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We show that the Klein bottle entropy [Phys. Rev. Lett. 119, 261603 (2017)] for conformal
field theories (CFTs) perturbed by a relevant operator is a universal function of the dimension-
less coupling constant. The universal scaling of the Klein bottle entropy near criticality provides
an efficient approach to extract the scaling dimension of lattice operators via data collapse. As
paradigmatic examples, we validate the universal scaling of the Klein bottle entropy for Ising and
Z3 parafermion CFTs with various perturbations using numerical simulation with continuous matrix
product operator approach.

Introduction — The study of continuous phase tran-
sitions and critical phenomena is an evergreen topic in
theoretical physics [1–3]. As the correlation length is di-
verging, systems at and near criticality are described by
few variables (e.g., order parameters) that vary slowly in
space and time. Their physical properties are insensitive
to microscopic details and exhibit universal behaviors
shared by different models. From a theoretical perspec-
tive, these systems, in the low-energy, long-wavelength
limit, are amenable to field theory descriptions.

Given a microscopic model at or near criticality, an
important task is to pinpoint the underlying field theory
description. While this task can be tremendously diffi-
cult, various methods have been made available for one-
dimensional (1D) quantum systems and, equivalently,
two-dimensional (2D) classical statistical models. The
scaling limit of such systems is often described by 2D
conformal field theories (CFTs) [4–6], possibly with addi-
tional perturbations that are relevant, marginal, or irrel-
evant in the renormalization group (RG) sense [7–10]. As
a characteristic quantity of 2D CFTs, the central charge
can be read out from the finite-size scaling of the Casimir
energy [11, 12] or entanglement entropy in the ground
state [13–15].

In many circumstances, the central charge is not
enough for distinguishing different CFTs and one calls
for a finer distinction. Recently, it is found that 2D
CFTs defined on the Klein bottle exhibit a universal
entropy [16]. This so-called Klein bottle entropy only
depends on conformal data (e.g., modular S matrix for
rational CFTs [16–21] and the compactification radius
for compactified boson CFTs [22]) and can be efficiently
computed with various numerical methods, making it a
competitive tool for characterizing 2D CFTs in numerics
(see Refs. [23–25]).

In this Letter, we extend the scope of Klein bottle en-
tropy from CFT to the scaling region near criticality. By
considering a unitary CFT perturbed by a relevant op-

erator, we show that the Klein bottle entropy, denoted
by K(s), is a universal function of some dimensionless
coupling s. This universal function allows us to extract
the conformal weight of the perturbation operator via
data collapse. By combining analytical and numerical
approaches, we calculate the Klein bottle entropy and
verify the universal scaling for Ising and Z3 parafermion
CFTs with various perturbations. Our results clearly
suggest that the Klein bottle entropy not only locates
critical points accurately, but also provides an efficient
method to compute scaling dimension of lattice opera-
tors. For latter purpose, current standard method re-
lies on extracting exponents from large-distance corre-
lation functions at criticality. In contrast, our present
approach deals with off-critical systems and uses data
collapse, which is numerically less challenging and can
provide more accurate estimates.

Universal scaling function — We consider the following
1D Hamiltonian describing a perturbed CFT on a circle
of length L:

H = HCFT − vg
∫ L

0

dxϕ(x) , (1)

whereHCFT = 2πv
L (L0+L̄0− c

12 ) is the CFT Hamiltonian.
Here L0 (L̄0) is the zeroth-level holomorphic (antiholo-
morphic) Virasoro generator, and c and v are the central
charge and velocity, respectively. g is the coupling con-
stant of the perturbation. As the velocity v in Eq. (1) is
an overall unit, we set v = 1 in field theory analysis and
restore it later when analyzing lattice models. We also
set kB = ~ = 1 (kB: Boltzmann’s constant) throughout
this work. The operator ϕ has conformal weight (h, h̄)
and, for simplicity, we assume it has a vanishing confor-
mal spin (i.e., h = h̄). The normalization of the operator
ϕ is fixed by limx→∞ limL→∞ x4h〈ϕ(0)ϕ(x)〉 = 1, where
the expectation value is taken in the vacuum of the CFT.
For h < 1, the perturbation is RG relevant and drives the
system away from criticality.
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At inverse temperature β, the partition function
ZT (L, β, g) = tr(e−βH) lives on a torus, and the trace can
be evaluated with the eigenstates of HCFT, denoted by
|α, γ̄〉. The Klein bottle partition function ZK(L, β, g) =
tr(Ωe−βH) has an extra operator Ω satisfying Ω2 = 1.
In the path integral picture, Ω has the intuitive meaning
of gluing the “field configurations” (before and after the
imaginary-time evolution) in a spatially inverted fashion
and hence changes the manifold from torus to Klein bot-
tle. Rigorously speaking, there are various choices of Ω
for a self-consistent definition of the Klein bottle parti-
tion function [26], and we choose the one whose action
on the eigenstates of HCFT is Ω|α, γ̄〉 = |γ, ᾱ〉. For many
lattice models, one can realize this by simply choosing
spatial reflection [16–18].

We are interested in the Klein bottle entropy, defined
as the ratio of two partition functions

K(β, g) = lim
L→∞

ZK(2L, β2 , g)

ZT (L, β, g)
. (2)

At the critical point (g = 0), K acquires a universal value
(i.e., independent of β and velocity v) and can be used
for distinguishing different CFTs [16–18, 21, 22]. When
moving away from criticality, it is natural to ask how the
Klein bottle entropy K(β, g) varies as a function of g and
β.

In the limit L → ∞, β is the only length scale in the
theory. Since the Hamiltonian H has dimension [β]−1

and the operator ϕ has dimension [β]−2h, dimension of
the coupling constant g is [β]2h−2, and a dimensionless
coupling s = gβ2−2h is hence the only parameter in the
theory, measuring the strength of the perturbation. Since
the Klein bottle entropy (2) is also dimensionless, it must
be a universal function of the dimensionless coupling s,
denoted as K(s).

The Klein bottle entropy K(s) being universal both at
and near criticality has immediate applications in numer-
ical studies: (i) It establishes a firm foundation for using
the Klein bottle entropy of the CFT to locate confor-
mal critical points. (ii) Using lattice operators as “probe
perturbations,” one can exploit data collapse of the Klein
bottle entropy to accurately determine conformal weights
of lattice operators.

It is worth mentioning that the quantum transfer ma-
trix gives an alternative perspective of the universal Klein
bottle entropy. By using a “cut-and-sew” procedure [17],
the Klein bottle with size (2L, β/2) is mapped to a
cylinder with length L, circumference β, and “crosscap”
boundaries (see Fig. 1). In this picture, the Klein bottle
partition function

ZK(2L,
β

2
, g) = 〈C|e−LHv(β,g)|C〉 (3)

is viewed as a spatial evolution generated by the quantum
transfer matrix T(β, g) ≡ e−εHv(β,g) (ε: short-distance

L

β

= e−εHv

FIG. 1. Klein bottle partition function ZK(2L, β
2
, g) formu-

lated on a cylinder with length L, circumference β, and cross-
cap boundaries. The (light red) thin ribbon represents the
quantum transfer matrix T(β, g) generating evolution along
the spatial direction.

cutoff) between two crosscap boundary states, |C〉 and
its conjugate. For space-time symmetric theories ad-
dressed in this work, Hv takes the same form as (1), ex-
cept that the imaginary time τ (inverse temperature β)
plays the role of the spatial coordinate x (length L). Us-
ing e−εE(β,g) (|ψ(β, g)〉) to denote the leading eigenvalue
(normalized leading eigenvector) of T(β, g), the evolu-
tion of the quantum transfer matrix in (3), for L � β,
projects onto the leading eigenvector of T:

ZK(2L,
β

2
, g) ' e−E(β,g)L|〈C|ψ(β, g)〉|2 . (4)

We note that |ψ(β, g)〉 as the ground state of Hv(β, g),
which describes the same theory as (1) but is defined
on a circle of length β, only depends on the dimension-
less coupling s = gβ2−2h and can hence be written as
|ψ(β, g)〉 ≡ |ψ(s)〉. Similarly, the torus partition function
is evaluated as ZT (L, β, g) = tr[e−LHv(β,g)] ' e−E(β,g)L

for L� β. Using these results, the Klein bottle entropy
(2) is simplified as

K(s) = |〈C|ψ(s)〉|2 , (5)

which reaffirms K(s) is universal. For 1D quantum
Hamiltonians, the continuous matrix product operator
(cMPO) method [27] provides an efficient way to com-
pute the Klein bottle entropy via Eq. (5).

Although the Klein bottle entropy being universal has
very promising prospects, the calculation of its full ana-
lytical form is quite challenging. Nevertheless, there are
at least two routes to proceed: (i) Treat the ϕ term in
(1) perturbatively and develop the perturbation theory
based on (3). This effectively generates a series expan-
sion K(s) =

∑∞
n=0Kns

n, where K0 is just the Klein
bottle entropy of the CFT, and higher-order coefficients
Kn>0 are obtained order by order in the perturbation
theory. However, one has to be cautious about the pos-
sible nonanalyticity of K(s) at s = 0, which might cause
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divergences in the perturbative expansion. (ii) For inte-
grable field theories, the overlap between Bethe vectors
and the crosscap boundary state, which gives the Klein
bottle entropy via Eq. (5), might be calculable [28–31].

Perturbed Ising CFT — As a concrete example, we
consider the perturbed Ising CFT:

H = HIsing − g1
∫ L

0

dx ε(x)− g2
∫ L

0

dxσ(x) , (6)

where HIsing is the Hamiltonian of the Ising CFT with
central charge c = 1/2 and velocity v = 1. ε and σ are
primary fields of the Ising CFT with conformal weight
(1/2, 1/2) and (1/16, 1/16), respectively. This field the-
ory is known to describe the scaling limit of the 2D clas-
sical Ising model [9, 32], where ε (σ) corresponds to ther-
mal (magnetic) perturbation. For g2 = 0, the field theory
(6) can also be formulated with a free Majorana fermion,
where the ε term becomes the mass of the Majorana
fermion. This allows us to derive an exact expression
for the Klein bottle entropy [33]

K(s1) = 1 +
1√

1 + e2πs1
(7)

with dimensionless coupling s1 = g1β. At the critical

point (s1 = 0), K(0) = 1 +
√
2
2 restores the Klein bottle

entropy of the Ising CFT [16]. In two limits (s1 → −∞
and +∞), K(−∞) = 2 (K(+∞) = 1) reflects the twofold
degenerate (unique) ground state in the Ising ordered
(disordered) phase. For g1 = 0, we are unable to de-
rive an analytical expression for the Klein bottle entropy
K(s2) (dimensionless coupling: s2 = g2β

15/8) and have
to resort to numerical approaches.

For numerical simulations, we consider the following
1D quantum Ising chain with both transverse and longi-
tudinal fields:

H = −
N∑
j=1

σxj σ
x
j+1 − h1

N∑
j=1

σzj − h2
N∑
j=1

σxj , (8)

where σαj (α = x, z) are Pauli spin operators at site j,
N is the total number of sites, and periodic boundary
condition (σαN+j = σαj ) is imposed. The Ising CFT is
realized at h1 = 1 and h2 = 0 with velocity v = 2
(lattice spacing set to unity here and hereafter). The
Klein bottle partition function on the lattice is defined
by ZK = tr(Pe−βH), where P is the spatial reflection
operator whose action on the Ising spin basis is given by
P |σ1, σ2, . . . , σN 〉 = |σN , . . . , σ2, σ1〉 with σj = ±1.

To compare lattice and field theory results, one should
take into account the velocity as well as the normaliza-
tion of perturbation operators on the lattice. Similar to
the field theory prescription, the normalization of oper-
ators is obtained from two-point correlators in the crit-
ical ground state: Nε = limr→∞ limN→∞ r2〈σzjσzj+r〉c =

1/π2 and Nσ = limr→∞ limN→∞ r1/4〈σxj σxj+r〉c ≈

0 1
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FIG. 2. Klein bottle entropy for the Ising CFT with (a) ther-
mal and (b) magnetic perturbations. The numerical data are
obtained from the cMPO calculation (bond dimension χ =
20) with the quantum Ising chain (8). The field theory result
for K(s1) [Eq. (7)] is shown as the solid line in (a). Horizontal
and vertical dashed lines indicate the critical point and the
Klein bottle entropy of the Ising CFT, respectively. Left inset
of (b): Enlargement near s2 = 0. Right inset of (b): Fitting
the data near s2 = 0 with ∆K(s2) = K(s2)−K(0) ≈ A|s2|α.

0.645 [34], where 〈· · · 〉c denotes connected correlators
with local expectation values subtracted. Taking into
account the velocity, dimensionless couplings for the lat-

tice model (8) are given by s1 =
√
Nε
v (h1 − 1)vβ and

s2 =
√
Nσ
v h2(vβ)15/8. However, if one simply aims at de-

termining conformal weights from the universal scaling
(rather than quantitative comparison with field theory
calculations), it suffices to use, e.g., s̃1 = (h1 − 1)β and
s̃2 = h2β

15/8 without the extra rescaling.
We calculate the Klein bottle entropy numerically for

the quantum Ising chain (8) using the cMPO method [27]
and plot the results in Fig. 2. For the case of thermal
perturbation, numerical data shown in Fig. 2(a) agree
very well with the analytical result in Eq. (7), which
confirms the universality of K(s1). For the case of mag-
netic perturbation, the data collapse is also excellent [see
Fig. 2(b)] and the fitting K(s2) = K(0) + A|s2|α near
s2 = 0 yields α ≈ 1.95 and A ≈ −3.54 [inset of Fig. 2(b)].
The exact value for α is expected to be 2, which is the
second-order term in the series expansion of K(s2). The
field theory calculation of the (universal) coefficient A is
an interesting task for a future work. When both ther-
mal and magnetic perturbations are present, we have nu-
merically calculated K(s1, s2) and also observed excellent
data collapse (not shown).

Perturbed Z3 parafermion CFT — As the second ex-
ample, we consider the perturbed Z3 parafermion CFT:

H = HParafermion − g
∫ L

0

dx ε(x) , (9)

where HParafermion is the Hamiltonian of the Z3

parafermion CFT with central charge c = 4/5. The
torus partition function of the Z3 parafermion CFT is
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the nondiagonal modular invariant of the M(6, 5) mini-
mal model [5]. The field theory (9) describes the scaling
limit of the 2D classical three-state Potts model, where
the operator ε is a primary field of the M(6, 5) minimal
model with conformal weight (2/5, 2/5) and corresponds
to the thermal perturbation. Different from the Ising
case, Z3 parafermion CFT is an interacting theory with-
out free-field representation. In the presence of thermal
perturbation, the Klein bottle entropy is difficult to cal-
culate directly from the field theory.

Here we consider the lattice realization of (9) in the
three-state quantum clock chain

H = −
N∑
j=1

(σ†jσj+1 + σ†j+1σj)− h3
N∑
j=1

(τj + τ †j ) , (10)

where

σ =

0 1 0
0 0 1
1 0 0

 , τ =

1 0 0
0 e2πi/3 0
0 0 e4πi/3

 , (11)

are Z3 spin matrices. The Z3 parafermion CFT de-
scribes the critical point of (10) at h3 = 1, and the

velocity is v = 3
√
3

2 [35]. The normalization of the per-
turbation operator is obtained by numerically calculat-
ing the correlator at the critical point using the vari-
ational uniform matrix product state method [36, 37]:

Nε = limr→∞ limN→∞ r8/5〈(τ †j + τj)(τ
†
j+r + τj+r)〉c ≈

0.315. Taking into account the velocity and the nor-
malization of the perturbation operator, the dimension-
less coupling s for the lattice model (10) is defined as

s =
√
Nε
v (h3 − 1)(vβ)6/5.

The Klein bottle entropy for the three-state quantum
clock chain (10) has been calculated using the cMPO
method and the results are shown in Fig. 3. The data
collapse for different β is again observed. The numerical
result at the critical point (s = 0) agrees very well with
the expected Klein bottle entropy of the Z3 parafermion

CFT, K(0) =
√

3 + 6/
√

5 [17]. In two limits (s → −∞
and +∞), K(−∞) = 3 (K(+∞) = 1) indicates the three-
fold degenerate (unique) ground state in the Z3 symme-
try breaking (disordered) phase.

The analytical and numerical results for perturbed
Ising and Z3 parafermion CFTs give some hints on pos-
sible general features of the Klein bottle entropy. The
CFT under a relevant perturbation (with dimensionless
coupling s) separates two off-critical phases, denoted by
A (s < 0) and B (s > 0). There are two typical scenar-
ios: (i) Phase A (B) has a broken (an unbroken) discrete
symmetry with (without) ground-state degeneracy. The
Klein bottle entropy K(−∞) (an integer greater than
one) equals the number of degenerate ground states in
phase A, while K(+∞) = 1 signals a unique ground
state in phase B. In this case, we conjecture that K(s)
monotonically decreases from K(−∞) to 1 as s increases

1.0 0.5 0.0 0.5 1.0 1.5
s

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

K
(s

)

β= 18 β= 20 β= 22 β= 24 β= 26

√
3 + 6/

√
5

FIG. 3. The Klein bottle entropy K(s) as a function of the
dimensionless coupling s for the three-state quantum clock
chain near criticality. The numerical data are obtained with
the cMPO approach (bond dimension χ = 24) for different β
(shown in legend). The critical point and the Klein bottle en-
tropy of the Z3 parafermion CFT are indicated by horizontal
and vertical dashed lines, respectively.

from −∞ to +∞. (ii) If neither phase A nor B sponta-
neously breaks a symmetry, the ground state is unique
in both phases, indicated by the Klein bottle entropy
K(±∞) = 1. In this situation, we conjecture that K(s)
achieves its maximum at the critical point s = 0 and
monotonically decreases as s increases (decreases) from
zero to +∞ (−∞). In addition to the present work (as
well as numerical evidences in Refs. [18, 23]), rigorous re-
sults [28] obtained from certain integrable field theories
(staircase model [38] and its generalization) also support
these conjectures.

Discussion — In summary, we have shown that for
conformal critical points perturbed by a relevant oper-
ator, the Klein bottle entropy K(s) is a universal func-
tion of the dimensionless coupling constant s. This al-
lows us to devise an efficient method to determine the
conformal weight of perturbation operators via data col-
lapse. The analytic and numerical results of Ising and Z3

parafermion CFTs with various perturbations illustrate
an excellent agreement with the prediction.

The universal scaling of the Klein bottle entropy has
opened a new venue in the study of 2D field theories.
To proceed, a plausible direction is to develop methods
for computing the universal scaling function K(s). For
instance, it should be possible to establish a conformal
perturbation theory to calculate the leading-order terms
in the series expansion of K(s). The exact form of K(s)
might also be extracted for some integrable field theories
or spin chains [28–31].

For future works, it would be interesting to study, both
perturbatively and nonperturbatively, under which con-
ditions K(s) decreases or increases monotonically. The
answer to this question might uncover a deep relation
between the Klein bottle entropy and the bulk RG flow,
analogous to Zamolodchikov’s c theorem [39]. Apart from
the relevant perturbations considered in this work, it is
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desirable to study the effect of marginal perturbations on
the Klein bottle entropy, too. Needless to say, it would
be fruitful if a suitable generalization of the Klein bot-
tle entropy could be found in higher dimensions. As a
higher-dimensional CFT perturbed by a relevant oper-
ator is also controlled by the dimensionless coupling, a
dimensionless entropy, possibly arising on certain closed
manifold, would be a universal function of the dimen-
sionless coupling and can characterize the critical theory.
Considering the wide adoption of an alternative dimen-
sionless ratio, the Binder cumulant of order parameters,
in the study of critical phenomena [40], we believe further
exploration of Klein bottle entropy will be fruitful.
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[26] G. Felder, J. Fröhlich, J. Fuchs, and C. Schweigert, Com-

pos. Math. 131, 189 (2002).
[27] W. Tang, H.-H. Tu, and L. Wang, Phys. Rev. Lett. 125,

170604 (2020).
[28] J. Caetano and S. Komatsu, J. Stat. Phys. 187, 1 (2022).
[29] C. Ekman, arXiv:2207.12354 (2022).
[30] T. Gombor, J. High Energy Phys. 2022, 096 (2022).
[31] T. Gombor, J. High Energy Phys. 2023, 146 (2023).
[32] G. Mussardo, Statistical Field Theory: An Introduction

to Exactly Solved Models in Statistical Physics (Oxford
University Press, Oxford, 2020).

[33] See the Supplemental Material for the derivation of the
Klein bottle entropy for the Ising CFT with thermal per-
turbation, which includes Refs. [41, 42].

[34] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[35] G. Albertini, S. Dasmahapatra, and B. M. McCoy, Phys.

Lett. A 170, 397 (1992).
[36] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman,

F. Verstraete, and J. Haegeman, Phys. Rev. B 97,
045145 (2018).

[37] M. Van Damme, G. Roose, M. Hauru, L. Devos, and
J. Haegeman, “MPSKit.jl,” (2020).

[38] A. B. Zamolodchikov, J. Phys. A 39, 12847 (2006).
[39] A. B. Zamolodchikov, JETP Lett 43, 730 (1986).
[40] K. Binder, Z. Phys. B 43, 119 (1981).
[41] M. Henkel, J. Phys. A 20, 995 (1987).
[42] M. Oshikawa, arXiv:1910.06353 (2019).

mailto:hong-hao.tu@tu-dresden.de
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1016/0550-3213(84)90052-X
https://dx.doi.org/10.1088/0305-4470/19/17/008
https://link.springer.com/article/10.1007/BF01019682
http://dx.doi.org/10.1142/S0217751X8900176X
http://dx.doi.org/10.1142/S0217751X8900176X
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
http://dx.doi.org/10.1103/PhysRevLett.56.746
http://dx.doi.org/10.1103/PhysRevLett.56.742
http://dx.doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
http://dx.doi.org/ 10.1103/PhysRevLett.90.227902
http://dx.doi.org/ 10.1103/PhysRevLett.90.227902
http://iopscience.iop.org/article/10.1088/1742-5468/2004/06/P06002
http://iopscience.iop.org/article/10.1088/1742-5468/2004/06/P06002
https://link.aps.org/doi/10.1103/PhysRevLett.119.261603
https://link.aps.org/doi/10.1103/PhysRevB.96.115136
https://link.aps.org/doi/10.1103/PhysRevB.96.174429
https://link.aps.org/doi/10.1103/PhysRevB.96.174429
http://dx.doi.org/ 10.1103/PhysRevB.97.220407
http://dx.doi.org/ 10.1103/PhysRevB.97.220407
https://doi.org/10.1140/epjp/s13360-021-01878-y
https://doi.org/10.1140/epjp/s13360-021-01878-y
http://dx.doi.org/ 10.1088/1751-8121/ac68b1
http://dx.doi.org/ 10.1088/1751-8121/ac68b1
https://link.aps.org/doi/10.1103/PhysRevB.99.115105
https://link.aps.org/doi/10.1103/PhysRevB.99.115105
https://link.aps.org/doi/10.1103/PhysRevE.101.060105
https://link.aps.org/doi/10.1103/PhysRevB.101.165123
https://link.aps.org/doi/10.1103/PhysRevB.101.165123
https://link.aps.org/doi/10.1103/PhysRevE.104.024118
https://doi.org/10.1023/A:1014903315415
https://doi.org/10.1023/A:1014903315415
https://link.aps.org/doi/10.1103/PhysRevLett.125.170604
https://link.aps.org/doi/10.1103/PhysRevLett.125.170604
https://link.springer.com/article/10.1007/s10955-022-02914-6
https://arxiv.org/abs/2207.12354
http://dx.doi.org/10.1007/JHEP10(2022)096
http://dx.doi.org/10.1007/JHEP03(2023)146
http://dx.doi.org/10.1016/0003-4916(70)90270-8
https://www.sciencedirect.com/science/article/pii/037596019290894R
https://www.sciencedirect.com/science/article/pii/037596019290894R
http://dx.doi.org/10.1103/PhysRevB.97.045145
http://dx.doi.org/10.1103/PhysRevB.97.045145
https://juliapackages.com/p/mpskit
https://iopscience.iop.org/article/10.1088/0305-4470/39/41/S08
http://jetpletters.ru/ps/1413/article_21504.shtml
http://dx.doi.org/10.1007/BF01293604
https://doi.org/10.1088/0305-4470/20/4/033
https://arxiv.org/abs/1910.06353


6

SUPPLEMENTAL MATERIAL

Ising CFT with thermal perturbation

Majorana fermion field theory

The Ising CFT with thermal perturbation can be represented as a free Majorana fermion field theory with mass.
In the Hamiltonian formulation, the system is defined on a circle with length L:

H = HIsing − g1
∫ L

0

dx ε(x)

=
i

2

∫ L

0

dx [χ(x)∂xχ(x)− χ̄(x)∂xχ̄(x)]− im
∫ L

0

dxχ(x)χ̄(x) , (S1)

where χ (χ̄) describes a left-moving (right-moving) Majorana fermion. The Majorana operators are self-conjugate,
χ† = χ (similar for χ̄), and they satisfy the anticommutation relations, {χ(x), χ(x′)} = {χ̄(x), χ̄(x′)} = δ(x− x′) and
{χ(x), χ̄(x′)} = 0. The velocity in (S1) has already been set to unity. The energy operator ε has conformal weight
h = h̄ = 1

2 and is represented with Majorana operators as ε(x) = 2πiχ(x)χ̄(x), where the prefactor 2π ensures that
the normalization agrees with the adopted convention in the main text. Thus, the dimensionless coupling in (S1) is
given by

s = g1β
2−2h =

mβ

2π
. (S2)

Note that this is defined as s1 in the main text, and we drop the subscript here since no confusion would arise.
The Fourier transform of χ(x) and its inverse are given by

χ(x) =
1√
L

∑
k

χke
ikx, χk =

1√
L

∫ L

0

dxχ(x)e−ikx . (S3)

The definition for χ̄ is similar, which we would omit for now. Both antiperiodic and periodic boundary conditions of
Majorana operators, defined as χ(x + L) = −χ(x) and χ(x + L) = χ(x), should be considered in Ising field theory.
These are known as the Neveu-Schwarz (NS) and Ramond (R) sectors, respectively. In the NS (R) sector, the allowed
momenta in Eq. (S3) are k = 2π

L (n − 1
2 ) (k = 2π

L n) with n ∈ Z. The Majorana operator χ(x) being self-conjugate

implies χ−k = χ†k. We note that χk=0 in the R sector is of Majorana nature (up to normalization), namely, χ†0 = χ0

and χ2
0 = 1/2.

By using the Fourier transform of χ(x) and χ̄(x), the Hamiltonian (S1) is diagonalized. In the R sector, we have

HR =
1

2

∑
k

k(−χ−kχk + χ̄−kχ̄k)− im
∑
k

χ−kχ̄k

=
∑
k>0

k(−χ−kχk + χ̄−kχ̄k)− im
∑
k>0

(χ−kχ̄k − χ̄−kχk)− imχ0χ̄0

=
∑
k>0

(
χ−k χ̄−k

)(−k −im
im k

)(
χk
χ̄k

)
− imχ0χ̄0

=
∑
k>0

√
k2 +m2(η†kηk − η−kη

†
−k)− im 1√

2
(η0 + η†0) · i√

2
(η0 − η†0)

=
∑
k 6=0

√
k2 +m2(η†kηk −

1

2
) +m(η†0η0 −

1

2
)

=
∑
k∈R

εk(η†kηk −
1

2
) (S4)

with single-particle energy εk =
√
k2 +m2 for k 6= 0 and ε0 = m. For k = 0, we have defined a (complex) fermionic

mode η0 = 1√
2
(χ0 − iχ̄0). The diagonalization in the NS sector is similar and yields HNS =

∑
k∈NS εk(η†kηk −

1
2 ).



7

The vacuum in the NS (R) sector, written as |0〉NS (|0〉R), is annihilated by all ηk∈NS(R) modes. The vacuum
energies are given by

ENS
0 = −1

2

∑
k∈NS

εk = −
∞∑
n=1

2π

L

√
(n− 1

2
)2 + t2 , (S5)

ER
0 = −1

2

∑
k∈R

εk = −m
2
−
∞∑
n=1

2π

L

√
n2 + t2 , (S6)

where t = mL
2π is the dimensionless mass.

The vacuum energies can be calculated by expanding the mass (i.e., treating the mass perturbatively). In the NS
sector, we obtain

ENS
0 = −2π

L

∞∑
n=1

(n− 1

2
) ·

√
1 +

(
t

n− 1
2

)2

= −2π

L

∞∑
n=1

(n− 1

2
) ·
∞∑
l=0

Cl1
2

(
t

n− 1
2

)2l

= −2π

L

∞∑
n=1

(n− 1

2
)− t2 · π

L

∞∑
n=1

1

n− 1
2

− 2π

L

∞∑
l=2

t2lCl1
2

∞∑
n=1

1

(n− 1
2 )2l−1

= −2π

L

∞∑
n=1

(n− 1

2
)− t2 · π

L

∞∑
n=1

1

n− 1
2

− 2π

L

∞∑
l=2

t2lCl1
2
(22l−1 − 1)ζ(2l − 1) , (S7)

where Cl1/2 is the binomial coefficient, Cl1/2 ≡
(
1/2
l

)
=
(
2l
l

) (−1)l+1

22l(2l−1) , and ζ is the Riemann-Zeta function. The first

two terms in Eq. (S7) are divergent and should be regularized. Below we use the exponential regularization with a
short-distance cutoff a (of the order of lattice spacing) to calculate the first two terms:

2π

L

∞∑
n=1

(
n− 1

2

)
→

∑
k∈NS,k>0

ke−ka = − ∂

∂a

∞∑
n=1

e−
2π
L (n− 1

2 )a =
π

2L

cosh( πLa)

sinh2( πLa)
=

L

2πa2
+

π

12L
+O(a2) (S8)

and

∞∑
n=1

1

n− 1
2

→ 2π

L

∑
k∈NS,k>0

1

k
e−ka =

∞∑
n=1

1

n− 1
2

e−
2π
L (n− 1

2 )a = 2 tanh−1(e−
π
La) = 2 ln 2− ln

(
2π

L
a

)
+O(a2) . (S9)

Using the above regularized results (i.e., dropping the ultraviolet divergent term L/2πa2), we obtain

ENS
0 → 2π

L

[
− 1

24
+
t2

2
ln
( π

2L
a
)
−
∞∑
l=2

t2lCl1
2
(22l−1 − 1)ζ(2l − 1)

]
≡ π

L
γ−(t) (S10)

with

γ−(t) = − 1

12
+ t2 ln

( π
2L
a
)
− 2

∞∑
l=2

t2lCl1
2
(22l−1 − 1)ζ(2l − 1) . (S11)
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In the R sector, we use the same regularization scheme to calculate ER
0 [Eq. (S6)]:

ER
0 = −m

2
− 2π

L

∞∑
n=1

n ·

√
1 +

(
t

n

)2

= −2π

L

t

2
− 2π

L

∞∑
n=1

n ·
∞∑
l=0

Cl1
2

(
t

n

)2l

= −2π

L

t

2
− 2π

L

∞∑
n=1

n− t2 · π
L

∞∑
n=1

1

n
− 2π

L

∞∑
l=2

t2lCl1
2

∞∑
n=1

1

n2l−1

→ −2π

L

t

2
− π

2L

1

sinh2( πLa)
− t2 · π

L
[− ln(1− e− 2π

L a)]− 2π

L

∞∑
l=2

t2lCl1
2
ζ(2l − 1)

= − L

2πa2
+

2π

L

[
1

12
− t

2
+
t2

2
ln

(
2π

L
a

)
−
∞∑
l=2

t2lCl1
2
ζ(2l − 1)

]
. (S12)

After dropping the same ultraviolet divergent term L/2πa2, we arrive at ER
0 ≡ π

Lγ+(t) with

γ+(t) =
1

6
− t+ t2 ln

(
2π

L
a

)
− 2

∞∑
l=2

t2lCl1
2
ζ(2l − 1) . (S13)

The above calculations finish the diagonalization of the Hamiltonian (S1). As a self-consistent check, the result can
be verified by calculating the so-called “universal gap function” [8, 41, 42], which is just the finite-size gap between
the lowest-energy states in NS and R sectors. However, one has to bear in mind that in the Ising field theory, the
NS (R) sector has an even (odd) number of fermions. While |0〉NS is already the lowest-energy state in the NS sector

with energy ENS
0 , η†0|0〉R (rather than |0〉R) is the lowest-energy state in the R sector with energy ER

0 +m (m is the

single-particle energy of η†0). Thus, the universal gap function between two sectors is given by

∆(t) ≡ L

2π
[(ER

0 +m)− ENS
0 ]

=
1

2
[γ+(t)− γ−(t)] + t

=
1

8
+
t

2
+ t2 ln 2 +

∞∑
l=2

t2lCl1
2
(22l−1 − 2)ζ(2l − 1) , (S14)

which is indeed independent of the short-distance cutoff a. This result agrees with Refs. [8, 41, 42].

Torus partition function

By using the diagonalized Hamiltonian in both sectors and taking into account that the NS (R) sector has an even
(odd) number of fermions, the torus partition function for the Hamiltonian (S1) is calculated as follows:

ZT (L, β, t) = tr(e−βH)

= trNS(e−βHNS) + trR(e−βHR)

= tr

[
1 + (−1)

∑
k∈NS η

†
kηk

2
e−β

∑
k∈NS εk(η

†
kηk−1/2)

]
+ tr

[
1− (−1)

∑
k∈R η

†
kηk

2
e−β

∑
k∈R εk(η

†
kηk−1/2)

]

=
1

2
[D−−(L, β, t) +D−+(L, β, t) +D+−(L, β, t)−D++(L, β, t)] (S15)
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with

D−−(L, β, t) = tr
[
e−β

∑
k∈NS εk(η

†
kηk−1/2)

]
= e−π

β
Lγ−(t)

∣∣∣∣∣
∞∏
n=1

(1 + q
√

(n− 1
2 )

2+t2)

∣∣∣∣∣
2

, (S16)

D−+(L, β, t) = tr
[
(−1)

∑
k∈NS η

†
kηke−β

∑
k∈NS εk(η

†
kηk−1/2)

]
= e−π

β
Lγ−(t)

∣∣∣∣∣
∞∏
n=1

(1− q
√

(n− 1
2 )

2+t2)

∣∣∣∣∣
2

, (S17)

D+−(L, β, t) = tr
[
e−β

∑
k∈R εk(η

†
kηk−1/2)

]
= e−π

β
Lγ+(t)(1 + qt)

∣∣∣∣∣
∞∏
n=1

(1 + q
√
n2+t2)

∣∣∣∣∣
2

, (S18)

D++(L, β, t) = tr
[
(−1)

∑
k∈R η

†
kηke−β

∑
k∈R εk(η

†
kηk−1/2)

]
= e−π

β
Lγ+(t)(1− qt)

∣∣∣∣∣
∞∏
n=1

(1− q
√
n2+t2)

∣∣∣∣∣
2

, (S19)

and q = e−2π
β
L . This result agrees with the path integral derivation in Ref. [8].

The decomposition of the torus partition function ZT (L, β, t) into four terms reflects the well known “spin structure”
of the Ising field theory in the Majorana fermion formulation. For Dηρ(L, β, t), the subscripts take four choices, i.e.,
η = ± and ρ = ±, where η (ρ) corresponds to the spatial (imaginary-time) direction, and − (+) indicates antiperiodic
(periodic) boundary condition of the Majorana fermion.

The torus partition function is invariant under modular transformations, regardless of whether it describes the mass-
less critical point or off-critical phases [8]. For our purpose, it is sufficient to consider the modular S transformation
(i.e., the space-time rotation) generated by L⇐⇒ β, under which ZT is unchanged, i.e., ZT (L, β,m) = ZT (β, L,m)
(m: Majorana mass). This can be easily understood with a classical Ising model with isotropic couplings on a square
lattice, with length L ∼ Nx, width β ∼ Ny, and mass m ∼ T −Tc. The torus partition function is obviously invariant
under exchange of Nx and Ny.

Under the space-time rotation, the dimensionless mass transforms as t = mL
2π ⇐⇒ s = mβ

2π . Together with the spin
structure described above, we obtain the following useful modular transformation property for Dηρ(L, β, t):

Dηρ(L, β, t) = Dρη(β, L, s) . (S20)

Klein bottle entropy as a universal scaling function

The Klein bottle partition function is defined by ZK = tr(Ωe−βH). As the Hamiltonian (S1) is already diagonalized,
it is most convenient to consider the action of Ω on the energy eigenbasis. For the fermionic basis of the Ising theory,
the states that are invariant under the action of Ω are as follows [16, 22]: (i) The ground states in the NS and R

sectors, i.e., Ω|0〉NS = |0〉NS and Ωη†0|0〉R = η†0|0〉R. (ii) Higher-energy states that are “left-right symmetric”, such

as the two-fermion state η†kη
†
−k|0〉NS in the NS sector and the three-fermion state η†kη

†
−kη

†
0|0〉R (k 6= 0). Other states

that are not “left-right symmetric” under Ω, such as η†kη
†
−k′ |0〉NS with k 6= k′ (Ωη†kη

†
−k′ |0〉NS ∝ η†k′η

†
−k|0〉NS), would

not contribute to the Klein bottle partition function.
Taking these into account, the Klein bottle partition function is evaluated as

ZK(L, β, t) = tr(Ωe−βĤ)

= trNS(Ωe−βHNS) + trR(Ωe−βHR)

= trNS

[
Ωe−β

∑
k∈NS εk(η

†
kηk−1/2)

]
+ trR

[
Ωe−β

∑
k∈R εk(η

†
kηk−1/2)

]
= DNS(L, β, t) +DR(L, β, t) (S21)

with

DNS(L, β, t) = e−π
β
Lγ−(t)

∞∏
n=1

(1 + q2
√

(n− 1
2 )

2+t2) =
√
D−−(L, 2β, t) ,

DR(L, β, t) = e−π
β
Lγ+(t)qt

∞∏
n=1

(1 + q2
√
n2+t2) =

qt√
1 + q2t

√
D+−(L, 2β, t) , (S22)
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where q = e−2π
β
L .

To determine the Klein bottle entropy in the limit L � β, we perform the modular S transformation (L ⇐⇒ β),

so that t = mL
2π =⇒ s = mβ

2π and q = e−2π
β
L → 1 =⇒ q′ = e−2π

L
β → 0. By using the transformation property of Dηρ

[see Eq. (S20)], the Klein bottle partition function ZK(2L, β2 ,m) (for the partition function with length 2L and mass

m, the dimensionless mass is 2L·m
2π = 2t by definition) can be calculated as

ZK(2L,
β

2
,m) = ZK(2L,

β

2
, 2t)

= DNS(2L,
β

2
, 2t) +DR(2L,

β

2
, 2t)

=
√
D−−(2L, β, 2t) +

q
t
2√

1 + qt

√
D+−(2L, β, 2t)

=
√
D−−(β, 2L, s) +

e−πs√
1 + e−2πs

√
D−+(β, 2L, s) , (S23)

and the torus partition function as

ZT (L, β, t) = ZT (β, L, s) =
1

2
[D−−(β, L, s) +D+−(β, L, s) +D−+(β, L, s)−D++(β, L, s)] . (S24)

For L� β, we have,

D−−(β, 2L, s) = e−π
2L
β γ−(s) ,

D−+(β, 2L, s) = e−π
2L
β γ−(s) ,

ZT (β, L, s) = e−π
L
β γ−(s) . (S25)

Since γ−(s) < γ+(s), when L� β, the contributions of D+−(β, L, s) and D++(β, L, s) to ZT (β, L, s) are exponentially
suppressed.

Thus, for the Ising CFT with thermal perturbation, the Klein bottle entropy as a universal scaling function is given
by

K(s) = lim
L→∞

ZK(2L, β2 ,m)

ZT (L, β,m)
= 1 +

1√
1 + e2πs

. (S26)
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