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ABSTRACT. Atomic heating is a fundamental phenomenon governed by the thermal spike effect 

during energetic deposition. This work presented another insight into thermal spike using a coupled 

classical oscillator model instead of a typical heat diffusion model. The temperature profile of 

deposited atoms was replaced by oscillator amplitude as an energy descriptor. Solving associated 

partial differential equations (PDEs) suggests the efficiency of energy transfer from the coupled “hot” 

to “cold” oscillators essentially relies on the atomic distance r and the spring constant k. The solution 

towards the damped wave equation further emphasizes that a relatively low wave speed v among 

coupled oscillators will spontaneously contribute to a localized thermal fluctuation during energy 

propagation. 

I. INTRODUCTION  

Rapid heating and quenching at the atomic scale is typically a fundamental yet crucial 

phenomenon occurring in the scenario of heavy atoms colliding with matters within exceedingly 

short periods [1], especially in the processes of energetic deposition [2,3], for instance, filtered 

cathodic vacuum arc (FCVA) deposition and high power impulse magnetron sputtering (HiPIMS), 

where swift metal ions with energy order of 10-2 to 10-1 keV bombard on substrate surfaces instantly, 

generating extremely high temperature along the ion trajectory within the time order of picoseconds 

(ps), and consequently contributing to subsequent physical processes like nucleation, phase 

transition, and so forth [4-7]. Transient energy transfer from swift high-energy ions (e.g., MeV or 
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GeV) to target materials along the ion tracks involves the processes of ion-electron, electron-

electron, and electron-phonon couplings [5], among which, the electron-phonon coupling 

prominently contributes to rapid heating by transferring electron energies to surrounding lattice 

atoms due to electronic stopping effect, resulting in transient thermal spike and shock wave [5,8]; 

nevertheless, low-energy ions (e.g. < keV) induced thermal spike mainly comes from a direct atom-

atom interaction dominated by the nuclear rather than the electronic stopping effect [9]. The notion 

of an as-proposed thermal spike was first introduced by F. Desauer [10], and F. Seitz and J. S. Koehler 

reconsidered it for metals in cylindrical geometry based on electron-phonon coupling, which is 

known as an inelastic thermal spike (i-TS) model [11]. G. Szenes proposed an analytical thermal 

spike (a-TS) model by solving the partial differential equations (PDEs) from the i-TS model [12]. P. 

Sigmund and C. Claussen used an elastic collision model to discuss the energy contribution of low-

energy ions governed by nuclear stopping [3]. According to R. C. Vilão et al.’s study [13], one can 

obtain a time and radial distance dependence expression of temperature profile by solving a typical 

heat diffusion equation (1) 
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cv and κ are the volumetric specific heat and the thermal conductivity, respectively. The general 

solution to equation (1) is given by the formula (2), where Q is the heat input, D is the thermal 

diffusivity with D=cv/κ, and ρ is the density of the material. In the i-TS model, the energy exchange 

between electrons and atoms is quantitatively described by equations (3) and (4), here Ce and Ca are 

the specific heat coefficient for the electrons and atoms, Ke and Ka are the thermal conductivities of 

the electrons and the atoms, g is the electron-phonon coupling parameter, and A represents the 

energy distribution [1,14,15].  
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No matter the a-TS or the i-TS model, the descriptions of the thermal spike are essentially 



based on the temperature profiles derived from the ordinary heat diffusion equation. However, it’s 

unlikely to obtain an exact scenario of energy transfer at the atomic scale by solving the heat 

diffusion equation for the following reasons: 

(i) the temperature descriptor is statistically defined to describe the system with a large number 

of atoms rather than individual atomic behavior [16],  

(ii) the heat diffusion equation fails to unveil the nonequilibrium state where the temperature 

gradient exists over a length scale smaller than the phonon mean free paths [17,18]. In terms of 

energetic deposition, it is a nonequilibrium thermodynamics process at the atomic scale [19], and 

nuclear stopping mainly dominates the energy loss of deposited atoms.  

In this work, we dedicate ourselves to presenting a profound understanding of the energy 

exchange and propagation at the atomic scale under low-energy ion bombardment using coupled 

classical oscillator model, in which oscillator amplitude is proposed instead of temperature profile 

as the energy descriptor. 

II. RESULTS AND DISCUSSION 

To reproduce the process of low-energy ion bombardment at the atomic scale, we first 

performed a molecular dynamic (MD) simulation by using the LAMMPS package. As presented in 

Fig. 2, an energetic Cu atom (20 eV) collides on the Cu (111) surface under the NVE ensemble. Fig. 

3 records the evolution of atomic velocity and kinetic energy within picoseconds after collision, 

demonstrating the average heat diffusion model isn’t strong enough to describe the atomic thermal 

distribution since the discontinuous energy spikes occur along the atom trajectory. Here, we use the 

coupled classical oscillator model to give a more precise explanation.   

 



 

 

Figure 1. (a) Schematic diagram of energetic deposition by using FCVA technique; (b) illustration 

of time and distance dependence energy propagation from the “hot” to “cold” oscillators as a 

classical spherical wave. 

 

 



 

Figure 2. (a)-(d) Top view of atom velocity on Cu (111) surface after a 20 eV energetic Cu atom 

collision; (e)-(h) top and side view of atom kinetic energy distribution after the atomic collision.  

 

 

 

Figure 3. (a) Atom velocity and (b) atom kinetic energy distribution along the x-axis orientation 

after the atomic collision. 

 

The deposition processes are a simplified binary collision between energetic and substrate 

atoms. The displacements of deposited atoms are confined within a limited range due to the 

dominant nuclear stopping, forming either crystalline or amorphous structure based on atomic 

distance. Let the energetic atoms be “hot” oscillators. In contrast, substrate atoms are “cold” 

oscillators, as presented in Fig. 1b and Fig. 4a. One can link these isolated oscillators using a coupled 

system that consists of two masses connecting by three springs, as described by PDEs (5) and (6), 

where m1 and k1 represent the mass and spring constant of “hot” oscillator, m2 and k2 represent the 

mass and spring constant of “cold” oscillator, and k12 is the spring constant between these two 

coupled oscillators. Suppose each pair of neighboring oscillators is governed by the field of Morse 

potential 𝑈 = 𝐷𝑒[1 − 𝑒−𝛼(𝑟−𝑟𝑒)]2, where De, α, and re are the well depth, the width of the potential, 

and the equilibrium bond distance, respectively, then 𝑘12 =
𝜕2𝑈

𝜕𝑟2 = 2𝛼2𝐷𝑒𝑒−𝛼(𝑟−𝑟𝑒)[2𝑒−𝛼(𝑟−𝑟𝑒) −

1]. By solving the combined equations (5) and (6), one can obtain time-dependence solutions of u 

and u0 that reflect the vibration of coupled “hot” and “cold” oscillators, respectively. Fig. 4b 

demonstrates a scenario of energy or amplitude exchange from the “hot” to “cold” oscillators with 



r=2 and k=0.1 (k1=k2) by a forced oscillation. The amplitude of forced oscillation towards “cold” 

oscillators is strikingly enhanced with a reduced atomic distance r from 10 to 2, as shown in Fig. 4c 

and Fig. 4a, indicating the energy carried out by “hot” oscillators can be dramatically transferred to 

its neighboring “cold” oscillators as they are infinitely close to each other till nucleation during a 

binary collision. Fig. 4d presents the profile of forced oscillation with k1 from 0.4 to 0.1, which 

emphasizes that the “hot” oscillators can make a considerable energy contribution to drive “cold” 

oscillators when these coupled oscillators possess the same k. These results highlight that energy 

transfer efficiency from coupled “hot” to “cold” oscillators relies on atomic distance r and individual 

spring constant k.  
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Figure 4. (a) Possible states among coupled-oscillators as a simplified binary collision during 

energetic deposition; (b) time dependence profiles of the solution towards the PDEs (5) and (6); (c)-

(d) time dependence profiles of the solution towards the PDEs (5) and (6) under different r and k. 

The initial condition of both equations (5) and (6) is �̇�(0)=1,u(0)=0,𝑢0̇(0)=𝑢0(0)=0.  

 

Although we’ve briefly discussed the energy exchange between two coupled oscillators during 

a binary collision, PDEs (5) and (6) cannot further describe the energy penetration among multiple 

phonons. Thus we here introduce the damped wave equations as given by PDEs (7) and (8), where 

β and v are the damping coefficient, and wave speed, respectively, and f corresponds to the source 

term with 𝑓(𝑡, 𝑥, 𝑦) =
𝑒−0.5𝑡

(𝑥−1)2+𝑦2. Fig. 5a gives the time dependence solution of ordinary 2D heat 

equation (1), demonstrating a Gaussian distributed energy descent along the propagation direction. 

The 2D solution towards the PDE (7) in Fig. 5b highlights a discrete energy fluctuation as the shock 

wave, which is entirely different from the normal heat diffusion model yet fundamentally describe 

the energy propagation through phonon media. The source term towards PDE (8) in Fig.5c provides 

external energy intensity during phonon propagation without dramatically altering its original 

profile. If focus on the 1D solution of the heat equation (1) and the wave equation (7), as shown in 

Fig. 6a and Fig. 6b, respectively, a traveling spike corresponding to the maximum energy 

distribution exhibits along propagation direction towards the wave equation (7). Moreover, by 

rewriting equation (7) in the spherical coordinates, one can obtain the profiles with dramatic spikes, 

as depicted in Fig. 6c, and these energy spikes fundamentally contribute to localized thermal 

fluctuation. Fig. 6d illustrates that the energy spikes mainly depend on the wave speed within the 

media, and a relatively low wave speed towards the oscillation can lead to significant thermal 

contribution during energy deposition.      
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Figure 5. (a) Time and distance dependence profiles of the 2D solution towards normal heat 

diffusion equation with the initial condition u(t,0,y)=u(t,2,y)=u(t,x,0)=u(t,x,2)=0,u(0,x,y)=0.5 

𝑒−100[(𝑥−1)2+𝑦2]; (b)-(c) time and distance dependence profiles of the 2D solution towards the PDEs 

(7) and (8), respectively, with the initial condition u(t,0,y)=u(t,2,y)=u(t,x,0)=u(t,x,2)=0, 

ut(0,x,y)=0,u(0,x,y)=0.5𝑒−100[(𝑥−1)2+𝑦2]. 

 

 



 

Figure 6. (a)-(b) Distance dependence profiles of the solution towards ordinary heat diffusion 

equation with the initial condition u(t, 0)=0, u(t, 2)=0, u(0, x)=0.5𝑒−100(𝑥−1)2
and damped wave 

equation with the initial condition u(t, 0)=0, u(t, 2)=0, ut(0, x)=0, u(0, x)=0.5𝑒−100(𝑥−1)2
; (c)-(d) 

distance dependence profiles of the solution towards the damped spherical wave equation with the 

initial condition u(t,1)=1, u(t, 5)=0, ut(0, x)=0, u(0, x)=0.5𝑒−100(𝑥−1)2
. 

 

III. CONCLUSIONS 

In this work, we first reproduce the thermal spike effect under the low-energy ion bombardment 

by performing a typical MD simulation. Then, a simplified binary collision was used to unveil the 

oscillation profile towards deposited atoms via coupled PDEs. The solution was essentially 

manifested that energy transfer efficiency from the coupled “hot” to “cold” oscillators mainly relies 

on the atomic distance r and the oscillator spring constant k. The “hot” oscillators can make huge 

energy contributions once they are bonded to the “cold” oscillators or possess the same k with the 

“cold” oscillators. Moreover, solving the damped wave equation can further reveal the energy 

propagation among coupled oscillators as the shock wave. The profiles emphasize that dramatic 

energy spikes will exhibit and contribute to localized thermal fluctuation with a relatively low wave 

speed v within the media, which provides a more profound understanding of the thermal spike effect 

than the normal heat diffusion equation. 
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