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The fundamental trade-off between robustness and tunability is a central challenge in the pur-
suit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging
quantum architectures1,2 are designed to achieve high coherence at the expense of having fixed spec-
tra and consequently limited types of controllable interactions. Here, by adiabatically transforming
fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ
Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the
basis for many-body quantum simulation of spin systems3, and on the other hand the primitive
for an expressive quantum gate set4. To illustrate the robustness and versatility of our Floquet
protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP
gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition,
we implement a Heisenberg interaction between higher energy levels and employ it to construct a
three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to vari-
ous fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for
high-performance quantum information processing. From a broader perspective, our work provides
compelling avenues for future exploration of quantum electrodynamics and optimal control using
the Floquet framework5.

Introduction

The capability to coherently choreograph interactions be-
tween qubits is the foundation for the recent advances
in quantum technologies. A quintessential example is
the manipulation of the quantum Heisenberg model for
the simulation of many-body quantum spin systems3,6,7,
which has led to the recent discoveries of intriguing phys-
ical phenomena such as discrete time crystal8, phan-
tom spin-helix states9, and formation of photon bound
states10. The Heisenberg interactions are also the primi-
tives for expressive multi-qubit gates4 which play impor-
tant roles in quantum algorithms11 and quantum error
correction12,13. Therefore, endowing quantum architec-
tures with such archetypal interactions significantly ex-
tends their capabilities and performance.

The required tunability in solid-state quantum de-
vices generally entails additional decoherence channels,
demanding design overhead, and increased operational
complexity. For example, in the domain of supercon-
ducting circuits, the performance in flux-tunable de-
vices is typically limited by unavoidable 1/f noise aris-
ing from the surrounding environment. Meanwhile,
fixed-frequency platforms such as single-junction trans-
mon14,15 and fluxonium16 biased at the half-integer
flux quantum17 have the best coherence times to date,
but their native interactions are limited to the cross-
resonance18,19 and longitudinal couplings20,21. Intro-
ducing additional tunable couplers enables a parametric
transverse coupling, but the performance is undermined
by the couplers’ coherence and spurious couplings22.

In this work, we present a reliable and hardware-
efficient protocol to synthesize Floquet qubits23,24 from
statically coupled single-junction transmon qubits using
time-periodic microwave drives, showing that the adia-
batic mapping procedure can be hastened by exploiting
a shortcuts-to-adiabaticity (STA) technique25–27. Then,
we implement an XXZ Heisenberg interaction between
these Floquet qubits, described by the Hamiltonian

ĤXXZ/~ =
∑
i,j

JXY(σ̂ixσ̂
j
x + σ̂iyσ̂

j
y) + JZZσ̂

i
zσ̂
j
z , (1)

and demonstrate that the transverse spin-exchange and
longitudinal spin-spin interaction terms can be adjusted
independently by tailoring the drive parameters.

To validate the robustness and practicality of the pro-
tocol, we characterize two-qubit iSWAP, CZ, and SWAP
gates which correspond to different anisotropy JZZ/JXY,
achieving estimated fidelities of 99.32(3)%, 99.72(2)%,
and 98.93(5)%, respectively. In addition, we show that
the Floquet-engineered interactions can be broadly ap-
plied to other levels in the system. Specifically, we ex-
plore the swapping between the qutrit states |11〉 and
|02〉, then employ it to implement a three-qubit CCZ gate
which is locally equivalent to the Toffoli gate28, achiev-
ing an estimated fidelity of 96.18(5)%. Our work exem-
plifies the operational principles of Floquet qubits and
illustrates their broad potential, thus opening promising
pathways for future developments of the Floquet frame-
work in enhancing the capabilities of fixed-frequency
solid-state quantum platforms.
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Fig. 1. Floquet qubit. a, Experimental schematic depicting two single-junction transmon qubits Q1 (red) and Q2 (blue)
coupled via a shared coplanar-waveguide resonator resulting in an effective static coupling29. Microwave pulses are applied to
the transmission lines situated below the capacitor pads to sculpt the Floquet qubits and control single-qubit rotations. The
Heisenberg interactions are programmed by tailoring pulses p1, p2, and p3. b, Bloch sphere representation of the adiabatic
transformation from a bare qubit in the lab frame to a Floquet qubit in the rotating frame. c, Population in the excited state
P|1〉 of Q1 when subjected to a microwave pulse with amplitude 100 MHz, detuning −40 MHz, ramp time τr, and duration τg.
Nonadiabaticity manifests as finite oscillations for short ramp time τr. d, Dependence of the maximum state leakage Pmax

|1〉 on
the pulse’s amplitude and ramp time τr. The drive is applied at the same frequency from c. e, Dependence of Pmax

|1〉 on the
pulse’s ramp time τr and DRAG coefficient. The drive amplitude and frequency are the same from c.

Synthesizing Floquet qubits
Figure 1a depicts the superconducting device used in
the experiment. It consists of single-junction transmon
qubits14 which are pairwise coupled via mutual coplanar
waveguide resonators29,30. Details of the quantum de-
vice and experimental setup are presented in Methods.
Although the frequencies of the qubits are fixed after fab-
rication, Floquet engineering has recently emerged as a
powerful tool that allows the sculpting of effective Hamil-
tonians that are otherwise unavailable31, thus promising
a new dimension to tune the system. Here, we synthesize
Floquet qubits using detuned periodic microwave drives
and tailor them to engineer the Hamiltonian given by
Eq. (1).

The mapping is described by Floquet formalism as fol-
lows. The Hamiltonian of a two-level spin-half system
subjected to a periodic driving field with amplitude A,
frequency ωd, and phase ϕ is given as

Ĥq(t)/~ = −ωq

2
σ̂z +A cos(ωdt+ ϕ) σ̂x, (2)

where ~ωq is the energy gap of the two-level system,
and σ̂z and σ̂x represent the Pauli operators. There ex-
ists no static eigenenergies and eigenstates of the system
as solutions of the time-dependent Schrödinger equation
i~∂t|ψ(t)〉 = Ĥq(t)|ψ(t)〉. However, due to the periodic-

ity of Ĥq(t), the Schrödinger equation can be modified

into the Floquet equation5,32,
(
Ĥq(t)− i~∂t

)
|un(t)〉F =

~εn|un(t)〉F, and static quasienergies ~εn can be found for
time-periodic Floquet states |un(t)〉F = |un(t+2π/ωd)〉F.
Here the Floquet states are denoted with subscript F to
distinguish them from the bare states in the lab frame.
The Floquet and bare states are interconvertible follow-
ing the relation

|un(t)〉F = eiεnt|ψn(t)〉. (3)

Interestingly, eikωdt|un(t)〉F with integer k also satisfies
the Floquet equation and has quasienergy ~(εn + kωd),
resulting in an infinite transition spectrum32, ε1 − ε0 =
kωd±

√
A2 + (ωd − ωq)2, where the plus(minus) sign cor-

responds to red(blue) detuned drive. In addition, the
drive phase ϕ acts as a time translation operator on
the Hamiltonian in Eq. (2), |un(t)〉F → |un(t+ ϕ/ωd)〉F.
These show how the Floquet states and their quasiener-
gies depend on the drive parameters A, ϕ, and ωd, which
we can use to tailor the driven systems (See Methods for
detailed Floquet formalism).

To prepare a Floquet qubit with the desired properties,
we have to continuously map the undriven qubit to the
Floquet basis, as shown in Fig. 1b. If the transformation
is performed abruptly, there exists finite tunneling be-
tween the Floquet basis states, and the process becomes
nonadiabatic. According to Adiabatic Theorem32, the
tunneling rate is proportional to dA/dt, that is, the tar-
get Floquet qubit corresponding to a larger drive ampli-
tude must be transformed using a longer ramp time.
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Fig. 2. Floquet-engineered XXZ Heisenberg interaction. a, Chevron pattern showing the dependence of P|01〉 on the
amplitude AXY and duration τg of pulses p1 and p2 for qubits initialized in |10〉 (top left schematic). The pulses are applied at
frequencies 40 MHz red(blue)-detuned from Q1(2)’s |0〉 ↔ |1〉 transition with DRAG coefficients λDRAG = −(+)0.6 and ramp
time τr = 50 ns. b, Coherent oscillation between |10〉 and |01〉 for the optimal pulse amplitude AXY/2π = 65.2 MHz highlighted
by the red dashed line in a. c, Extracted longitudinal coupling angle ΦZZ between the qubits after p1 and p3 are applied at
40 MHz red-detuned from Q1’s transition frequency (bottom left schematic). They are 200-ns-long, with ramp time τr = 50 ns
and DRAG coefficient λDRAG = −0.6. p1’s amplitude is fixed at AXY/2π = 65.2 MHz, while p2’s amplitude AZZ and phase ϕ
are varied to tune the ZZ coupling rate. d, Extracted longitudinal coupling angle ΦZZ between the qubits after being subjected
to all three pulses. The amplitude AXY of p1 and p2 is tuned to induce a full |10〉 ↔ |01〉 swap, while the amplitude AZZ and
phase ϕ of p3 are varied to tune the ZZ rate during the swap.

We experimentally explore this by irradiating qubit Q1

with a cosine-ramp pulse with different pulse durations τg
and ramp times τr, then measuring its excited state pop-
ulartion P|1〉. The drive amplitude is set to be 100 MHz
in terms of on-resonant Rabi frequency, and the drive
frequency is red-detuned from Q1’s transition frequency
by 40 MHz. Nonadiabatic effects then manifest as finite
excited state populations after the pulse, which oscillates
with respect to the pulse duration due to the dynami-
cal phase accumulation of the Floquet qubit (Fig. 1c).
Evidently, shorter ramp times correspond to more severe
nonadiabatic effects. In addition, the result in Fig. 1d
confirms that a larger drive amplitude requires a longer
ramp time to satisfy the adiabatic condition.

Interestingly, we find that using an STA tech-
nique known as derivative removal by adiabatic gate
(DRAG)26,27 helps reduce nonadiabatic effects substan-
tially. As shown in Fig. 1e, the excited state leakage
corresponding to a short-ramp pulse can be suppressed
by adding a quadrature component to the pulse with am-
plitude AQ = λDRAG × dA(t)/dt. Case in point, τr can
be reduced from 60 ns to 30 ns by employing a DRAG
coefficient λDRAG = −0.7. This suggests that advanced
optimal control techniques can be explored to further ac-
celerate the mapping procedure.

Tailoring Heisenberg interactions
Having established the general conditions for adiabatic
mapping between undriven qubit states and Floquet
states, we next orchestrate the microwave pulses to en-
gineer the XXZ Heisenberg interaction in Eq. (1) be-
tween the Floquet qubits. The interaction Hamiltonian
describing the coupling between Q1 and Q2 in Fig. 1a

is Ĥint/~ = Jσ̂
(1)
x σ̂

(2)
x , where J is the static coupling

strength, the superscripts are qubit indices, and the Pauli
operators are defined in the undriven basis. This inter-
action can be described by a Floquet Hamiltonian using
the relation given by Eq. (3),

Ĥint,F/~ = J
∑
a,b,c,d

c
(1)
ab (t)c

(2)
cd (t)ei(ε

(1)
ab +ε

(2)
cd )tf̂

(1)
ab (t)f̂

(2)
cd (t),

(4)

where ε
(k)
ab ≡ ε

(k)
b − ε

(k)
a , c

(k)
ab (t) = 〈ψ(k)

a (t)|σ̂(k)
x |ψ(k)

b (t)〉,
f̂

(k)
ab (t) = |u(k)

a (t)〉F〈u(k)
b (t)|F for qubit Qk, and a, b, c, d ∈

{0, 1} for two qubits. The fast oscillation dynamics can
be neglected by invoking the rotating wave approxima-
tion, leaving only the terms that follow energy conserva-

tion law, ε
(1)
ab + ε

(2)
cd = 0 for abcd ∈ {0110, 1001, 0000,

0011, 1100, 1111}. Inspecting the reduced Hamiltonian
then gives us insight on the types of interactions present
between the qubits.
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On one hand, the terms satisfying ε(1)

01 = ε(2)

01 corre-
spond to the transverse XY spin-exchange interaction
in Eq. (1) with JXY = J〈c(1)

01c
(2)

10 〉t = J〈c(1)

10c
(2)

01 〉t, where
〈...〉t denotes the time-average value. This process fol-
lows the conventional wisdom that an XY exchange-type
interaction between two coupled spins occurs when they
are brought into resonance with each other. On the
other hand, the rest of the reduced Hamiltonian pro-
duces the longitudinal ZZ spin-spin coupling in Eq. (1),

JZZ = J〈c(1)
11 c

(2)
11 + c

(1)
00 c

(2)
00 − c

(1)
00 c

(2)
11 − c

(1)
11 c

(2)
00 〉t. Conse-

quently, we can program the transverse and longitudinal
interactions independently by tailoring the quasienergies
with periodic microwave drives.

We proceed to validate this principle as follows. First,
we engineer a pure transverse XY spin-exchange interac-
tion corresponding to an XX Heisenberg model where
the anisotropy is zero, ∆ = JZZ/JXY = 0. Given
that Q1’s frequency is lower than that of Q2, their

quasienergy differences ε(k)

01 can be brought into reso-
nance if Q1(Q2) is driven with red(blue) detuned mi-
crowaves (Extended Data Fig. 3b). After preparing the
qubits in |10〉, we apply two such pulses (p1 and p2 in
Fig. 1a and top left panel of Fig. 2) with the same du-
ration τg and amplitude AXY at a detuning frequency
of 40 MHz. We observe a coherent population transfer
to state |01〉 that forms a chevron pattern as a function
of τg and AXY, signifying a transverse coupling between
the qubits (Fig. 2a). Notably, although the interaction
occurs between the Floquet qubits in the dressed frame,
the adiabatic connection ascertains the exchange between
the bare qubit states after the reverse mapping, which
bears resemblance to the latching mechanism in classi-
cal electronics. Indeed, at the optimal drive amplitude
AXY/2π = 65.2 MHz (Fig. 2b), |10〉 and |01〉 exhibit co-
herent oscillations at a rate of 3.2 MHz, which is limited
by the static coupling constant J (Methods). The lack of
fast oscillatory behavior is a clear indication of the high
mapping fidelity.

Next, we proceed to induce a pure longitudinal ZZ
spin-spin coupling corresponding to an Ising interaction
between the Floquet qubits. This can be accomplished
by irradiating microwave drives p1 on Q1 and p3 on
Q2 (Fig. 1a and bottom left panel of Fig. 2) at a fre-
quency 40 MHz red-detuned from Q1. p1’s amplitude
is fixed at AXY/2π = 65.2 MHz, while p3 has param-
eterized amplitude AZZ and phase ϕ. For weak driv-
ing, AXY,ZZ � ωq,d, the ZZ rate is given as JZZ ≈
2JAXYAZZ cos(ϕ)/

√
(A2

XY + δ2
1)(A2

ZZ + δ2
2), where δk is

the detuning from Qk’s frequency (Methods). Impor-
tantly, while the transverse coupling rate JXY shown
above is essentially limited by the static coupling strength
J , the longitudinal coupling rate JZZ can be tuned by two
knobs, namely the drives’ amplitudes and phase differ-
ence. We characterize the interaction by first initializing
the two qubits in the superposition state (|0〉 + |1〉) ⊗
(|0〉 + |1〉)/2, applying the pulses as specified, and then
extracting the entangling phase ΦZZ(τg) =

∫ τg
0
JZZ t dt

using tomographic reconstruction assisted by numerical

optimization (Methods). As shown in Fig. 2c, this phase
depends on p3’s amplitude AZZ and phase ϕ, consistent
with our description.

Leveraging the independent controls of the transverse
and longitudinal interactions, we now tailor the inter-
play between them to adjust the anisotropy of the XXZ
Heisenberg interaction model. To this end, we apply p1

and p2 pulses with their amplitude AXY and duration
τg tuned to induce a full |10〉 ↔ |01〉 swap (Fig. 2b).
Pulse p3 is then jointly applied, albeit with parameter-
ized amplitude AZZ and phase ϕ. Incorporating the swap
condition into the tomography analysis, we extract the
longitudinal entangling phase ΦZZ which depends on p3’s
parameters as shown in Fig. 2d. This demonstrates that
the anisotropy of the model given by Eq. (1) can be pro-
grammed in a versatile fashion.

Benchmarking Heisenberg interactions

The programmable Heisenberg interaction endows quan-
tum processors with an extensive quantum gate set as
well as the capability to simulate many-body spin-half
systems. Here we benchmark our Floquet-engineered
Heisenberg interactions by characterizing a suite of rep-
resentative two-qubit gates: the iSWAP, CZ, and SWAP
gates resulting from the XX Heisenberg model, Ising
model, and XXX Heisenberg model, respectively. Ac-
cordingly, an iSWAP unitary arises naturally from a pure
transverse XY interaction with the pulse duration τg cor-
responding to a full swap in Fig. 2b, implemented by ap-
plying p1 and p2. In practice, there is a dynamical ZZ
coupling originating from microwave crosstalk, which can
be tracked and compensated by simultaneously applying
p3 with appropriate amplitude and phase. Likewise, a CZ
gate is realized when p1 and p3 are calibrated to bring up
an entangling phase ΦZZ/2π = 0.25. Finally, we tailor all
three pulses to sculpt an isotropic XXX Heisenberg in-
teraction that leads to a SWAP gate at the correct gate
time τg, at which both iSWAP and CZ conditions are
satisfied. Our calibration steps are detailed in Methods.

To quantify the gates’ performances without state
preparation and measurement (SPAM) errors, we employ
cycle benchmarking (CB)33, which tailors all errors into
stochastic Pauli channels via Pauli twirling and results in
tight bounds on the estimated fidelity (Methods). In ad-
dition to the dressed cycles that include the implemented
gates, we also measure the reference cycle and extract its
errors to estimate the relevant gate fidelities. Figure 3a
shows the Pauli fidelity distribution histograms of both
the reference and dressed cycles corresponding to the in-
tended two-qubit gates. Comparing the dressed cycle
data to the reference cycle result allows us to estimate
the average gate fidelities of the implemented iSWAP,
CZ, and SWAP gates to be 99.32(3)%, 99.72(2)%, and
98.93(5)%, respectively. We note that these gates are
expandable to a continuous fSim gate set4,34, which can
be integrated into arbitrary quantum circuits compati-
ble with fixed-frequency qubits by using more advanced
circuit compilation tools35 or efficient physical Z-gates.
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Our analysis attributes the limitations of these results
primarily to decoherence mechanisms (Methods). In-
triguingly, the Floquet qubits appear to exhibit coher-
ence times deviating from those of the bare qubits, as
shown in Fig. 3b. The measurements are performed us-
ing nominal energy relaxation and echo dephasing pro-
cedures on the bare Q1, however, with the addition of a
microwave pulse applied 40 MHz red-detuned from its
|0〉 ↔ |1〉 transition during idle periods. The results
are post-selected to yield the populations of the desired
states, and the experiment is repeated over twenty it-
erations to eliminate any potential outlier. While the
dynamics remain the same at small drive amplitudes, T1

tends to increase while TE2 tends to decrease at strong
driving before nonadiabaticity sets in. Interestingly, we
also discover a heating mechanism that enlarges the ex-
cited state population in the bare qubit at the end of
the 355-µs-long |0〉 → |1〉 measurement sequence, with
P final
|1〉 increases with the driving amplitude (Fig. 3b, in-

set). We include additional details in Methods, and hope
that future investigations can find efficient approaches to
mitigate these effects, reminiscent of the recent progress
in driven ultracold atom systems36.

Floquet qutrit and three-qubit gate

So far, the fundamental and universal importance of spin
physics motivates our discussion to portray the imple-
mented Floquet qubits as ideal spin-half’s. Nevertheless,
many solid-state systems, including the transmon, nat-
urally include multiple relevant energy levels. Making
use of them expands the Hilbert space, allowing more
information to be encoded, which leads to hardware-
efficient execution of quantum algorithms37,38 and has-
tens the development of fault-tolerant computation39,40.
We now show that the presented protocol can be tailored
for multi-level systems, thereby paving new pathways for
quantum information processing using Floquet qudits.

Specifically, we leverage the techniques described so far
to induce a transverse qutrit-qutrit interaction between
the states |11〉 and |02〉. Although the cross-Kerr cou-
pling has been explored41, such an energy-exchange in-
teraction is still absent in fixed-frequency qutrits. While
this is a useful ternary gate itself, we presently show
that integrating it in a sequence involving multiple qubits
allows the implementation of a three-body controlled-
controlled-Z gate (CCZ)28, which plays an important role
in quantum applications such as factorization42,43 and
quantum error correction44,45. To this end, we add to the
experiment Q3, which is coupled to the right side of Q2 in
Fig. 1a, and use Q2 and Q3 as control qubits (subscripted
c), while Q1 is designated as the target (subscripted t).

Figure 4a depicts the energy diagram of Q2 and Q3.
Our approach to engineer the interaction primarily in-
volves applying a microwave pulse to Q3 at a frequency
red-detuned from its |1〉 ↔ |2〉 transition to create a Flo-
quet qutrit such that the control Floquet states |11〉c and
|02〉c become degenerate. After initializing the control
qubits in |11〉c, we apply such a pulse with ramp time
τr = 170 ns, DRAG coefficient λDRAG = −0.6, and vary-
ing amplitude AXY and duration τg, which are tailored
to ensure adiabaticity at a red-detuning of 22 MHz. The
transverse interaction between |11〉c and |02〉c then man-
ifests into an asymmetric chevron pattern with respect
to AXY and τg in Fig. 4b. Interestingly, we observe that
the optimal swap condition occurs at a stronger ampli-
tude relative to the symmetric point.

A CCZ unitary can be implemented using the sequence
given in Fig. 4c. The final CPhase gate on the con-
trol qubits are tuned to bring the effective operation
on them to be Î ⊗ Î at the end of the sequence. Af-
ter calibrating the individual gates, we verify the entan-
glement between the three qubits by extracting the Z-
phase of the target qubit (Q1) for different control states,
and observe a phase shift of approximately π for |10〉c
(Fig. 4d), which evinces the CCZ effect. The sequence
can be further sandwiched between single-qubit rotations
on Q1 to construct a Toffoli gate. The process can
be straightforwardly validated by measuring the truth
table, from which we extracted a fidelity of 92.9(1)%
(Fig. 4e). Finally, we employ CB to benchmark the CCZ
gate (Fig. 4f), achieving a fidelity of 96.18(5)%, with the
main error resulting from decoherence (Methods).
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Fig. 4. Floquet qutrit and three-qubit CCZ gate. a, Energy diagram of two coupled transmon circuits Q2 and Q3, with
the subscript c denoting they are control qubits. A microwave drive with amplitude AXY is applied at a frequency red-detuned
from Q3’s |1〉 ↔ |2〉 transition to create a Floquet qutrit. b, Chevron pattern showing a coherent flip-flop between Q2 and
Q3’s states |11〉c and |02〉c, which depends on the amplitude AXY and duration τg of the pulse. The red-detuning is 22 MHz,
the ramp time is τr = 170 ns, and the DRAG coefficient is λDRAG = −0.6. c, Gate sequence used to implement a three-qubit
CCZ unitary, with Q1 as the target qubit and Q2, Q3 as the control qubit pair. d, A conditionality measurement, using a

Ramsey-like sequence {R(t)
Y (π

2
), CCZ, R

(t)
Z (φ), R

(t)
Y (π

2
)}, reveals the dependence of Q1’s phase on the states of Q2 and Q3 under

the CCZ gate implemented using the sequence in c, which is characteristic of a three-body entanglement. e, Truth table of
the implemented Toffoli gate with a corresponding fidelity of 92.9(1)%. f, Cycle benchmarking result showing the Pauli fidelity
distributions of the three-qubit reference cycle and CCZ dressed cycle, with the solid vertical lines indicating the average values.
The average gate fidelity is estimated to be 96.18(5)%.

Outlook

Our work embodies a transformative application of Flo-
quet engineering in superconducting circuits where pe-
riodic drives are used to map static qubits to Floquet
qubits with modifiable quasienergies, granting access to
an unconventional tuning channel. We demonstrate the
practicality and versatility of this approach by synthe-
sizing Floquet qubits and qutrits, then realizing an XXZ
Heisenberg interaction between them with fully tunable
anisotropy. The robustness of the scheme is reflected
from the high gate fidelities, while the current limitations
are straightforward to overcome. On one hand, the coher-
ence times of the fixed-frequency transmon qubits in the
experiment are relatively low, therefore we expect bet-
ter performance in state-of-the-art devices. On the other
hand, the coupling rate is primarily limited by the static
coupling constant J , which can be increased substantially
in future devices. In addition, the pulse shape used in this
work is quite simple, so we believe that advanced STA
techniques can be employed to engineer shorter gates,
further reducing errors from dephasing in the future. We
note that the full potential of this framework lies upon its
adaptation to other synthetic fixed-frequency quantum
architectures with better projected performance such as
fluxonium quantum processor46.

Having illustrated the useful properties of Floquet
qubits and set the stage for immediate improvements, we
envision the following avenues to propel the concept in
complementary directions. The protocol presented here
involves transforming back to the static qubit so normal
operations such as readout and single-qubit gates can be
employed without recalibration. In the future, a Floquet
qubit can be permanently defined by applying a contin-
uous periodic drive in principle, streamlining the process
and unlocking new opportunities for novel control and
readout methods24. This approach also allows in-situ
tuning of the qubit frequencies, thus provides a practical
solution for problems arising from two-level-system de-
fects and spectral crowding. In another route, the ramp
time can be reduced substantially if we operate in the
diabatic regime, where the mapping is close to ideal de-
spite finite transition between the Floquet states. We ex-
pect the potential development of optimal control within
the Floquet framework to provide a reliable approach in
this regime. Last but not least, the heating effect which
correlates with the reduction in T2 reminisces a similar
effect in cold atom systems which has been successfully
suppressed36. This calls for deeper understanding of the
quantum thermodynamics in driven solid-state systems
and possible mitigation strategies in the future.
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METHODS

Experimental setup

Extended Data Figure 1 shows the cryogenic setup and
electronic wiring diagrams. The superconducting quan-
tum processor used to perform the experiment is housed
in a dilution refrigerator and operates at approximately
12 mK. The wiring is separated into two sides: the in-
put side with predominantly attenuators, and the output
side with mainly circulators and amplifiers. A combina-
tion of commercial K&L and in-house infrared Eccosorb®

low-pass filters are added on both sides to mitigate high-
frequency noise. The sample box is protected by tri-
layer shields, with the copper shield further painted with
Berkeley black mixture consisting of STYCAST 2850FT,
silica, and carbon powder. The enclosure is made light-
tight using indium seals. The parametric amplifier is
placed inside a separate magnetic shield, and its pump
line is also connected to low-pass filters to ensure sup-
pression of high-frequency noise.

Due to resource constraint, only four qubits are con-
nected to external circuitry during the experiment. All
the input and output signals are diverted via directional
couplers and power splitters to a spectrum analyzer for
calibration. The pulses used to control the qubits are
generated by an arbitrary waveform generator (AWG) at
1 GSa/s and upconverted using IQ mixers in combina-
tion with a local oscillator (LO) carrier tone. DC offsets
using bias tees and local phases of the signals are cali-
brated to null carrier leakage. These offset parameters
are found numerically by minimizing the signals at the
carrier frequency using active feedback via the spectrum
analyzer (SA) and COBYLA optimization.

The input signals are attenuated, filtered, and DC-
blocked at room temperature to reduce noise inherent to
electrical components inside the AWG. 26 dB of addi-
tional attenuation is added at the outputs of the AWG
to fully utilize its dynamic range. The readout pulses are
upconverted in a similar fashion. The upconversion cir-

Component Brand Model
Dilution fridge BlueFors XLD
Control chassis Keysight PXI M9023A
AWG Keysight PXI M3202A
Digitizer AlazarTech ATS9373
LO RF source Keysight MXG N5183B
Spectrum analyzer Keysight N9320B
Frequency standard SRS FS725
Para. amplifier MIT LL TWPA
HEMT LNF LNC4 8C
TWPA pump Hittite HMC M2100
IQ mixer Marki MLIQ-0416
Bias-Tee Mini-Circuits ZX85-12G-S+
Attenuator XMA 4882-6240
IR filter mixture Laird Eccosorb®CR-110

Extended Data Table I. Component brands and models used
in the experimental setup.

cuit wiring is shown in the left panel of Extended Data
Fig. 1c. While the qubits are manipulated via individ-
ual on-chip coplanar traces, the readout is performed in
multiplexed fashion via a common bus. The microwave
tones going into the fridge are checked using the SA for
consistency.

The signal reflected from a readout resonator is
circulated and amplified by a traveling wave parametric
amplifier (TWPA) at the mixing chamber (MXC) plate,
then by a high-electron-mobility-transistor (HEMT)
amplifier at the 4-K plate, and finally by a room tem-
perature amplifier before reaching the downconversion
circuit. Here, an IQ mixer combines the same LO tone
with the outgoing signal to produce an IF pulse that car-
ries the information about the qubit. The measurement
signal is further amplified at room temperature and goes
through low-pass filters to suppress additional noise
coming from the amplification. Finally, it is digitized
at a rate of 1 GSa/s by an analog-to-digital converter
(ADC) board attached directly to the PXI slot of the
acquisition computer and demodulated via software.
The downconversion circuit is shown in the right panel
of Extended Data Fig. 1c. All electronic instruments
are synchronized using a rubidium atomic clock. The
components used to construct the experiment are listed
in Extended Data Table I.

Device tuneup and characterization

The device used in this experiment consists of eight
single-junction transmon qubits. Each is formed by two
superconducting electrodes sandwiching a thin layer of
aluminum oxide, resulting in a Josephson junction with
Josephson energy EJ shunted by a capacitor with charg-
ing energy EC . These characteristic energies define the
spectrum of the qubit, resembling that of an anhar-
monic oscillator with transition frequency between the
first two levels ω01/2π ≈

√
8EJEC−EC and anharmonic-

ity α ≈ −EC14. They are pairwise-coupled to mutual
coplanar-waveguide (CPW) resonators (Fig. 1a), result-
ing in an effective capacitive coupling29. These couplers
are designed to have frequencies at around 7 GHz and
a resonator-qubit coupling strength of approximately 70
MHz. Each qubit is coupled to a separate control line
and a CPW readout resonator. All readout resonators
are coupled to a common bus which also serves as a Pur-
cell filter.

The extracted parameters of the qubits and their read-
out used in this experiment are listed in Extended Data
Table II. The readout and qubit frequencies are measured
using microwave spectroscopy. The TWPA pump tone is
calibrated using a vector network analyzer to optimize
the signal-to-noise-ratio. The readout pulse is set to be
1-µs long, and its amplitude is adjusted to optimize the
measurement fidelity FRO(|i〉) = P (i|i), where P (x|y) is
the probability that the qubit initialized in state |y〉 is
measured to be in state |x〉. The qubit-state-dependent
readout signals are shown on the IQ planes in Extended
Data Fig. 2a.
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The relaxation time T1 and echo dephasing time TE2
are extracted by applying a pulse sequence with variable
length to the qubit, measuring the signal from the read-
out resonators, then fitting the data to appropriate func-
tions with a decay parameter. Typical coherence time
statistics consisting of ensembles of 100 individual mea-
surements are shown in Extended Data Fig. 2b. We also
measure the coherence statistics of the |1〉 ↔ |2〉 transi-

tion for Q3, with T
(12)

1 = 46.96 µs and T
E,(12)

2 = 20.97 µs.

Single-qubit pulses have a Gaussian shape and are set
to be 30-ns long. A series of Ramsey sequences is applied
to extract the correct qubit frequencies. Their ampli-
tudes are calibrated for RX(π/2) pulses by repeatedly ap-
plying even numbers of them up to npulse = 200 and mea-
suring the outcomes to zero-in the correct parameters.
By using the RX(π/2) gate in combination with virtual-
Z gates, single qubit rotations can be implemented using
the ZXZXZ decomposition47, which significantly reduces
the calibration time and complexity. Single-qubit gate fi-
delities extracted via streamline randomized benchmark-
ing are included in Extended Data Table II.

Classical microwave crosstalk is present in the device
and degrades its performance via two distinct processes.
Firstly, an off-resonant microwave tone applied to the
qubit slightly dresses its resonant frequency as discussed
in the main text, leading to phase errors during execu-

tion of intended quantum circuits. Secondly, a leaked mi-
crowave tone applied to one qubit at the frequency of an-
other qubit coupled to it induces a ZX interaction, which
is commonly known as the cross-resonance effect, lead-
ing to spurious entanglement between the qubits. Thus,
it is important to detect and suppress such crosstalk to
improve chip-scale performance. To accomplish this, ad-
ditional microwave tones are applied simultaneously to
neighboring qubits during the gate operation of the in-
tended qubits. Their amplitudes and phases are tuned up
to destructively interfere with the crosstalk tones. The
parameters are further optimized using covariance ma-

Q1 Q2 Q3

ω01/2π (GHz) 5.23 5.32 5.44
α (GHz) -0.26 -0.27 -0.27
ωRO/2π (GHz) 6.23 6.32 6.44
T 1 (µs) 70.67 57.81 60.35

T
E
2 (µs) 63.62 69.87 66.77
FRO (|0〉) 99.6% 99.3% 99.1%
FRO (|1〉) 98.2% 97.4% 97.5%
FRO (|2〉) 96.8% 96.8% 95.8%
F1Q (isolated) 99.88(1)% 99.85(1)% 99.80(1)%
F1Q (joint) 99.68(1)% 99.4(1)% 99.72(3)%

Extended Data Table II. Relevant device parameters.



10

St
at
e

I (arb. unit)

Q
(a
rb
.u
ni
t)

H
is
to
gr
am

Time (μs) Time (μs) Time (μs)

H
is
to
gr
am

H
is
to
gr
am

I (arb. unit)

Q
(a
rb
.u
ni
t)

St
at
e

I (arb. unit)

Q
(a
rb
.u
ni
t)

St
at
e

a

b

-250 -250 -250250 250 250

400

200

200 100

0 0 0

-200

-200 -100
-400

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0.0
50 50 060 60 2070 70 4080 80 60 80

0.0 0.0

0
0 0 0

1 1 1

2 2 2

0 0

Q1

Q1

T1
T2

Q2

Q2

Q3

Q3

E
T1
T2E

T2

T1T2 T1

E

(12)E, (12)

Extended Data Fig. 2. Device characterization. a, Dispersive readout histogram showing the IQ signal of the resonators
corresponding to the qubits in state |0〉, |1〉, and |2〉. b,. Coherence statistics acquired continuously for 100 iterations. The
vertical lines indicate their average values.

trix adaptation (CMA) with simultaneous randomized
benchmarking. Typically, the simulataneous single-qubit
gate errors are considerably higher than the isolated er-
rors (Extended Data Table II). Although we routinely
observe high isolated single-qubit gate fidelities imme-
diately following a calibration round, the simultaneous
fidelities tend to saturate toward the reported numbers,
which are more relevant for the present experiment.

Using optimal readout and single-qubit gate pa-
rameters, a readout confusion matrix is extracted
for each qubit by preparing it in a certain state and
measuring the probability for it to be in |0〉, |1〉, or
|2〉 states. This results in a matrix that is ideally
diagonal with entries equal to 1. Thus, a correction
matrix can be found by inverting the confusion matrix.
The correction matrix is subsequently applied to all
measurement outcomes to compensate for readout errors.

Floquet states and quasienergies
We consider a periodically driven qubit system described
by the Hamiltonian

Ĥq(t)/~ = −ωq

2
σ̂z +A cos(ωdt+ ϕ)σ̂x. (5)

For a Hamiltonian with a period of T = 2π/ωd, we can
find a time-periodic Floquet state, |u(t)〉F = |u(t+T )〉F,
with quasienergy ~ε through the Floquet equation,(

Ĥq(t)− i~∂t
)
|u(t)〉F = ~ε|u(t)〉F. (6)

Note that this equation is connected to the Schrödinger
equation via the relation |u(t)〉F = eiεt|ψ(t)〉. To find

the solutions of Eq. (6), we write the Floquet state as a
Fourier series comprising of time-independent states |uk〉,
where k is an integer,

|u(t)〉F =
∑
k

eikωdt|uk〉, (7)

and then inserting it into the Floquet equation. By
grouping terms which have the same Fourier frequen-
cies, we can obtain ε|uk〉 = (−ωq

2 σ̂z + kωd)|uk〉 +

eiϕ A2 σ̂x|uk−1〉 + e−iϕ A2 σ̂x|uk+1〉. Under the conditions
A � ωq, ωd and ωq ≤ 2ωd, this can be put into the ma-
trix form,[

-
ωq

2 σ̂z + kωd eiϕ A2 σ̂x

e−iϕ A2 σ̂x -
ωq

2 σ̂z + (k − 1)ωd

][
|uk〉
|uk-1〉

]
= ε

[
|uk〉
|uk-1〉

]
.

(8)
Its eigenstates yield the Floquet basis states using
Eq. (7),

|u+(t)〉F ∝
(
δ +
√
A2 + δ2

)
|0〉+ e−i(ωdt+ϕ)A|1〉,

|u−(t)〉F ∝
(
δ −
√
A2 + δ2

)
|0〉+ e−i(ωdt+ϕ)A|1〉, (9)

and its eigenvalues give the quasienergies of
eikωdt|u±(t)〉F as

εk± =

(
k − 1

2

)
ωd ±

1

2

√
A2 + δ2, (10)

where δ = ωd − ωq is the drive detuning. In this work,
we allocate the index of the Floquet basis to match
with that of the bare basis, i.e., |〈n|un(t)〉F|2 > 0.5.
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Extended Data Fig. 3. Floquet quasienergies. a, Transi-
tion energies between |u0(t)〉F and |u1(t)〉F with drive ampli-
tude 200 MHz, qubit frequency 5.23 GHz, and varying drive
detuning δ. The dashed lines represent the qubit frequency.
b, Dependence of ε01 on the drive amplitude. By driving
qubit Q1(Q2) with red(blue) detuned microwave, two qubits
can be brought into resonance.

Specifically, if δ > 0, we define |u+(−)(t)〉F as |u0(1)(t)〉F
and ε+(−) as ε0(1), otherwise the index is inverted.
Thus, the quasienergy difference, ε01 ≡ ε1− ε0, abruptly
changes at δ = 0 (Extended Data Fig. 3a).

Heisenberg interactions between Floquet states
As described by Eq. (4), the interaction strengths of the
Floquet-engineered Heisenberg Hamiltonian are given as

JXY = J〈c(1)
01 c

(2)
10 〉t = J〈c(1)

10 c
(2)
01 〉t,

JZZ = J〈c(1)
11 c

(2)
11 + c

(1)
00 c

(2)
00 − c

(1)
00 c

(2)
11 − c

(1)
11 c

(2)
00 〉t, (11)

where c
(n)
ab = 〈ψ(n)

a (t)|σ̂(n)
x |ψ(n)

b (t)〉 is for qubit Qn

and 〈...〉t denotes the time-average value. For the
transverse (XY) spin-exchange interaction, we drive
Q1(Q2) with red(blue) detuned microwaves to bring their

quasienergy differences ε
(n)
01 into resonance. Specifically,

this condition is satisfied for quasienergy transitions

eikω
(n)
d t|u(n)

0 (t)〉F ↔ ei(k+1)ω
(n)
d t|u(n)

1 (t)〉F when mapped
by a certain drive amplitude (Eq. (10) and Extended
Data Fig. 3b). Accordingly, the Floquet states’ coeffi-
cients read

c
(1)
01 = 〈ψ(1)

0 (t)|σ̂(1)
x |ψ

(1)
1 (t)〉

= e−iε
(1)
01 t〈u(1)

− (t)|Fσ̂(1)
x eiω

(1)
d t|u(1)

+ (t)〉F (12)

and

c
(2)
10 = 〈ψ(2)

1 (t)|σ̂(2)
x |ψ

(2)
0 (t)〉

= eiε
(2)
01 t〈u(2)

− (t)|Fe−iω
(2)
d tσ̂(2)

x |u
(2)
+ (t)〉F. (13)

When the blue- and red-detuned drives have the same
detuning |δ| and amplitude A, the time-average XY in-
teraction strength is obtained as

|JXY| = J |〈c(1)
01 c

(2)
10 〉t| = J

(|δ|+
√
A2 + δ2)2

4(A2 + δ2)
, (14)

using Eq. (9). On the other hand, the relevant coefficients
for the longitudinal (ZZ) spin-spin interaction read

c
(n)
±±= 〈u(n)

± (t)|Fσ̂(n)
x |u

(n)
± (t)〉F

=
An(δn ±

√
A2
n + δ2

n) cos
(
ω

(n)
d t+ ϕn

)
A2
n + δk

(
δn ±

√
A2
n + δ2

n

) . (15)

When the microwave drives for Q1 and Q2 are both de-
tuned to red or blue,

c
(1)
11 c

(2)
11 + c

(1)
00 c

(2)
00 − c

(1)
11 c

(2)
00 − c

(1)
00 c

(2)
11

= c
(1)
++c

(2)
++ + c

(1)
−−c

(2)
−− − c

(1)
++c

(2)
−− − c

(1)
−−c

(2)
++

=
4A1A2 cos

(
ω

(1)
d t+ ϕ1

)
cos
(
ω

(2)
d t+ ϕ2

)
√

(A2
1 + δ2

1)(A2
2 + δ2

2)
. (16)

For ω
(1)
d = ω

(2)
d , the time-averaged ZZ interaction

strength is thus given as

JZZ= J〈c(1)
11 c

(2)
11 + c

(1)
00 c

(2)
00 − c

(1)
00 c

(2)
11 − c

(1)
11 c

(2)
00 〉t

= J
2A1A2 cos(ϕ1 − ϕ2)√

(A2
1 + δ2

1)(A2
2 + δ2

2)
. (17)

ZZ interaction measurements
The ZZ rate can be estimated using a time-efficient and
reliable Ramsey-like experiment. The sequence consists
of initializing one qubit in a superposition state, then ap-
plying the intended pulses and measuring it along the Z
axis. The Z rotation resulting from the frame frequency
difference between the bare qubit and the Floquet qubit
manifests as an oscillation of the qubit’s population with
respect to the pulse duration. For a finite spin-spin cou-
pling, the two oscillation frequencies corresponding to
the other qubit in the ground and excited states are sub-
tracted to find the ZZ rate. As this always works for both
zero and finite XY coupling (Extended Data Fig. 4a-d),
it is a versatile method to approximate the longitudinal
coupling. However, its accuracy is limited by the fast
oscillations and subsequently the fitting errors.

To accurately measure the ZZ angle at the end of a
pulse with a fixed duration τg, a sequence with the ad-
dition of a single-qubit Z gate with a variable phase ϕ is
used. The measured qubit population depends on ϕ, and
ΦZZ is the phase difference corresponding to the other



12

b d f

a

(a, b) (c, d) (e, f)
(g, h)

c e g

h

140 140 -0.50 -0.50

-0.50 -0.50140140

1.0 1.0 1.0

1.0

1.0

1.01.01.0

0.8 0.8 0.8

0.8

0.8

0.80.80.8

0.6 0.6 0.6

0.6

0.6

0.60.60.6

0.4 0.4 0.4

0.4

0.4

0.40.40.4

0.2 0.2 0.2

0.2

0.2

0.20.20.2

0.0 0.0 0.0

0.0

0.0

0.00.00.0

175 175 -0.25 -0.25

-0.25 -0.25175175

210 210 0.00 0.00

0.00 0.00210210

245 245 0.25 0.25

0.25 0.25245245

280 280 0.50 0.50

0.50 0.50280280

P |
00

⟩,P
|0
1⟩

P |
00

⟩,P
|0
1⟩

P |
10

⟩
P |
10

⟩

P |
01

⟩
P |
01

⟩

P |
00

⟩,P
|0
1⟩

P |
00

⟩,P
|0
1⟩

τg (ns) τg (ns) φ/2π φ/2π

φ/2π φ/2πτg (ns)τg (ns)

XY XYOFF OFF

ON ON

XY

ZZ

ZZ

XYOFF

0

0

OFF

ON ON

p1 p1p1 p1

p3 p3p2 p2
p3 p3

|+⟩ |+⟩RY(-π/2) |+⟩ |+⟩

|c⟩ |c⟩|c⟩ |c⟩

π

π

RZ(φ)

RZ(φ)

RY(-π/2) RY(-π/2)

RX(±π/2)

c=0

c=0

c=0

c=0

c=1

c=1

c=1

c=1

c=0

c=0

c=0

c=0

c=1

c=1

c=1

c=1

Extended Data Fig. 4. Spin-spin interaction measurement. a-d, Dependence of Q1’s Z rate on Q2’s state, with transverse
coupling off (a-b) and on (c-d). e-f, Dependence of Q1’s Z phase on Q2’s state, without transverse coupling. The phase
difference results from ΦZZ. g-h, When the two-qubit states |10〉 and |01〉 are swapped via XY coupling, the sequence instead
includes the projection gate on Q2. The angle polarity is chosen according to the initial control state. The analysis takes into
account the 2π phase difference between the curves when ΦZZ = 0 to mimic the result without transverse coupling.

qubit being in |0〉 and |1〉 states (Extended Data Fig. 4e-
f). The measurement also works when there is a complete
population swap between |10〉 and |01〉. In this case, the
Z gate is applied to the other qubit instead, with the
projection gate’s polarity depending on its initial state.
ΦZZ = 0 then corresponds to the phase difference of 2π,
which can be subtracted from the results to give over-
lapping trajectories for zero ZZ coupling. We note that
since the qubit is expected to be in the ground state if
there is no phase gate induced by the pulse, a similar ap-
proach is used to calibrate single-qubit Z gates. Finally,
the method can be extended to analyze a three-qubit
CCZ entanglement.

For simultaneous transverse coupling resulting in
arbitrary swapping angle, we find tomographic recon-
struction to be the most reliable. In this approach,
quantum state tomography and quantum process tomog-
raphy are performed to find the state or process matrices
resulting from the applied gate. An optimization routine
is then utilized to extract the swapping (XY) and ZZ
angles. The accuracy of this method is inherently limited
by the SPAM errors of the tomography procedures.

Two-qubit gate calibration
The programmable interactions can be employed to im-

plement two-qubit gates in a straightforward manner.
Since the XY and ZZ operations commute, we can de-
compose the Heisenberg unitary as ÛXXZ(ΘXY,ΦZZ) =

e−iĤXXZt/~ = ÛXY(ΘXY)× ÛZZ(ΦZZ), where

ÛXY(ΘXY) = exp

[
−iΘXY

2
(X̂X̂ + Ŷ Ŷ )

]

=

1 0 0 0
0 cos (ΘXY) −i sin (ΘXY) 0
0 −i sin (ΘXY) cos (ΘXY) 0
0 0 0 1

 (18)

and

ÛZZ(ΦZZ) = exp

[
−iΦZZ

2
ẐẐ

]

=


e−iΦZZ/2 0 0 0

0 eiΦZZ/2 0 0
0 0 eiΦZZ/2 0
0 0 0 e−iΦZZ/2

 .

(19)

Naturally, the coherent flip-flop between |10〉 and
|01〉 in Fig. 2b is equivalent to the rotation of the
transverse coupling angle ΘXY, with ΘXY = π/2 cor-
responding to a full swap (the oscillation angle is
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2ΘXY). The measured longitudinal coupling angle ΦZZ

in Fig. 2c illustrates a control-phase entangling opera-
tion up to local Z rotations, with ΦZZ = π/2 corre-

sponding to a CZ gate following the relation ÛCZ =

exp
[
−iπ(ẐẐ + Î Î − ẐÎ − ÎẐ)/4

]
. Therefore, two-qubit

gates can be calibrated up to local Z gates using the ob-
served interactions. Notably, the realized iSWAP and
SWAP gates arise directly from the XX and isotropic
XXX Heisenberg models, while the CZ gate results from
the pure spin-spin coupling of the transverse-field Ising
model. In sum, the realized Floquet system can be used
as a robust quantum many-body simulator with high-
fidelity gates as consequences.

With the connection between different interaction
models and gate unitaries established, the presented
gates are calibrated as follows. (i) First, a frequency
sweep using a large-amplitude microwave pulse is
performed to exclude spectrally crowded regions. (ii)
The pulses are applied at the appropriate frequencies,
with p1 and p2 facilitating the transverse coupling,
while p1 and p3 inducing the longitudinal coupling.
(iii) A complete swap angle ΘXY = π/2 and zero ZZ
angle, ΦZZ = 0, (cf. Fig. 2) correspond to an iSWAP
gate, up to local Z gates. The measurement can be
performed with the intended gate repeated for an odd
number of times, amplifying coherent errors, to find
the correct pulse parameters. (iv) With p2 off, there
is no transverse coupling, and p3 can be tuned to get
ΦZZ = π/2, giving the CZ gate. (v) With p1 and p2

calibrated to give a complete population swap, p3 can
be tuned to get ΦZZ = π/2, giving the SWAP gate. (vi)
The local phase gates are implemented in software by
tracking the frame of the qubit and imparting relative
phases on subsequent single-qubit pulses. Their angles
are calibrated via least square optimization using tomo-
graphic measurement of the final states. Using these
calibration steps, we realized a 230-ns-long iSWAP gate
with {A1, A2, A3}/2π = {71.7, 65.2, 21.35} MHz, a 180-
ns-long CZ gate with {A1, A3}/2π = {71.2, 28.5} MHz,
and a 260-ns-long SWAP gate with {A1, A2, A3}/2π =
{96.9, 28.5, 14.2} MHz. As Q3’s |1〉 ↔ |2〉 frequency is
close to that of Q1’s |0〉 ↔ |1〉, we implemented the
CZ gate by applying p1 and p3 at a frequency 40 MHz
blue-detuned from Q1 to avoid any spectator leakage
error.

Dynamical phase and Z gates

In general, integrating a gate resulting from the trans-
verse coupling into a quantum circuit must overcome two
technical requirements. First, while the XY interaction
is facilitated between the Floquet qubits in the dressed
frame, the measurements and single-qubit gates are per-
formed on the bare qubits with different transition fre-
quencies. This leads to an accumulation of single-qubit
phases that depend on the time at which the gate is ap-
plied, and the accumulation rate is equal to the difference
in qubit frequencies48. To verify this effect, we apply
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Extended Data Fig. 5. Dynamical phase accumula-
tion. After preparing the qubits in the superposition state
(|0〉+ |1〉)⊗(|0〉+ |1〉)/2, calibrated pulses are employed to fa-
cilitate |10〉 and |01〉 coherent exchange (inset). Tomographic
measurement reveals the qubits’ Z phases which are linearly
dependent on the time at which the swap pulses are applied.

pulses p1 and p2 calibrated to implement a perfect swap,
then measure the local Z phases ϕ1,2 of the qubits. Upon
sweeping the delay time before applying the pulses, we
find these phases to increase linearly, and the extracted
slope is, within measurement uncertainty, the same as
the qubits’ frequency difference, as shown in Extended
Data Fig. 5. Including other gates before this transverse
swap has the same effect (gap between the data points).
Thus, the Z gate corrections must take this dynamics into
account.

Second, the ZXZXZ single-qubit gate decomposition
using virtual-Z gates comes with the following caveats.
This scheme realizes arbitrary single-qubit rotation via
Euler decomposition47,

Û(θ, φ, λ) = R̂Z(φ)R̂X(θ)R̂Z(λ) (20)

= R̂Z

(
φ− π

2

)
R̂X

(π
2

)
R̂Z(π − θ)R̂X

(π
2

)
R̂Z

(
λ− π

2

)
.

Here, the Z rotation is implemented virtually by keep-
ing track of all the physical single-qubit X gates and re-
defining the rotation axes for all the gates following an
intended Z gate, a procedure known as phase carrying. A
compatible two-qubit unitary must therefore be a phase
carrier. This procedure thus breaks down when there
is an energy exchange gate in the circuit, for instance,√

iSWAP. In addition, since X̂X̂ and Ŷ Ŷ do not com-
mute with single-qubit Ẑ, it is problematic to implement
virtual-Z gates in the circuit to correct for the additional
single-qubit Z phases induced during the operations35.

In this work, we utilize the special property of
the swap angle ΘXY = π/2, (R̂Z(ϕ1) ⊗ R̂Z(ϕ2)) ×
ÛXXZ(π/2,ΦZZ) = ÛXXZ(π/2,ΦZZ)×(R̂Z(ϕ2)⊗R̂Z(ϕ1)),
to compile the quantum circuits. The induced Z phases
occured during the gate operations can also be cor-
rected by applying virtual-Z gates afterward48. The
circuit compilation thus requires two additional steps
at each iSWAP or SWAP cycle, which can be satisfied
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by computing and adding virtual-Z gates after them:
(i) correction gates for Z phases must account for
the dynamical phase accumulation due to the frame
difference, and (ii) the phase tracking for virtual-Z
gates must switch the frames. In practice, condition (i)
only requires accounting for the time interval between
consecutive gates, and condition (ii) is fulfilled by
adding/subtracting the carrying phase, which is an
internal part of the compilation software. We note
that SU(2) compilations that are compatible with any
two-qubit gate have been recently introduced35, so other
gates in the XY family are in principle fully compatible
with any platform supporting native virtual-Z gates.

CCZ gate calibration

Three different gates must be calibrated for the CCZ se-
quence: (i) a |11〉c ↔ |02〉c iSWAP gate between Q2 and
Q3 that does not induce any spectator ZZ error between
Q1 and Q2, (ii) a CZ gate between Q1 and Q2 that does
not induce any spectator error, as this can lead to an
effective ZZ entanglement after the shelving for control
state |11〉c, and (iii) a CPhase gate at the end to ensure
an overall identity operation on Q2 and Q3, which must
not induce extraneous ZZ between Q1 and Q2. We tune
up these gates as follows.

Similar to XY gates between the computational levels,
a frequency sweep is performed to find an appropriate de-
tuning from Q3’s |1〉 ↔ |2〉 transition. A single drive tone
is then applied to Q3 at this frequency, its duration and
amplitude are varied until a good |11〉c ↔ |02〉c chevron
pattern is observed. The ZZ angle between Q1 and Q2 is
measured at the end of the pulse and then cancelled by
applying an additional pulse on Q1. It is important to
completely cancel this spurious coupling, since its pres-
ence results in a non-zero ZZ phase between Q1 and Q2

for the control state |11〉c, rendering the shelving scheme
ineffective. We found the best detuning to be 22 MHz be-
low Q3’s |1〉 ↔ |2〉 transition, and optimal pulse duration
to be 280 ns with a ramping time of 120 ns. Similarly, a
pulse on Q3 is added during the CZ gate operation on Q1

and Q2 to null any spurious effect on the shelved state.
To satisfy the more stringent requirements, we increase
the ramping time to 90 ns and gate time to 210 ns.

After applying three pulses consecutively, the residual
conditional phase ΦZZ between Q2 and Q3 is measured.
We then apply a CPhase gate between them to invert
this conditional phase, and at the same time cancel the
residual ZZ coupling between Q1 and Q2. To satisfy the
requirements, the gate consists of three microwave pulses
applied to all three qubits. The pulses on Q2 and Q3 are
tuned up first to negate all the entanglement between
them. Then, the remaining ZZ phase between Q1 and
Q2 is cancelled by applying a small-amplitude pulse to
Q1. The tuned up CPhase gate is 180-ns long, with a
ramp time of 80-ns, bringing the total sequence duration
to 950-ns. The calibration is performed manually in
this simple fashion, so we expect even better gate
performance with future optimization.
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Extended Data Fig. 6. Cycle benchmarking sequence.
The sequence consists of a cycle of preparation gates BP ,
followed by a cycle of Pauli gate P . The gate of interest G is
interleaved between cycles of randomly-sampled Pauli gates
for m different iterations. Finally, the qubits are rotated to
the original eigenstates via a cycle of B†C(P )’s. A reference

sequence has the identity gate replacing the G cycle.

Cycle benchmarking
Cycle benchmarking (CB)33 is a scalable benchmark-
ing protocol for characterizing errors and noise in cy-
cles containing parallel gate operations. Unlike random-
ized benchmarking (RB), which tailors all errors into a
global depolarizing channel via Clifford twirling, CB tai-
lors all errors into stochastic Pauli channels via Pauli
twirling. To measure the errors for a Pauli channel
P ∈ {I,X, Y, Z}⊗n for a cycle of operations containing
n qubits, the register of qubits is first prepared in an
eigenstate of P via single-qubit basis operations BP , fol-
lowed by a cycle of randomly-sampled Pauli gates P , af-
ter which the cycle or gate of interest G is interleaved be-
tween alternating cycles of randomly-sampled Pauli gates
for m iterations, and finally the register of qubits is ro-
tated back to the eigenstate of P via refocusing gates

B†C(P ). Each Pauli channel P is fitted to an exponential

decay function AP f
m
P for a circuit depth m, where the

fidelity of each Pauli channel,

fP = Tr
[
C(P )†C̃(ρ)

]
, (21)

is captured by the overlap of the results of the ideal cir-
cuit C(P ) with the noisy implementation C̃(ρ), where
ρ represents the initial state of the n-qubit system in a
+1-eigenstate of P ; the constant AP represents the state
preparation and measurement (SPAM) error. By mea-
suring the performance of the interleaved gate cycle G
at two different circuit depths {m1,m2} for K different
Pauli channels, one may estimate the process fidelity via

Fp =
1

K

∑
P∈P

(∑L
l=1 fP,m2,l∑L
l=1 fP,m1,l

) 1
m2−m1

, (22)

where
∑L
l=1 represents the sum over the L different ran-

domizations for each Pauli channel P , and 1
K

∑
P∈P rep-

resents the average over all measured Pauli channels.
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Extended Data Fig. 7. Quantum process tomography results. Experimentally obtained PTM’s corresponding to a,
iSWAP, b, CZ, and c, SWAP gates. Their ideal counterparts are used to compute the respective error PTMs (panels d-f).

Here, P is a subset of the n-qubit Pauli group that has
been sampled from the full set of 4n possible channels.
The number of different Pauli channels K = |P| ≤ 4n

sets the precision of the fidelity estimate33. The process
infidelity is given as ep = 1−Fp.

Much like interleaved RB (IRB), which measures the
fidelity of a dressed gate composed of the interleaved gate
G with a cycle of random Clifford gates, CB measures the
fidelity of a dressed cycle composed of the interleaved
cycle G and a cycle of random Pauli gates. Similar to
IRB, one can estimate the average gate infidelity of just
the interleaved cycle G by taking the ratio of the process
fidelities of the dressed D and reference R cycles,

eg =
d− 1

d

(
1−
FDp
FRp

)
, (23)

where d = 2n is the dimension of the Hilbert space for n
qubits. It should be noted that estimating the isolated
gate fidelity via IRB or CB can be subjected to large
systematic bounds, with upper and lower bounds that
may differ by orders of magnitude depending on the
unitarity of the gate or cycle49. However, it has been
shown that CB tightens the upper- and lower-bounds on
the fidelity estimate relative to IRB20, due to the fact

that random Pauli gates are more efficiently decomposed
into native operations than random Clifford gates. We
note that since the conditions of the qubits, including
coherence times, naturally fluctuate, while the cycles
of interest are not measured simultaneously, Eq. (23)
should be viewed as an estimation.

Cross-Entropy Benchmarking

Cross Entropy Benchmarking (XEB)50 is an additional
SPAM-free method we leverage for studying the errors
and noise associated with the three-qubit CCZ gate.
XEB benefits from being able to benchmark non-Clifford
unitaries and was instrumental in the first experimen-
tal demonstration of quantum advantage. In the XEB
protocol, the errors of a multi-qubit gate are tailored
into a global depolarizing channel via interleaved cycles
of randomly chosen local SU(2) gates. Given sufficient
tailoring of the noise, one expects to observe scrambling
behavior that manifests as the distribution of probabil-
ities p for observing a particular bitstring following the
Porter-Thomas distribution P (p) = (d − 1)(1 − p)d−2,
where d = 2n is the dimension of the measured Hilbert
space. For a sufficiently randomized circuit, the circuit
error can be conveniently thought of as the deviation of
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Extended Data Fig. 8. Extended verification of CCZ. a, Fluctuation of the dressed process fidelity given by CB over a
time span of eight hours. b, XEB circuit fidelity at different cycle depths. c, The overall decrease of the average XEB circuit
fidelity at larger depths reveals the estimated dressed process fidelity of 93.3(2)%. Note that these fidelities include the errors
from single-qubit gates used to construct random cycles. We additionally extract the speckle purity at each cycle depth, which
is close to the cycle fidelity.

the measured bitstring distributions from a uniform dis-
tribution.

We seek to make this relationship precise. We denote
all possible bitstrings as xi for i = 1, ..., 2n where n is
the number of qubits that the unitary of interest act on.
We assign q(xi) as the measured distribution, and define
the linear cross-entropy between two probability distri-
butions p1(x) and p2(x) as

H(p1, p2) =
∑
x

p1(x)p2(x), (24)

where the sum runs over the full support of the probabil-
ity distributions. The XEB circuit fidelity is then given
as

FXEB =
H(p, q)−H(p, u)

H(p, p)−H(p, u)
≡ mU − uU

eU − uU
, (25)

where u(x) = 1/d is the uniform probability distribution
on the bitstrings. This expression can be understood as
the difference in the ideal to measured and ideal to uni-
form cross entropies, normalized by the difference if the
measured distribution was to perfectly match the ideal
distribution (i.e. p(xi) = q(xi) for all i).

An additional feature of the XEB routine is that at
each depth m in the XEB circuits, the so-called speckle
purity γ can be used to estimate the decoherence-limited
cycle fidelity. It is calculated using the measured bit-
string probability distributions as

γ(m) = Var(pm)
d2(d+ 1)

(d− 1)
. (26)

Here pm is the measured probability distribution for
bitstrings at depth m in our XEB circuits, where
Var(pm) = (d− 1)/d2(d+ 1) for ideal pure states.

Extended gate verification
Two-qubit gates: The implemented unitaries are
also benchmarked using quantum process tomography

(QPT), which can be used to approximate the residual
coherent errors. For example, single-qubit Z gates can
be approximated using the extracted Pauli transfer ma-
trix (PTM) R using Nelder-Mead least square optimiza-
tion. The PTMs for the realized gates are shown in Ex-
tended Data Fig. 7a-c. They can be reverted using the
ideal PTMs to find the error PTMs Rerror = RexpR−1

ideal,
which is useful in prescribing the residual errors to Pauli
channels (Extended Data Fig. 7d-f). The process fi-
delity Fp and gate fidelity Fg are extracted following
Fp = Tr(RTidealRexp)/d2 and Fg = (dFp + 1)/(d + 1),
where d = 4 is the dimension of the two-qubit system.
For the displayed iSWAP, CZ, and SWAP PTMs, the
extracted gate fidelities are 98.4%, 99.8%, and 98.9%,
respectively. Since the extracted PTMs are sensitive to
SPAM errors and maximum-likelihood estimation, the fi-
delities should only be viewed as rough approximation,
and their best utilization is for calibration.

CCZ gate: To gauge the stability of the calibration,
we continuously monitor the dressed cycle fidelity
over 30 consecutive iterations taking over eight hours
using CB (Extended Data Fig. 8a). Although the
sequence consists of multiple gates, we only observe
small variation in the fidelity which do not break the
limits imposed by coherence time fluctuations. We
additionally verify the gate fidelity using cross-entropy
benchmarking (XEB), achieving an average XEB fidelity
of 93.3(2)% (Extended Data Fig. 8b,c), consistent with
the CB result. Note that this fidelity includes the error
from single-qubit gates used to construct random cycles.
XEB also allows us to extract the speckle purity, which
is shown to be approximately the same as the cycle
fidelity (Extended Data Fig. 8c). This implies that the
gate is coherence-limited.

Error budgets

To estimate the dephasing-limited fidelity, we first as-
sume that the qubit decays at a rate Γ1 and dephases
at a rate Γφ, where these rates are related to the relax-
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Extended Data Fig. 9. Error classification. Pauli noise reconstruction (PNR) results showing the dominant errors impacting
a, iSWAP, b, CZ, c, SWAP, and d, CCZ gates. The y-axes label the most dominant Pauli Kraus errors for each gate, the cell
color denotes the error rate, and the cell gradient defines the 95% confidence interval uncertainty. Pauli errors grouped in curly
brackets denote degenerate gate errors which cannot be distinguished due to the effect of the gate itself.

ation time T1 and decoherence time T2 as Γ1 = 1/T1,
Γ2 = 1/T2. A Pauli transfer matrix (PTM) of a single-
qubit decoherence channel for a duration τ is given as

E(τ) =


1 0 0 0
0 e−Γ2τ 0 0
0 0 e−Γ2τ 0
0 0 0 e−Γ1τ

 . (27)

In the absence of non-Markovian errors such as leak-
age and crosstalk, the PTM of a Pauli-twirled n-qubit
channel is simply given by the tensor product E⊗n. The
process fidelity limited by decoherence can thus be writ-
ten as

Fp =
1

4n
Tr[E⊗n]

=
1

4n

n∏
i=1

(
1 + e−Γ

(i)
1 τ + 2e−Γ

(i)
2 τ
)
,

(28)

where Γ
(i)
1 and Γ

(i)
2 denote the energy relaxation and de-

phasing rates of qubit i, respectively.
Using Eq. (28), we estimate the coherence-limited

fidelities using the best undriven T1 and TE2 times
for the upper bound, and the worst dynamical
values for the lower bound. The lower fidelity
bounds for iSWAP, CZ, SWAP, and CCZ gates are
{99.2%, 99.4%, 99.1%, 95.1%} and the upper bounds
are {99.6%, 99.7%, 99.5%, 97.1%}. Although this ap-
proach only gives approximate limits, they are already
remarkably close to the obtained fidelities. We note that
the CCZ sequence contains four different pulses involv-
ing different qubit pairs, so it is difficult to choose the
appropriate coherence times for the analysis. However,
the speckle purity measurement (Extended Fig. 8c) re-
veals that it should be dephasing-limited.

In practice, the ramp times (∼50-100 ns) constitute a
majority of the pulses used for the gates (∼200 ns), as
opposed to the long pulses with mostly fixed amplitudes
used in the dynamical coherence measurements (Fig. 3b).
Besides, different gates require different combinations of
pulse amplitudes and ramp times, making it challenging
to systematically select the right coherence values for our
approximation. Therefore, we believe that it is reason-
able to estimate the fidelity limits using the presented
approach. A more rigorous estimation may ideally in-
volve a numerical Floquet simulation with the integra-
tion of a time-dependent mapping. Future research to
elucidate such dynamics, shedding light on the dephas-
ing process, will help establish the required techniques to
study spurious effects associated with Floquet-engineered
interactions.

To reconstruct the dominant error channels impact-
ing the iSWAP, CZ, SWAP, and CCZ gates, we utilize
Pauli noise reconstruction (PNR)51, also referred to as
cycle error reconstruction52. PNR reconstructs the Pauli
Kraus errors affecting each gate from a set of CB mea-
surements (see the Supplemental Material of Ref.52 for
a detailed discussion). For example, in Extended Data
Fig. 9, we observe that the dominant error channel for
the iSWAP gate is a Z error on either qubit, even though
ZZ appears to be largely suppressed (note that IZ and ZI
cannot be distinguished, due to the fact that the iSWAP
gate transforms one into the other). For the CZ gate, we
observe that Y-type errors on Q1 or X-type errors on Q2

are the most dominant. The SWAP gate is mostly af-
fected by X- or Z-type errors on either qubit. While the
error generators for the CCZ are more difficult to inter-
pret, we consistently observe that Z-type errors on Q1,
X- or Y-type errors on Q2, and Z-type errors on Q3 are
the most dominant.
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Extended Data Fig. 10. Dressed decoherence. a, Dependence of Q1’s echo time TE2 on the drive amplitude and pulse shape.
b, Q1’s excited state population after the mapping using a pulse with parametrized amplitude and duration. The qubit is
first initialized in |0〉. c, Comparison between obtained excited state populations after a 355-µs-long pulse at various driving
amplitudes (green markers) and numerically simulated values (blue dashed line).

Dressed heating and dephasing
We utilize the single-shot readout capability of the mea-
surement setup (cf. Extended Data Fig. 2a) to selectively
measure the dynamics of Q1 under the drive. To mea-
sure the relaxation process, the qubit is first prepared in
state |1〉 by applying a π pulse to a pre-selected |0〉 state.
Then, a microwave pulse with variable amplitude and du-
ration is applied to the qubit. The ramp time is chosen to
be 100 ns to ensure adiabaticity for the amplitude values
shown. We discard the data in which small oscillation
appears, which correspond to the non-adiabatic regime.
The qubit is measured dispersively after the off-resonant
pulse, and then post-selected in the |0〉 state. The ex-
citation dynamics is measured in a similar fashion, with
the qubit prepared in the ground state and post-selected
in the |1〉 state. For TE2 , a π pulse on the undriven qubit
is inserted between two Floquet drive pulses with the
same ramp and duration times. This refocusing pulse is
orthogonal in phase to the π/2 projection pulses. To en-
sure the passive reset of the qubit, a delay time of 50 µs
is added between neighboring sequences.

To verify that the reduction in the obtained TE2 times
is not due to nonadiabatic effects, we repeat the mea-
surements with different ramp times τr and DRAG co-

efficients λDRAG, and still observe a consistent decrease
with respect to the pulse amplitude, as shown in Ex-
tended Data Fig. 10a. Intriguingly, we also find a consis-
tent heating effect that increases the excited state pop-
ulation after the mapping, suggesting a change in the
effective qubit temperature. Notably, although the pop-
ulation of the qubit increases monotonically with respect
to the drive amplitude (Extended Data Fig. 10b), the ex-
tracted relaxation and excitation rates do not show any
obvious trend (Fig. 3b).

We simulate this effect numerically by projecting the
decoherence mechanisms onto the Floquet basis. Using
the experimentally obtained ratio ν = P final

|1〉 /P final
|0〉 =

0.027 of the undriven qubit in equilibrium (355 µs after
initialization), we assume a finite relaxation rate Γ↓ =
(T1)−1/(1 + ν), excitation rate Γ↑ = (T1)−1 − Γ↓, and
pure dephasing rate Γφ = (TE2 )−1 − (2T1)−1, where T1

and TE2 are taken from Table II. Next, we simply map the

jump operators L̂− =
√

Γ↓|0〉〈1|, L̂+ =
√

Γ↓|1〉〈0|, and

L̂φ =
√

Γφ/2σ̂z onto the Floquet basis, then evolve the
system starting from the ground state using the Lindblad
master equation. The result shown in Extended Data
Fig. 10c agrees well with the experimentally obtained
data (previously shown in the inset of Fig. 3b).
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