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The Stag-hunt game is a prototype for social contracts. Adopting a new and better social contract
is usually challenging because the current one is already widely adopted and stable due to deviants’
sanctions. Thus, how does a population shift from the current social contract to a better one?
In other words, how can a social system leave a local social optimum configuration to achieve an
optimum global state? Here, we investigate the effect of promoting diversity on the evolution of
social contracts. We considered group-structured populations where individuals play the Stag-hunt
game in all groups. We model the diversity incentive as a Snow-drift game played in a single focus
group where the individual is more prone to adopt a deviant norm. We show that moderate diversity
incentives can change the system dynamics, leading the whole population to move from the locally
optimal social normal to the globally optimal one. Thus, an initial fraction of adopters of the new
norm can drive the system toward the new social optimum norm. After the new social contract
becomes the new equilibrium, it remains stable even without the incentive. The results are obtained
using Monte Carlo simulations and analytical approximation methods.

I. INTRODUCTION

Social contracts can be defined as systems of commonly
understood conventions that coordinate behavior [1]. For
example, social contracts contain informal rules that reg-
ulate the conduct of the citizens of a society, rules cod-
ified as Laws, moral codes, and even fashion. Societies
are always envisioning better social contracts. However,
it is not easy to change them due to social inertia or
even because everyone is better off doing what others are
already doing. Not following the rules may incur un-
wanted costs, and trying to change society’s practices is
subjected to the risk of coordination failure [2, 3]. Thus,
how do better social contracts emerge? One approach
to answering this question is to investigate how and why
these contracts appear and survive from an evolutionary
game theory perspective [4, 5].

The social contract can be modeled as a Stag-hunt
game [6]. As proposed by Rousseau in A Discourse on
Inequality, “If it was a matter of hunting a deer, everyone
well realized that he must remain faithful to his post; but
if a hare happened to pass within reach of one of them, we
cannot doubt that he would have gone off in pursuit of it
without scruple” [7]. In terms of game theory, the hunt-
ing hare strategy represents the current social contract,
and the hunting stag strategy represents a better social
contract that has not yet been adopted. The solution
where all individuals adopt the same social contract, no
matter which one, is an equilibrium solution: no one has
any incentive to deviate (Nash equilibrium) [8, 9]. How-
ever, moving to a better social contract requires coordi-
nation (risky Pareto improvement). Thus, the question
of how the optimal social contract emerges is translated
to how society shifts from one equilibrium to the other.
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Some authors have modeled the social contract as a
prisoner’s dilemma game [9–13]. The state where all in-
dividuals adopt defection is interpreted as the “state of
nature”, as in Hobbes’ view of “the war of all against all”.
Cooperation is interpreted as the social contract bringing
order to society [14–17]. However, the prisoner’s dilemma
does not explain how the individuals abide by the rules
of the cooperative social contract since the state where
everyone defects is the only equilibrium in this approach.
The social contract has also been modeled as a hawk-
dove game [1]. The state of nature is represented by the
mixed equilibrium where two strategies are played ran-
domly. Such mixed equilibrium is akin to Hobbes’ view
of the state of nature, with the strategy of randomness
mimicking the chaos of the state of nature. The social
contract is interpreted as one of the two pure equilib-
ria where each individual has their role in society: one
is Dove and the other Hawk. However, in this approach,
the social contracts are not represented by the strategies,
but by the equilibrium solutions: (hawk, dove) and (dove,
hawk). In these equilibria, everyone is better off if they
adopt the opposite strategy of their partner. Interest-
ingly, behavior diversity is incorporated into the model
by modeling the social contract as a Hawk-dove game,
since this is an anti-polarization type of game. To sum
up, although different games can be used to model so-
cial contracts, it has been argued that Stag-hunt is more
appropriate [1, 6].

Social norms have been used to explain the phe-
nomenon of human cooperation in situations where
monetary-based social preferences cannot explain empir-
ically observed behavior [18, 19]. In the social preference
framework, cooperative behavior is explained by assum-
ing that the individuals seek to maximize a utility func-
tion that takes into account the payoff of everyone. How-
ever, social preference cannot explain some experiments.
For example, in the Ultimatum game, the responders re-
ject the same proposal at different rates depending on the
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available options to the proposer [20]. This result sug-
gests that responders follow their personal norms instead
of looking exclusively at the monetary reward [21]. The
reader can find a comprehensive review of moral pref-
erences in [18]. In all these works, the focus is not on
the social norm evolution, but on using social norms to
explain unselfishness in economic games.

In summary, the evolution of social norms can be in-
vestigated by representing the social norm itself as the
Stag-hunt game, where each strategy represents a social
contract [6]. In this game, the best action is to adopt the
same strategy as your partner, although one of the strate-
gies provides a better outcome than the other. This game
is an asymmetric polarization game, as everyone has the
incentive to choose the strategy adopted by the majority
of the population, even if this strategy is not the global
optimum.

The payoff structure of the Stag-hunt game does not
answer how a society can jump from the local equilibrium
with a low payoff to a better one. Additional mechanisms
must work to allow the jump. For example, the optimal
equilibrium is facilitated if the agents exchange costly sig-
nals [22, 23]. More specifically, if the game is a Stag-hunt
game with strategies A and B, and the agents can send
signals (1 or 2), the individuals can take action according
to a rule (if the signal is 1 they adopt A, otherwise they
adopt B). Notice that although no individual has previ-
ous information about the meaning of the sign, the com-
munication introduces some correlations that facilitate
the emergence of the better but riskier equilibrium [22].
The social structure can also modify the nature of the
game. If the agents control their interactions, individu-
als with the same strategy can interact preferentially and
promote the new norm [24].

Adopting a new behavior that does not conform to the
currently adopted norm can be quite challenging. Indi-
viduals are part of social groups that exerts pressure on
them [25]. Nevertheless, there may be groups where the
individuals feel more comfortable displaying new behav-
iors and conforming to whatever they believe. Promot-
ing a culture of diversity is shown to be an escape from
the trap of a bad equilibrium [26–35]. Incentives pro-
moting diversity can be mapped to the Snow-drift payoff
structure, where adopting a different strategy from your
partner is the best choice. Here we adopt the metaphor
of the Snow-drift game instead of Hawk and Dove to
avoid any allusion to the antagonistic interaction present
in the Hawk and Dove metaphor. Suppose the decision
problem of which social contract one should adopt is de-
termined by the payoff structure of a combination of the
social contract and diversity promotion policy. In that
case, we may ask to what extent the promotion of di-
versity (Snow-drift game influence) can shift the whole
population toward the optimal social contract.

Here, we investigate how incentives promoting diver-
sity affect the dynamics of social contracts. We model
the social contract as a Stag-hunt game and the diversity
incentive as a Snow-drift game. The population is struc-

tured in groups. Each individual pertains to a fraction
of them, where the Stag-hunt game is played. There is
one group where the individual is encouraged to adopt
a strategy that does not conform to the majority. This
encouragement is modeled as a Snow-drift game. The
strategies evolve according to imitation dynamics, where
the strategies that yield higher payoffs spread at higher
rates. We show that the equilibrium is shifted to the op-
timum social norm for moderate Snow-drift incentives.
Because it is a new equilibrium, the new social contract
is stable even without the diversity incentive. However,
if the individuals interact with many others in different
groups, the overall social pressure can demand more sub-
stantial Snow-drift incentives. We also show that the
same results are observed in populations structured in
square lattices, where the Stag-hunt and the Snow-drift
games are played within a range of neighbors. Our anal-
ysis is supported by analytical approximations that allow
us to explain the results using simple concepts of game
theory.

II. MODEL

The population is structured in groups, and the indi-
viduals can have multiple group affiliations. More specif-
ically, there are n groups in a population of size N . Each
individual pertains to one group, which we call the focus
group, and to a fraction q of the other non-focal groups.
The focus groups are defined by initially setting N/n in-
dividuals to each group.

The social norms are modeled as strategies in a Stag-
hunt game, which is played in all groups. The norm
that yields the social optima is represented by A and the
other one by B. Interactions of type A−A yield a payoff
equal to 1, while B − B yields 0. If individuals with
different norms interact, A receives −δ (0 < δ < 1) and
B receives 1−r (0 < r < 1). The game is specified by the
parameter set (r, δ) and is represented by the following
payoff matrix:

Stag-hunt =

(
1 −δ

1− r 0

)
(1)

The best solution is to adopt the same strategy as the
partner. Because r > 0, the norm A is the social opti-
mum. However, if everyone is adopting B and a single
individual moves to the social optimum A, this individ-
ual faces the risk of receiving −δ, which is worse than
0.

The diversity incentive is modeled as a Snow-drift
game, which is played only in the focus group of each
individual. The payoffs from Snow-drift are parameter-
ized by (r′, δ′), with 0 < r′ < 1 and 0 < δ′ < 1, and is
represented by the payoff matrix:

Snow-drift =

(
1 δ′

1 + r′ 0

)
(2)
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The best solution is to adopt the opposite strategy of the
partner. Notice that in a (A,B) interaction, the indi-
vidual adopting B receives 1 + r′, which is larger than
the payoff that A receives, which is δ′. That is, the di-
versity incentive is not benefiting the social contract A.
As a last remark, individuals in (A,A) interactions re-
ceive more than those in (B,B), but this is not an issue
because the diversity incentive is most important when
strategy A is the minority.

The cumulative payoff that player f obtains in each
game is:

πSH,f =
∑
(f,z)

πf,z (3)

πSD,f = α
∑
〈f,z〉

πf,z (4)

where (f, z) indicates that f and z are connected and
< f, z > indicates that f and z belong to the same focus
group. The weight of the Snow-drift is controlled by the
parameter α such that the total payoff of player f is given
by

πf = πSH,f + πSD,f . (5)

Notice that the higher the number of groups connected
to an individual, the higher the weight of Stag-hunt on
the total payoff.

The evolution of strategies is determined by imitation
dynamics. A random player f is selected to compare
his payoff with a random player z, connected to him. If
they have different strategies, the first player imitates the
strategy of the second one with a probability given by the
Fermi rule:

Pf←z =
1

1 + exp (−(πz − πf )/K)
, (6)

where K is the selection intensity representing the pop-
ulation level of irrationality. Each generation consists of
N repetitions of the imitation step.

III. RESULTS

The imitation dynamics can be analyzed using a mean-
field approximation. For the simple case of one group
(n = 1), the mean-field equation becomes

dx

dt
= (1− x)x sinh (πA(x)− πB(x)), (7)

where x is the fraction of individuals adopting A, while
πA and πB are the average payoffs of individuals adopting
A and B, respectively (see the Appendix A). For n = 1
there is a single well-mixed group where all individuals
play the two games. Thus, the cumulative payoffs are
effectively determined by the sum of the matrices of the
two games:

M =

(
1 + α −δ + αδ′

1− r + α(1 + r′) 0

)
(8)

Let us first recall the main results for the Stag-hunt
dynamics by setting α = 0. The analysis of Eq. 7
shows that there is an unstable equilibrium x∗ (solution
of πA(x)− πB(x) = 0). Therefore, if the fraction of A at
time t is such that x < x∗, because πA(x)−πB(x) < 0 for
x in that range, the population goes to the state x = 0
(all B). If x > x∗, the population goes to the state x = 1
(all A). Thus, if a small amount of A (a fraction ε) in-
vades a population initially at x = 0, as long as ε < x∗,
the invader has no chance. The invasion must be large
enough to overcome the invasion barrier determined by
the unstable equilibrium x∗.

On the other side, in the dynamics of a Snow-drift
game new strategies can always invade. The analysis of
Eq. 7 for very large α, when the game is a pure Snow-
drift, shows that there is a stable equilibrium state, where
A and B coexist. Thus, a small amount of A invaders
have the incentive to maintain their strategies.

In the combination of both the Stag-hunt and Snow-
drift, the effect of increasing the incentive provided by
the Snow-drift game, which is parameterized by α, is
to change the dynamics from that of the Stag-hunt to
that of the Snow-drift. If α is low, the weight of the
Stag-hunt payoff is larger, and the optimum strategy A
cannot invade. If α is too large, the dynamics change
completely, being determined by the Snow-drift payoff,
where both strategies coexist. However, if α is moderate,
more specifically, if

δ

δ′
< α <

r

r′
, (9)

then, not only A can invade, but it will certainly domi-
nate the population. Equation 9 is obtained by a simple
Nash equilibrium analysis of the payoff matrix in Eq. 8.
For α in this interval, the payoff structure becomes equiv-
alent to that of a Harmony game, where A is a global
attractor of the dynamics. If the goal of the Snow-drift
incentive is to shift the population to the social optimum
without ending at a coexistence equilibrium, then the
moderate α solution is the best. Thus, if the incentive
provided by the Snow-drift is moderate, the optimal so-
cial contract can invade the population and persists even
if the Snow-drift incentive is turned off.

Still in the n = 1 case, the unstable equilibrium of
Stag-hunt determines the invasion barrier for the norm A:
the higher the value of x∗, the harder it is for A to invade.
Figure 2 shows how the payoff difference ΠA(x)−ΠB(x)
changes as the fraction x of A and the incentive α vary.
If there is no Snow-drift incentive (α = 0), only a massive
conversion of A will drive the population to the norm B.
However, if a moderate incentive is provided, any initial
fraction of A will convert the population. As expected, if
α is too large, the dynamics changes and coexistence will
be the final state independently of the initial conditions.

In the general case where the population is split into
groups, a close look at the general mean field approx-
imation (discussed in the Appendix A) shows that the
fraction of A in each group tends to be close to each
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Groups

Individuals

Figure 1. Group structure. The individuals are represented by circles and the groups by rounded squares. Each individual
belongs to one focal group (continuous line) and is connected to each one of the other groups with probability q (dashed line).
The two social norms, A and B, are represented by the colors, blue and red, respectively. Here, N = 9, n = 3, and q = 1/3.

Stag-hunt

All AAll B
Snow-drift

Harmony

X

α

πA − πB

Figure 2. Replicator dynamics of the average game. The first diagram, on the left, shows the payoff difference πA − πB in
the replicator equation, as a function of the fraction of A and the Snow-Drift incentive α. The arrows indicate the sign of ẋ
(positive, if the arrow points up, and negative otherwise). The second diagram, on the right, shows the three main regions of
the first diagram using a simplex representation for the strategies’ fractions. For low values of α, Stag-hunt dominates and
there is an unstable equilibrium state around x∗ ' 0.1. All agents end up adopting strategy A or B, depending on whether x is
lower or higher than x∗. The dashed arrow represents the invasion barrier that A would have to overcome if most of the agents
adopt strategy B. For intermediary α, the system behaves as a Harmony game, and everyone adopts strategy A. Finally, for
high values of α, Snow-drift dominates, and strategies A and B coexist. Here, r = 0.5, δ = 0.1, r′ = 1 and, δ′ = 0.5.

other. Thus, because all groups have roughly the same
fraction of A at any time, the analysis can be simplified
to the analysis of a single group, the n = 1 case, with the
average payoff matrix given by

M =

(
q̃ + α q̃S + αS′

q̃T + αT ′ 0

)
, (10)

where q̃ = 1 + q(n − 1) is the number of groups where
the Stag-hunt is played. The dynamics are now deter-
mined by the impact of the Stag-hunt payoff relative to
the Snow-drift payoff, which is controlled by the param-
eters α and q.

First, if the group structure does not change, that is, if
q is fixed, we would like to find moderate values of the in-
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centive α that turn the Stag-hunt payoff into a Harmony
game payoff. The condition is given by

q̃
δ

δ′
< α < q̃

r

r′
. (11)

On the other side, if α is fixed, then the effect of the
Snow-drift incentive depends on the group structure. If
the individuals play Stag-hunt in many groups (high q),
then the social pressure overcomes the Snow-drift incen-
tive and it is nearly impossible for A to invade. More
specifically, let us fix α, with α > r/r′, so that if q̃ = 1
the Snow-drift is dominant. In this case, increasing q̃
means that more Stag-hunt games are played. Thus, if q̃
is too large the Stag-hunt dynamics is dominant. How-
ever, if

α
r′

r
< q̃ < α

δ′

δ
, (12)

then the effective game is the Harmony game and the
strategy A can invade and dominate. In other words,
only if the number of groups is moderate the new social
contract can invade.

The simulations corroborate the mean-field analysis,
as shown in Figs. 3a and 3b. Figure 3a shows the equi-
librium fraction of A (the globally optimal social norm)
as a function of the number of groups connected to each
agent, q̃ = 1 + (n − 1)q, while in Fig. 3b the fraction of
A is shown as a function of the Snow-drift incentive α.
The optimum influence of the incentive α over the suc-
cess of A is felt for a moderate number of groups since x
is at its maximum value for intermediate q̃ (see Fig. 3a).
If the system is highly connected, Stag-hunt dominates,
and the social norm A disappears when x(0) is low. No-
tice that the incentive α has to be low to keep Snow-drift
from dominating the dynamics, as shown in Fig. 3b.

The effect of the initial fraction of A, x(0), is shown
in Figs. 4a and 4b. One can see that the initial condi-
tion x(0) affects the equilibrium fraction of A when the
dynamics are dominated by Stag-hunt, which happens if
the number of groups, q̃, is high enough (Fig. 4a), and if
the Snow-drift coefficient α is sufficiently low (Fig. 4b).
Additionally, the minimum value of x(0) necessary for
preventing A from being extinguished increases with the
number of connections q̃, especially when the system goes
from being poorly connected (q̃ ≤ 3) to being moderately
connected (3 < q̃ < 5). This effect comes from the ma-
jority’s strategy strongly influencing agents’ strategies in
Stag-hunt. Thus, when an agent plays Stag-hunt with
most of its connections, he is more susceptible to adopt-
ing the majority’s strategy. However, the influence of
x(0) for the persistence of A weakens as the Snow-drift in-
centive α increases, i.e., when the local interactions that
encourage different opinions become more important, as
can be seen in Fig. 4b.

The mean-field approximation is valid only if the size
of the groups is large. If small, fluctuations play a major
role and the mean-field approach is not precise. Even so,
we see that strategy A is facilitated for moderate values

of q, as shown in Fig. 5, for all population sizes. No-
tice that for small population sizes, the average values
in Fig. 5 represent fixation probabilities and not station-
ary values. The reason is that for small sizes, the states
where all individuals are A or all are B are reached with
probability one independently of the game being played.
The coexistence stationary solution is meta-stable even
if only the Snow-drift game is played. The mean-field
behavior is recovered for the large groups.

To further investigate the robustness of our results, we
also consider a square lattice version of our model. Each
agent occupies a site in a square lattice and plays Stag-
hunt and Snow-drift with all the sites within a range
of RSH , for Stag-hunt, and RSD, for Snow-drift, with
RSH ≥ RSD. The distance between two neighboring
sites is set to be 1. The interaction ranges delimit groups
and have a similar role as the parameter q in the previous
version of the model.

In the square lattice version, the agents have weaker
connections, since the clustering coefficient is always
lower for this network than in the group-structured popu-
lation. This difference could impact the results since the
network clustering affects the spreading ability of the so-
cial norms. Despite such differences, the results for both
settings are very similar. Figures 6a and 6b show, respec-
tively, the fraction of A as a function of the Stag-hunt
influence radius RSH and the fraction of A as a function
of the Snow-drift incentive α. Similar to the results for
the group simulation (see Fig. 3), the incentive α most
benefits the norm A when Stag-hunt influence is limited
but relevant. If RSH is way larger than the Snow-drift
influence radius RSD, then Stag-hunt dominates, and A
disappears for low xA(0). Additionally, the incentive α
most benefits A when it is not too large, and the system
is not dominated by Snow-drift.

IV. CONCLUSIONS

Once established, social contracts tend to stay because
of the very nature of the incentives: deviation from the
norm is not beneficial. Thus, how new equilibrium can
emerge? Even if the new equilibrium is better, overcom-
ing the invasion barrier is a problem. Here we show that
the new equilibrium can be reached by providing a low
incentive for diversity.

Our model assumes that agents can maintain a focus
group (akin to close friends and trustworthy contacts)
where the individuals are more prone to deviate and
adopt a new norm. The new norm can be stimulated
through incentives for diversity and inclusion. By mod-
eling the social contract as a Stag-hunt and the incentives
as a Snow-drift game, we show that the optimum social
norm can invade if the incentive provided by the Snow-
drift game is just moderate.

The Snow-drift incentive can be temporary. After the
population is driven to the new optimum equilibrium,
where all adopt the new norm, the incentive can be
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Figure 3. Average fraction of the number of individuals adopting the optimal social contract, x. Figure a shows the fraction x
as a function of the number of groups connected to each agent, q̃ = 1 + (n−1)q, while figure b shows that fraction as a function
of the incentive α. Here, r = 0.5, δ = 0.1, r′ = 1 and, δ′ = 0.5. The initial fraction of A is x(0) = 0.1, the number of agents is
N = 10000 and the number of groups is n = 10. In figure a, the Snow-drift incentive is α = 1.

a) b)

 2  4  6  8  10

 0

 0.05

 0.1

 0.15

 1  2  3  4  5  6

 0

 0.2

 0.4

 0.6

 0.8

 1

X
(0
)

αq̃

Figure 4. Diagram for the fraction x of individuals adopting the optimal social contract. Figure a shows x as a function of its
initial value x(0), and the number of groups connected to an individual 1 + (n− 1)q, while in figure b the fraction x is shown
as a function of x(0) and the Snow-drift incentive α. Here, r = 0.5, δ = 0.1, r′ = 1 and, δ′ = 0.5.

turned off because the stability of the social norm will
play in favor of the new norm. If the Snow-drift incen-
tive is too large, the new norm will coexist with the old
one, and it is not guaranteed that the population will
move toward the socially optimum norm after turning
off the incentive.

The Stag-hunt payoff structure assumes that there is
a social optimum that is the best outcome for everyone.
We do not analyze here group-specific social contracts,
so different groups are better off by adopting different
social norms. Moreover, respect for diversity is coded as
a moral rule in many societies. By turning off the Snow-

drift incentive after the new social optimum is reached,
the model is not against such moral rules. After all, we
assume that it is in the best interest of everyone to move
to the new equilibrium. Instead, we see that diversity
policies can help to coordinate actions.

Changing social norms is undoubtedly a complex mat-
ter. We do not claim that there is always a simple in-
centive structure that can shift the equilibrium to the
optimum social norm. The point of our work is to shed
light on the backbone of incentive structure: social norms
do not favor deviant behavior, and policies for diversity
and inclusion facilitate the coexistence of different norms.



7

 0

 0.2

 0.4

 0.6

 0.8

 1
N=200

σ
2

500

σ
2

1000

σ
2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

2000

σ
2

 1  2  3  4  5  6

4000

σ
2

 1  2  3  4  5  6

5000

σ
2

X

q̃

Figure 5. Average fraction x of individuals adopting the optimal social contract for different system sizes. Each figure shows
x as a function of the number of connections per agent, 1 + (n− 1)q, for a different system size. Here, the number of groups is
n = 10, the initial fraction of A is x(0) = 0.01 and the Stag-hunt and Snow-drift parameters are r = 0.5, δ = 0.1, r′ = 1 and
δ′ = 0.5. Notice that despite the finite size effects, strategy A is still facilitated for moderate values of q̃.

Using an example from physics, if a block is at rest on
an inclined plane sustained by the static frictional force,
we know that, although the block is not moving, forces
are acting on the block. Thus, even if it is very likely
that many factors contribute to the evolution of the so-
cial contract, we show that incentives for diversity and
inclusion, if moderate, may drive the population toward
the social optimum.

Appendix A: Appendix

The justification for assuming that the fraction of A in
all groups is approximately the same is derived as follows.
Let NAi be the number of individuals of norm A that
belong to group i. If n is the number of groups, each
group has N/n individuals, and NAi ranges from 0 to
N/n. The following analysis uses the fact that the payoff
matrix in the focal group is the sum of the payoff of the
two games. Let (a, b, c, d) = (1,−δ, 1− r, 0) be the Stag-
hunt payoff matrix and (a′, b′, c′, d′) = (1+α,−δ+αδ′, 1−
r + α(1 + r′), 0) the sum of the payoff of the two games.

In our approach, we consider that each individual in
the focus group i has a probability q of being connected
to each of the remaining n− 1 groups. Let xi = NAi/N ,
with 0 ≤ xi ≤ 1/n, be the fraction of Ai individuals in
the total population. Because the groups have well-mixed
interactions, the payoffs gained by A and B individuals

belonging to the same focus group i are given by

πAi = a′nxi + b′(1− nxi) + q
∑
j 6=i

anxi + b(1− nxi)

πBi = c′nxi + d′(1− nxi) + q
∑
j 6=i

cnxi + d(1− nxi).

The next step is to approximate the transition rates.
Recall that all individuals have an equal probability of
being chosen to change their strategy. Thus, an Ai in-
dividual has a probability xi of being chosen, and a Bi
individual has a probability (1/n− xi). Also, since each
individual is certainly linked with the members of the
same focus group, the probability that he compares his
payoff with one of the Ai is proportional to xi, and with
one of the Bi is proportional to (1/n− xi). For the non-
focal groups, the probability that an individual from i
compares its strategy with an Aj, or a Bj, individual is
proportional to qxj , or q(1/n− xj), respectively. There-
fore, the transition rates can be written as

T+
i =

1

Z

(
1

n
− xi

)∑
j

qijxj
1

1 + eπBi−πAj

T−i =
1

Z
xi
∑
j

qij

(
1

n
− xj

)
1

1 + eπAi−πBj
,

where qii = 1, qij = q for i 6= j, and Z is a normalization
factor. For large populations, the system is mainly driven
by the drift term, and it can be described by the following
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Figure 6. Average fraction x of individuals adopting the optimal social norm A in the square lattice model. Figure a shows x
as a function of the Stag-hunt influence radius, RSH , while in figure b the fraction x is shown as a function of the Snow-drift
incentive α. Here, the influence radius for the Snow-drift game in both figures is RSD = 4 and the initial fraction of A is
x(0) = 0.1. The Stag-hunt e Snow-drift parameters are r = 0.5, δ = 0.1, r′ = 1 and, δ′ = 0.5. In figure b, the influence radius
for Stag-hunt is RSH = 20.

deterministic set of rate equations:

dxi
dτ

=
∑
j

qij

[
1
n (xj − xi) +

(
1
n − xi

)
xje

πAi−πBj

(1 + eπAi−πBj )(1 + eπBiπAj )

−
(
1
n − xj

)
xie

πBi−πAj

(1 + eπAi−πBj )(1 + eπBi−πAj )

]
,

where we have rescaled the time. Notice that for n = 1
Eq. 7 in the main text is recovered.

Finally, we see that if πAi ≈ πBj for all i, j, which is the
case in the regime of weak selection, then eπBi−πAj ≈ 1
for all i, j, and the set of rate equations drives the vari-
ables xi near to each other in the first order. The reason
is that if xi < xj for some j, then the first order term
(xj−xi) contributes with a positive term to the equation,
with the opposite happening if xi > xj . Thus, the overall
effect is that the variables xi will evolve in time close to
each other for all i. This is interesting because we can
describe the system only in terms of the total fraction of
A types, x =

∑
i xi, since in this approximation we have

xi ≈ x/n after a short relaxation time.
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