tangles D1,0(u). In this section, we write Dm,n(u) in terms of a formal determinant and use
it to rewrite the fusion hierarchy (4.15). The proof of these determinant formulas is sketched at the
end the section.
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The determinants are expressed in terms of the following quantities:

D(u) = s(2u−4)s(2u1)w̄(u−3/2)w
(1)(u−3/2)D

1,0
0 (u) = det(1, 0)(u) , (4.26a)

F(u) = s(2u−4)s(2u3)w(u−5/2)w(u3/2)w̄(u−3/2)w̄(u1/2)f(u−3)f(u2)I . (4.26b)

We often use the shorthand notation Dk = D(uk) and Fk = F(uk). These new functions satisfy

D(u) = D(3λ− u) , D(u) = D(u+ π) , (4.26c)

F(u) = F(λ− u) , F(u) = F(u+ π) . (4.26d)

The fused transfer matrices will be written in terms of two families of determinants. The first is
for fused tangles with indices (m, 0) and (0, n) corresponding to the boundary of the domain depicted
in Figure 1:

det(m, 0)(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D2m−2 D2m−3 F2m−5 0 0 0

F2m−4 D2m−4 D2m−5 F2m−7 0 0

0 F2m−6 D2m−6 D2m−7
. . . 0

0 0
. . .

. . .
. . . F1

0 0 0 F2 D2 D1

0 0 0 0 F0 D0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.27a)

det(0, n)(u) = det(n, 0)(4λ − 2nλ− u) . (4.27b)

The matrix in the determinant det(m, 0)0 has size m×m. Like for the functions F(u) and D(u), we
will use the notation det(m, 0)k = det(m, 0)(uk).

The first determinant is tied to the fused matrix Dm,0(u) by

det(m,0)0 = s(2u−4)s(2u2m−1)w
(m)(um−5/2)D

m,0(u) (4.28)

×
(m−2∏

j=0

s(2uj)
)( 2m−5∏

j=m−3

s(2uj)
)( 2m−4∏

l=−1

f(ul)
)(m−1∏

k=0

w̄(u2k−3/2)
)(m−2∏

k=0

w(u2k−1/2)
)
.

We postpone the (sketch of the) proof of this statement until the end of the section.
The definition det(0, n)(u) as det(n, 0)(/u), with /u = 4λ−2nλ−u, ensures that the crossing symmetry

(4.17a) is realized. Moreover, this first family of determinants has the property

det(0, n)0 = det(n, 0)1 . (4.29)

The proof is given in Appendix A.2. The property D
0,n
0 = D

n,0
1 for n > 1 is also proved in

Appendix A.2.
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The second family of determinants is

det(m,n)(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . . F2m+2 0 0 0 0

. . .
. . . D2m+2 0 0 0 0

0 F2m+1 D2m+1 F2m−1 0 0 0

0 0 F2m−2 D2m−2 D2m−3 F2m−5 0

0 0 0 F2m−4
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.30a)

=

∣∣∣∣∣∣∣∣∣∣∣∣

det(n, 0)2m+1

0 0 0
0 0 0
F2m−1 0 0

0 0 F2m−2

0 0 0
0 0 0

det(m, 0)0

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.30b)

It applies to all fusion pairs (m,n) with m,n > 1, corresponding to the positions in Figure 1 that do
not touch the edge of the wedge. The bottom-right and the top-left blocks are of size m×m and n×n
respectively. The determinant (4.30a) and the fused matrix Dm,n(u) are related by

s(2u2m−4)s(2/u2n−4) det(m,n)(u) = (4.31)

s(2u−4)s(2/u−4)s(2um−3)s(2/un−3)s(2um+n−2)s(2/u2n−2)f(u2m−2)D
m,n(u)

×
( 2m−3∏

j=0

s(2uj)
)(m−1∏

k=0

w̄(u2k−3/2)
)(m−2∏

k=0

w(u2k−1/2)
)( 2m−4∏

l=−1

f(ul)
)

×
( 2n−3∏

j=0

s(2/uj)
)( n−1∏

k=0

w̄(/u2k−3/2)
)( n−2∏

k=0

w(/u2k−1/2)
)( 2n−4∏

l=−1

f(/ul)
)
,

with /u = (4 − 2m − 2n)λ − u. We note that the right-hand side of (4.31) always contains factors
s(2u2m−4)s(2/u2n−4), even for m = 1 or n = 1. It is however easier to leave them as prefactors on the
left-hand side instead of identifying in which factor they appear in the right-hand side, as this depends
on m and n.

These determinants satisfy a number of recurrence relations. The following ones express the fusion
hierarchies in a unified manner, namely for all four choices of boundary conditions and independently
of the position of the label (m,n) in Figure 1:

det(m, 0)0 = D2m−2 det(m− 1, 0)0 −F2m−4 det(m− 2, 1)0 , (4.32a)

det(0, n)0 = D1 det(0, n − 1)2 −F1 det(1, n − 2)2 , (4.32b)

det(m,n)0 = det(m, 0)0 det(0, n)2m (4.32c)

−F2m−2F2m−1 det(m− 1, 0)0 det(0, n − 1)2m+2 .

These relations are valid for m,n > 1, with the convention

det(0, 0)k = 1 , det(m,−1)k = det(−1, n)k = 0 . (4.33)

The relations (4.32a) and (4.32b) are respectively obtained by expanding det(m, 0)0 and det(0, n)0
along the first row and the last column. Expanding with respect to the first column after the dashed
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line leads to (4.32c). Two additional useful recurrence relations are

det(m, 0)0 = D2m−2 det(m− 1, 0)0

−F2m−4

(
D2m−3 det(m− 2, 0)0 −F2m−6F2m−5 det(m− 3, 0)0

)
, (4.34a)

det(m, 0)0 = D0 det(m− 1, 0)2 −F0

(
D1 det(m− 2, 0)4 −F1F2 det(m− 3, 0)6

)
, (4.34b)

with m > 2. The first is a rewriting of (4.32a) and the second is obtained from the determinant (4.27a)
by an expansion along the last column.

The symmetry properties of the determinants are analogous to those satisfied by the fused transfer
matrices. These are expressed in a form that is independent of the choice of boundary conditions:

crossing symmetry det(m,n)(u) = det(n,m)((4− 2m− 2n)λ− u) , (4.35a)

commutativity [ det(m,n)(u),det(m′, n′)(v) ] = 0 , (4.35b)

periodicity det(m,n)(u) = det(m,n)(u+ π) , (4.35c)

conjugacy det(0, n)(u) = det(n, 0)(u + λ) . (4.35d)

We end this section by sketching the proof of the relations (4.28) and (4.31) that relate the formal
determinants and the fused transfer transfer matrices. For (4.28), the proof is done by induction on m
using (4.34a). The seed cases m = 1 and m = 2 are first checked separately. For m = 1, (4.28)
follows directly from the definition of D(u). For m = 2, we check that (4.32a) reduces to (4.15a)
using (4.28). For m > 3, the proof proceeds using the induction hypothesis (4.28) for m′ < m. With
(4.15d) and (4.15f), one first derives a new relation that ties Dm,0(u), Dm−1,0(u), Dm−2,0(u) and
Dm−3,0(u). Then we must show that (4.34a) reduces to this relation upon applying (4.28). Each step
is straigthforward and tedious, and amounts to writing the prefactors for each fused transfer matrix,
cancelling the common terms, and then checking that the remaining ones precisely match those in the
new relation. We omit the details of this calculation, which in the end proves (4.28). The similar result
for m,n > 1, namely the relation (4.31), is proved using the same idea. We use (4.32c) to expand
det(m,n)0, and then (4.28) to express all the determinants in terms of the fused transfer matrices.
After the cancellation of many common terms, one obtains (4.15f), (4.15g) or (4.15h) depending on the
fusion indices (m,n).

4.5 Reduction relations

In this subsection, we study properties of the fused transfer matrices Dm,0(u) at specific values u = û
of the spectral parameter. We find that Dm,0(û) is proportional to a fused transfer matrix with the
index m reduced by 3. We refer to these identities as reduction relations. Applying these relations
repeatedly, we find that Dm,0(û) is proportional to the unit I. To proceed, we first write down the
functional relations

µ1(m,u)Dm,0
0 = µ2(m,u)Dm−1,0

0 D
1,0
2m−2 − µ3(m,u)Dm−2,0

0 D
1,0
2m−3 + µ4(m,u)Dm−3,0

0 , (4.36a)

ν1(m,u)Dm,0
0 = ν2(m,u)D1,0

0 D
m−1,0
2 − ν3(m,u)D1,0

1 D
m−2,0
4 + ν4(m,u)Dm−3,0

6 , (4.36b)
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where

µ1(m,u) = w(u2m−9/2)w
(m)(um−5/2)s(2um−3)s(2um−2)s(2u2m−6)s(2u2m−5)f2m−6f2m−5f2m−4, (4.37a)

µ2(m,u) = w(1)(u2m−7/2)w
(m−1)(um−7/2)s(2um−4)s(2um−3)s(2u2m−6)s(2u2m−3)f2m−6, (4.37b)

µ3(m,u) = w(u2m−5/2)w̄(u2m−9/2)w
(1)(u2m−9/2)w

(m−2)(um−9/2)s(2um−5)s(2um−4)

s(2u2m−5)s(2u2m−2)f2m−2, (4.37c)

µ4(m,u) = w(u2m−15/2)w(u2m−9/2)w(u2m−7/2)w(u2m−5/2)w̄(u2m−13/2)w̄(u2m−11/2)w̄(u2m−9/2)

w(m−3)(um−11/2)s(2um−6)s(2um−5)s(2u2m−3)s(2u2m−2)f2m−4f2m−3f2m−2, (4.37d)

and

ν1(m,u) = w(u−1/2)w
(m)(um−5/2)s(2u0)s(2u1)s(2um−3)s(2um−2)f−1f0f1, (4.38a)

ν2(m,u) = w(1)(u−3/2)w
(m−1)(um−3/2)s(2u−2)s(2u1)s(2um−2)s(2um−1)f1, (4.38b)

ν3(m,u) = w(u−5/2)w̄(u−1/2)w
(1)(u−1/2)w

(m−2)(um−1/2)s(2u−3)s(2u0)s(2um−1)s(2um)f−3, (4.38c)

ν4(m,u) = w(u−5/2)w(u−3/2)w(u−1/2)w(u5/2)w̄(u−1/2)w̄(u1/2)w̄(u3/2)w
(m−3)(um+1/2)

s(2u−3)s(2u−2)s(2um)s(2um+1)f−3f−2f−1. (4.38d)

These are obtained by two possible methods: (i) by combining the fusion hierarchy relations for
Dm,0(u), Dm−2,1(u) and D1,m−2(u), or (ii) by simplifying the common prefactors in (4.34). The
above equations hold for m > 4, but also for m = 2, 3 with the identifications D

0,0
k 7→ fk−2fk−3I

and D
−1,0
k 7→ 0. Moreover, we remark that the relations (4.36a) and (4.36b) are related by a crossing

symmetry linking the evaluations at u and (5− 2m)λ− u.
These relations allow us to derive reduction relations for the fused transfer tangles. For instance,

we note that
µ2(m, û) = µ3(m, û) = 0 for û = (4−m)λ+ rπ

2 ,

ν2(m, v̂) = ν3(m, v̂) = 0 for v̂ = (1−m)λ+ rπ
2 ,

r ∈ Z. (4.39)

Moreover, for m > 3, µ1(m, û) and µ4(m, û) are non-zero for generic values of λ, and likewise for
ν1(m, v̂) and ν4(m, v̂). We therefore have

D
m,0
0 (û) =

µ4
(
m, û

)

µ1
(
m, û

)Dm−3,0
0 (û) =

µ4
(
m, û

)

µ1
(
m, û

)Dm−3,0
0

(
(7−m)λ+ rπ

2

)
=

µ4
(
m, û

)

µ1
(
m, û

)
[
D

m,0
0 (û)

∣∣
m→m−3

]
,

(4.40a)

D
m,0
0 (v̂) =

ν4
(
m, v̂

)

ν1
(
m, v̂

)Dm−3,0
6 (v̂) =

ν4
(
m, v̂

)

ν1
(
m, v̂

)Dm−3,0
0 ((4 −m)λ+ rπ

2 ) =
ν4
(
m, v̂

)

ν1
(
m, v̂

)
[
D

m,0
0 (v̂)

∣∣
m→m−3

]
,

(4.40b)

where we used crossing symmetry at the second equalities. Writing m = x+ 3y with x ∈ {0, 1, 2} and
y ∈ N, we apply the first reduction relation repeatedly to write

Dm,0(û) = Dx,0
(
(4− x)λ+ rπ

2

) y−1∏

k=0

gr(m− 3k), gr(m) =
µ4

(
m, (4−m)λ+ rπ

2

)

µ1
(
m, (4−m)λ+ rπ

2

) . (4.41)
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This relation also holds for y = 0 provided that the product is replaced by the factor 1. Crucially, one
can write each of the tangles for m = 0, 1, 2 in terms of one of the following objects:

D0,0(4λ+ rπ
2 ) 7→ f(2λ+ rπ

2 )f(λ+ rπ
2 )I, (4.42a)

D1,0(3λ+ rπ
2 ) = D1,0( rπ2 ) = f(2λ+ rπ

2 )f(3λ+ rπ
2 )

s(6λ)

s(2λ)

w(5λ2 + rπ
2 )w(−3λ

2 + rπ
2 )w̄(−λ

2 + rπ
2 )

w(1)(3λ2 + rπ
2 )

I,

(4.42b)

D2,0(2λ+ rπ
2 ) = −

α3(2, 2λ + rπ
2 )α0(λ+ rπ

2 )

α1(2, 2λ + rπ
2 )

D1,0(3λ+ rπ
2 ). (4.42c)

The relation (4.42a) follows directly from our convention for D0,0(u) used in (4.36), and (4.42b) was
given in (4.5). Finally for (4.42c), we used the fact that α2(2, u) in (4.15a) has a factor s(2u−2).

This proves that Dm,0(û) is proportional to the identity element I, for all m > 0. The overall
prefactor is a non-trivial product of trigonometric factors, which can be simplified to

Dm,0(û) = I × f(û2m−3)f(û2m−2)
s(2û2m−3)s(2û2m−2)

s(2ûm−3)s(2ûm−2)

w(û2m−5/2)

w(m)(ûm−5/2)

m−1∏

j=0

w(−û2j−3/2)w̄(−û2j−5/2).

(4.43)

This formula is valid for all four boundary conditions. It can be checked first for m = 0, 1, 2 and then
proved inductively on m by steps of 3 using (4.40a).

4.6 Braid limits

The bulk braid operators are defined as the following limits of the face operator:

±∞ = lim
u→±i∞

e∓i(π−2λ)

ρ8(u)
u = + + − e±2iλ − e∓2iλ . (4.44)

Diagrammatic properties then follow from the ones of the face operator:

±∞ = ∓∞ , ±∞ ∓∞ = , ±∞
∓∞

±∞
= ∓∞

±∞

∓∞
. (4.45)

The bulk braid operators also have push-trough properties for the arc and the vacancies:

±∞±∞ = , ±∞ = . (4.46)

The boundary braid operators are defined as

±∞ = lim
u→±i∞

1

δ(u)
u = ϑ e±3iλ/2 + e∓3iλ/2 , ϑ =

{
−1 S
1 C

. (4.47)
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These satisfy the crossing symmetry relation

±∞ ±∞ = e∓3iλ ∓∞ . (4.48)

The fundamental braid transfer tangle is defined from the limits of the operators composingD1,0(u):

D∞ = D1,0
∞ =

. . . . . .

. . . . . .

∓∞ ∓∞ ∓∞

±∞ ±∞ ±∞

±∞∓∞ = lim
u→±i∞

e±4iλND1,0(u)

γ(u)f−3f−2
, (4.49)

where γ(u) depends on the choice of boundary condition:

identical: γ(u) = −w(u)w(3λ − u) , mixed: γ(u) = 1 . (4.50)

Using the braid inversion relation, the Yang-Baxter equation and the crossing symmetry at the
boundary, one can show that

. . . . . .

. . . . . .

−∞ −∞ −∞

+∞ +∞ +∞

+∞−∞ =

. . . . . .

. . . . . .

+∞ +∞ +∞

−∞ −∞ −∞

−∞+∞ . (4.51)

It thus follows that D1,0
∞ does not depend on the choice of limit u → ±i∞ in its definition.

The fused braid transfer tangles are defined as

Dm,0
∞ = lim

u→±i∞

e±4iλmNDm,0(u)

f(u−3)f(u−2)
∏m−1

j=0 γ(u2j)
, (4.52a)

D0,n
∞ = Dn,0

∞ , (4.52b)

Dm,n
∞ = lim

u→±i∞

e±4iλ(m+n)NDm,n(u)

w(m)(um−5/2)w(n)(/un−5/2)f(u−3)f(u−2)f(u2m−1)

1
∏m−1

j=0 γ(u2j)
∏n−1

j=0 γ(/u2j)
, (4.52c)

for m,n > 1. The definition (4.52) is completed with D0,0
∞ = I. For the mixed boundary cases,

these definitions are similar to those used for the periodic geometry [17]. For all choices of boundary
condition, the fusion hierarchy relations in the limit u → ±i∞ become:

Dm,0
∞ = Dm−1,0

∞ D1,0
∞ −Dm−2,1

∞ , (4.53a)

Dm,n
∞ = Dm,0

∞ D0,n
∞ −Dm−1,0

∞ D0,n−1
∞ . (4.53b)

It immediately follows that each fused braid tangle is a polynomial in D∞ that can be expressed as a
determinant:

Dm,0
∞ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D∞ D∞ I 0 0 0

I D∞ D∞ I 0 0

0
. . .

. . .
. . .

. . . 0
0 0 I D∞ D∞ I

0 0 0 I D∞ D∞

0 0 0 0 I D∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, Dm,n
∞ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0
n× n 0 0 0

I 0 0
0 0 I

0 0 0 m×m
0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.54)

As previously in (4.30a), the upper block is associated to D0,n
∞ and the lower block to Dm,0

∞ .
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4.7 T -system and Y -system

The T -system is a set of quadratic equations satisfied by the fused transfer matrices, that follows from
the fusion hierarchy relations. For the A

(2)
2 model on the strip, it can be written in a uniform way using

the determinantal forms given in Section 4.4, namely

det(m, 0)0 det(m−k, 0)2k+2 =
(m−1∏

j=k

F2j

)
det(k,m−k)0+det(m+1, 0)0 det(m−k−1, 0)2k+2 (4.55)

where 0 6 k < m and det(0, 0) = I. The proof, given in Appendix A.3, is completely analogous to the
one given for the periodic case in [17]. Of course, the T -system can be written directly in terms of the
fused transfer matrices Dm,n(u). For all boundary conditions, the T -system equation reads

s(2um−3)s(2um+k)w
(m)(um−5/2)w

(m−k)(um+k−1/2)D
m,0
0 D

m−k,0
2k+2

=
(m−1∏

j=k

w̄(−u2j−1/2)
)(m−2∏

j=k

w(−u2j+1/2)
)
s(2uk−3)s(2u2m)w(u2m−1/2)f2mD

k,m−k
0

+ s(2um−1)s(2um+k−2)w
(m+1)(um−3/2)w

(m−k−1)(um+k−3/2)D
m+1,0
0 D

m−k−1,0
2k+2 (4.56)

for 0 < k < m, with D
0,0
ℓ = fℓ−3fℓ−2I used for the case k = m − 1. A similar result holds for k = 0

with the first term of the right-hand side replaced by

(m−1∏

j=0

w̄(−u2j−1/2)
)(m−2∏

j=0

w(−u2j+1/2)
)

× s(2u−3)s(2u2m)w(u−5/2)w(u2m−1/2)w
(m)(−um−3/2)f−3f2mD

0,m
0 . (4.57)

It is clearly more convenient to work with the determinantal expressions. To express this in terms
of a Y -system, we first define the functions dm(u) as

dm(u) =
det(m+ 1, 0)0 det(m− 1, 0)2(∏m−1

j=0 F2j

)
det(m, 0)1

, m > 0, (4.58)

with d0(u) = 0. It then directly follows from (4.55) that

I + dm
0 =

det(m, 0)0 det(m, 0)2(∏m−1
j=0 F2j

)
det(m, 0)1

. (4.59)

The starting point to derive the Y -system equation is to compute the product dm
0 dm

2 :

dm
0 dm

2 =
det(m− 1, 0)2 det(m− 1, 0)4∏m−1

j=0 F2j
∏m

j=1F2j

det(m+ 1, 0)0 det(m+ 1, 0)2
det(m, 0)1 det(m, 0)3

=

∏m
j=0F2j

∏m−1
j=1 F2j

∏m−1
j=0 F2j

∏m
j=1F2j

(I + dm−1
2 )(I + dm+1

0 )

(I + dm
1 )

det(m+ 1, 0)1 det(m− 1, 0)3

det(m, 0)2
∏m−1

j=0 F2j+1

=
(I + dm−1

2 )(I + dm+1
0 )

(I + dm
1 )

dm
1 . (4.60)

The Y -system is therefore identical to the one obtained for periodic boundary conditions:

dm
0 dm

2

dm
1

=

(
I + dm−1

2

)(
I + dm+1

0

)

I + dm
1

, m > 1 . (4.61)
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5 Polynomiality of the fused transfer matrices

In this section, we prove an important property of the fused transfer matrices Dm,n(u), namely that
they are Laurent polynomials in z = eiu. The proof is divided in three cases. In Section 5.1, the
polynomiality of D2,0(u) and D1,1(u) is established using the diagrammatic definitions of these transfer
matrices given in Section 4.3. Then in Sections 5.2 and 5.3, we respectively prove the polynomiality of
Dm,0(u) and Dm,n(u) for m,n > 1, by cleverly using the fusion hierarchy relations. Throughout the
section, the arguments are done for generic values of λ. By continuity, they then hold at all values of
λ, including those for which q is a root of unity. A reader uninterested in these technical proofs may
wish to accept this result and skip forward to Section 6.

5.1 Polynomiality of D2,0(u) and D1,1(u)

In this section, we prove that D2,0(u) and D1,1(u) are Laurent polynomials in z = eiu. Let us first
recall that we have two equivalent definitions for these objects. The first definitions in (4.15) express
D2,0(u) and D1,1(u) as functions of D1,0(u) and its shifts, whereas the second definitions in (4.18) are
diagrammatic and written in terms of projectors. For D2,0(u), the potential poles are the zeros of the
functions α1(2, u) and Z2,0(u), or more precisely the common zeros of these two functions:

(i) u = rπ
2 , (ii) u = λ+ rπ

2 , (iii) u = λ
2 +

{
rπ SS,

(r + 1
2)π CC,

(iv) u = λ± ξ(j) + rπ, (v) u = ±ξ(j) + rπ, for j = 1, . . . , N, r ∈ Z. (5.1)

For the mixed cases, there are no potential poles of types (iii). We also note that the functions α1(2, u)
and Z2,0(u) have simple zeros for (i), (ii), (iv) and (v), and double zeros for (iii) for the boundary
conditions SS and CC. Likewise the potential poles of D1,1(u) are the common zeros of β1(1, 1, u) and
Z1,1(u), which are the values of u in (i) and (v). In this case, the zeros are double for (i) and simple
for (v), and this holds for all boundary conditions.

To prove that D2,0(u) and D1,1(u) are regular at the points, we note that their diagrammatic
definitions can be rewritten as

D2,0(u) =
1

Z2,0(u)

3λ−u2

2u− λ

3λ−u0

2,0

u2+ξ(1)

u0+ξ(1)

2
,0

u2+ξ(2)

u0+ξ(2)

2
,0

. . .

. . .

2
,0

u2+ξ(N)

u0+ξ(N)

2
,0

u2−ξ(1)

u0−ξ(1)

2
,0

u2−ξ(2)

u0−ξ(2)

2
,0

. . .

. . .

2
,0

u2−ξ(N)

u0−ξ(N)

2
,0

u2

λ− 2u

u02,
0

, (5.2a)
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D1,1(u) =
1

Z1,1(u)

3λ−u3

2u

3λ−u0

1,1

u3+ξ(1)

u0+ξ(1)

1
,1

u3+ξ(2)

u0+ξ(2)

1
,1

. . .

. . .

1
,1

u3+ξ(N)

u0+ξ(N)

1
,1

u3−ξ(1)

u0−ξ(1)

1
,1

u3−ξ(2)

u0−ξ(2)

1
,1

. . .

. . .

1
,1

u3−ξ(N)

u0−ξ(N)

1
,1

u3

−2u

u01,
1

. (5.2b)

We justify this claim as follows. For D2,0(u), let us choose any of the projectors P 2,0 in (5.2a) and
expand it using (3.16). The black triangle of the second term in this decomposition points leftwards
if we selected a projector in the bottom part of the diagram, and to the right if it belongs to the top
part. This triangle is then either pushed through a pair of face operators using (3.13a), or it reflects on
the boundary using (3.30). In all cases, this black triangle then connects with another P 2,0 projector,
yielding a zero result due to the third identity in (3.18). Only the first term of the decomposition (3.16)
survives, and the final result is a diagram identical to the original one, but with this projector now
absent. This argument is repeated until all projectors are removed except for one. The same argument
applies for D1,1(u) and its P 1,1 projectors.

These expressions with many projectors allow us to investigate the polynomiality of D2,0(u) and
D1,1(u) in terms of some of their constituting parts. First, let us consider the combinations

1

s(u−1 − ξ(j))s(u0 − ξ(j))

u2−ξ(j)

u0−ξ(j)

2
,0 ,
1

s(u0 − ξ(j))

u3−ξ(j)

u0−ξ(j)

1
,1 . (5.3)

Each of these combinations is a Laurent polynomial in z = eiu. To show this, we note that

u2−ξ(j)

u0−ξ(j)

2
,0

∣∣∣
u=ξ(j)

= s(λ)s2(2λ)s(3λ) 2
,0 = 0 , (5.4a)

u3−ξ(j)

u0−ξ(j)

1
,1

∣∣∣
u=ξ(j)

= s2(2λ)s2(3λ) 1
,1 = 0 , (5.4b)

where we used (3.10), (3.11) and (3.18). Similar identities holds with u shifted by π, and likewise
for (5.4a) with u = λ + ξ(j) + rπ. The combinations (5.3) appear in the bottom bulk sections of the
diagrams in (5.2), which are now understood to be Laurent polynomials. The same holds for the top
bulk parts of these diagrams, as this follows from repeating the argument with ξ(j) 7→ −ξ(j), using
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combinations similar to those in (5.3) but with projectors attached to the right. This ends the proof
that D2,0(u) is regular at the points (iv) and (v), and likewise that D1,1(u) is regular at the points (v).

The proofs of the regularity at the point (i), (ii) and (iii) are instead related to the operators on
the boundaries. In this case, we consider the combinations

1

s(2u−1)δL(u−3/2)δL(u−1/2)

3λ−u2

2u− λ

3λ−u0

2,0

,
1

s(2u0)δL(u−3/2)

3λ−u3

2u

3λ−u0

1,1

. (5.5)

These are also Laurent polynomials. The proof uses the same arguments, namely one shows using
(3.23), (3.26) and (3.27) that the diagrams evaluate to zero if u is specified to a value where the
denominator vanishes. Similar identities hold on the right boundary. The relevant combinations are
obtained from (5.5) by rotating the diagram, replacing δL by δR, and changing u 7→ λ−u and u 7→ −u
for the first and second combinations, respectively. This allows us to conclude that the expressions
(5.2) for D2,0(u) and D1,1(u) are regular at a number of values of u that includes all the points of
type (i), (ii) and (iii). This is also true in the cases of double zeros, as in these cases, one zero is
accounted for in the combination corresponding to the left boundary and the second for the one in the
right boundary. This ends the proof of the polynomiality of D2,0(u) and D1,1(u).

5.2 Polynomiality of Dm,0(u)

Idea of the inductive proof. The polynomiality of Dm,0(u) is already established for m = 1 and
m = 2. This section proves that this also holds for m > 3, using induction on m. Dividing (4.36a) and
(4.36b) by µ1(m,u) and ν1(m,u) respectively gives two different expressions for Dm,0(u) in terms of
fused transfer matrices Dm′,0(u) with m′ < m. By the inductive hypothesis, these transfer matrices
with lower fusion indices are assumed to be Laurent polynomials in z = eiu. Therefore the only potential
poles for Dm,0(u) are the zeros of µ1(m,u) and ν1(m,u), or more precisely the common zeros of these
two functions. Upon inspection, we see that they share the factor s(2um−3)s(2um−2)w

(m)(um−5/2).

Therefore Dm,0(u) potentially has poles at the following values of u:

(i) u = (2−m)λ+ rπ
2 , (ii) u = (3−m)λ+ rπ

2 , (iii) u = (52−m)λ+rπ+

{
mπ

2 SS,
(m+ 1)π2 CC,

(5.6)

with r ∈ Z. Of course, there is no potential pole of type (iii) for the mixed cases SC and CS. For
m > 4, all the other zeros of µ1(m,u) are not zeros of ν1(m,u), so the above list exhausts all the
possible problematic values of u. Let us thus first consider m > 4. (The case m = 3 is discussed at the
end of the section). Below we prove that Dm,0(u) is regular at each of these points.

Proof for (i) and (ii). From the periodicity and crossing symmetry, we have

Dm,0
(
(2−m)λ+ rπ

2

)
= Dm,0

(
(3−m)λ+ rπ

2

)
. (5.7)
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As a result, the proof of regularity for (i) will imply the same result for (ii). We thus focus on (i) and
define û = (2 − m)λ + rπ

2 . The function ν1(m,u) has a zero of degree one at u = û. To show that
Dm,0(û) is non-singular, we must show that

K(m) = lim
u→û

(
ν2(m,u)D1,0

0 D
m−1,0
2 − ν3(m,u)D1,0

1 D
m−2,0
4 + ν4(m,u)Dm−3,0

6

)
= 0. (5.8)

We readily observe that ν2(m,u) = 0 at u = û because it has a factor of s(2um−2). In contrast,
ν3(m, û) and ν4(m, û) are non-zero. We thus have

K(m) = −ν3(m, û)D1,0
1 (û)Dm−2,0

4 (û) + ν4(m, û)Dm−3,0
6 (û). (5.9)

As a first step, we note that

D
m−3,0
6 (û) =

µ2(m− 3, û6)

µ1(m− 3, û6)
D

m−4,0
6 (û)D1,0

2m−2(û), (5.10)

with the other two terms absent due to zeros of µ3(m−3, û6) and µ4(m−3, û6). This holds for m > 4.2

From crossing symmetry and periodicity, we have D
1,0
2m−2(û) = D

1,0
1 (û) and

K(m) = −ν3(m, û)D1,0
1 (û)

(
D

m−2,0
4 (û)−

ν4(m, û)

ν3(m, û)

µ2(m− 3, û6)

µ1(m− 3, û6)
D

m−4,0
6 (û)

︸ ︷︷ ︸
=J(m)

)
. (5.11)

The factor in front of the parenthesis is non-zero leaving us to show that the content of the parenthesis,
J(m), vanishes. We check the cases m = 4, 5, 6 explicitly:

J(4) = D
2,0
4 (û)−

ν4(4, û)

ν3(4, û)

µ2(1, û6)

µ1(1, û6)
D

0,0
6 (û), û = −2λ+ rπ

2 , (5.12a)

J(5) = D
3,0
4 (û)−

ν4(5, û)

ν3(5, û)

µ2(2, û6)

µ1(2, û6)
D

1,0
6 (û), û = −3λ+ rπ

2 , (5.12b)

J(6) = D
4,0
4 (û)−

ν4(6, û)

ν3(6, û)

µ2(3, û6)

µ1(3, û6)
D

2,0
6 (û), û = −4λ+ rπ

2 . (5.12c)

All six transfer tangles in (5.12) turn out to be proportional to the identity I. Indeed, using the
crossing symmetry, periodicity and conjugacy of the transfer matrices as well as the reduction relations
(4.40), one can write each of these tangles in terms of the objects in (4.42). Verifying that J(4), J(5)
and J(6) vanish is then straightforward, as it amounts to checking three equalities satisfied by finite
products of trigonometric factors.

Returning to the cases m > 7 with û = (2 −m)λ + rπ
2 , we apply (4.40) to both transfer matrices

in J(m) and find

J(m) =
µ4(m− 2, û4)

µ1(m− 2, û4)
D

m−5,0
4 (û)−

ν4(m, û)

ν3(m, û)

µ2(m− 3, û6)

µ1(m− 3, û6)

µ4(m− 4, û6)

µ1(m− 4, û6)
D

m−7,0
6 (û)

=
µ4(m− 2, û4)

µ1(m− 2, û4)
J(m− 3). (5.13)

2For m = 4, Dm−3,0
6 (û) = D

1,0
6 (û). The relation (4.36a) holds trivially as µ1(1, u)D1,0(u) = µ2(1, u)D0,0(u)D1,0(u)

and all other terms vanish due to negative fusion indices. In (5.10), each µi(m− 3, û6) vanishes, but one can check that

the equality still holds by using a limit and understanding µ2(m−3,û6)

µ1(m−3,û6)
as limu→û

µ2(m−3,u6)

µ1(m−3,u6)
.
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The last equality stems from the definition (5.11) of J(m− 3) and the relations

ν4(m, û)

ν3(m, û)

µ1(m− 2, û4)

µ4(m− 2, û4)

µ2(m− 3, û6)

µ1(m− 3, û6)

µ4(m− 4, û6)

µ1(m− 4, û6)
=

ν4(m− 3, v̂)

ν3(m− 3, v̂)

µ2(m− 6, v̂6)

µ1(m− 6, v̂6)
, (5.14a)

D
m−5,0
4 (û) = D

m−5,0
4 (v̂), D

m−7,0
6 (û) = D

m−7,0
6 (v̂), v̂ = û

∣∣
m→m−3

= (5−m)λ+ rπ
2 , (5.14b)

valid for m > 7.3 By the induction hypothesis, Dm−3,0
(
(5−m)λ+ rπ

2

)
is finite and therefore J(m−3) =

0. Because µ1(m − 2, û4) 6= 0 we deduce that J(m) = 0. This ends the proof that Dm,0(u) is regular
at u = (2 −m)λ+ rπ

2 and (3−m)λ+ rπ
2 .

Proof for (iii). This case applies only to SS and CC boundary conditions. We start by deriving a
new functional equation. Recall that a section of the matrix used to defined det(m, 0)(u) takes the
form

det(m, 0)(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . .

. . . 0
. . . D2k+4 D2k+3 F2k+1 0
0 F2k+2 D2k+2 D2k+1 F2k−1 0

0 F2k D2k D2k−1 F2k−3 0
0 F2k−2 D2k−2 D2k−3 F2k−5 0

0 F2k−4 D2k−4 D2k−5
. . .

0 F2k−6 D2k−6
. . .

0
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.15)

Using the determinant minor expansion, we obtain the five-term relation

det(m, 0)0 = det(m− k, 0)2k det(k, 0)0 +F2k−2F2k−1F2k det(m− k − 2, 0)2k+4 det(k − 1, 0)0

−F2k−2D2k−1 det(m− k − 1, 0)2k+2 det(k − 1, 0)0

+F2k−4F2k−3F2k−2 det(m− k − 1, 0)2k+2 det(k − 2, 0)0, k = 1, . . . ,m− 1. (5.16)

Rewriting this equation in terms of the fused transfer tangles, we find

τ1(m,k, u)Dm,0
0 = τ2(m,k, u)Dm−k,0

2k D
k,0
0 + τ3(m,k, u)Dm−k−2,0

2k+4 D
k−1,0
0

+ τ4(m,k, u)Dm−k−1,0
2k+2 D

1,0
2k−1D

k−1,0
0 + τ5(m,k, u)Dm−k−1,0

2k+2 D
k−2,0
0 , (5.17)

where k = 2, . . . ,m− 2 and

τ1(m,k, u) = s(2um−2)s(2um−3)s(2u2k−4)s(2u2k−3)s(2u2k−2)s(2u2k−1)w(u2k−5/2)w
(m)(um−5/2)

× f(u2k−4)f(u2k−3)f(u2k−2)f(u2k−1), (5.18a)

τ2(m,k, u) = s(2uk−3)s(2uk−2)s(2u2k−4)s(2u2k−1)s(2um+k−3)s(2um+k−2)w
(m−k)(um+k−5/2)

× w(k)(uk−5/2)f(u2k−4)f(u2k−1), (5.18b)

τ3(m,k, u) = s(2uk−4)s(2uk−3)s(2u2k−4)s(2u2k−3)s(2um+k−1)s(2um+k)w(u2k−7/2)w(u2k−5/2)

× w(u2k+1/2)w̄(u2k−5/2)w̄(u2k−3/2)w̄(u2k−1/2)w
(m−k−2)(um+k−1/2)w

(k−1)(uk−7/2)

3This also works in the case m = 7, in which case the functions µ1(m− 6, v̂6) and µ2(m− 6, v̂6) both vanish and their

ratio in (5.14a) should be interpreted as limv→v̂
µ2(m−6,v6)

µ1(m−6,v6)
.
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× f(u2k−4)f(u2k−3), (5.18c)

τ4(m,k, u) = −s(2uk−4)s(2uk−3)s(2u2k−3)s(2u2k−2)s(2um+k−2)s(2um+k−1)w̄(u2k−5/2)

× w(m−k−1)(um+k−3/2)w
(1)(u2k−5/2)w

(k−1)(uk−7/2), (5.18d)

τ5(m,k, u) = s(2uk−5)s(2uk−4)s(2u2k−2)s(2u2k−1)s(2um+k−2)s(2um+k−1)w(u2k−11/2)w(u2k−5/2)

× w(u2k−3/2)w̄(u2k−9/2)w̄(u2k−7/2)w̄(u2k−5/2)w
(m−k−1)(um+k−3/2)w

(k−2)(uk−9/2)

× f(u2k−2)f(u2k−1). (5.18e)

The determinant relations (5.16) for k = 1 and k = m − 1 correspond to (4.36a) and (4.36b). For all
values of k, the function τ1(m,k, u) contains the problematic factor w(m)(um−5/2), which may produce

potential poles for Dm,0(u) for SS and CC boundary conditions. To show that this is not the case, we
treat separately the cases of m odd and even.

Starting withm odd, we set û = (52−m)λ+(r+ 1
2)π for SS boundary conditions and û = (52−m)λ+rπ

for CC boundary conditions. We use the relation (5.17) with k = m+1
2 , noting that τ5(m, m+1

2 , û) = 0
and that the degree of the zero of τ1(m, m+1

2 , u) at u = û is one. Thus to prove that Dm,0(û) is
non-singular, we must show that

τ2(m, m+1
2 , û)D

(m−1)/2,0
m+1 (û)D

(m+1)/2,0
0 (û) + τ3(m, m+1

2 , û)D
(m−5)/2,0
m+5 (û)D

(m−1)/2,0
0 (û)

+ τ4(m, m+1
2 , û)D

(m−3)/2,0
m+3 (û)D1,0

m (û)D
(m−1)/2,0
0 (û) = 0. (5.19)

With the function µ1(m+1
2 , û) non-zero, we rewrite D(m+1)/2,0(û) as

D
(m+1)/2,0
0 (û) = −

µ3(m+1
2 , û)

µ1(m+1
2 , û)

D
(m−3)/2,0
0 (û)D1,0

m−2(û) +
µ4(m+1

2 , û)

µ1(m+1
2 , û)

D
(m−5)/2,0
0 (û). (5.20)

This expresses the left side of (5.19) as a sum of four terms. With crossing symmetry, we find that

two of them are proportional to D
(m−5)/2,0
m+5 (û)D

(m−1)/2,0
0 (û), whereas the other two are proportional to

D
(m−3)/2,0
m+3 (û)D1,0

m (û)D
(m−1)/2,0
0 (û). It is then straightforward to check that the sum of their coefficients

vanishes. This also holds for the special case m = 5 where D
(m−5)/2,0
0 (û) 7→ f−3f−2(û), and using

f−3(5λ− u)f−2(5λ− u) = f−3(u)f−2(u). This ends the proof for m odd.
For m even, we define û = (52−m)λ+rπ for SS boundary conditions and û = (52−m)λ+(r+ 1

2 )π for
CC boundary conditions. In this case, we use the relation (5.17) with k = m

2 . We note that τ j(m, m2 , u)
vanishes at u = û for j = 1, 3, 5, and that τ1(m, m2 , u) has a double zero whereas τ3(m, m2 , u) and
τ5(m, m2 , u) have simple zeros. To show that Dm,0(u) is regular at u = û, we show that

L = lim
u→û

τ1(m, m2 , u)D
m,0(u)

w(m)(um−5/2)
= 0, (5.21)

or equivalently

L = lim
u→û

1

w(m)(um−5/2)

[
τ2(m, m2 , u)D

m/2,0
m D

m/2,0
0 + τ3(m, m2 , u)D

m/2−2,0
m+4 D

m/2−1,0
0

+ τ4(m, m2 , u)D
m/2−1,0
m+2 D

1,0
m−1D

m/2−1,0
0 + τ5(m, m2 , u)D

m/2−1,0
m+2 D

m/2−2,0
0

]
= 0. (5.22)

Because τ3(m, m2 , û) = τ5(m, m2 , û) = 0, the limits of the second and fourth terms are evaluated directly
and their sum is found to vanish due to the relations

D
m/2−j,0
m+2j (û) = D

m/2−j,0
0 (û), lim

u→û

τ3(m, m2 , u)

w(m)(um−5/2)
= − lim

u→û

τ5(m, m2 , u)

w(m)(um−5/2)
, (5.23)
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the first of which is obtained by crossing symmetry. For the remaining terms, we expand D
m/2,0
m and

D
m/2,0
0 as

D
m/2,0
0 =

µ2(m2 , u)

µ1(m2 , u)
D

m/2−1,0
0 D

1,0
m−2 −

µ3(m2 , u)

µ1(m2 , u)
D

m/2−2,0
0 D

1,0
m−3 +

µ4(m2 , u)

µ1(m2 , u)
D

m/2−3,0
0 , (5.24a)

Dm/2,0
m =

ν2(m2 , um)

ν1(m2 , um)
D1,0

m D
m/2−1,0
m+2 −

ν3(m2 , um)

ν1(m2 , um)
D

1,0
m+1D

m/2−2,0
m+4 +

ν4(m2 , um)

ν1(m2 , um)
D

m/2−3,0
m+6 . (5.24b)

The functions µ3(m2 , u), µ4(m2 , u), ν3(m2 , um) and ν4(m2 , um) vanish at u = û with simple zeros.

Expanding D
m/2,0
m D

m/2,0
0 with (5.24) yields nine terms, four of which contain two of these functions.

Dividing by w(m)(um−5/2) and taking the limit u → û, these four terms vanish. Four more terms
contain exactly one of the functions µ3(m2 , u), µ

4(m2 , u), ν
3(m2 , um) and ν4(m2 , um). After the division by

w(m)(um−5/2), the limit of each term is well-defined and nonzero, and involves fused transfer matrices
evaluated at u = û and shifts thereof. These four terms then cancel pairwise due to the crossing-
symmetry relations in (5.23) and

µ2(m2 , û) = (−1)m/2ν2(m2 , ûm), lim
u→û

µj(m2 , u)

w(m)(um−5/2)
= (−1)m/2−1 lim

u→û

νj(m2 , um)

w(m)(um−5/2)
, j = 3, 4.

(5.25)
The remaining terms combine to

L = lim
u→û

1

w(m)(um−5/2)

[
τ2(m, m2 , u)

µ2(m2 , u)

µ1(m2 , u)

ν2(m2 , um)

ν1(m2 , um)
D1,0

m D
1,0
m−2 (5.26)

+ τ4(m, m2 , u)D
1,0
m−1

]
D

m/2−1,0
0 D

m/2−1,0
m+2 .

With

γ =
τ2(m, m2 , u)µ

2(m2 , u)ν
2(m2 , um)

µ1(m2 , u)ν
1(m2 , um)α2(2, um−2)

= −
τ4(m, m2 , u)

α3(2, um−2)α0(um−3)
, (5.27)

it follows that
L = lim

u→û

γ

w(m)(um−5/2)

[
α1(2, um−2)D

2,0
m−2

]
D

m/2−1,0
0 D

m/2−1,0
m+2 . (5.28)

The function α1(2, um−2) has a double zero at u = û, so after dividing by w(m)(um−5/2), we find that L

vanishes, ending the proof that Dm,0(u) is regular at u = û for m even.

The special case m = 3. For m = 3, (4.15d) and (4.15e) provide two equations for D3,0(u). The
results of Section 5.1 confirm that the right-hand sides of these equations are Laurent polynomials in
z = eiu. The coefficients of D3,0(u) in these equations are respectively

α1(3, u) = s(2u1)
2w(3)(u1/2)w̄

(−1)(u3/2)f1f2, (5.29a)

α1(3, /u − λ) = s(2u0)
2w(3)(−u1/2)w̄

(−1)(−u−1/2)f0f−1. (5.29b)

For the mixed boundary conditions, these two have no common zeroes for generic inhomogeneities ξ(j)
and D3,0(u) is thus a polynomial. For the boundary conditions SS and CC, the only common zeroes
are those arising from w(3)(u1/2) which is equal up to a possible sign to w(3)(−u1/2). Thus the only
zeroes to be studied are

û = −
λ

2
+

{
(r + 1

2)π SS,

rπ CC.
(5.30)
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To show that D3,0(u) is regular at this value, we use (4.36a) and note that µ1(3, u) and µ4(3, u) have
simple zeros at u = û. We must then show that

µ2(3, û)D2,0
0 (û)D1,0

4 (û)− µ3(3, û)D1,0
0 (û)D1,0

3 (û) = 0. (5.31)

This follows directly from the crossing symmetry of D1,0(u) and the relation

D2,0(û) = −
α3(2, û)α0(û−1)

α1(2, û)
D

1,0
1 (û). (5.32)

This ends the proof of the polynomiality of D3,0(u), and of Dm,0(u) by the inductive argument.

5.3 Polynomiality of Dm,n(u)

In this section, we show the polynomiality of Dm,n(u) for m,n > 1, assuming that it holds for Dm,0(u).
Recall also that this property was already established for D1,1(u) in Section 5.1. From (4.15h), the
potential poles of Dm,n(u) are at the values of u where

β1(m,n, u) = −s(2um+n−2)s(2u2m−2)f(u2m−2) = 0 . (5.33)

We write down a second formula for Dm,n(u) starting from the T -system relation (4.55) with
(m,k) 7→ (m+ n,m):

(m+n−1∏

j=m

F2j

)
det(m,n)0 = det(m+n, 0)0 det(n, 0)2m+2 −det(m+n+1, 0)0 det(n− 1, 0)2m+2 . (5.34)

Reformulated in terms of fused transfer matrices, it reads

η1(m,n, u)Dm,n
0 = η2(m,n, u)Dm+n,0

0 D
n,0
2m+2 − η3(m,n, u)Dm+n+1,0

0 D
n−1,0
2m+2 , (5.35)

with

η1(m,n, u) =
( n−1∏

j=0

w̄(/u2j−3/2)
)( n−2∏

j=0

w(/u2j−1/2)
)
s(2um−3)s(2u2m+2n)w(u2m+2n−1/2)f2m+2n , (5.36a)

η2(m,n, u) = s(2um+n−3)s(2u2m+n)w
(m+n)(um+n−5/2)w

(n)(u2m+n−1/2) , (5.36b)

η3(m,n, u) = s(2um+n−1)s(2u2m+n−2)w
(m+n+1)(um+n−3/2)w

(n−1)(u2m+n−3/2) . (5.36c)

This relation holds for m,n > 1 with the convention D
0,0
k 7→ fk−3fk−2I used for the special case n = 1.

Having established in Section 5.2 the polynomiality of the transfer matrices Dm,0(u) with m > 1, we
conclude that the right side of (5.35) is also a Laurent polynomial. It can then be checked that the
intersection of the zeros of β1(m,n, u) and η1(m,n, u) is empty for generic values of λ, for all m,n > 1.
This ends the proof that Dm,n(u) is a Laurent polynomial in z = eiu.

6 Closure at roots of unity

For generic values of λ, the fusion hierarchy, T -system and Y -system are infinite systems of equations.
In this section, we fix the crossing parameter to rational multiples of π

λ = λa,b =
π(b− a)

2b
, gcd(a, b) = 1 , (6.1)

for which these systems close finitely. The main result of this section, stated in Section 6.1, is the
closure relation for the fusion hierarchy. There, we also give the strategy of the proof, which is then the
topic of Sections 6.2 to 6.4. Finally, Section 6.5 shows that the Y -system also closes finitely at roots of
unity.
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6.1 Results and skeleton of the proof

A closure relation for the fusion hierarchy is a linear relation between fused transfer matrices. The
following theorem gives these relations for the A

(2)
2 loop model on the strip.

Theorem 6.1. For λ = λa,b with b > 2, the fusion hierarchy is finite, namely Db,0(u) can be expressed
as a linear combination of Dm,n(u) with m+ n < b. For b > 2, the closure relation reads

w(a)(u−5/2)f−1D
b,0
0 − w(1)(u−5/2)D

b−2,1
2

+ w(u−7/2)w(u−5/2)w̄(u−5/2)w̄(u−3/2)w̄(u−1/2)w̄
(a)(u−3/2)w̄

(−1)(u1/2)f−3D
b−3,0
4 (6.2a)

= w(u−5/2)(U − 2V )f−3f−2f−1 κ I,

and for b = 2

w(a)(u−5/2)D
2,0
0 − w(1)(u−5/2)w

(1)(−u3/2)w(u−1/2)D
0,1
2 = w(u−5/2)(U − 2V )f−3f−2 κ I, (6.2b)

where

U(u) =
b−1∏

j=0

w̄(u2j+1/2)w(u2j+3/2), V (u) =
b−1∏

j=0

w̄(u2j+3/2)w(u2j+1/2), (6.2c)

and

κ =

{
(−1)a−1

(
2 + (−1)b

)
identical,

−3 mixed.
(6.2d)

The relation (6.2) holds for b = 3 with D
0,0
4 7→ f1f2I.

This result thus holds for all four choices of boundary conditions. A proof of the theorem follows in
Sections 6.2 to 6.4. The rest of this section presents the skeleton of this proof.

First we note that (6.2a) is an equality between centered Laurent polynomials in z = eiu of maximal
degree 6N+2b+1 and 6N , for identical and mixed boundary conditions respectively. Using the strategy
outlined at the end of Section 3.3, it thus suffices to check that the identity holds for 12N +4b+3 and
12N + 1 values of z, respectively.

An important simplification arises from the fact that the closure relation can be written in terms
of the determinants as

det(b, 0)0 −F−2 det(b− 2, 1)2 +F−2F−1F0 det(b− 3, 0)4 = Λ(U − 2V )κ I (6.3)

with

Λ(u) =

2b−1∏

j=0

s(2uj)fj

b−1∏

ℓ=0

w̄(u2ℓ+1/2)w(u2ℓ+3/2). (6.4)

We then define

P0 = det(b, 0)0 −F−2 det(b− 2, 1)2 +F−2F−1F0 det(b− 3, 0)4, J 0 = Λ(U − 2V )κ I , (6.5)

so that the closure equation reads P0 = J 0. This equation is also an equality between Laurent
polynomials, whose degrees are however larger than the ones given above for (6.2a). We will show in
Section 6.2 that for λ = λa,b, P(u) and J (u) satisfy the periodicity and crossing symmetries

P(u) = P(u+ 2λ) = P(5λ− 2bλ− u), J (u) = J (u+ 2λ) = J (5λ− 2bλ− u). (6.6)
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These symmetries turn out to be useful to reduce the number of points where (6.2a) needs to be
evaluated. Indeed, dividing both sides of (6.2a) by w(u−5/2)f−3f−2f−1, we see that the equation we
want to prove reduces to

1

w(u−5/2)f−3f−2f−1

[
w(a)(u−5/2)f−1D

b,0
0 − w(1)(u−5/2)D

b−2,1
2

+w(u−7/2)w(u−5/2)w̄(u−5/2)w̄(u−3/2)w̄(u−1/2)w̄
(a)(u−3/2)w̄

(−1)(u1/2)f−3D
b−3,0
4

]
(6.7)

= (U − 2V )κ I.

We readily observe that the right-hand side is invariant under shifts of 2λ. The same applies to the
left-hand side, as it can be expressed as P(u)/Λ(u), with both factors individually invariant under
shifts of 2λ.

The left-hand side of (6.7) has a non-trivial denominator, letting us believe that it may have
poles at values of u where w(u−5/2)f−3f−2f−1 = 0. But it is clear that it has no poles at values of
u where w(u−1/2)f0f1 = 0. Once (6.6) is established, we know that the left-hand side is periodic
in u with period 2λ, and thus deduce that it has no poles at all, including at the zeros of the
denominator w(u−5/2)f−3f−2f−1. This equivalently implies that (6.2a) holds at all values where
w(u−5/2)f−3f−2f−1 = 0. We conclude that (6.7) is an equality of Laurent polynomials of degree width
4b for SS and CC boundary conditions, and of degree width 0 for SC and CS boundary conditions. To
prove the equation, we must show that it holds for 4b + 1 and 1 values of z, for identical and mixed
boundary conditions, respectively. In Section 6.3, we will prove, for the identical cases, that (6.7) holds
at 4b finite values of u corresponding to 4b distinct values of z = eiu. The last evaluation point, needed
for both the identical and mixed cases, is the braid limit u → i∞, corresponding to z = 0. This will be
the topic of Section 6.4, and will then end the proof of the theorem, for all four boundary conditions.

6.2 Symmetries at roots of unity

In this section, we establish the periodicity and crossing properties (6.6) of the functions P(u) and
J (u). The function J (u) is equal to I times a function involving only simple trigonometric functions,
and verifying that it satisfies the two symmetry properties is straightforward. We therefore focus on
the function P(u). We will use repeatedly the symmetries D2b+k = Dk and F2b+k = Fk. Using
(4.32c) with (m,n) = (b− 2, 1), we express P(u) as

P(u) = det(b, 0)0 −F−2D−1 det(b− 2, 0)2 +F−4F−3F−2 det(b− 3, 0)2

+F−2F−1F0 det(b− 3, 0)4 . (6.8)

We now show the crossing symmetry of P(u). It directly follows from (4.35a) and (4.35d) that
det(b, 0)(u) = det(b, 0)(5λ − 2bλ − u), so the first term in (6.8) is invariant under u 7→ 5λ − 2bλ − u.
For the second term, we have

F(5λ− 2bλ− u− 2λ) = F(u− 2λ+ 2bλ) = F−2 ,

D(5λ− 2bλ− u− λ) = D(u− λ+ 2bλ) = D−1 , (6.9)

det(b− 2, 0)(5λ − 2bλ− u+ 2λ) = det(b− 2, 0)(5λ − 2(b− 2)λ− (u+ 2λ)) = det(b− 2, 0)2 ,

where we used (4.26c) and (4.26d). We thus see that this second term is also invariant. This is in
contrast with the last two terms of (6.8), which are mapped to one another:

det(b− 3, 0)(5λ− 2bλ− u+2λ) = det(b− 3, 0)(5λ− 2(b− 3)λ− (u+4λ)) = det(b− 3, 0)4(u) . (6.10)
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The same is seen to apply to the prefactors, namely we have

(
F−4F−3F−2 det(b− 3, 0)2

)
(5λ− 2bλ− u) =

(
F−2F−1F0 det(b− 3, 0)4

)
(u) , (6.11)

ending the proof of the crossing symmetry.
To prove the periodicity, we compute P0−P2. The terms proportional to det(b−3, 0)4 immediately

cancel, and we are left with

P0 −P2 = det(b, 0)0 −F−2D−1 det(b− 2, 0)2 +F−4F−3F−2 det(b− 3, 0)2

− det(b, 0)2 +F0D1 det(b− 2, 0)4 −F0F1F2 det(b− 3, 0)6 . (6.12)

We now expand det(b, 0)0 using (4.34b). The terms proportional to det(b − 2, 0)4 and det(b − 3, 0)6
cancel, resulting in

P0 −P2 = D0 det(b− 1, 0)2 −F−2D−1 det(b− 2, 0)2

+F−4F−3F−2 det(b− 3, 0)2 − det(b, 0)2 = 0 , (6.13)

where at the last step we rewrote det(b, 0)2 using (4.34a). This ends the proof of the periodicity of
P(u).

6.3 Evaluations at finite points

In this section, we focus on the SS and CC boundary conditions. Our goal is to prove that the closure
relation holds at 4b distinct values of u that are real and in the interval [0, 2π).

Let us suppose that we are able to prove it for some finite value u = û. By the periodicity and
crossing properties (6.6) of P(u) and J (u), we will also have proved the relation for u = û + 2kλ,
û + 2kλ + π, −û+ (2k + 1)λ and −û + (2k + 1)λ + π, with k = 0, . . . , b − 1. Depending on û and λ,
these may or may not lead to a full set of 4b distinct values of z = eiu. This turns out to depend on the
parity of b− a. For b− a odd, choosing û = ℓλ for a given ℓ ∈ Z does in fact lead to 4b distinct values
of z. In contrast, for b− a even, choosing û = ℓλ for any ℓ ∈ Z only gives 2b distinct values. These can
then be combined to 2b more distinct values obtained from û = ℓ′λ + π

2 for some ℓ′ ∈ Z, leading to a
full set of 4b values.

Thus for the proof, we will show that the closure relation holds for û = (4−b)λ+ rπ
2 with r ∈ {0, 1}.

The cases b = 2 and b = 3 are treated separately in Appendix A.4. For b > 4, we keep λ generic for
now and note that4

D
b−2,1
2 (û) =

β2(b− 2, 1, û2)

β1(b− 2, 1, û2)
D

1,0
2b−1(û)D

b−2,0
2 (û), (6.14a)

D
b−3,0
4 (û) =

µ2(b− 3, û4)

µ1(b− 3, û4)
D

1,0
2b−4(û)D

b−4,0
4 (û). (6.14b)

The three remaining fused transfer matrices, Db,0
0 (û), Db−2,0

2 (û) and D
b−4,0
4 (û), are precisely of the

form D
m,0
0 (v̂) with v̂ = (4−m)λ+ rπ

2 , for m = b, b− 2, and b− 4 respectively. By (4.43), these tangles

4We note that (6.14b) also works for b = 4, with D
0,0
4 7→ f1f2I and µ2(b−3,û4)

µ1(b−3,û4)
understood as limu→û

µ2(b−3,u4)

µ1(b−3,u4)
.
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are all multiples of I. Let us define

R1(u) = w(a)(u−5/2)f−1D
b,0
0 , (6.15a)

R2(u) = −w(1)(u−5/2)D
b−2,1
2 , (6.15b)

R3(u) = w(u−7/2)w(u−5/2)w̄(u−5/2)w̄(u−3/2)w̄(u−1/2)w̄
(a)(u−3/2)w̄

(−1)(u1/2)f−3D
b−3,0
4 , (6.15c)

R4(u) = w(u−5/2)Uf−3f−2f−1 I, (6.15d)

R5(u) = w(u−5/2)V f−3f−2f−1 I. (6.15e)

Using (6.14) and (4.43), we obtain simple expressions for R1(û), R2(û) and R3(û): R1(û) is
proportional to I, whereas R2(û) and R3(û) are respectively proportional to D

1,0
2b−1(û) and D

1,0
2b−4(û).

This is true for all λ. Setting λ = λa,b, we remark that

D
1,0
2b−1(û) = D

1,0
2b−4(û) = D

1,0
0

(
(b− a+ r)π2

)
, (6.16)

which follows from periodicity and crossing symmetry. From (4.42b), we see that D
1,0
2b−1(û) and

D
1,0
2b−4(û) are scalar multiples of I at λ = λa,b.
The evaluation of the closure relation at û then reads

R1(û) +R2(û) +R3(û) = κ
(
R4(û)− 2R5(û)

)
. (6.17)

and checking it amounts to comparing the prefactors of I in R1(û), R2(û) and R3(û) with those in
R4(û) and R5(û). Evaluating the prefactors, one finds

R1(û) = R2(û) = R3(û) = −R4(û) = (−1)b+1R5(û), for b > 4. (6.18)

For b − a even, each Ri(û) in fact vanishes, and thus the above equalities hold trivially in this case.
In contrast, for b− a odd, none of the Ri(û) vanish. For either parity of b − a, the proof of (6.17) is
trivial using (6.18).

The proof of (6.18) is lengthy but straightforward. To show how it works, let us prove that
R4(û) = (−1)bR5(û). From the definition (6.15), we have

U(û) =

b−1∏

j=0

w̄−b+2j+9/2 w−b+2j+11/2 , V (û) =

b−1∏

j=0

w̄−b+2j+11/2 w−b+2j+9/2 , (6.19)

where we use the short-hand notation

wk = w(kλ+ rπ
2 ), w̄k = w̄(kλ+ rπ

2 ). (6.20)

The proof rests on the identities

wk+2b = (−1)b−awk, w̄k+2b = (−1)b−aw̄k, w−kw̄−ℓ = −wkw̄ℓ, (6.21)

valid for both SS and CC and all k, ℓ. The first two of these equations hold for λ = λa,b, whereas the
last one holds for all λ. The first two identities allow us to write

b−1∏

j=0

w̄2j+xw2j+y =

b∏

j′=1

w̄2(j′−1)+xw2(j′−1)+y =

b−1∏

j′=0

w̄2j′+x−2w2j′+y−2 , (6.22)
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for all x, y. Thus we may freely shift the indices of all functions in the products by two. For the
products in (6.19), this yields

U(û) =

b−1∏

j=0

w̄−b+2j+1/2 w−b+2j+3/2 , (6.23a)

V (û) = (−1)b
b−1∏

j=0

w̄b−2j−11/2 wb−2j−9/2 = (−1)b
b−1∏

j′=0

w̄b−2(b−1−j′)−11/2 wb−2(b−1−j′)−9/2

= (−1)b
b−1∏

j′=0

w̄−b+2j′−7/2 w−b+2j′−5/2 = (−1)b
b−1∏

j′=0

w̄−b+2j′+1/2 w−b+2j′+3/2 . (6.23b)

The two products are thus equal up to the sign (−1)b, confirming that R4(û) = (−1)bR5(û). Showing
that R1(û),R2(û) and R3(û) are equal to −R4(û) then follows three similar paths. For each, one can
show, using the identities f(−u) = f(u) = f(u+ π) and s(−u) = −s(u) = s(u+ π), that all functions
f(uk) and s(2uk) appearing in the functions R1(û), R2(û) and R3(û) simplify up to a potential sign. A
finer analysis is needed for the factors w and w̄, but one can check that they always coincide with those
of R4(û), again up to potential signs. These lengthy checks complete the proof of (6.18). Finally, the
fact that each Ri(û) vanishes for b− a even follows from an analysis of the products of w, w̄ functions:
either the argument of a sine function is an integer multiple of π or the argument of a cosine function
is an odd integer multiple of π

2 . This ends the proof of the closure relation at 4b separate values, for
both parities of b− a.

6.4 Evaluation at infinity

This section finishes the proof of the closure relations by taking the braid limit of the four terms in
(6.2a). These are all polynomials in z = eiu of the same degree. Multiplying them with a properly
chosen rational function of eiu gives a finite result in the limit u → i∞. This rational function will be
chosen as

r(u) =
e4iλbN

w(a)(u−5/2)f−3f−2f−1
∏b−1

j=0 γ(u2j)
, (6.24)

where γ(u) defined in (4.50). This choice ensures that the first term is

lim
u→i∞

r(u)w(a)(u−5/2)D
b,0
0 (u) = Db,0

∞ , (6.25)

as introduced in (4.52a), and thus that the limit of the closure relation is non-trivial. With this rational
function r(u), the limit of the other terms are

lim
u→i∞

− r(u)w(1)(u−5/2)D
b−2,1
2 (u) = −Db−2,1

∞ ,

lim
u→i∞

r(u)w(u−7/2)w(u−5/2)w̄(u−5/2)w̄(u−3/2)w̄(u−1/2)w̄
(a)(u−3/2)w̄

(−1)(u1/2)f3D
b−3,0
4 (u) = Db−3,0

∞ ,

lim
u→i∞

r(u)w(u−5/2)(U − 2V )f−3f−2f−1κ I = ∆b = I ×

{
1 + 2(−1)b identical,

3 mixed.
(6.26)

The computation of these limits proceeds as in the proof leading to the identities (4.53) for the fusion
hierarchy of braid transfer tangles. The problem is thus reduced to proving that the braid transfer
tangles satisfy

Db,0
∞ −Db−2,1

∞ +Db−3,0
∞ −∆b = 0, b > 2. (6.27)
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(For the special cases b = 2 and b = 3, this is also true with the conventions D0,0
∞ = I and D−1,0

∞ = 0.)
The proof of this identity proceeds in several steps: (i) we introduce families of polynomials pm(x) and
qm(x) related to Chebyshev polynomials and establish a link with the fused transfer matrices; (ii) we
show that one of these polynomials is equal, up to an additive constant, to the left-hand side of (6.27)
with the variable x set to D∞ − I; (iii) we recall that the tangle D∞ is a central element of dTLN (β)
and discuss its minimal polynomial in the regular representation of this algebra; (iv) we show that the
determinant obtained in (ii) has this minimal polynomial as a factor, thus confirming that the left-hand
side of (6.27) is equal to zero.

Let pm(x) with m > 1 and qm(x) with m > 3 be the polynomials in x defined as the following
m×m determinants:

pm(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 . . . 0 0
1 x 1 . . . 0 0
0 1 x . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x 1
0 0 0 . . . 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣

, qm(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 . . . 0 1
1 x 1 . . . 0 0
0 1 x . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x 1
1 0 0 . . . 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.28)

By expanding the determinants along the first line, they are seen to satisfy the recurrence relations

pm(x) = xpm−1(x)− pm−2(x), qm(x) = pm(x)− pm−2(x)− 2(−1)m, m > 3. (6.29)

The solutions are written in terms of Chebyshev polynomials as

pm(x) = Um(x2 ), qm(x) = 2Tm(x2 )− 2(−1)m. (6.30)

This then allows us to extend the definition of qm(x) to m = 1 and m = 2.
The determinant form of qm(x) was crucial in the study of the dense loop models (see Section 7

of [10]). We now relate the fused braid transfer matrices of the dilute A
(2)
2 model to the polynomials

pm(x). First, we note the matrix identity



1 1 0 . . . 0 0
0 1 1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 1
0 0 0 . . . 0 1




·




x 1 0 . . . 0 0
1 x 1 . . . 0 0
0 1 x . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x 1
0 0 0 . . . 1 x




=




x+ 1 x+ 1 1 0 . . . 0 0 0
1 x+ 1 x+ 1 1 . . . 0 0 0
0 1 x+ 1 x+ 1 . . . 0 0 0
0 0 1 x+ 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 . . . x+ 1 x+ 1 1
0 0 0 0 . . . 1 x+ 1 x+ 1
0 0 0 0 . . . 0 1 x




. (6.31)

Except for the bottom right entry, this matrix with x+1 → D∞ is identical to matrix in the expression
(4.54) for Dm,0

∞ . Moreover, the first matrix in (6.31) clearly has a unit determinant. By expanding the
determinants of the other two matrices along the last row, we find the simple identity

Dm,0
∞ = Dm−1,0

∞ + pm(D∞ − I). (6.32)
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This completes step (i).
Step (ii) aims at tying the polynomials qm(x) to the left-hand side of (6.27). The relation is

remarkably simple:

Dm,0
∞ −Dm−2,1

∞ +Dm−3,0
∞ −∆m = qm(D1,0

∞ − I) +

{
0 identical,

2
(
(−1)m − 1

)
I mixed,

m > 2, (6.33)

where we set D−1,0
∞ 7→ 0 for m = 2. This relation is easily checked for m = 2 and m = 3. The proof

for m > 4 is by induction:

Dm,0
∞ −Dm−2,1

∞ +Dm−3,0
∞ = Dm,0

∞ −D∞Dm−2,0
∞ + 2Dm−3,0

∞

= Dm−1,0
∞ −D∞Dm−3,0

∞ + 2Dm−4,0
∞ + pm(x)− (1 + x)pm−2(x) + 2pm−3(x)

= qm−1(x) + (1− 2(−1)m)I + pm(x)− (1 + x)pm−2(x) + 2pm−3(x)

= qm(x) + (1 + 2(−1)m)I, (6.34)

where x = D∞ − I. The inductive hypothesis was used at the third equality, and the relations (6.29)
at the fourth. This ends the proof of (6.33), and therefore of step (ii).

The first two steps translated the statement (6.27) into one involving only the fundamental braid
transfert tangle D∞ defined in (4.49). Defining the polynomial

Qm(x) = qm(x− 1) +

{
0 identical,

2
(
(−1)m − 1

)
mixed,

(6.35)

we must then show that Qb(x) vanishes for x = D∞ with λ = λa,b. It will be so if this polynomial
contains, as a factor, the minimal polynomial of D∞ or, more precisely, the minimal polynomial Pa,b(x)
of its action on the algebra dTLN (β) with β = −2 cos 4λa,b. In other words, we need to prove that
Pa,b | Qb. Step (iii) consists in finding all factors that can possibly appear in this minimal polynomial
Pa,b(x). A key observation is that D∞ is central. A proof of this for a slightly different element of
dTLN (β) is given in Appendix B of [21]. It rests upon relations similar to (4.46) and goes through
without change for D∞. Since it is central, it defines a homomorphism d : M → M on any module M
by multiplication µ 7→ D∞µ, for µ ∈ M. Such a homomorphism can have only one eigenvalue on an
indecomposable module. Computing this eigenvalue Υd

N on the standard module Wd
N is then a good

idea. Indeed, these standard modules are indecomposable and their quotients by their radicals give a
complete family of isomorphic classes of simple modules. In other words, the eigenvalues of the action
of D∞ on any module M will be among those on the Wd

N with 0 6 d 6 N . Similar computations were
done before. For example, Section 3.1 of [31] does such a computation for the action of the fundamental
braid transfer matrix for the ordinary Temperley-Lieb algebra TLN (β) on its standard modules. The
computation for D∞ is similar and gives

Υd
N = D∞|

Wd
N
= 1 + 2ǫ cos

(
4λ(1 + d)

)
, ǫ =

{
−1 identical,

1 mixed.
(6.36)

Can any of these eigenvalues have multiplicities in the minimal polynomial of D∞ in the regular
representation? For roots of unity, the answer is yes [21]. For any d that is not critical, there is a
non-zero nilpotent homomorphism from the block of dTLN (β), where D∞ has the eigenvalue Υd

N , to
itself. The square of this homomorphism is zero and no other such homomorphisms ρ can be nilpotent
of a higher order, that is, there exists no homomorphism ρ such that ρi = 0 but ρi−1 6= 0 with i > 2.
For d critical, any indecomposable module on which D∞ has the eigenvalue Υd

N is in fact irreducible
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and the minimal polynomial of D∞ on these is simply (x−Υd
N ). Summing up, the minimal polynomial

of D∞ may only contain factors (x − Υd
N )1 for d critical and (x − Υd

N )2 for d non-critical, but none
with higher powers. In conclusion, the minimal polynomial Pa,b of D∞ divides the polynomial

Ra,b(x) =
∏

d∈D

(x−Υd
N )nd , nd =

{
1 d critical,

2 d non-critical,
(6.37)

where λ = λa,b and D is a subset of {0, 1, . . . , N} such that {Υd
N | d ∈ D} contains all possible

eigenvalues in {Υd
N | 0 6 d 6 N} once and only once. (For N < 2b− 1, the orbit of some non-critical d

will only contain d. In this case, nd = 1 and Pa,b divides Ra,b without being equal to it. If N > 2b− 1,
then Pa,b = Ra,b.)

The goal of step (iv) is to establish whether the polynomial Qb(x) specified to λ = λa,b contains
the polynomial Ra,b(x) as a factor. If it does, then Pa,b | Ra,b | Qb and thus Pa,b | Qb as desired. We
rewrite the polynomial Qb using (6.33) as

Qb(x) = 2
(
Tb

(
1
2(x− 1)

)
− ǫb

)
. (6.38)

We must thus check that this polynomial vanishes for x replaced by the eigenvalue Υd
N , and show that

the multiplicity of such a zero is greater than or equal to its multiplicity nd in Ra,b(x). Because of
the expression (6.36) for Υd

N , it is natural to introduce the change of variables x = 1 + 2ǫ cos θ, thus
rewriting

Qb(x) = 2(Tb(ǫ cos θ)− ǫb) = 2ǫb(Tb(cos θ)− 1) = −4ǫb sin2(12bθ). (6.39)

The property Tb(−x) = (−1)bTb(x) was used at the second equality and the trigonometric formula
Tb(cos θ) = cos(bθ) at the third one. The evaluation at x = Υd

N , namely at θ = 4λa,b(1 + d), gives

Qb(Υ
d
N ) = −4 ǫb sin2((b− a)(1 + d)π), (6.40)

which is clearly zero for any integer d.
The multiplicity of these zeros must be computed for Qb(x) seen as a polynomial in x. Care must

be taken to ensure that the change of variables x 7→ θ has not introduced spurious multiplicities. To
get the correct multiplicities, we compute

d

dx
Qb(x) =

dθ

dx

d

dθ
Qb(1 + 2ǫ cos θ) = b ǫb−1 sin bθ

sin θ
. (6.41)

The multiplicity of a zero x0 is larger than one if and only if Q′
b(x0) = 0. We see from (6.41) that this

occurs for θ0 = 4λ(1 + d) if θ0 6= nπ for n ∈ Z. In these cases, taking the second derivative of Qb(x)
reveals that the multiplicity is precisely 2. In contrast, for θ0 = nπ, Qb(x0)

′ 6= 0 and the multiplicity of
the zero is 1. Recalling that q = ei(4λ−π) and θ0 = 2π( b−a

b )(1 + d), we see that the condition θ0 = nπ

can be written as q2(d+1) = 1. This is precisely the condition for criticality, for which the multiplicities
nd in (6.37) are also equal to one. All zeros of Ra,b are thus among those of Qb (also counting the
multiplicities), and thus Ra,b divides Qb. This completes the proof of the closure relation for all four
boundary conditions.

6.5 Closure of the Y -system

In this section, we use the closure of the fusion hierarchy to derive the closure relations of the Y -system.
The first step towards this goal is to derive extra closure relations in the fusion hierarchy, satisfied by
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the transfer matrices Db,k(u) and Dk,b(u), for k = 1, . . . , b− 1. For this, it turns out to be simpler to
work with the determinants. The result reads:

det(b, k)0 = F−2 det(b− 2, k + 1)2 −

( 2k∏

j=−2

F j

)
det(b− 3− k, 0)2k+4 +J 0 det(0, k)0, (6.42a)

det(k, b)0 = F2k−1 det(k + 1, b− 2)0 −

( 2k−1∏

j=−3

F j

)
det(0, b− 3− k)2k+2 +J 1 det(k, 0)0, (6.42b)

where we recall the definition (6.5) of J (u). The closure relations for det(b, k)0 are proven inductively
from the same relation for det(b, 0)0 following the arguments of Proposition B.3 of [17]. The closure
relations (6.42b) are then directly obtained by applying the crossing symmetry to (6.42a).

The second step is to derive the following quartic relation:

(
det(b− 1, 0)0 det(0, b− 1)0 −F−2F−3 det(b− 2, 0)2 det(0, b− 2)0

)

×
(
det(b− 1, 0)2 det(0, b− 1)0 −F−2F−1 det(b− 2, 0)2 det(0, b − 2)2

)

=
( b−2∏

j=0

F2j

)
det3(0, b − 1)0 +J 0 det

2(0, b − 1)0 det(b− 2, 0)2 (6.43)

+J 1F−2 det(0, b − 1)0 det
2(b− 2, 0)2 + (F−2)

2
( b−1∏

j=0

F2j+1

)
det3(b− 2, 0)2 .

Its proof follows the same arguments as those in Proposition B.4 of [17]. This relation can be rewritten
as

(I + db−1
0 )(I + y0)(I + y1) = I +

J 0x0∏b−1
j=0F2j

+
J 1(x0)

2

∏b−1
j=0F2j

+

∏b−1
j=0F2j+1
∏b−1

j=0F2j

(x0)
3 (6.44)

where

x(u) =
F−2 det(b− 2, 0)2

det(b− 1, 0)1
, y(u) = −x−1x0. (6.45)

To factorize the right-hand side, we recall that J 0 = κΛ0(U − 2V ), with U(u), V (u) and κ introduced
in (6.2c) and Λ(u) in (6.4), and use the equalities

b−1∏

j=0

F2j = σ Λ0U,

b−1∏

j=0

F2j+1 = Λ1V, Λ1 U = σΛ0 V, σ =

{
(−1)b−a identical,

1 mixed,
(6.46)

and

V

U
=





1 SS and CC with a odd,

− tan2(bu+ (b− a)π4 ) SS with a even,

− cot2(bu+ (b− a)π4 ) CC with a even,

1 SC and CS.

(6.47)

With this information, we treat separately the identical and mixed boundary conditions, as well as the
different parities of a and b, and find that the above equation can be nicely rewritten as

I + db−1
0 =

(I + x0)(I + ιVU x0)
2

(I + y0)(I + y1)
, ι =

{
(−1)b identical,

1 mixed,
(6.48)
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for all parities of a and b. We also have the relation

x0x2

x1
=

U2

V 2

I + db−2
2

I + db−1
1

=
U2

V 2

(I + db−2
2 )(I + y1)(I + y2)

(I + x1)(I + ιUV x1)2
. (6.49)

Thus the closed Y -system for λ = λa,b consists of the relations (4.61) for m = 1, . . . , b− 2, along with
the relations (6.48) and (6.49).

7 Free energies

In this section, we show how the fusion hierarchy relation for D1,1(u) can be used to compute the
bulk and boundary free energies of the homogeneous transfer matrix (whereby ξ(j) = 0), following the
method of Baxter [32]. This relation reads

β2(1, 1, u)D1,0
0 D

1,0
3 = β1(1, 1, u)D1,1

0 + β0(1, u)β0(1,−u)β3(1, 1, u)I . (7.1)

The idea consists in noticing that the function β1(1, 1, u) has a zero of degree 2N + 2 at u = 0,
thus rendering the first term on the right side exponentially negligible compared to the second in the
neighbourhood of u = 0. The bulk and boundary free energies for the leading eigenvalues D(u) of
D1,0(u) can then be computed from the relation

D(u)D(u+ 3λ) ≃ β0(1, u)β0(1,−u)
β3(1, 1, u)

β2(1, 1, u)

=
(
s(u+ 2λ)s(u− 2λ)s(u+ 3λ)s(u− 3λ)

)2N
(7.2)

×
s(6λ− 2u)s(6λ + 2u)

s(2λ− 2u)s(2λ + 2u)

w̄(λ2 + u)w̄(λ2 − u)

w̄(3λ2 + u)w̄(3λ2 − u)
w(5λ2 + u)w(5λ2 − u)w(3λ2 + u)w(3λ2 − u).

Writing logD(u) ≃ −2Nfbulk(u)− fbdy(u), we identify together the different orders in N and write

fbulk(u) + fbulk(u+ 3λ) = − log
(
s(u+ 2λ)s(u− 2λ)s(u+ 3λ)s(u− 3λ)

)
, (7.3a)

fbdy(u) + fbdy(u+ 3λ) = − log

[
s(6λ− 2u)s(6λ+ 2u)

s(2λ− 2u)s(2λ+ 2u)

w̄(λ2 + u)w̄(λ2 − u)

w̄(3λ2 + u)w̄(3λ2 − u)
(7.3b)

× w(5λ2 + u)w(5λ2 − u)w(3λ2 + u)w(3λ2 − u)

]
.

We may now solve these relations using Fourier transforms and assuming that the function D(u) is
analytic and non-zero in the strip 0 6 Re(u) 6 3λ. For the bulk free energy, this calculation was done
previously by Warnaar, Batchelor and Nienhuis [28]. For 0 < λ < π

3 , the final expression is

fbulk(u) = − log sin(2λ) sin(3λ)− 2

∫ ∞

−∞

dk
sinh[uk] sinh[(3λ− u)k] cosh[(π − 5λ)k] cosh[λk]

k sinh(πk) cosh(3λk)
. (7.4)

Let us now solve (7.3b) for fbdy(u), starting with the mixed boundary conditions for which w(u) =
w̄(u) = 1. We first study the asymptotic behavior of logD(u) as u → i∞. From the form of D(u) as a
centered Laurent polynomial in eiu, we deduce that its behavior for u → i∞ is given by

logD(u) = log
(
α−4Ne−4N iu + α−(4N−2)e

−(4N−2)iu + . . .
)
≃ −4iuN + log α−4N + . . . (7.5)
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with the next terms going to zero in the limit. We thus find that5

lim
u→i∞

f ′′
bulk(u) = lim

u→i∞
f ′
bdy(u) = 0. (7.6)

As a next step, we define the function

g(y) = fbdy(iy + 3λ
2 ), (7.7)

for which

g′′(y+ 3iλ
2 )+g′′(y− 3iλ

2 ) =
4

sinh2(2y + 6iλ)
+

4

sinh2(2y − 6iλ)
−

4

sinh2(2y + 2iλ)
−

4

sinh2(2y − 2iλ)
. (7.8)

We define the Fourier transform of g′′(y):

G(k) =
1

2π

∫ ∞

−∞

dy e−ikyg′′(y), g′′(y) =

∫ ∞

−∞

dk eikyG(k). (7.9)

With the assumption that fbdy(u) has no zeros in the analyticity strip 0 6 Re(u) 6 3λ, we find

1

2π

∫ ∞

−∞

dy e−ikyg′′(y ± 3iλ
2 ) = e∓3kλ/2G(k). (7.10)

As a result, we have

2 cosh(3λk2 )G(k) =
1

2π

∫ ∞

−∞

dy e−iky

(
4

sinh2(2y + 6iλ)
+

4

sinh2(2y − 6iλ)
(7.11)

−
4

sinh2(2y + 2iλ)
−

4

sinh2(2y − 2iλ)

)
.

We can compute these integrals using the identity

1

2π

∫ ∞

−∞

dy e−iky 1

sinh2(y − iγ)
= −

k ekγ

eπk − 1
, γ ∈ (0, π), (7.12)

which is easily obtained from the residue theorem. With γ 7→ π − γ, we then also have

1

2π

∫ ∞

−∞

dy e−iky 1

sinh2(y + iγ)
= −

k ek(π−γ)

eπk − 1
, γ ∈ (0, π). (7.13)

We also give the identity

1

2π

∫ ∞

−∞

dy e−iky 1

cosh2(y ± iγ)
=

k ek(
π
2
∓γ)

eπk − 1
, γ ∈ (−π

2 ,
π
2 ), (7.14)

as it is needed for the boundary conditions SS and CC. Applying this to the four terms in (7.11), we
find after some simplifications

G(k) =
k

2 cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
. (7.15)

5For SS and CC boundary conditions, the lowest power of D(u) as a Laurent polynomial is e
−(4N+2)iu, and in this

case only the second derivative of fbdy(u) vanishes, with the first derivative instead given by limu→i∞ f ′

bdy(u) = 2i.
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The inverse transform is then given by

g′′(y) =

∫ ∞

−∞

dk
k eiky

2 cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )

=

∫ ∞

−∞

dk
k cos(ky)

2 cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
, (7.16)

where we used the symmetry of the integrand under k → −k. Integrating once with respect to y yields

g′(y) =

∫ ∞

−∞

dk
sin(ky)

2 cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
+C. (7.17)

We fix the constant C by imposing that limy→∞ g′(y) = 0, see (7.6). Indeed, we have

lim
y→∞

g′(y)− C = lim
y→∞

∫ ∞

−∞

dk′
sin k′

2y cosh(3λk
′

2y )

cosh[(π4 − λ)k
′

y ]− cosh[(π4 − 3λ)k
′

y ]

sinh(πk
′

4y )
= 0, (7.18)

as the integrand behaves as y−2. We thus conclude that C = 0. Integrating once more, we find

g(y) = −

∫ ∞

−∞

dk
cos(ky)

2k cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
+K. (7.19)

The value of g(3iλ2 ) can be read off directly from (4.5): g(3iλ2 ) = − log
[ sin(6λ)
sin(2λ)

]
. This can also be

obtained from (7.3b) by noting that g(3iλ2 ) and g(−3iλ
2 ) are equal due to crossing symmetry. This fixes

the value of K. After simplification, this yields

g(y) = − log

[
sin(6λ)

sin(2λ)

]
+

∫ ∞

−∞

dk
sinh

[
(3λ2 + iy)k2

]
sinh

[
(3λ2 − iy)k2

]

k cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
(7.20)

and finally,

fbdy(u) = − log

[
sin(6λ)

sin(2λ)

]
+

∫ ∞

−∞

dk
sinh

[
uk
2

]
sinh

[
(3λ− u)k2

]

k cosh(3λk2 )

cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
.

(7.21)
In deriving this result, we applied (7.12) with γ = 6λ, so this result holds for 0 < λ < π

6 . In Figure 2, we

compare these results with the groundstate eigenvalue D(u) (namely the largest eigenvalue at u = 3λ
2 ),

for SC boundary conditions and with λ = π
10 . We see from the pattern of zeros of D(u) that it has no

zeros in the strip 0 6 Re(u) 6 3λ. We also see that the integral formulas for fbulk(u) and fbdy(u) nicely
match the numerical data. We find a similar agreement numerically for the CS boundary condition.

For SS boundary conditions, the linear functional relation for fbdy(u) involves more terms on the
right-hand side:

fbdy(u) + fbdy(u+ 3λ) = − log

[
s(6λ− 2u)s(6λ+ 2u)

s(2λ− 2u)s(2λ+ 2u)

c(λ2 + u)c(λ2 − u)

c(3λ2 + u)c(3λ2 − u)
(7.22)

× s(5λ2 + u)s(5λ2 − u)s(3λ2 + u)s(3λ2 − u)

]
.
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Figure 2: Zeros and free energies for SC boundary conditions with λ = π
10 . Top: the position of

the zeros of D(u) in the complex u-plane for N = 4, with the analyticity strip colored in gray. Left:
the integral formula (7.4) for fbulk(u) in red and its finite-size approximations − 1

2N logD(u) for N =
1, . . . , 5 in blue. Right: the integral formula (7.21) for fbdy(u) in red and its finite-size approximations
− logD(u)− 2Nfbulk(u) for N = 1, . . . , 5 in blue.

From this expression, the steps are similar to those for the mixed boundary conditions. We provide
only the key steps. The second derivative of g(y) is given by

g′′(y) =

∫ ∞

−∞

dk
k cos(ky)

2 cosh (3λk2 )

[
cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
(7.23)

+
cosh(3λk2 )− cosh(λk2 )− cosh[(π−5λ

2 )k]− cosh[(π−3λ
2 )k]

sinh(πk2 )

]
.

As before, the first integration on y replaces the first numerator k cos(ky) by sin(ky) and introduces a
new constant of integration C which is obtained by computing

lim
y→∞

g′(y)− C = lim
y→∞

∫ ∞

−∞

dk′
sin k′

2y cosh(3λk
′

2y )

[
cosh[(π4 − λ)k

′

y ]− cosh[(π4 − 3λ)k
′

y ]

sinh(πk
′

4y )
(7.24)

+
cosh(3λ2

k′

y )− cosh(λ2
k′

y )− cosh[(π−5λ
2 )k

′

y ]− cosh[(π−3λ
2 )k

′

y ]

sinh(πk
′

2y )

]
= −2.

The value of g′(y) = if ′
bdy(u) in the limit u → i∞ is −2 by the above footnote, and C must be set to 0.
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Figure 3: Zeros and free energies for SS boundary conditions, with λ = π
10 . Top: the position of the zeros

of D(u) in the complex u-plane for N = 4, with the analyticity strip colored in gray. Left: the integral
formula (7.4) for fbulk(u) in red and its finite-size approximations − 1

2N logD(u) forN = 1, . . . , 5 in blue.
Right: the integral formula (7.25) for the real part of fbdy(u) in red and its finite-size approximations
− logD(u)− 2Nfbulk(u) for N = 1, . . . , 5 in blue.

The final result for the these boundary conditions is thus

fbdy(u) = − log

[
−

sin(6λ)

sin(2λ)

cos(λ2 ) sin(
5λ
2 ) sin(3λ2 )

cos(3λ2 )

]
(7.25)

+

∫ ∞

−∞

dk
sinh(uk2 ) sinh

[
(3λ− u)k2

]

k cosh(3λk2 )

[
cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )

+
cosh(3λk2 )− cosh(λk2 )− cosh[ (π−5λ)k

2 ]− cosh[ (π−3λ)k
2 ]

sinh(πk2 )

]
.

It again holds for 0 < λ < π
6 . As illustrated in Figure 3, our numerical investigations for smallN confirm

the analyticity assumptions for the groundstate eigenvalue D(u) and show a good match between the
integral formulas for the free energies and the numerical data. We also note that, for 0 < λ < π

6 , the
logarithm on the first line of (7.25) has a negative argument, which implies that fbdy(u) has a non-zero
imaginary part equal to an odd multiple of π. This is a simple artifact of our choice of normalisation
for D(u), causing it to be negative for 0 < u < 3λ for SS boundary conditions, see for instance (4.5).
As a result, we only plot the real part fbdy(u) in the right panel of Figure 3.

For CC boundary conditions, the functional relation (7.3b) is

fbdy(u) + fbdy(u+ 3λ) = − log

[
s(6λ− 2u)s(6λ+ 2u)

s(2λ− 2u)s(2λ+ 2u)

s(λ2 + u)s(λ2 − u)

s(3λ2 + u)s(3λ2 − u)
(7.26)

× c(5λ2 + u)c(5λ2 − u)c(3λ2 + u)c(3λ2 − u)

]
.
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Figure 4: Zeros and free energies for CC boundary conditions, with λ = π
10 . Top: the position

of the zeros of D(u) in the complex u-plane for N = 4, with the analyticity strip colored in gray.
Left: the integral formula (7.4) for fbulk(u) in red and its finite-size approximations − 1

2N logD(u) for
N = 2, . . . , 5 in blue. Right: the integral formula (7.30) for the real part of fbdy(u) in red and its
finite-size approximations − logD(u)− 2Nfbulk(u) for N = 2, . . . , 5 in blue.

While it is possible to solve this equation with the same arguments as before, the solution turns out
not to match the numerical data. Indeed, for CC boundary conditions, our numerical explorations
reveal that the groundstate eigenvalue D(u) has a pair of real zeros very close to u = λ

2 and u = 5λ
2 .

These thus lie inside the strip 0 < Re(u) < 3λ, and the condition that D(u) is free of zeros in this
strip is violated. As a result, (7.9) no longer holds, as the argument leading to this identity requires
that we deform the integration path across an area that is free of poles, a condition that does not hold
in the present case. The position of these zeros is not exactly at u = λ

2 ,
5λ
2 , however they appear to

converge to these positions rapidly as N is increased. To bypass this problem and compute fbdy(u) for
CC boundary conditions, it is useful to consider the eigenvalue

D̂(u) =
D(u)

sin(λ2 − u) sin(5λ2 − u)
, (7.27)

a function that has no zero in the analyticity strip, in the limit N → ∞. Its corresponding boundary
free energy satisfies the functional relation

f̂bdy(u) + f̂bdy(u+ 3λ) = − log

[
s(6λ− 2u)s(6λ+ 2u)

s(2λ− 2u)s(2λ+ 2u)

c(5λ2 + u)c(5λ2 − u)c(3λ2 + u)c(3λ2 + u)

s(3λ2 + u)s(3λ2 − u)s(5λ2 + u)s(5λ2 − u)

]
. (7.28)

53



Defining ĝ(y) = f̂bdy(iy + 3λ
2 ), we find that its second derivative is

ĝ′′(y) =

∫ ∞

−∞

dk
k cos(ky)

2 cosh (3λk2 )

[
cosh[(π4 − λ)k]− cosh[(π4 − 3λ)k]

sinh(πk4 )
(7.29)

+
cosh[(π−5λ

2 )k] + cosh[(π−3λ
2 )k]− cosh(5λk2 )− cosh(3λk2 )

sinh(πk2 )

]

and the integral formula for fbdy(u) for CC boundary conditions reads

fbdy(u) = − log

[
sin(6λ)

sin(2λ)

cos(5λ2 ) cos(3λ2 )

sin(5λ2 ) sin(3λ2 )

]
− log

(
sin(λ2 − u) sin(5λ2 − u)

)
(7.30)

+

∫ ∞

−∞

dk
sinh

[
uk
2

]
sinh

[
(3λ− u)k2

]

k cosh(3λk2 )

[
cosh[(π4 − λ)k] − cosh[(π4 − 3λ)k]

sinh(πk4 )

+
cosh

( (π−3λ)k
2

)
+ cosh

( (π−5λ)k
2

)
− cosh

(
5λk
2

)
− cosh

(
3λk
2

)

sinh(πk2 )

]

and is valid for 0 < λ < π
6 . One can then check that limu→i∞ f ′

bdy(u) = 2i as needed. The second

logarithm in (7.30) gives rise to an imaginary part for u ∈ (λ2 ,
5λ
2 ). This is due to the presence of

the poles in D̂(u), see (7.27). Only the real part has a physical interpretation. The corresponding
numerical data is given in Figure 4. In addition to the zeros of D(u) lying inside the analyticity strip,
we also see that the convergence of the numerical data for fbulk(u) to its integral formula is much slower
in this case due to the two singularities of fbdy(u). The agreement for Re

(
fbdy(u)

)
is in contrast very

convincing.

8 Conclusion

In this paper, we studied the commuting transfer matrices of the A
(2)
2 model on the strip. The main

results of the article are the fusion hierarchy relations (4.15) defining the fused transfer matrices, their
T -system (4.55), and for λ/π ∈ Q the closure relation (6.2) for the hierarchy and the corresponding the
finite Y -systems, consisting of the relations (4.61), (6.48) and (6.49). These formulas and their proofs
turn out to have a much greater complexity than the similar results for the dense loop model or for the
A(2)

2 model with periodic boundary conditions. This can be traced back to the fact that the solutions
of the boundary Yang-Baxter equation have a non-trivial dependence on the spectral parameter u,
which then causes the fused transfer matrices to have polynomial degrees in eiu that increase with the
fusion indices. A similar feature in fact arises for the dense loop model with loop segments that can be
attached to the boundaries of the strip, in the context of the two-boundary Temperley-Lieb algebra.
The closure relation in this case is conjectured in Section 5.2 of [11], but remains without proof. We
expect that the methods developed here will apply to this case and lead to a proof of this result.

In contrast, here we provided complete proofs for all the results. These proofs, particularly the
difficult ones for the polynomiality of the fused tangles and their closure relation, indicate how tightly
constrained the definition of the fusion hierarchy is. Despite the substantial length of this text, it is
worth mentioning that our first versions of many proofs were even longer. For example, an alternative
proof of the polynomiality of Dm,0(u) and Dm,1(u) relies on their equivalent diagrammatic definitions
with the projectors Pm,0 and Pm,1 defined in [17]. Moreover, we note that, like for the periodic
A

(2)
2 dilute loop models, a diagrammatic definition of Dm,n(u) for m,n > 1 and of the corresponding

projectors Pm,n is still missing. Finally, we note that unifying the presentation of the hierarchies for
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the four boundary conditions (SS, CC, SC and CS) through the notation of Table 1 was not an easy
task. It reduced the length of the proofs significantly.

We also computed the bulk and boundary free energies using the first fusion hierarchy relations
and the analyticity properties of the groundstate eigenvalues. Their agreement with numerical data,
obtained for small strip lengths N , is striking. In particular, the case of CC boundary conditions
featured zeros inside the analyticity strip and was resolved convincingly. This, of course, raises the
question of which conformal weights arise in the continuum limit of the loop models. The method
of non-linear integral equations, originally developed by Klümper and Pearce in the nineties [24–26],
allows for the computation of the next leading term in the large-N expansion of the eigenvalues. This
term is proportional to 1/N and its coefficient involves the combination c− 24∆, where c is the central
charge and ∆ is the conformal weight of the field that the corresponding eigenstate scales to in the
limit. These techniques were recently applied to the groundstate of the loop models in the standard
module with no defects, for the A

(1)
1 , A

(1)
2 and A

(2)
2 models with periodic boundary conditions [27]. For

A
(2)
2 , these results were found to be consistent with the known values of the central charge in Regimes

I and II. The general formula is [28]

c =





1−
3(π − 4λ)2

π(π − 2λ)
, Regime I: 0 < λ < π

2 ,

−1 +
6(π − 2λ)2

π(π − λ)
, Regime III: π

2 < λ < 2π
3 ,

3

2
−

3(3π − 4λ)2

2π(π − λ)
, Regime II: 2π

3 < λ < π.

(8.1)

This work should be extended to the same models on the strip, for all four choices of boundary
conditions. In the representation Wd=0

N , one can expect for the mixed boundary conditions a
groundstate with a non-zero conformal weight ∆, corresponding to the insertion at infinity of a field
that changes the boundary condition from S to C. For identical boundary conditions, we instead
expect that the groundstate has the weight ∆ = 0, since no boundary condition changing field must
be inserted in this case. The technique of non-linear equations and Rogers dilogarithms should be
applied to confirm this, and subsequently to compute the conformal weights of the groundstates in all
the standard representations Wd

N . A more ambitious project would then be to apply this to the excited

states of the A
(2)
2 loop model as well, and thus to compute the properly scaled transfer matrix traces

and express them in terms of characters of representations of the Virasoro algebra. This program is
currently being implemented for the special case of λ = π

3 corresponding to the model of critical site
percolation on the triangular lattice, with the results to appear soon [33].
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A Proofs of properties of the fused transfer matrices

In this appendix, we collect the technical proofs of some of the properties of the fused transfer matrices.

A.1 Proof of the crossing symmetry of Dm,n(u) and det(m,n)(u)

This section is devoted to proving the crossing symmetries (4.17a) and (4.35a). We start with the proof
for Dm,0(u). Together with certain properties of the functions βi(m,n, u), it will imply the crossing
symmetry of both Dm,n(u) and det(m,n)(u).

The proof of the equality Dm,0((4 − 2m)λ − u) = D0,m(u) is by induction on m. The inductive
argument requires that the cases m−1, m−2 and m−3 be already shown. We thus check the crossing
symmetry for transfer tangles D1,0(u), D2,0(u) and D3,0(u) first. The case m = 1 follows readily
from (4.4a) and (4.11). For m = 2, we use the definition (4.15a) for D2,0(u) and the evaluation point

/u = (4 − 4)λ − u = −u. We show that D2,0(/u) = D2,0(u) using the definitions of the weights in
(4.15a) and (4.15c) and the crossing symmetry of D1,0(u). For m = 3, proving the crossing symmetry
for D3,0(u) requires that we understand the same property for D1,1(u). Its crossing symmetry follows
from (4.15b), the crossing symmetry of D1,0(u), and the fact that the three functions βi(1, 1, u),
i = 1, 2, 3, are invariant under u 7→ /u = −u. Then, the symmetry of D3,0(u) is checked using the same
arguments as for D2,0(u), with the property just proved for D1,1(u).

We now consider m > 4, for which /u = (4 − 2m)λ − u. The fusion hierarchies (4.15d) and
(4.15e) respectively define Dm,0(u) and D0,m(u) and involve the fused transfer matrices Dm−2,1(u)
and D1,m−2(u2), to which the inductive assumption does not apply. These are replaced by their
definitions (4.15f) and (4.15g):

Dm−2,1(u) =
β2(m− 2, 1, u)Dm−2,0

0 D
0,1
2(m−2) − β3(m− 2, 1, u)β0(m− 2, u)Dm−3,0

0

β1(m− 2, 1, u)
, (A.1a)

D1,m−2(u2) =
β2(m− 2, 1, v)D1,0

2 D
0,m−2
4 − β3(m− 2, 1, v)β0(m− 2, v)D0,m−3

6

β1(m− 2, 1, v)
, (A.1b)

where, in the second equation, v must be computed following the prescription (4.15g):

v = (4− 2− 2(m− 2))λ − u2 = (4− 2m)λ− u = /u . (A.2)

Equation (A.1b) provides an example where the operation u 7→ /u is performed before the shift u 7→ u2.
Thus, v is precisely the combination appearing in the crossing symmetry for Dm,0(u). The expressions
for Dm,0(u) and D0,m(u) become

α1(m,u)Dm,0(u) =
[
α2(m,u)Dm−1,0

0 D
1,0
2m−2

−
α3(m,u)

β1(m− 2, 1, u)

(
β2(m− 2, 1, u)Dm−2,0

0 D
0,1
2m−4 − β3(m− 2, 1, u)β0(m− 2, u)Dm−3,0

0

)]
, (A.3a)

α1(m, /u)D0,m(u) =
[
α2(m, /u)D

0,m−1
2 D

0,1
0

−
α3(m, /u)

β1(m− 2, 1, /u)

(
β2(m− 2, 1, /u)D

1,0
2 D

0,m−2
4 − β3(m− 2, 1, /u)β0(m− 2, /u)D

0,m−3
6

)]
. (A.3b)

In both of these equations, the fused matrices on the right-hand side are evaluated at u. We now
evaluate all terms in (A.3a) at /u. All weight functions become exactly equal to those of (A.3b). It
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remains to check that the transfer tangles transform correctly. Here are two examples:

D
m−1,0
0 (/u) = D

m−1,0
0 ((4− 2m)λ− u) = D

m−1,0
0 ((4− 2(m− 1))λ− (u+ 2λ)) = D

0,m−1
2 (u) ,

D
1,0
2m−2(/u) = D

1,0
0 ((4− 2m)λ− u+ (2m− 2)λ) = D

1,0
0 ((4 − 2)λ− u) = D

0,1
0 (u) . (A.4)

The last equality in each line uses the induction hypothesis with m′ = m− 1 and m′ = 1 respectively.
The proofs for the other matrices is similar. This completes the proof of the crossing symmetry for
Dm,0(u).

The proof of Dm,n(u) = Dn,m((4− 2m− 2n)λ− u) for m,n > 0 rests on the following property of
the functions βi:

βi(m,n, /u) = βi(n,m, u), i = 1, 2, 3 . (A.5)

(We already used this fact to prove the crossing symmetry of D1,1(u).) This equality requires the
identity f(u) = f(−u) and is clear for all the other weights, as they appear in pairs.

We give the details of the proof for (4.15h) wherein both m,n > 2. The manipulations are similar
for (4.15f) or (4.15g). With (A.5), (4.15h) evaluated at /u reads

D
m,n
0 (/u) =

β2(m,n, /u)D
m,0
0 (/u)D

0,n
2m(/u)− β3(m,n, /u)D

m−1,0
0 (/u)D

0,n−1
2m+2(/u)

β1(m,n, /u)

=
β2(n,m, u)Dm,0

0 (/u)D
0,n
2m(/u)− β3(n,m, u)Dm−1,0

0 (/u)D
0,n−1
2m+2(/u)

β1(n,m, u)
. (A.6)

The remaining step is to check that the fused tangles in D
m,n
0 (/u) are identical to those appearing in the

definition of Dn,m(u). Here are two examples, the two others being obtained with similar arguments:

D
m,0
0 (/u) = D

m,0
0 ((4 − 2m− 2n)λ− u) = D

m,0
0 ((4− 2m)λ− (u+ 2nλ)) = D

0,m
2n (u) ,

D
0,n
2m(/u) = D

0,n
0 ((4− 2m− 2n)λ− u+ 2mλ) = D

0,n
0 ((4 − 2n)λ− u) = D

n,0
0 (u) . (A.7)

The last equality in each line uses Dm′,0((4 − 2m′)λ − u) = D0,m′

(u). This ends the proof of the
crossing symmetry (4.17a).

The proof of the crossing symmetry of the determinantal form (4.30a) follows easily. For m,n > 1,
it consists in exchanging m and n in (4.31) and evaluating the result at /u = (4−2m−2n)λ−u. Clearly
the two bottom lines of the right-hand side of (4.31) simply get exchanged. So are all the other factors,
except maybe the three factors s(2um+n−2), s(2/u2n−2) and f(u2m−2). A direct computation shows
that the latter remains invariant under the changes while the two former become −s(2um+n−2) and
−s(2/u2m−2) respectively. The last step is to use the crossing symmetry of Dm,n(u). This confirms the
crossing symmetry (4.35a) of the determinantal form, for m,n > 1. Note that, by definition of det(0, n)
in (4.27b), the crossing symmetry when one of m and n is zero is actually built in, so nothing has to
be proved. Still the relation (4.28) between det(m, 0)(u) and Dm,0(u) enjoys an invariance similar to
that of (4.31) and it will play a role in the next section.

A.2 Proof of the conjugacy of Dm,n(u) and det(m,n)(u)

This section proves the conjugacy properties (4.17d) and (4.35d). We start with the latter:
det(0,m)(u) = det(m, 0)(u + λ).

By definition, we have det(0,m)(u) = det(m, 0)((4 − 2m)λ − u). It is thus natural to evaluate the
entries in the determinant det(m, 0) at /u = (4− 2m)λ− u. Let k be an arbitrary shift of the spectral
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parameter and v = u+ λ. The functions Dk and Fk in this determinant become

Dk(u)
∣∣
u 7→(4−2m)λ−u

= D((4 − 2m)λ− u+ kλ) = D(3λ− (u+ (2m− k − 1)λ))

(4.26c)
= D(u+ (2m− k − 1)λ) = D2m−2−k(v) , (A.8)

and

Fk(u)
∣∣
u 7→(4−2m)λ−u

= F((4 − 2m)λ− u+ kλ) = F(λ− (u+ (2m− k − 3)λ))

(4.26d)
= F(u+ (2m− k − 3)λ) = F2m−4−k(v) . (A.9)

It follows that

det(m, 0)(4λ − 2mλ− u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

D0(v) D1(v) F1(v) 0 0

F0(v) D2(v) D3(v)
. . . 0

0 F2(v) D4(v)
. . . F2m−5(v)

0 0
. . .

. . . D2m−3(v)
0 0 0 F2m−4(v) D2m−2(v)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.10)

This matrix is the transpose with respect to the anti-diagonal of the one appearing in det(m, 0)(v).
Their determinants are equal, and therefore

det(0,m)(u) = det(m, 0)((4 − 2m)λ− u) = det(m, 0)(v) = det(m, 0)1(u) . (A.11)

We now argue that the previous result implies the conjugacy property for the fused matrix, namely
Dm,0(u+ λ) = D0,m(u). From (A.11), we have

det(m, 0)((5 − 2m)λ− u) = det(m, 0)(u) . (A.12)

The product of weights in the expression (4.28) for det (m, 0)0(u) is invariant under u 7→ (5−2m)λ−u.
(This fact can be verified by direct computation. Some signs appear during this computation, but they
all cancel at the end. This invariance is the property alluded to at the end of the previous section.)
From (A.12), the identity Dm,0((5 − 2m)λ − u) = Dm,0(u) follows and, by the crossing symmetry
(4.17a), the desired conjugacy property: Dm,0

1 (u) = D
0,m
0 (u).

A.3 Proof of the T -system relations

The proof of the T -system relations (4.55) presented in this section is completely analogous to the same
proof given for the periodic case in [17]. The proof is inductive on m and requires that we first check
the seed cases m = 1, 2, 3 separately, for all the allowed values of k, namely for k = 0, . . . ,m− 1. For
the proof, we will repeatedly use (4.32) as well as the relations

det(m,n)0 = D0 det(m− 1, n)2 −F0D1 det(m− 2, n)4 +F0F1F2 det(m− 3, n)6 , (A.13a)

det(m,n)0 = D2m+2n−1 det(m,n − 1)0 −F2m+2n−3D2m+2n−2 det(m,n− 2)0

+F2m+2n−5F2m+2n−4F2m+2n−3 det(m,n− 3)0 . (A.13b)

These are obtained by expanding the determinant (4.30a) along the first row and the last column,
respectively. We also recall that det(1, 0)k = Dk and det(0, 0)k = I.
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It is easy to see that the T -system relation for (m,k) = (m,m − 1) is directly equivalent to the
fusion hierarchy relation (4.32a) with m 7→ m+ 1. As a result, for the seed cases, we need only check
(m,k) = (2, 0), (3, 0) and (3, 1). For (m,k) = (2, 0), we have

det(2, 0)0 det(2, 0)2 =
(
D0D2 −D1F0

)
det(2, 0)2 = D0D2 det(2, 0)2 −D1F0

(
D2D4 −D3F2

)

= D2

(
D0 det(2, 0)2 −F0D1D4

)
+F0F2(D1D3)

= D2

(
D0 det(2, 0)2 −F0D1D4 +F0F1F2

)
+F0F2 det(2, 0)1

= D2 det(3, 0)0 +F0F2 det(0, 2)0 , (A.14)

which is the desired result. For (m,k) = (3, 0), we use (A.13a) and find

det(3, 0)0 det(3, 0)2 =
(
D0 det(2, 0)2 −F0D1D4 +F0F1F2

)
det(3, 0)2

= det(2, 0)2D0 det(3, 0)2 −F0D1D4 det(3, 0)2 +F0F1F2 det(3, 0)2 . (A.15)

Here we rewrite D4 det(3, 0)2 using the T -system relation for (m,k) = (2, 0) already proven above, and
use (4.32a) for det(3, 0)2 in the last term. This yields

det(3, 0)0 det(3, 0)2 = det(2, 0)2
(
D0 det(3, 0)2 −F0D1 det(2, 0)4 +F0F1F2D6

)

+F0F2F4

(
D1 det(0, 2)2 −F1 det(1, 1)2

)

= det(2, 0)2 det(4, 0)0 +F0F2F4 det(0, 3)0 , (A.16)

which ends the proof in this case. For (m,k) = (3, 1), we have

det(3, 0)0 det(2, 0)4 =
(
D0 det(2, 0)2 −F0D1D4 +F0F1F2

)
det(2, 0)4 . (A.17)

We rewrite the first term using the T -system for (m,k) = (2, 0) proven above, and the second term
using the fusion hierarchy relation (4.32a) for det(2, 0)4:

det(3, 0)0 det(2, 0)4 = D0

(
D4 det(3, 0)2 +F2F4 det(0, 2)2

)
−F0D1D4 det(2, 0)4

+F0F1F2

(
D4D6 −D5F4

)

= D4

(
D0 det(3, 0)2 −F0D1 det(2, 0)4 +F0F1F2D6

)

+F2F4

(
D0 det(0, 2)2 −F0F1D5

)

= D4 det(4, 0)0 +F2F4 det(1, 2)0 , (A.18)

ending the proof.
Having proven all the seed cases, we now move on to the general case (m,k). We thus assume that

(4.55) holds for m − 1,m − 2,m − 3 and all corresponding values of k. We expand det(m, 0) using
(A.13a) and find

det(m, 0) det(m− k, 0)2k+2 = D0 det(m− 1, 0)2 det(m− k, 0)2k+2

−D1F0 det(m− 2, 0)4 det(m− k, 0)2k+2 +F0F1F2 det(m− 3, 0)6 det(m− k, 0)2k+2

= D0

(
det(m− 1, 0)0 det((m− 1)− (k − 1), 0)2(k−1)+2

)
2

−D1F0

(
det(m− 2, 0)0 det((m− 2)− (k − 2), 0)2(k−2)+2

)
4

+F0F1F2

(
det(m− 3, 0)0 det((m− 3)− (k − 3), 0)2(k−3)+2

)
6
. (A.19)
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For each of the three terms, we use the induction hypothesis and apply the T -system relation for
(m,k) 7→ (m− 1, k − 1), (m− 2, k − 2) and (m− 3, k − 3), respectively. To avoid negative indices, we
first consider the case k > 3. In this case, we find

det(m, 0) det(m− k, 0)2k+2 = D0

(
det(k − 1,m− k)0

m−2∏

j=k−1

F2j + det(m, 0)0 det(m− k − 1, 0)2k

)
2

−D1F0

(
det(k − 2,m− k)0

m−3∏

j=k−2

F2j + det(m− 1, 0)0 det(m− k − 1, 0)2k−2

)
4

+F0F1F2

(
det(k − 3,m− k)0

m−4∏

j=k−3

F2j + det(m− 2, 0)0 det(m− k − 1, 0)2k−4

)
6

= det(k,m− k)0

m−1∏

j=k

F2j + det(m+ 1, 0)0 det(m− k − 1, 0)2k+2 . (A.20)

At the last step, we applied (A.13a) with (m,n) 7→ (k,m−k) to combine the first, third and fifth term,
and the same equation with (m,n) 7→ (m+ 1, 0) for the other three.

It thus remains to check the cases k = 0, k = 1 and k = 2. For k = 2, we find

det(m, 0)0 det(m− 2, 0)6 = D0 det(m− 1, 0)2 det(m− 2, 0)6

−D1F0 det(m− 2, 0)4 det(m− 2, 0)6 +F0F1F2 det(m− 3, 0)6 det(m− 2, 0)6

= D0

(
det(1,m − 2)0

m−2∏

j=1

F2j + det(m, 0)0 det(m− 3, 0)4

)
2

−D1F0

(
det(0,m− 2)0

m−3∏

j=0

F2j + det(m− 1, 0)0 det(m− 3, 0)2

)
4

+F0F1F2 det(m− 3, 0)6 det(m− 2, 0)6

=

m−1∏

j=2

F2j

(
D0 det(1,m− 2)2 −D1F0 det(0,m− 2)4

)
+ det(m+ 1, 0)0 det(m− 3, 0)6 ,

(A.21)

which is the announced result. The only difference with the general case is that we only used two
T -system relations inductively at the second equality. For k = 1, we have

det(m, 0)0 det(m− 1, 0)4 = D0 det(m− 1, 0)2 det(m− 1, 0)4

−D1F0 det(m− 2, 0)4 det(m− 1, 0)4 +F0F1F2 det(m− 3, 0)6 det(m− 1, 0)4

= D0

(
det(0,m − 1)0

m−2∏

j=0

F2j + det(m, 0)0 det(m− 2, 0)2

)
2
−D1F0 det(m− 2, 0)4 det(m− 1, 0)4

+F0F1F2

(
det(m− 2, 0)4 det(m− 2, 0)6 − det(0,m − 2)4

m−1∏

j=2

F2j

)
, (A.22)

where we applied the T -system relation (4.55) inductively for the first and last terms, with (m,n) 7→
(m− 1, 0) and (m− 2, 0) respectively. Collecting the second, third and fourth terms, we apply (A.13a)
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and find

det(m, 0)0 det(m− 1, 0)4 =

m−1∏

j=1

F2j

(
D0 det(0,m− 1)2 −F0F1 det(0,m− 2)4

)

+ det(m+ 1, 0)0 det(m− 2, 0)4

= det(1,m− 1)0

m−1∏

j=1

F2j + det(m+ 1, 0)0 det(m− 2, 0)4 , (A.23)

ending the proof for this case.
Finally, for k = 0, we first use (A.13a) and find

det(m, 0) det(m, 0)2 = D0 det(m− 1, 0)2 det(m, 0)2 −D1F0 det(m− 2, 0)4 det(m, 0)2

+F0F1F2 det(m− 3, 0)6 det(m, 0)2

= D0 det(m− 1, 0)2 det(m, 0)2

−D1F0

(
det(m− 1, 0)2 det(m− 1, 0)4 − det(0,m− 1)2

m−1∏

j=1

F2j

)

+F0F1F2

(
det(m− 1, 0)2 det(m− 2, 0)6 − det(1,m− 2)2

m−1∏

j=2

F2j

)
. (A.24)

At the last equality, we used inductively the T -system relation for (m,n) 7→ (m− 1, 0) and (m− 1, 1)
to reexpress the second and third terms, respectively. Collecting the first, second and fourth terms,
which all have a factor of det(m− 1, 0)2, we use (A.13a) and find

det(m, 0) det(m, 0)2 = det(m+ 1, 0)0 det(m− 1, 0)2 +
m−1∏

j=0

F2j

(
D1 det(0,m− 1)2 −F1 det(1,m− 2)2

)

= det(m+ 1, 0)0 det(m− 1, 0)2 + det(0,m)0

m−1∏

j=0

F2j , (A.25)

ending the proof.

A.4 Closure relations for b = 2 and b = 3

In this section, we give more details on the closure relations and their proofs, for b = 2 and b = 3
with identical boundary conditions. We show that these relations hold at u = û = (4− b)λ+ rπ

2 , thus
completing the work of Section 6.3 where the proof is presented for b > 4. The arguments are given
separately for (i) b = 2, (ii) b = 3 with a odd, and (iii) b = 3 with a even.

The case b = 2. In this case, a is an odd integer and the loop weight is β = 2. Following the same
idea as in (6.15), we denote the four terms in the closure relation (6.2b) as S1(u), . . . ,S4(u) in such a
way that it reads

S1(u) + S2(u) = κ(S3(u)− 2S4(u)), κ = 3. (A.26)
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At λ = λa,2, the various functions have the symmetries

Dm,n(u) = Dm,n(u4) = Dm,n(u2 +
π
2 ) f(u) = f(−u) = f(u4) = f(u2 +

π
2 ), (A.27a)

w(u) = −w(u4), w̄(u) = ζ̺w(u2), (A.27b)

w(1)(u) = ζ w(u2), w̄(1)(u) = −̺w(u), (A.27c)

w(−u) = −̺w(u), w̄(−u) = ̺ w̄(u), (A.27d)

where

ζ = (−1)(a−1)/2, ̺ =

{
1 SS,

−1 CC.
(A.28)

We use this information to evaluate each term of the closure relation at û = 2λ+ rπ
2 . Using the notation

(6.20), we find

S1(û) = 2S2(û) = −2S3(û) = −2S4(û) = (−1)r+12̺w3
1/2w

2
3/2f(

rπ
2 )f(λ+ rπ

2 )I, (A.29)

which we use to confirm that (A.26) holds at u = û. In particular, to compute S1(û), one must carefully
use the result (4.43) for generic λ and then take the limit λ → λa,2. Finally, we note that the closure
relation for b = 2 can be rewritten as the quadratic functional relation in D(u)

0 = w(u1/2)w(u5/2)D0D2 + ̺w(u3/2)
4f1f2D1 − ̺w(u7/2)

4f0f3D3

+ 3w(u1/2)w(u3/2)
2w(u5/2)w(u7/2)

2f0f1f2f3I. (A.30)

The case b = 3 with a odd. In this case, the loop weight is β = 1 and the functions entering the
closure relation (6.2) have the symmetries

Dm,n(u) = Dm,n(u3), f(u) = f(−u) = f(u3), (A.31a)

w(u) = −ζ w(u3), w̄(u) = −ζ w̄(u3), (A.31b)

w(1)(u) = ̺ w̄(u), w̄(1)(u) = −̺w(u), (A.31c)

w(−u) = −̺w(u), w̄(−u) = ̺ w̄(u), (A.31d)

where ζ and ̺ are as in (A.28). Using this information, we find that all five terms in the closure relation
vanish at û = λ+ rπ

2 with r ∈ {0, 1}:

Ri(û) = 0, i = 1, . . . , 5. (A.32)

To show this, we first note that exactly one of w(3λ2 ) or w̄(3λ2 ) vanishes at λ = λa,3 with a odd. Then,
depending of the values of λ and r and the choice of boundary conditions, the fact that Ri(û) = 0 may
be easy to check due to the vanishing of one of the factors arising explicitly in the definition of this
function. If this factor is w(a)(u−5/2) or w

(1)(u−5/2), then one must use the symmetries (A.31) to show

that it indeed vanishes. In fact, R3(û), R4(û) and R5(û) are always easy to compute in this sense.
For R1(û), when it is not easy to compute, one must instead rewrite D3,0(û) with (4.43) to show that
it vanishes. Similarly, in the cases where R2(û) is not straightforward to compute, showing that it
vanishes requires that we carefully apply the limit λ → λa,3 to the fusion hierarchy relation (4.15b) for
D1,1(û2).
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Note that, for b = 3 and a odd, the face operator (3.1) vanishes at u = 0, π. Moreover, the weights
δ(u+ 3λ

2 ) and δ(u− 3λ
2 ) that define the boundary operator in (3.4) are equal up to a sign. This implies

that the renormalised transfer matrix

D̂(u) =
D(u)

f(u)w(u3/2)2
(A.33)

is a Laurent polynomial in eiu. Its maximal power is 2N . In terms of this matrix, the closure relation
is equivalent to the simple cubic functional relation for D̂(u)

0 = ̺ D̂0D̂1D̂2 − f0D̂
2

0 − f1D̂
2

1 − f2D̂
2

2 + 4f0f1f2I. (A.34)

This is precisely the functional relation studied in [33] for λ = π
3 corresponding to critical site percolation

on the triangular lattice.

The case b = 3 with a even. In this case, the loop weight is also β = 1. We see from (4.5) that
D(u) vanishes at u = 0, π2 . We therefore define the renormalised transfer matrix

D̂(u) =
D(u)

sin 2u
. (A.35)

It is a Laurent polynomial in eiu of maximal power 4N . Of course, these zeroes are particular to b = 3
with a even and, in the computations below, the evaluation on λ must thus precede that on u. (This
observation turns out to be crucial for the computation of R2(û).) The various functions in (6.2) have
the symmetries

Dm,n(u) = Dm,n(u6), f(u) = f(−u) = f(u6), (A.36a)

w(u) = −w(u6), w̄(u) = −̺ζ w(u3), (A.36b)

w(1)(u) = −ζ w(u3), w̄(1)(u) = −̺w(u), (A.36c)

w(−u) = −̺w(u), w̄(−u) = ̺ w̄(u), (A.36d)

where

ζ = (−1)a/2, ̺ =

{
1 SS,

−1 CC.
(A.37)

Using the short-hand notation (6.20), we find

R1(û) = −R4(û) = R5(û) = (−1)rζ w2
1/2w

3
3/2w

2
5/2f(

rπ
2 )f(λ+ rπ

2 )f(2λ+ rπ
2 )I, (A.38a)

R2(û) = ζ w3/2D
1,1(3λ+ rπ

2 ) =
(−1)r+1ζ w3

3/2

f(3λ+ rπ
2 )

(
s(2λ)2D̂(0)D̂(π2 )− w4

1/2f(
rπ
2 )2f(λ+ rπ

2 )2I
)
,

(A.38b)

R3(û) = (−1)rζ w3
3/2w

4
5/2f(2λ+ rπ

2 )2f(3λ+ rπ
2 )I. (A.38c)

Here we used (4.43) for R1(û) and simplified the terms. Likewise the product of factors for R3(û),
R4(û) and R5(û) were simplified using (A.36). Only R2(û) is not yet in its final form. In Lemma A.1
below, we show that D̂(0) and D̂(π2 ) are equal and proportional to the unit I, and we compute the
corresponding prefactor. Inserting these results in (6.17), we find that the identity indeed holds, ending
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the proof of the closure relation at u = û. Finally, we note that the closure relation in this case is
equivalent to the cubic functional relation

0 = ̺ s(2u0)s(2u1)s(2u2)D̂0D̂2D̂4 (A.39)

+ s(2u0)s(2u2)w(u5/2)
2f2f3D̂1D̂4 − s(2u1)s(2u2)w(u9/2)

2f4f5D̂0D̂3

− s(2u0)s(2u1)w(u1/2)
2f0f1D̂2D̂5 + w(u1/2)

2w(u3/2)
2w(u5/2)

2f0f
2
1 f

2
2 f3I

+ w(u5/2)
2w(u7/2)

2w(u9/2)
2f2f

2
3f

2
4 f5I + w(u1/2)

2w(u9/2)
2w(u11/2)

2f2
0 f1f4f

2
5I (A.40)

−

[ 5∏

j=0

fj

](
w(u3/2)

2w(u7/2)
2w(u11/2)

2 + 2w(u1/2)
2w(u5/2)

2w(u9/2)
2
)
I.

Lemma A.1. The renormalized transfer matrix satisfies

D̂(0) = D̂(π2 ) =
̺

s(2λ)

(
w(λ2 )

2f(0)f(λ)− w(5λ2 )2f(2λ)f(3λ)
)
I. (A.41)

Proof. We give the proof for D̂(0), noting that the result will also hold for D̂(π2 ) because of crossing

symmetry. To compute D̂(0), we use L’Hôpital’s rule to write

D̂(0) =
1

2

d

du
D(u)

∣∣∣
u=0

= −
1

2

d

du
D̃(u)

∣∣∣
u=0

(A.42)

where D̃(u) is defined in (4.1). Let us then define

v′ =
d

du
u

∣∣∣∣
u=v

, v′ =
d

du
u

∣∣∣∣
u=v

. (A.43)

For λ = λa,3 with a even, we have

0 = δ(3λ2 ) , 0′ = −̺ζ δ(3λ2 ) , (A.44a)

3λ = ̺ δ(3λ2 ) , 3λ′ = ζ δ(3λ2 ) . (A.44b)

There are two push-through properties. The first, given in (3.13b), has dashed arcs that propagate to
the left. The second, specific to λ = λa,3, involves a dashed arc with a gauge operator which is moved
to the right:

u3

u0

= s(u−1)s(u1)s(u0)
2 . (A.45)

This relation is derived from (3.13b) using (3.15) and the fact that 6λ = π mod 2π. We apply the
derivative to the right side of (4.1) and use the product rule. The derivative must be applied to each
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of the face and boundary operators, so this produces a total of 2N +2 terms: two boundary terms and
2N bulk terms. For each, we use the two push-through properties repeatedly. This yields

D̂(0) =
1

2


f(2λ)f(3λ) 3λ′ 0 − f(0)f(λ) 3λ 0′


 IN

−
1

2

N∑

j=1

[
j−1∏

k=1

s(ξ(k) + λ)s(ξ(k) − λ)s(ξ(k))
2

][
N∏

ℓ=j+1

s(ξ(ℓ) + 2λ)s(ξ(ℓ) − 2λ)s(ξ(ℓ) + 3λ)s(ξ(ℓ) − 3λ)

]

× Ij−1 ⊗


 3λ

−ξ(j)

ξ′(j)
0 + 3λ

−ξ′(j)

ξ(j)

0


⊗ IN−j , (A.46)

where, to get the correct signs, one must remember the sign in (A.42) and another coming from the
derivative of the left boundary triangle. Moverover, we use the notation IN to denote the identity in
dTLN (β), and c1⊗c2 to denote the horizontal juxtaposition of two elements of dTLN1(β) and dTLN2(β)
that forms an element of dTLN1+N2(β). The remaining diagrams are evaluated as

3λ′ 0 = − 3λ 0′ = ζ δ(3λ2 )2(1 + β) = ζ, (A.47a)

3λ
−ξ

ξ′

0 + 3λ
−ξ′

ξ
0 =

̺

s(2λ)

(
s(ξ−3)s(ξ−2)s(ξ2)s(ξ3)− s(ξ−1)s(ξ0)

2s(ξ1)
)
I1. (A.47b)

These two relations lead to a straightforward check of (A.41) for N = 1. To show this, we use

̺ζ
2 s(2λ) +

1
2 = w(λ2 )

2, ̺ζ
2 s(2λ)−

1
2 = −w(5λ2 )2. (A.48)

For N > 1, inserting (A.47b) into (A.46), we find that all terms in the sum cancel pairwise, except for
one contribution from j = 1 and another from j = N . This yields

D̂(0) =
ζ

2

(
f(2λ)f(3λ) + f(0)f(λ)

)
I −

̺

2s(2λ)

(
f(2λ)f(3λ)− f(0)f(λ)

)
I, (A.49)

which is found to be equal to (A.41) after simplification.
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[25] A. Klümper, P.A. Pearce, Analytic calculation of scaling dimensions: Tricritical hard squares and
critical hard hexagons, J. Stat. Phys. 64 (1991) 13–76.
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