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Abstract 

Cytoskeletal gels are prototyped to reproduce the mechanical contraction of the cytoskeleton in-
vitro. They are composed of a polymer network (backbone), swollen by the presence of a liquid 
solvent, and active molecules (molecular motors, MMs) that transduce chemical energy into the 
mechanical work of contraction. These motors attach to the polymer chains to shorten them and/or 
act as dynamic crosslinks, thereby constraining the thermal fluctuations of the chains. We describe 
both mechanisms thermodynamically as a microstructural reconfiguration, where the backbone 
stiffens to motivate solvent (out)flow and accommodate contraction. Via simple steady-state 
energetic analysis, under the simplest case of isotropic deformation, we quantify the mechanical 
energy required to achieve contraction as a function of polymer chain density and molecular motor 
density. We identify two limit regimes, namely, fast MM activation (FM), and slow MM activation 
(SM). FM assumes that MMs provide all the available mechanical energy ‘instantaneously’ and 
leave the polymer in a stiffened state, i.e. the MM activity occurs at a time scale that is much 
smaller than that of solvent diffusion. SM assumes that the timescale for MM activation is much 
longer than that of solvent diffusion. To achieve the same final contracted state, FM requires the 
largest amount of work per unit reference volume, while SM requires the least. For all intermediate 
cases where the timescale of MM activation is comparable with that of solvent diffusion, the 
required work ranges between the two cases. We provide all these quantities as a function of chain 
density and MM density. Finally, we compare our results on contraction energetics with 
experiments and observe good agreement.  
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Introduction 

The cytoskeleton is the structural backbone of the cell and is primarily made up of actin, 
intermediate filaments and microtubules [1]. Actin filaments coupled with myosin motors actively 
partake in the mechanical response of the cell and are responsible for its contractile behaviour. 
Actomyosin II complexes pull on the actin chains to shorten them, therefore the 3D meshwork of 
crosslinked actin chains contracts. This process is mainly powered by adenosine triphosphate 
(ATP) hydrolysis, where released chemical energy from the breakdown of ATP into ADP and a 
phosphate, is expended in the form of mechanical work. This is a critical function required for 
motility, environmental adaptation, chemical transport, and intracellular signaling [1]. 
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Understanding cytoskeletal contraction from mechanical and energetic standpoints is critical to 
characterize tissue properties and tissue mechanics. 

Cytoskeletal gels are engineered to mechanically model the cytoskeleton. They constitute a 
minimalistic physical system by including only the main components of the cytoskeleton: polymer 
chains and cytoplasm; while excluding organelles, membranes and other cell components [2,3]. 
Figure 1 outlines the main components of the gel and their arrangement in the system. These gels 
have been used to both characterize the mechanical properties of the cytoskeleton and to study cell 
contractility. 

Multiple approaches to model the cytoskeleton and its active behaviours have been explored. An 
early bio-chemo-mechanical model for cytoskeletal contractility was introduced by Deshpande et 
al. [4]. Refined versions of this model were then developed to include thermodynamic motivations 
to cytoskeletal contractility [5] as well as experimental validation to explain the role of boundary 
conditions in defining the cell alignment mediated by the cytoskeleton [6]. Other early studies 
approached cytoskeletal modelling from a solid-mechanics foundation, with a focus on the effects 
of elasticity on cell shape and adhesion properties [7]. Gel models have also been widely adopted 
in modelling cytoskeletal mechanics; several models approached the problem from a 
hydrodynamic standpoint, where transient force dipoles, generated by myosin pulling on actin 
chains, create active contractile stresses [8,9]. The main limitation of such models lies in their 
assumption that actin filaments must not be slack, and this is not the case for some actin networks 
[9]. Furthermore, these models describe active stresses using parameters that are empirically 
determined, and typically lack physical meaning. Gels composed of slack chains are not well 
represented by these models as the cytoskeletal active stresses do not account for the level of 
tension in the chains. To overcome this limitation, recent studies propose an alternative approach 
based on poroelasticity, where the cytoskeleton is described as a polymer network swollen by the 
presence of the solvent (cytosol) [10-11]. In this biphasic material, the passive behavior is 
controlled by swelling and solvent flow [9,12-16], while the active behavior is described as an 
evolution of the mechanical stiffness of the polymer backbone [12] and is promoted by molecular 
motor activity. The total free energy of the gel is given by the sum of the strain energy of the 
network and the free energy (enthalpy and entropy) of chain-solvent mixing. The activation of 
contractile molecular motors (MM) increases the strain energy, representing a stiffening of the 
chain network [2,12,17-19]. This in turn increases the osmotic pressure of the solvent, locally, and, 
with it, the chemical potential of the solvent. Because the flow of the solvent is directed toward a 
reduction in chemical potential, via Fick’s law, the solvent ultimately outflows from the stiffened 
gel, thereby accommodating gel contraction [12,20-21]. Polymer network stiffening can be 
achieved via dynamic crosslinking (DC) created by a MM attaching to more than one chain. This 
is described in some models as an evolution of the crosslink density [12,20].  

The observed MM activity in actin cytoskeletal gels primarily involves chain shortening (CS) 
rather than DC [2]. Figure 1 presents the two motor activation mechanisms. An energetically based 
model incorporating realistic MM activation applicable to in-vivo environments is therefore 
necessary to fully understand actin gel contractile mechanics. This study builds on active polymer 
gel theory and introduces a new molecular motor model considering chain shortening (CS-MM), 
striving towards a more accurate representation of the physical system. Our model introduces a 
new thermodynamically inspired variation of neo-Hookean chain strain energy to incorporate a 
CS parameter we define as the ‘microstretch’. This parameter decouples chain density from 
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contractile mechanics, allowing for direct comparison between the energetic requirement for a 
specific contraction (quantity of molecular motors) and initial chain density.  

Experiments using an in-vitro actin network platform reveal a threshold for the minimum and 
maximum densities of MMs required to achieve a desired contraction, based on the crosslink 
density of the gel [22-23]. Via quasi-static energetic analysis, we use our model to predict this 
threshold in a direct comparison with experimental data of contractile acto-myosin networks. In 
this comparison, we introduce two contraction regimes: slow MM activation (SM), where the time 
scale for MM activation is longer than that for solvent outflow, and fast MM activation (FM), 
where contraction is triggered by an instantaneous injection of all MM work available (i.e. the 
timescale for motor activation is shorter than solvent outflow). The work performed by MMs is 
higher in the FM regime than in the SM one. Thus, we take the energetic requirement from the SM 
regime to predict the minimum MM density required for a desired contraction. To predict the 
maximum MM density, for a given crosslink density, we compute the maximum strain energy 
accumulated in each polymer chain prior to chain rupture [24-25]. Finally, our predictions for 
minimum and maximum MM density are in good agreement with the experiments. 
 
 

 
Figure 1 – Diagram outlining the two main mechanisms of cytoskeletal gel contraction from 
molecular motor activation: dynamic crosslinking molecular motors (DC-MM, top) and chain 
shortening molecular motors (CS-MM, bottom). From left to right, the gel is initially in its 
reference dry configuration (d). It is then swollen by solvent (blue spheres) and achieves chemo-
mechanical equilibrium with the environment (0). When activated, the motors inject energy by 
stiffening the swollen polymer backbone (i), which causes solvent outflow accommodating 
contraction (f). DC-MM (top) attach different chains in the network, acting as a temporary 
crosslink, thereby increasing the crosslink density, whereas CS-MM (bottom) decrease the average 
polymer chain length. The latter reduces the number of engaged monomers, from 𝑚 to 𝑚! < 𝑚. 
 
 
Model: Active Gel
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The biphasic active gel is composed of a (swollen) polymer network, a solvent, and molecular 
motors (MM) (Fig. 1). The polymer chains provide the structural backbone of the gel, and are 
stretched to accommodate the presence of the solvent. We define the dry polymer network (prior 
to solvent absorption and swelling) as the stress-free reference state of the gel (albeit for some gels 
this is an idealized state since the polymer dissociates in the absence of solvent).  

The total free energy density, per unit reference volume 𝑉", as described by [12], is 

𝜓 = 𝜓#(𝑇, 𝑭, 𝜻) + 𝜓$(𝑇, 𝐶) + Π(1 + Ω	𝐶 − 𝐽)      (1) 

where 𝜓# is the elastic strain energy density of the polymer network, 𝜓$ is the free energy density 
of polymer-solvent mixing, Π is the hydrostatic pressure applied to the gel,	𝐶 is the molecular 
concentration of solvent, per unit reference volume, Ω is the molecular volume of the solvent and 
𝐽 is the swelling ratio of the gel (current volume to reference volume). In Eq. (1), 𝑇 is the absolute 
temperature, 𝑭 is the deformation tensor defined as 

𝐹%& =
'(!
')"

            (2) 

With 𝒙 the position of the material points in the current state and 𝑿 that in the reference state, 𝜻 is 
the collection of microstructural parameters that govern the elastic response of the polymer 
network such as polymer chain density and chain length. Π serves as a Lagrange multiplier to 
enforce molecular incompressibility so that, with respect to the reference configuration, the 
swelling ratio 𝐽 is defined as  

𝐽 = 1 + Ω	𝐶           (3) 

Where, in the reference configuration,  𝐽 = 1 when no solvent is present (only polymer) and 
increases with increasing solvent concentration 𝐶 in proportion to the molecular volume of the 
solvent Ω. Considering the solvent bath is isothermal, from the first and second laws of 
thermodynamics [8] (see Appendix A), we obtain the relationship between stresses, chemical 
potential and the Helmholtz free energy from Eq. (1) as follows 

𝑡%& =
'*
'+!"

            (4) 

𝜇 = '*
',

            (5) 

and 

𝑑𝑤- =
'*
'.#
𝑑𝜁-           (6) 

where 𝒕 is the first Piola-Kirchoff stress tensor, 𝜇 is the chemical potential of the solvent, 𝑑𝑤- is 
the unit work, per unit reference volume, required to produce a unit change 𝑑𝜁- in the 
microstructural variable 𝜁-. This work is here provided by the molecular motors as part of the 
energy consumed by ATP hydrolysis. 
To ensure mechanical equilibrium, we need 
'/!"
')"

+ 𝐵% = 0,  in 𝑉"          (7a) 

and 
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𝑡%&𝑁& = 𝑇%,  on 𝑆"          (7b) 

with 𝑩 the body force vector, 𝑵 the unit outward normal to 𝑆", i.e. the boundary of 𝑉", and 𝑻 the 
external traction force. 𝑩 is a force per unit 𝑉", while 𝑻 is a force per unit 𝑆".  

Assuming the gel boundary 𝑆" is permeable, a free exchange of solvent molecules with the external 
bath imposes  

𝜇 = 𝜇#(/ on 𝑆"          (8a)  

with 𝜇#(/ the chemical potential of the solvent in the bath. Conversely, in the case of impermeable 
boundary, one should instead impose  

𝐻0𝑁0 = 0 on 𝑆"          (8b) 

(with repeated indices indicating the sum) with 𝑯 the solvent flux given by Fick’s law [6-7] as 

𝐻0 = −𝐷𝐶𝐹0&12𝐹%&12
'(4/&6)
')!

          (8c) 

with 𝐷 the diffusivity of the solvent, and 𝑘 Boltzmann’s constant.  
Eq. (7b) gives the mechanical boundary conditions to Eq. (7a), with substitution of Eq. (1) and (4) 
into it. Eq. (8a-b) instead give the chemical boundary conditions to Eq. (8c), together with mass 
conservation (see Appendix A), with substitution of Eq. (1) and (5) into it.  

Chemical equilibrium imposes 𝑯 = 𝟎, i.e. no solvent flow, and from Eq. (8c) we can deduce that 
this condition imposes a spatially homogeneous chemical potential 𝜇. Assuming at least a portion 
of 𝑆" is permeable, we have that chemical equilibrium imposes 

𝜇 = 𝜇#(/ in 𝑉"           (9) 
 

Mixing free energy 

Assuming the polymer network is diluted into the gel (polymer-solvent mixture), i.e. 𝐽 ≫ 1, 𝜓$ 
can be described with the bimolecular mixing free energy theory introduced by [26] and giving 
8*$
&6

= Ω𝐶 Jln M 8,
298,

N + :
298,

O 	        (10) 

The first term on the right-hand side of Eq. (10) provides the entropic contribution to the mixing 
free energy, and provides the configurational energy reduction (favoring mixing) of solvent 
molecules relocating from the solvent bath to the gel. The second term describes the energy 
associated with steric interactions between solvent and polymer, where 𝜒 is the Flory parameter 
[26]. 𝜒 > 0 describes repulsive interactions (favoring demixing) as, in this case, the free energy in 
Eq. (10) increases with 𝐽. Conversely, 𝜒 < 0 describes attractive interactions (favouring mixing) 
as, in this case, the free energy in Eq. (10) reduces as 𝐽 increases. 
 

Elastic free energy 
In our model the polymer backbone is composed of a network of Gaussian chains with variable 
length, yielding a modified neo-Hookean elastic free energy density (see Appendix B)  
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8*%
&6

= ;
<
R𝐹%&𝐹%&𝜆=1< − 2 ln(𝐽𝜆=1>) − 3V        (11a) 

with  

𝑛 = 𝑁Ω            (11b)  

Here, 𝑁	(𝑛) is the chain density (dimensionless chain density) per unit reference volume (unit 
solvent molecule) and 𝜆= = 𝑚/𝑚! ≤ 1 is a chain micro-stretch parameter that incorporates the 
effect of chain shortening in the elastic free energy, where 𝑚 is the average number of engaged 
monomers connecting the two ends of the chain, and 𝑚! is the total number of monomers in the 
chain (see Figure 1). In the case of 𝜆= = 1 no chain microstretch occurs and the strain energy 
expression becomes that of a swollen incompressible neo-Hookean material. In the case of 𝜆= <
1, we have 𝑚! < 𝑚 engaged monomers, so that we have 𝑚 −𝑚! monomers that are excluded 
from the description of the configurational energy of the chain. Here, the two independent 
microstructural variables (𝜻) being considered are 𝑛 and 𝜆=. Dynamic crosslinking molecular 
motors (DC-MM) are associated with an evolution of chain density 𝑛, as further polymerization 
with additional crosslinker molecules increases the number of active chains in the gel. Chain-
shortening molecular motors (CS-MM) are associated with an evolution of the microstretch 𝜆=, 
where the average effective chain length reduces, i.e. the effective number of monomers 
connecting the two ends of the chains reduces. Here, the polymer fraction does not evolve as we 
assume the newly ‘unengaged’ monomers remain within the gel. Thus, mass conservation enforced 
by Eq. (3) applies at all times. We analyze here DC-MM and CS-MM contraction mechanisms 
separately. Additionally, note that 𝑁 is defined in the reference (dry polymer) state, while the chain 
density in the current state is 𝑁Z = 𝑁/𝐽. 
 

Isotropic contraction of unloaded gels 
Consider now an unloaded gel. By substituting Eq. (11) into (1), and the result into (4), the Cauchy 
stress 𝜎0% = 𝑡0&𝐹%&/𝐽 takes the form 
8?!"
@A

= ;
B
\𝐹%0𝐹&0𝜆=1< − 𝛿%&^ −

8C
@A
𝛿%&         (12) 

In the absence of body forces, we can assume the stress components are spatially homogeneous 
within the gel. Because the stress has to equilibrate the external pressure Π#(/ applied to the gel 
from the environment (the solvent bath), we have that 𝜎%& = −Π#(/𝛿%& for each 𝑗, 𝑘 couple. By 
imposing this condition to Eq. (12), we must have 𝐹%0𝐹&0 = 𝛿%&. This condition is satisfied in the 
case of isotropic swelling of the gel, where the deformation is characterized by equal principal 
stretches 𝜆 in all directions as function of the swelling ratio 𝐽 = 𝜆>. Substituting this condition into 
Eq. (12) we have the hydrostatic gel pressure  

Π = Π#(/ + ΠDE$           (13a) 
where  
8C&'$
&6

= ;
B
\𝐽</>𝜆=1< − 1^         (13b) 

is the osmotic pressure of the solvent, which is also the hydrostatic swelling stress that stretches 
the polymer chains to accommodate the presence of the solvent.  
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By substituting Eq. (10) into (1), and the result into (5), we obtain the chemical potential of the 
solvent as 
4
&6
= ln M 8,

298,
N + 2

298,
+ :

(298,)(
+ 8C

@A
        (14)   

Substituting Eq. (3) and (13) into (14), we have 

𝜇̅ = 	ln M1 − 2
B
N + 2

B
+ :

B(
+ ;

B
\𝐽</>𝜆=1< − 1^        (15a) 

where 

𝜇̅ = 418C%)*
&6

           (15b) 

is the dimensionless net chemical potential. The gradient of chemical potential, and thus that of 𝜇̅, 
drives the solvent flow from substitution of Eq. (15b) into (8c). The first two terms on the right-
hand side of Eq. (15a) provide the entropic contribution, the third term provides the enthalpic 
contribution, and the last term, multiplied by 𝑛, provides the elastic contribution from the polymer 
network. At chemo-mechanical equilibrium we have 𝜇̅ = 𝜇̅#(/, with 𝜇̅#(/ obtained from Eq. (15b) 
by substituting 𝜇 with 𝜇#(/.  
From Eq. (15) we can obtain the derivatives of 𝜇̅ with respect to the dimensionless microstructural 
variables 𝑛 and 𝜆$ as 
'4F
';
= 2

G+
( B,/.

− 2
B
           (16a) 

'4F
'G+

= − <;
G+
. B,/.

           (16b) 

Eq. (16) shows that polymer stiffening via increment of 𝑛 (DC-MM) or reduction of 𝜆= (CS-MM) 
always produces an increment of 𝜇. So if 𝜇̅ = 𝜇̅#(/, before any MM activity, we will have 𝜇̅ >
𝜇̅#(/ after MMs are activated. According to Eq. (8c), with substitution from Eq. (15b), the solvent 
migrates from high-𝜇̅ regions to low-𝜇̅ ones. Thus, in this case, the solvent will exit the gel to join 
the buffer (external solvent bath). This process reduces 𝜇̅ to recover chemical equilibrium. This 
occurs if  
2
8
'4F
',
= 2

B((B12)
− <:

B.
+ ;

>B(
\3 − 𝐽</>𝜆=1<^        (17) 

is positive so that 𝜇̅ decreases to 𝜇̅#(/ while 𝐽 decreases to its new equilibrium value. The positivity 
of the right-hand side of Eq. (17) depends on 𝜒, 𝑁, 𝜆= and 𝐽, thus posing some physical constraints 
on these variables.  

Contraction spontaneity requires free energy reduction at a higher rate than that of energy supplied 
by MMs, i.e. 𝜓̇ ≤ 𝑤̇, where 𝑤̇ is the power produced by the MMs. This gives 
'*%
'B
𝐽̇ + '*$

',
𝐶̇ + '*%

'H
𝑁̇ + '*%

'G+
𝜆=̇ ≤ 𝑤̇       (18a) 

From Appendix A and Eq. (6), we have 𝑤̇ = 𝑁̇	𝜕𝜓#/𝜕𝑁 + 𝜆=̇ 	𝜕𝜓#/𝜕𝜆=, from which we can 
rewrite Eq. (18a) as  
'*%
'B
𝐽̇ + '*$

',
𝐶̇ ≤ 0          (18b) 
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Here, 𝜕𝜓#/𝜕𝐽 = −Π#(/ and, by substituting Eq. (3), (5) and (15) into (18), we finally have the 
following condition for the spontaneity of contraction (𝐶̇ < 0) of swelling (𝐶̇ > 0) 

𝜇̅𝐶̇ ≤ 0            (19) 

Spontaneous contraction, 𝐶̇ < 0, requires 𝜇̅ ≥ 0, while swelling, 𝐶̇ > 0, requires 𝜇̅ ≤ 0. When 
𝜇̅ ≠ 0 the rate of free energy release is finite (under contraction or swelling) leading to finite 
contraction or swelling times. When 𝜇̅ = 0 the energy release rate is equal to zero leading to 
infinite contraction or swelling times. This provides the condition of chemo-mechanical 
equilibrium, and is in agreement with the condition 𝜇̅ = 𝜇̅#(/, where 𝜇̅#(/ = 0. In the solvent bath, 
𝜇#(/ = Ω(𝑃 − 𝑃IJK) [10], with 𝑃 the solvent pressure and 𝑃IJK the vapor (cavitation) pressure. 
Taking Π#(/ = 𝑃 − 𝑃IJK as the relative pressure of the solvent bath, we finally have 𝜇̅#(/ = 0. 

From Eq. (3) and (15), we can define the dimensionless chemical potential 𝜇̅ as 

𝜇̅ = 2
8
"*F

",
           (20a) 

with  
"*F

",
= '*F$

',
+ Ω '*F%

'B
          (20b)  

where 𝜓f = 𝜓	Ω/𝑘𝑇, 𝜓f$ = 𝜓$	Ω/𝑘𝑇, and 𝜓f# = 𝜓# 	Ω/𝑘𝑇 are dimensionless forms of free energy. 
From this, we can deduce that the positivity of the left-hand side of Eq. (17), under chemo-
mechanical equilibrium (𝜇̅ = 0), occurs at a free energy minimum, and therefore such a chemo-
mechanical equilibrium is stable. 
In the following derivation, we will compare the free energy at three states: (0) the swollen 
equilibrium state, prior to MM activation; (i) the initial state when MM are activated and provide 
all the available mechanical work to stiffen the backbone; (f) the final state at which all the 
contraction has occurred and the stiffened gel has reached a new equilibrium configuration. The 
swelling ratio in (0) and (i) is the same, assuming MM activity is much faster than solvent 
diffusion. In this case 𝐽 = 𝐽!.  

For the generic state 𝜚 = 0, 𝑖, 𝑓, the dimensionless free energy can be rewritten from Eq. (1), (10) 
and (11) as  

𝜓fL = 𝜓f#,L + 𝜓f$,L           (21a)  

𝜓f#,L =
;/
<
R3\𝐽L

</>𝜆=,L1< − 1^ − 2 ln(𝐽L𝜆=,L1> )V        (21b) 

𝜓f$,L = \𝐽L − 1^ ln j1 −
2
B/
k + 𝜒 j1 − 2

B/
k        (21c) 

where 𝑛L = 𝑁LΩ is the dimensionless crosslink density, 𝜆=,L the chain micro-stretch, and 𝐽L the 
swelling ratio at the state 𝜚 = 0, 𝑖, 𝑓.  

In the swollen equilibrium state (0), 𝐽! is determined from Eq. (15) at chemical equilibrium by 
imposing the condition 𝜇̅ = 0 in Eq. (15a), with 𝑛 = 𝑛!, 𝜆= = 1, and 𝐽 = 𝐽!. 
To achieve contraction, the swelling ratio must reduce from the initial state (i) to the final (f), thus 
𝐽N < 𝐽0. At the initial state (i), while 𝐽0 = 𝐽!, the microstructure has evolved via an increase in chain 
density, giving 𝑛0 = 𝑁0Ω > 𝑛! (DC-MM), and/or shortening of chains, giving 𝜆=,0 < 1 (CS-MM). 
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Both these mechanisms induce network stiffening, thereby increasing the osmotic pressure, which 
in its dimensionless form ΠlDE$ = ΠDE$Ω/𝑘𝑇, from Eq. (13b), becomes 

ΠlDE$,0 =
;0
B1
j B1

(/.	
G+,0

( − 1k           (22) 

Now the free energy is given by Eq. (21) with 𝐽0 = 𝐽!, 𝑛 = 𝑛0, and 𝜆= = 𝜆=,0. From the equilibrium 
state (0) to the initial one (i), the mixing energy in unchanged giving 𝜓f$,0 = 𝜓f$,!, while the elastic 
strain energy has increased to give 𝜓f#,0 > 𝜓f#,!, and thus 𝜓f0 > 𝜓f!.  

To define the final state (f) we must impose again chemical equilibrium. This involves the 
condition 𝜇̅ = 0 in Eq. (15a) with 𝑛 = 𝑛0, 𝜆= = 𝜆=,0, and 𝐽 = 𝐽N. The free energy in this state is 
given again by Eq. (21) with 𝐽N, 𝑛N = 𝑛0, and 𝜆=,N = 𝜆=,0.  

The total change in volume, from the swollen equilibrium state (0) to the final contracted state (f), 
is given by the ratio 𝑑𝑉N/𝑑𝑉! = 𝐽N/𝐽!, with 𝑑𝑉! and 𝑑𝑉N the unit volumes in the current (0) and 
(f) states. The ratio 𝐽N/𝐽! identifies the degree of contraction, with smaller 𝐽N/𝐽! requiring higher 
contraction. Higher contraction is achieved by increasing 𝑛0/𝑛! and/or 1/𝜆=,0, and, as shown in 
the Results and Discussion section, the contraction amount depends also on the initial conditions 
defined by 𝐽! and 𝑛!. 

We now introduce the microstructural mechanical work, 𝑤=, per unit reference volume, (in 
dimensionless form, 𝑤l= = 𝑤= 	Ω/𝑘𝑇) required to create contraction and performed by the MM. 
We introduce two extreme cases of MM activated contraction: fast MM activation (FM), where a 
sudden injection of all the microstructural work available triggers contraction and slow MM 
activation (SM), where the time scale for MM activation is much longer than that for solvent flow. 
The work due to fast MM activation (FM) is 

𝑤l+= = 𝜓f0 − 𝜓f!          (23) 
In this case, we assume that the time scale for MM activation is much shorter than that due to 
solvent flow. Additionally, we assume that, after the MMs perform all the microstructural work to 
stiffen the polymer, they stay in place keeping the polymer in its new stiffened state. This means 
that 𝜆= and 𝑛 are stationary from (i) to (f), i.e. 𝜆=,N = 𝜆=,0 and 𝑛0 = 𝑛N. Conversely, in the case 
of slow MM activation (SM), the work performed by the MM to achieve the final state is 

𝑤lP= = 𝜓fN − 𝜓f!          (24) 

Because any contraction is spontaneous, we will always have a lower free energy in the final state 
than in the initial, thus 𝜓f0 ≥ 𝜓fN and 𝑤l+= ≥ 𝑤lP=. In intermediate cases, for which the time scale 
for MM activation is comparable with that of solvent flow, we have 𝑤lP= ≤ 𝑤l= ≤ 𝑤l+=. This 
means that slow activation requires the minimum work 𝑤lP= to reach the state f, while fast 
activation requires the maximum work 𝑤l+= for the same purpose.  
 

Results and discussion 
Chemo-mechanical Equilibrium 
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As discussed in the previous section, chemo-mechanical equilibrium is obtained from the condition 
of a homogeneous distribution of chemical potential, equal to that of the solvent bath, thus, 𝜇̅ = 0. 
From Eq. (15), this imposes the following condition on the crosslink density   

𝑛 = 29:/B9B	QR(212/B)
21B(/.G+

3(            (25a) 

Given a microstretch 𝜆= and Flory parameter 𝜒, the swelling ratio 𝐽 and (dimensionless) chain 
density 𝑛 at equilibrium are coupled according to Eq. (25). From this equation, Figure 2-left reports 
the values of compatible 𝐽 and 𝑛 for different values of 𝜒 and 𝜆=. In this figure, one can observe 
that a larger (dimensionless) crosslink density 𝑛 produces a smaller equilibrium swelling ratio 𝐽, 
as a stiffer gel can accommodate less volumetric swelling. The log-log plot in this figure shows 
the trend 

𝑛	~	𝜆=<
21<:
<
	𝐽1S/>           (25b) 

for large 𝐽 and 𝜒 < 0.5, while for 𝜒 = 0.5 we have 𝑛	~	𝜆=< 	𝐽1T/>/3. Taking the microstretch as 
𝜆= = 1, from Figure 2 we can obtain the equilibrium swelling ratio of the passive gel 𝐽! from the 
initial crosslink density 𝑛!. This defines the initial state, prior to molecular motor (MM) activation, 
and is marked by blue circles on Figure 2. In the experimental setup used for model comparison 
[23], the measured values are  𝐽! = 1000, 𝑛! = 1.61 ∙ 101S, 𝜆=,! = 1, thus, yielding 𝜒 = −1.1 
(see Appendix C). In the case of dynamic crosslinking molecular motors (DC-MM), from the same 
figure, given the microstretch remains 𝜆= = 1, we can also determine the final swelling ratio 𝐽N 
associated with a final crosslink density 𝑛N. For all the datapoints in Figure 2-left, the positivity of 
2
8
'4F
',
= 2

B((B12)
− <:

B.
+ B	QR(212/B)929:/B

21B(/.G+
3( M 2

B(
− 2

>B4/.G+
( N      (26)  

from Eq. (17), is always satisfied. I.e. the chemo-mechanical equilibrium at 𝜇̅ = 0 is always stable. 
By rearranging Eq. (25), one can also obtain 

𝜆=< = ;	B(/.

;121:/B1B	QR(212/B)
          (27a) 

Figure 2-right reports the values of compatible swelling ratio 𝐽 versus microstretch 𝜆=<  for different 
values of 𝜒 and 𝑛, based on Eq. (27). Because a smaller microstretch 𝜆=<  yields a stiffer gel, and 
thus smaller equilibrium swelling ratio 𝐽, 𝜆=<  and 𝐽 are proportional. The log-log plot in this figure 
shows the trend  

𝜆=< 	~	
<;

21<:
	𝐽S/>            (27b) 

for large 𝐽 and 𝜒 < 0.5 (which can also be extrapolated from Eq. (25b)), while for 𝜒 = 0.5 we 
have 𝜆=< 	~	3𝑛	𝐽T/>. In the case of chain-shortening molecular motors (CS-MM), this figure can be 
used to identify 𝐽N from a given 𝑛 = 𝑛! and	𝜆=N < 𝜆=0. For all the datapoints in Figure 2-right, 
the positivity of 
2
8
'4F
',
= <9B

>B((B12)
+ <

>
;
B(
− S

>
:
B.
+ 2

>B
ln M1 − 2

B
N        (28) 

from Eq. (17), is again always satisfied. Thus, the chemo-mechanical equilibrium is again always 
stable.  
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From Eq. (25b) and (27b), under the assumption of large swelling ratio 𝐽 and 𝜒 < 0.5, we can 
write  

𝐽	~	M2/<1:
;	G+

3( N
>/S

            (29) 

while for 𝜒 = 0.5 we have 𝐽	~	(3𝑛𝜆=1<)1>/T. In Eq. (29) we can deduce that largely swollen gels 
are made of softer polymers, having smaller 𝑛	𝜆=1<, and/or polymers composed of chains that have 
high affinity with solvent molecules, thus smaller (more negative) 𝜒. 
 

  
Figure 2 – Cytoskeletal gel chemo-mechanical equilibrium conditions for dynamic crosslinking 
molecular motors (DC-MM) (left) and chain shortening molecular motors (CS-MM) (right). Left: 
From Eq. (25), network chain density per unit solvent molecule 𝑛 = 𝑁Ω versus equilibrium 
swelling ratio 𝐽 at various values of the Flory parameter 𝜒 and chain microstretch 𝜆=. Right: From 
Eq. (27), chain microstretch 𝜆=< = 𝑚/𝑚!, as ratio of engaged monomers to total monomers in a 
chain, versus equilibrium swelling ratio 𝐽, at various values of the Flory parameter 𝜒 and chain 
density 𝑛. Blue circles represent the equilibrium state of the passive gel from experimentally 
measured parameters [23] (see Appendix C). 

 

Let us now define the free energy from Eq. (21). Figure 3 (left) plots 𝜓f#/𝑛 versus 𝐽 and 𝜆=, and 
(right) 𝜓f$ versus 𝐽 and 𝜒. These are taken from  
*F%
;
= >

<
\𝐽</>𝜆=1< − 1^ − ln(𝐽𝜆=1>)         (30a) 

𝜓f$ = (𝐽 − 1) ln M1 − 2
B
N + 𝜒 M1 − 2

B
N        (31a) 
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Figure 3 – Left: Dimensionless elastic free energy ratio 𝜓f#/𝑛 versus gel swelling ratio 𝐽 at varying 
chain microstretch 𝜆= (line thickness), from Eq. (30a); Subplot: 𝜓f#/𝑛 versus 𝜆= at varying 𝐽 (line 
thickness), from Eq. (30a). Right: Dimensionless mixing energy 𝜓f$ versus swelling ratio 𝐽 at 
varying values of the Flory parameter 𝜒 (line thickness), from Eq. (31a); Subplot: 𝜓f$ versus 𝜒 at 
varying 𝐽 (line thickness), from Eq. (31a). 

 

Figure 3 plots the relations expressed in Eq. (30a) and (31a), with the normalized elastic free 
energy 𝜓f#/𝑛 on the left and the mixing free energy 𝜓f$ on the right.  

In Figure 3-left, 𝜓f#/𝑛 increases with an increased swelling ratio 𝐽 as the chains become more 
stretched, thus decreasing the entropy of the network. Decreasing the chain microstretch 𝜆= leads 
to a greater 𝜓f#/𝑛, and here the difference between two red curves represents the injected energy 
in the fast motor (FM) activation case for CS-MM, where MMs instantaneously evolve the 
microstructure, thereby prompting contraction. The log-log plots in both the red curves and the 
blue curves, in the inset of this figure, show the trend  
*F%
;
	~	>

<
B(/.

G+
(            (30b) 

for large 𝐽 and/or small 𝜆=. In Figure 3-right, the mixing energy 𝜓f$ decreases with increased 𝐽 as 
more solvent is added to the mixture, thus increasing entropy. The semi-log plot in the red curves 
shows the asymptotic saturation energy  

𝜓f$	~	𝜒 − 1            (31b) 

for large 𝐽. This also explains the linear correlation between 𝜓f$ and 𝜒 in the blue curves in the 
inset.  
 

Energetics of Contraction 

The conditions 𝜒 = −1.1, 𝐽! = 1000, 𝑛! = 1.61 ∙ 101S, and 𝜆=,! = 1, highlighted in Figure 2 
with blue circles, in this case, give 𝜓f#,!/𝑛! = 1.42 ∙ 10<, 𝜓f#,! = 2.28 ∙ 101> and 𝜓f$,! = −2.1. 
Figure 4 plots the mechanical work performed by MM in the fast activation regime (FM), 𝑤l+=, 
and that in the slow activation regime, 𝑤lP=, as a function of the contraction ratio 𝐽N/𝐽! and initial 
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conditions given by 𝜒 = −1.1, 𝐽! = (10, 100, 1000), and the corresponding 𝑛! = (4.5 ∙
101<, 7.8 ∙ 101U, 1.6 ∙ 101S). In this figure, on the left we have DC-MM, i.e. by evolving 𝑛, from 
an initial 𝑛 = 𝑛!, at steady 𝜆= = 1. On the right we have CS-MM, i.e. by evolving 𝜆=, from an 
initial 𝜆= = 1, at steady 𝑛 = 𝑛!. In this figure we can observe that the work required for 
contraction is proportional to the initial crosslink density 𝑛! and to the degree of contraction (high 
contraction giving low 𝐽N/𝐽0). For 𝐽N/𝐽0 → 0, we have that 𝑤lP= , 𝑤l+= → ∞ (maximum contraction), 
while for 𝐽N/𝐽0 = 1 we have 𝑤lP= = 𝑤l+= = 0 (no contraction). These semi-log plots show a sharp 
increment in mechanical work for mild contractions (𝐽N/𝐽0 	~	1) as well as for maximal contractions 
(𝐽N/𝐽0 → 0), while intermediate contractions require more moderate increments in mechanical 
work. From the plots in this figure, we can observe that DC-MM and CS-MM require nearly 
identical 𝑤lP= and 𝑤l+= for a given 𝐽N/𝐽! and for higher initial swelling ratios, namely 𝐽! = 100, 
and 1000. We can, however, observe slightly higher 𝑤lP= for CS-MM at 𝐽! = 100 and very high 
contraction, i.e. 𝐽N/𝐽! = 0.1. For smaller initial swelling ratio, i.e. 𝐽! = 10, we have a significant 
distinction between DC-MM and CS-MM. Here, we can see that CS-MM have larger 𝑤lP= and 
smaller 𝑤l+= compared to DC-MM. It should be finally noted that the trends observed in Figure 4 
depend on the constitutive relations used to describe chemical affinity and network stiffening, 
energetically, hence on the formulations of 𝜓# and 𝜓$.  
 

  
Figure 4 – Dimensionless mechanical work, 𝑤l+= and 𝑤lP=, performed by molecular motors as a 
function of the contraction ratio 𝐽N/𝐽! for both fast motor activation (FM, solid line) and slow motor 
activation (SM, dashed line). Left: Dynamic crosslinking molecular motors (DC-MM). Right: 
Chain-shortening molecular motors (CS-MM). Both left and right figures consider varying initial 
swelling ratio 𝐽! (varying line thickness), where the initial chain density, per unit solvent molecule, 
𝑛! is calculated from the condition of equilibrium at Eq. (25), with 𝜒 = −1.1. 

 
Because  

𝑤lP= = ∫ '*F

'.#

'.#
'B
𝑑𝐽B5

B1
          (32) 

with 𝜁- = 𝑛 or 𝜆=, if we assume that both 𝐽! and 𝐽N are large, we can use Eq. (25b), (27b), and 
(30b) to obtain the estimation 
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𝑤lP= 	~
S
U
(21<:)
B1

j 2
B5/B1

− 1k         (33) 

Eq. (33) confirms that the SM work, 𝑤lP=, is inversely proportional to the ratio 𝐽N/𝐽! and to the 
initial swelling ratio 𝐽!, as observed in Figure 4. 
 
 
Experimental comparison 

The energetic requirement for contraction, predicted from our model, can be compared with 
experimental results from literature. Bendix et al. [23] conducted cytoskeletal gel contraction 
experiments observing the effects of chain density and motor concentration on contraction. They 
found that certain configurations yield observable contraction, while others yielded no observable 
contraction. Our model can explain this transition based on the required mechanical energy for 
contraction. The experiments consisted in varying crosslinker (a-actinin) and molecular motor 
(myosin II) concentrations, 𝑁a and 𝑁VV respectively, with constant concentration of actin 
monomers, 𝑁W. The gel specimens tested are of millimeter size, and the observable contractions 
were defined as achieving 90% volumetric deswelling (𝐽N/𝐽0 = 0.1) in a timespan below 60 
minutes. Given this long timescale of observation, related to specimen size, we consider contractile 
networks as those with sufficient concentration of MM so that they can exert the minimum work 
required for very slow contraction, i.e. 𝑤P=. Bendix et al. [23] reports the fixed concentration of 
actin monomers, as well as the ratios of myosin molecular motors 𝑅=:Y = 𝑁VV/𝑁Y and crosslinker 
a-actinin 𝑅a:Y = 𝑁a/𝑁W to actin. As explained in Appendix C, a portion of a-actinin molecules is 
required to form the actin filament bundles generating the polymer chain, thus unavailable to form 
chain-chain crosslinks, giving the ratio 𝑅Z:Y = 𝑁[/𝑁W. The crosslink (chain) density 𝑁 relates to 
the crosslinker concentration 𝑁a as 𝑁 = 𝑁a − 𝑁Z [27-28], giving  

𝑁 = (𝑅a:Y − 𝑅Z:Y)𝑁Y          (34) 
Eq. (34) assumes that, after bundling, each new crosslinking molecule splits an existing chain into 
two, therefore adding a new chain to the network.  

We assume that the work provided by the MMs scales with MM concentration as 𝑤P= = 𝑤=𝑁==, 
giving 

𝑤P= = 𝑤=𝑅=:Y𝑁Y           (35) 

where 𝑤= is the work provided by one MM. Eq (35) is based on the hypothesis of unlimited ATP 
availability and that all motors equally contribute to provide a fixed mechanical work [29].  
To determine the parameters of the gel at the equilibrium swollen state (0), for each experimental 
value of 𝑅a:Y, we estimate 𝐽! from the chemo-mechanical equilibrium in Eq. (25) with 𝜆= = 1 and 
𝑛! = 𝑁!Ω from Eq. (34) (𝑁 = 𝑁!). Here, 𝑁Y is extracted from the current density of actin 
monomers 𝑁ZY = 𝑁Y/𝐽!. Note that, 𝜒 is undefined, and we extract it from a test case in [23] as 
explained in Appendix C, where 𝐽! = 1000 and 𝑛! = 1.61 ∙ 101S, giving 𝜒 = −1.1. The latter is 
a material parameter, and thus is constant in each experiment. To determine the parameters of the 
gel at the final state (f), we enforce again chemo-mechanical equilibrium from Eq. (25). From this 
equation, with 𝐽N = 0.1	𝐽! and 𝜒, we can extract 𝑛 = 𝑛N, under 𝜆= = 1 for DC-MM or 𝜆= from 
𝑛 = 𝑛! for CS-MM. Finally, by substituting Eq. (30) into (24), we can calculate the work 𝑤lP= =
𝑤P=Ω/𝑘𝑇. This result can then be substituted into Eq. (35) to extract the minimum required MM 
density 𝑁=, based on the value of 𝑤=, which is here taken as a fitting parameter.   
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Figure 5 shows a comparison between our estimated minimum MM density required to contraction 
(with red shading indicating non-contractile regions) with the observed contractile (black circles) 
and non-contractile (red crosses) conditions in [23]. Our estimation is shown in the bottom solid 
line for CS-MM, and dashed line for DC-MM. For most of the experimental data points, except 
some outliers, our estimate agrees with experimental evidence. We speculate that some outlier data 
points, where contractile gels appear as non-contractile, or vice-versa, are due to geometrical 
imperfections. In this comparison we have adopted 𝑤= = 1.9 ∙ 10\	𝑘𝑇 for both CS-MM and DC-
MM. These values are equivalent to approximately 1.3 ATP molecules consumed per myosin head 
per second in the timespan of one hour, as detailed in Appendix C. Experimental observations 
reported 0.5-5 ATP molecules consumed per myosin head per second [30]. Because 𝑤= estimates 
the effective work produced by the MM, the real ATP energy consumed is expected to be higher. 
The MM efficiency in this case can be estimated from a minimum of 1.3/5 = 26% to a maximum 
of 1.3/0.5 = 86%. The upper bound in MM concentration in Figure 5 is due to a maximum strain 
energy per chain in the final state,	𝜓#,N/𝑁!, above which the a-actinin crosslink breaks. In these 
conditions, contraction is prevented. We adopt this energy maximum as 𝜓#,$J(/𝑁! = 2.44 ∙
10>	𝑘𝑇 to fit the upper bound of the contractile region for both CS-MM and DC-MM. This value 
corresponds to the energy required to break one crosslink bond between the chains, and is 
equivalent to the energy of approximately 600 hydrogen bonds (see Appendix C). In regions of 
high crosslinking, such as on the right side of Figure 5, contraction can become much slower, as 
discussed by [22]. In the experimental timeframe observed by [23], contractions requiring more 
than 60 minutes were ignored, therefore classifying such trials as non-contractile. We speculate 
that the networks associated with the red crosses on the right side of Figure 5 may still be 
contractile, as predicted by our model, but requiring more than 60 minutes.  

The contractile region predicted by our model (white shading) agrees with experiments for the 
lower and upper bounds in Figure 5, highlighting the energetic limit of contraction for cytoskeletal 
network and the structural limit of the actin backbone, respectively. Both CS-MM and DC-MM 
give similar predictions, with CS-MM being slightly more accurate.  
 

 
Figure 5 – Contractility map evidencing the contraction requirements for a cytoskeletal gel having 
chain density 𝑁 and molecular motor density 𝑁==. Both 𝑁 and 𝑁== are normalized by the density 
of actin monomers 𝑁Y. The model prediction is plotted with black lines (solid for CS-MM, and 
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dashed for DC-MM), while the experimental data points, from [23] (Contractile exp.), are reported 
with red crosses, to indicate non-contractile gels, and black circles, to indicate contractile gels. The 
minimum energetic requirement from the model prediction is taken from 𝑤P= (Figure 4) to provide 
the lower limit, (bottom black lines). The limit in elastic strain energy stored in each chain prior to 
chain rupture, 𝜓#,$J(/𝑁, provides the upper limit (top black lines). Red shading indicates non-
contractile regions, violating either the lower or the upper limits.  
 

It should be noted that our model considers the polymer backbone to be composed of Gaussian 
(slack) chains. This hypothesis limits the reliability of our model, particularly in highly crosslinked 
networks (right side of Figure 5). Moreover, in this investigation we assumed, for simplicity, that 
CS-MM and DC-MM act as separate mechanisms. In general, both mechanisms can occur at the 
same time in a gel, and one should study their coupled effects during contraction. Our simplified 
approach provides useful results if one assumes that one mechanism prevails over the other. In 
actin gels equipped with myosin motors, such as the one used in [23], chain shortening is 
commonly the predominant mechanism. This is because actin polymerization and actin-myosin 
binding, which provide dynamic crosslinking, occur initially and leave the gel in a stiffened state, 
while myosin progressively shortens actin chains. This conclusion might explain why our 
prediction from CS-MM (solid lines), in Figure 5, yields slightly better agreement with 
experiments. 

 
Conclusion 

Contractile cytoskeletal networks exhibit a range of energetically motivated contractions caused 
by molecular motor activity.  Our model introduces a more physical representation of CS-MM 
activation, where, from a mechanical standpoint, the effective chain length (composed of only 
engaged monomers) shortens according to the newly introduced ‘microstretch’ parameter. This 
approach yields similar results to that of previously employed chain density evolution models, 
particularly for highly swollen gels. Via simple steady state energetic analysis, under the simplest 
case of isotropic contraction, we quantify the mechanical energy required for contraction as a 
function of polymer chain density and molecular motor density. We identify two limit cases, (FM) 
fast molecular motor (MM) activation for which MMs provide all the available mechanical energy 
immediately and (SM) slow MM activation where the timescale is much longer, and contraction is 
much slower. These two cases represent the maximum and minimum timescales for the contraction 
process. They also represent the two limits in the efficiency of energy transduction, where sm gives 
the highest efficiency and FM gives the lowest efficiency. This is because, to achieve the same 
amount of contraction, the mechanical work required is highest with fast MM activation (𝑤+=) 
and lowest with slow MM activation (𝑤E$), i.e. 𝑤P= < 𝑤 < 𝑤+=. We observe that the energetic 
cost of contraction fulfilled by MM is proportional to chain density and MM density. Finally, we 
compare our results with experiments and observe good agreement, where the 90% contraction 
boundary is predicted by our model.  

Our model provides an accurate and simple description of the energetic landscape of contraction 
for gels composed of slack chains. It also provides the minimum requirement of actin and myosin 
density to allow cytoskeletal contraction in such systems. Further development of this model will 
allow for a more comprehensive description of the cytoskeleton, for example one composed of 
tight chains. 
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Table 1 – Model parameters with their symbol notation, description, nominal value and source 
Symbol Description Nominal Value Source 

𝑘𝑇  Unit energy, 𝑘 Boltzmann constant, 𝑇 absolute 
temperature 

4.14 ∙ 10!"#	𝐽  [12] 

Ω  Molecular volume of the solvent 1.41 ∙ 10!"	𝑛𝑚$ [12] 

𝐽%  (Initial) swelling ratio of the gel  1000 [23] 

𝑛% = Ω𝑁% (Initial) dimensionless crosslink density 1.63 ∙ 10!& [23] 

𝜒  Flory parameter −1.1 Appendix C 

𝑁'  Actin monomers concentration per unit 
reference (dry polymer) volume 

1.43 ∙ 10"&	𝑚!$ [23], 
Appendix C 

𝑅a:' =
𝑁a/𝑁A  

Ratio of a-actinin crosslinker concentration 
(𝑁a) to actin monomer concentration (𝑁Y)  

0.11 [23], 
Appendix C 

𝑅):' =
𝑁)/𝑁'  

Ratio of bundling a-actinin concentration (𝑁[) 
to actin concentration (𝑁Y) 

0.03 [23], 
Appendix C 

𝑤*  Total work provided by one molecular motor 
(MM) after one hour of activity 

1.9 ∙ 10+	𝑘𝑇 Appendix C 

𝜓,,./0/𝑁  Maximum elastic strain energy stored by a chain 
prior to its rupture 

2.44 ∙ 10>	𝑘𝑇 Appendix C 

𝑉  Equilibrium volume of the passive gel 8.8 ∙ 10!#%	𝑚$ Appendix C 

𝑉1  Volume of polymer chains 8.24 ∙ 10!#$	𝑚$ Appendix C 

𝑑'  Actin monomer diameter 5	𝑛𝑚 [31] 

𝐽2/𝐽3  Volumetric contraction (deswelling) ratio 0.1 [23] 
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Appendix A 

The first law of thermodynamics gives 
^
^/ ∫  _6

𝑒d𝑉" = ∫  P6
𝑇%𝑥̇%d𝑆" + ∫  _6

𝐵%𝑥̇%d𝑉" − ∫  P6
𝑁%𝐽%`d𝑆" − ∫  P6

ℎa𝑁%𝐽%
ad𝑆"  (A1) 
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where repeated indices indicate a sum. Here, 𝑒 is the internal energy per unit reference volume, 
𝐽%`	is the heat flux in the reference configuration, 𝑥̇% is the velocity of elements in the volume and 
thus is the rate of change of 𝑥% ( ̇  implies time derivative), ℎa is the partial molar enthalpy of 
species 𝑞, 𝐵% the body force vector, 𝑁% the unit normal to boundary surfaces, and 𝑇% the external 
traction force. Use of the divergence theorem and the principle of virtual powers [8] yields  

𝑒̇ = 𝑡%&𝐹̇%& −
b
b)!

\𝐽%` + ℎa𝐽%
a^          (A2) 

Here, the first term on the right-hand side is the mechanical power from external forces, while the 
second term is the energy loss, per unit time and reference volume and unit time, due to heat and 
mass exchange.  

Entropy conservation [8] gives  

^
^/ ∫ 𝜂	d𝑉"_6

= ∫ 𝜂̇cd𝑉"_6
− ∫  P6

𝑁%
B!
7

6
d𝑆" − � 𝜂a𝑁%𝐽%

ad𝑆"P6
      (A3) 

where 𝜂 is the entropy per unit volume in the reference state, 𝜂a is the partial molar entropy of 
species 𝑞 and 𝜂̇K is the rate of entropy production per unit volume in the reference state. With 
divergence theorem, Eq. (A3) leads to 

𝜂̇ = 𝜂̇d − b
b)!

j
B!
7

6
+ 𝜂a𝐽%

ak          (A4) 

Here, the first term on the right-hand side is the entropy generation, while the second term is 
entropy loss, per unit time and reference volume, due to heat and mass exchange. 

The Helmholtz energy per unit reference volume is  

𝜓 = 𝑒 − 𝑇𝜂           (A5) 
From Eq. (A2), (A4), and (A5), the rate of change of the Helmholtz free energy is 

𝜓̇ = 𝑡%&𝐹̇%& − 𝜂̇d𝑇 − 𝜂𝑇̇ −
B!
7

6
bA
b)!

− b
b)!

\ℎa𝐽%
a^ + 𝑇 b

b)!
\𝜂a𝐽%

a^       (A6) 

Here, the first term on the right-hand side is the mechanical power, per unit reference volume, 
done by external forces, and the second and third ones are free energy losses, per unit time and 
reference volume, due to entropy generation and temperature increment, respectively. The last 
three terms are free energy losses due to heat and mass exchange.   

Next, we introduce 𝜇a, the chemical potential of species 𝑞 as 

𝜇a = ℎa − 𝑇𝜂a          (A7) 
and mass conservation 

𝐶̇a = 𝑄a −
bB!

8

b)!
          (A8) 

with 𝑄a the generation of specie 𝑞 due to chemical reactions.  
Substitution of Eq. (A7) and (A8) into (A6) gives 
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𝜓̇ = 𝑡%&𝐹̇%& − 𝜂̇d𝑇 − 𝜂𝑇̇ −
B!
7

6
bA
b)!

− jb4
8

b)!
+ 𝜂a bA

b)!
k 𝐽%

a + 𝜇a\𝐶̇a − 𝑄a^    (A9) 

Assuming the Helmholtz free energy has the functional dependence 𝜓 = 𝜓(𝑇, 𝑭, 𝜻, 𝐶), as 
described in (1), with (A9) we solve for the entropy production as 

𝜂̇d𝑇 = j𝑡%& −
b*
b+!"

k 𝐹̇%& + j𝜇a −
b*
b,8
k𝐶ȧ − M𝜂 +

b*
b6
N 𝑇̇ −

B!
7

6
bA
b)!

− jb4
8

b)!
+ 𝜂a bA

b)!
k 𝐽%

a − 𝜇a𝑄a −
b*
b.#
𝜁-̇               (A10) 

From the second law of thermodynamics, the rate of entropy production must be 𝜂̇d ≥ 0.  
Considering chemical equilibrium, homogeneous and stationary distribution of temperature, and 
species conservation, which also implies no flux of species, and no microstructural change, the 
first 3 terms on the right-hand side of Eq. (A10) are ≥ 0 for all deformation rates, concentration 
changes, and temperature adjustments either positive or negative. These considerations provide 
equations (4) and (5) and  
b*
b6
= −𝜂            (A11) 

In Eq. (5), the specie considered is water, and the index 𝑞 is omitted. 
With the above satisfied, we are left with the remaining terms in Eq. (A10), thus 

−
B!
7

6
bA
b)!

− jb4
8

b)!
+ 𝜂a bA

b)!
k 𝐽%

a − 𝜇a𝑄a − b*
b.#
𝜁-̇ ≥ 0       (A12) 

The first term on the left-hand side of Eq. (A12) governs the heat flow, while the second term 
governs the transport of chemical species. The last two terms govern the transient microstructural 
processes, where the energy production from chemical reactions can produce a microstructural 
change [8]. Considering that 𝑄a = 0 for all species except ATP and ADP (adenosine triphosphate 
and diphosphate, respectively), we have that  

(𝜇WAc − 𝜇Wec)𝑄` ≥ b*
b.#
𝜁-̇          (A13) 

with 𝑄` the rate of consumption (production) of ATP (ADP) during hydrolysis. The inequality 
holds so long that the efficiency of the mechanotransduction process is less than unity. We can 
thus rewrite Eq. (A13) as  
b*
b.#
𝜁-̇ = 𝑤̇-           (A14a) 

where 𝑤̇- is the mechanical power density, per unit reference volume, required to evolve the 
microstructural variable 𝜁- at the rate 𝜁-̇. If these mechanisms are driven by molecular motors 
(MMs) hydrolyzing ATP (adenosine triphosphate), we can write 𝑤̇- = 𝑓-𝑤̇, with 𝑓- the portion of 
energy required to evolve 𝜁-, and 𝑤̇ = ∑ 𝑤̇--  the total power generated by ATP hydrolysis. The 
latter is given by 

𝑤̇ = 𝜑(𝜇WAc − 𝜇Wec)𝑄`          (A14b) 

where 𝜑 is the energy transduction efficiency of the MMs. Eq. (A14) is rewritten in (6) in 
differential form. 
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Appendix B  
In this appendix we provide the mathematical derivation for the strain energy density incorporating 
chain shortening. The statistical configuration of the generic Gaussian chain i is described by its 
end-to-end vector 𝑹0 = (𝑋0 , 𝑌0 , 𝑍0), and its probability density function (PDF) is  

𝑓(𝑹0 	) = M >
<f〈h(〉

N
>/<

exp M− >h0
(

<〈h(〉
N        (B1a) 

where 𝑅 = √𝑋< + 𝑌< + 𝑍< is the end-to-end length, and  

〈𝑅<〉 = ∫ ∫ ∫ 𝑅<𝑓(𝑹)𝑑𝑋j
1j 𝑑𝑌j

1j 𝑑𝑍j
1j        (B1b) 

is the mean squared end-to-end distance of the network. The latter is also given by 

〈𝑅<〉 = 𝑚!𝑏<            (B2) 

where 𝑚! is the average number of monomers in each chain of the network, and 𝑏 the average 
length of each segment in the chain. Gaussian chains are assumed to be non-interacting, and the 
free energy 𝑔(𝑹0) of the generic i-th Gaussian chain is described by Boltzmann’s entropy equation 

𝑔(𝑹0) = −𝑘𝑇 ln[𝑃(𝑹0)]          (B3) 

where 𝑃(𝑹0) is the probability for chain i of having the end-to-end vector equal to 𝑹0. This is given 
by its PDF as  

𝑃(𝑹0) = 𝑓(𝑹0)𝑑𝑋𝑑𝑌𝑑𝑍          (B4) 

After deformation of the network, the end-to-end vector of chain i evolves from 𝑹0 to 𝒓0 =
(𝑥0 , 𝑦0 , 𝑧0). Considering an affine deformation, by which all chains follow the same deformation 
tensor 𝑭, we have that 𝒓0 = 𝑭	𝑹0. Take now the principal stretches 𝜆( , 𝜆k , 𝜆l, so that 𝑥0 = 𝜆(𝑋0, 
𝑦0 = 𝜆k𝑌0, 𝑧0 = 𝜆l𝑍0, and 𝐽 = 𝜆(𝜆k𝜆l with 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐽	𝑑𝑋𝑑𝑌𝑑𝑍. The change in the free energy 
change of the chain, due to deformation of the network, from Eq. (B3) and (B4) is 

∆𝑔0 = −𝑘𝑇 ln JN(𝑭	𝑹0)
N(𝑹0)

O − 𝑘𝑇 ln 𝐽         (B5) 

By substituting Eq. (B1) into (B5) we have 

∆𝑔0 =
>
<
𝑘𝑇 J𝑋0< M

G)(

〈o(〉
− 2

〈h(〉
N + 𝑌0< M

G9(

〈o(〉
− 2

〈h(〉
N + 𝑍0< M

G:(

〈o(〉
− 2

〈h(〉
NO + >

<
𝑘𝑇 ln M〈o

(〉
〈h(〉

N − 𝑘𝑇 ln 𝐽  
            (B6) 

The total free energy density of the network is given by the sum of the free energy of all the 𝑁 
chains in the material point, giving 

𝜓# = ∑ ∆𝑔0H
0p2            (B7) 

Not that ∑ 𝑅0<H
0p2 = 〈𝑅<〉, and, since the network has no directional configuration in the 

undeformed state, we have ∑ 𝑋0<H
0p2 = ∑ 𝑌0<H

0p2 = ∑ 𝑍0<H
0p2 = 〈𝑅<〉/3. From this, by substituting 

Eq. (B6) into (B7) we have 

𝜓# =
H&6
<
�G)

(9G9(9G:(

G+
( − 2 ln M B

G+
. N − 3�        (B8) 

where we have considered 〈𝑟<〉 = 𝑚	𝑏<, with 𝜆=< = 𝑚/𝑚!. In this case 𝑚 represent the number 
of engaged monomers between crosslinks in the deformed state and 𝑚! that in the undeformed 
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state. A common assumption is that the chain length is unchanged, and so the number of engaged 
monomers between crosslinks, giving 𝑚 = 𝑚! and 𝜆= = 1. This recovers traditional neo-
Hookean elasticity. However, chain shortening molecular motors can reduce the effective number 
of monomers between crosslinks, leading to 𝑚 < 𝑚!, from which 𝜆= < 1. By substituting the 
invariant of the strain tensor 𝜆(< + 𝜆k< + 𝜆l< = 𝐹0%𝐹0% into Eq. (B8) we finally obtain (11). 

 

Appendix C 
The parameters of the model are based on experiments performed on actin gels by Bendix et al. 
[19], with data extracted from the supplementary material. The gel volume in the equilibrium 
swollen state is 𝑉 = 8.8 ∙ 1012!	𝑚> [23]. We consider an actin monomer as a spheroidal molecule 
of diameter 𝑑Y = 5	𝑛𝑚 [31]. Given the concentration of actin monomers in the current state 
(number of monomers per unit current volume) 𝑁ZY = 1.43 ∙ 10<<	𝑚1>, we can calculate the 
volume of the polymer as 𝑉K = 𝑁ZY𝑉!𝜋𝑑Y>/6, giving 𝑉K = 8.24 ∙ 1012>	𝑚>. Because the 
equilibrium swelling ratio is 𝐽! = 𝑉/𝑉K, we have then 𝐽! = 1068.45, which we round to 𝐽! ≃
1000. This gives the actin density in the reference state 𝑁Y = 𝑁ZY	𝐽! = 1.43 ∙ 10<S	𝑚1>. The 
cytoskeletal network is composed of chains, which are made of bundles of actin filaments. In each 
filament, on average, every 30 actin monomers, there is an a-actinin molecule [32]. This gives the 
ratio 𝑅Z:Y = 0.03 in Eq. (31). For the example case of 𝑅q:Y = 0.11 we have the crosslink density 
𝑁! = 1.14 ∙ 10<U	𝑚1>. Taking the diameter of a water molecule as 𝑑r = 0.3	𝑛𝑚, we have then 
Ω = 𝜋𝑑r> /6, giving Ω ≃ 1.41 ∙ 101<s	𝑚>. The nominal crosslink density becomes then 𝑛! =
𝑁!Ω = 1.61 ∙ 101S. Eq. (25), with 𝜆$ = 1, is satisfied and gives our initial conditions if 𝜒 = −1.1. 

Take 𝑘𝑇 = 4.14 ∙ 101<2	𝐽 as a unit energy [12]. The total mechanical work provided by a single 
MM during the whole contraction process, 𝑤=, is used in our investigation as a fitting parameter 
to predict the lower bound estimation of the minimum required MM density for contraction in 
Figure 5. This, for both CS-MM and DC-MM, this computes to 𝑤= = 8 ∙ 1012U	𝐽 = 1.9 ∙ 10\	𝑘𝑇. 
Taking the energy of ATP hydrolysis as 12	𝑘𝑇 per ATP molecule [31], this computes to the 
equivalent energy provided by approximately 417 ATP molecules hydrolyzing on each motor 
every second for a period of one hour. Considering each myosin motor has roughly 300 heads 
[31], this computes to the equivalent of roughly 1.3 ATP molecules consumer per head every 
second for one hour. It should, however, be noted that the efficiency of mechanotransduction is 
less than unity, thus the real ATP consumption is expected to be higher than the above estimation. 
The maximum strain energy stored by one polymer chain prior to crosslink (chain) rupture is used 
as a fitting parameter for the upper bound estimation of the required MM density in Figure 5. This 
computes to 𝜓#,$J(/𝑁! = 1.01 ∙ 1012t	𝐽 = 2.44 ∙ 10>		𝑘𝑇 for both CS-MM and DC-MM. Given 
a breaking a hydrogen bond requires approximately 10	𝑘𝐽/𝑚𝑜𝑙 = 4	𝑘𝑇 [33], this strain energy is 
equivalent to breaking approximately 600 hydrogen bonds. 
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