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Bounds for the collapsibility number of a simplicial complex

and non-cover complexes of hypergraphs

Rekha Santhanam∗, Samir Shukla†, Anurag Singh‡

Abstract

The collapsibility number of simplicial complexes was introduced by Wegner in order to
understand the intersection patterns of convex sets. This number also plays an important
role in a variety of Helly type results. We show that the non-cover complex of a hypergraph
H is |V (H)| − γi(H) − 1-collapsible, where γi(H) is the generalization of independence
domination number of a graph to hypergraph. This extends the result of Choi, Kim
and Park from graphs to hypergraphs. Moreover, the upper bound in terms of strong
independence domination number given by Kim and Kim for the Leray number of the
non-cover complex of a hypergraph can be obtained as a special case of our result.

In general, there can be a large gap between the collapsibility number of a complex and
its well-known upper bounds. In this article, we construct a sequence of upper bounds
Mk(X) for the collapsibility number of a simplicial complex X , which lie in this gap.
We also show that the bound given by Mk is tight if the underlying complex is k-vertex
decomposable.
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1 Introduction

Let X be a (finite) simplicial complex. Let γ, σ ∈ X be such that |γ| ≤ d and σ ∈ X is the
only maximal simplex that contains γ. Then, (γ, σ) is called a free pair and γ is called a free
face of σ in X. An elementary d-collapse of X is the simplicial complex X ′ obtained from X
by removing all those simplices τ of X such that γ ⊆ τ ⊆ σ, and we denote this elementary
d-collapse by X

γ
−→ X ′. The complex X is called d-collapsible if there exists a sequence of

elementary d-collapses

X = X1
γ1
−→ X2

γ2
−→ · · ·

γk−1
−−−→ Xk = ∅

from X to the empty complex ∅. Note that every d-dimensional complex is always d + 1
collapsible. Clearly, if X is d-collapsible and d < c, then X is c-collapsible. The collapsibility
number of X, denoted as C(X), is the minimal integer d such that X is d-collapsible.

The notion of d-collapsibility of simplicial complexes was introduced by Wegner [17]. The
motivation of introducing d-collapsibility comes from combinatorial geometry as a tool for
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studying intersection patterns of convex sets [8, 11, 16, 17]. The collapsibility number plays an
important role in the study of various Helly type results [1, 10, 11]. The collapsibility number
is also related to an another well-studied combinatorial inviariant of a simplicial complex
called Leray number L(X) (Definition 3.16). In [17], Wegner proved that L(X) ≤ C(X) for
any simplicial complex X.

A well known bound for C(X) which is useful in proving several results of collapsibility is
given by d(X,≺) (see Proposition 2.4). In [6], Choi et al. studied the collapsibility number of
non cover complexes of graphs using this bound. They showed that the collapsibility number
of non-cover complex NC(G) of a graph G is bounded by |V (G)| − γi(G) − 1, where γi(G)
denotes the independence domination number of G as defined in [2] (the authors in [6] use the
notation iγ(G) for γi(G)). One of the objectives of our article is to extend the main result of
[6] from graphs to hypergraphs.

Let H be a hypergraph. A set B ⊆ V (H) is called a cover of H if e ∩B 6= ∅ for any edge
e ∈ E(H). A set A ⊆ V (H) is called a non-cover if it is not a cover of H. The non-cover
complex NC(H) of H is a simplicial complex defined as

NC(H) = {A ⊆ V (H) : A is a non-cover of H}.

In Theorem 2.3, we prove that for any hypergraph H, C(NC(H)) is bounded above by the
|V (H)| − γi(H)− 1, where γi(H) is a generalization of the independence domination number
of graphs to hypergraphs (see Definition 2.1 for the definition).

In [12], authors showed that L(NC(H)) ≤ |V (H)| − γsi(H)− 1 whenever |e| ≤ 2 for every
e ∈ E(H) (where γsi(H) is the strong independence domination number of a hypergraph
H). In Lemma 2.11, we show that γi(H) = γsi(H) whenever |e| ≤ 2 for every e ∈ E(H).
Thus, our result, Theorem 2.3, is an improvement on their result. In the same paper [12,
Theorem 1.6], the authors give similar upper bounds for the Leray number of a hypergraph
H in terms of γ̃(H), the strong total domination number (when |e| ≤ 3) and γE(H), the
edgewise-domination number (see Definitions 2.7 and 2.9). In Example 2.12, we give a class
of hypergraphs, for which

γi(H) > max{⌈γ̃(H)/2⌉ , γE(H)}.

This example also shows that the gap in the above inequality can be arbitrarily large. Since
L(X) ≤ C(X) for any simplicial complex X, our result, Theorem 2.3 implies a more general
result and often gives a better bound.

Even though d(X,≺) is better suited for theoretical arguments, as displayed earlier, there
can be a substantial gap between the bound obtained by d(X,≺) and C(X). In [4], Biyikoğlu
and Civan, introduced a combinatorial invariant M(G) for any graph G and extended [3] it
to any simplicial complex X. It can be shown that C(X) ≤ M(X) always holds. In this
article, we prove that d(X,≺) is also an upper bound for M(X). In Example 3.5, we show
that M(X) can be strictly greater than C(X). We give sharper bounds for collapsibility
by introducing a new combinatorial notion Mk(X), for a simplicial complex X and each
non-negative integer k, and show that C(X) ≤ Mk(X) ≤ Mk−1(X) ≤ . . . ≤ M1(X) ≤
M0(X) = M(X) ≤ d(X,≺) (see Remark 3.4 and Theorem 3.7). We prove that for k-vertex
decomposable simplicial complexes X, C(X) = Mk(X) (see Theorem 3.11). We also give
an example of a complex X, where C(X) = M1(X) < M(X) (see Example 3.5). Given the
recursive nature of the definition of Mk(X), we expect it to be better suited for computational
purposes in comparison with the computations of d(X,≺) which depends on the ordering of
maximal simplices.
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2 Non-cover complexes of hypergraphs

A hypergraph H is an ordered pair (V (H), E(H)), where V is a (finite) set and E is a family
of subsets of V . The elements of V (H) are called the vertices of H, and the elements of E(H)
its edges. Let H be a hypergraph. Let v ∈ V (H). A vertex w ∈ V (H) is a neighbour of v, if
there exists e ∈ E(H) such that {v,w} ⊆ e. The neighbour set of v is defined as N(v) = {w :
w is a neighbour of v}. For A ⊆ V (H), the neighbour set of A is N(A) :=

⋃

v∈A N(v). For
S ⊆ V (H), the induced subgraph H[S] is the hypergraph on the vertex set S and any e ⊆ S
is an edge in H[S] if e ∈ E(H). A vertex w is called isolated if N(w) = ∅. A set I ⊆ V (H) is
called independent if e 6⊆ I for all e ∈ E(H).

Let A ⊆ V (H). A set W ⊆ V (H) \A is said to be a dominating set of A, if for any v ∈ A,
there exists w ∈ W and e ∈ E(H) such that v,w ∈ e, i.e., A ⊆ N(W ). The domination
number of A is

γA(H) = min{|W | : W is a dominating set of A}.

Definition 2.1. Let H be hypergraph with no isolated vertex. The independence domination
number of H is

γi(H) = max{γI(H) : I ⊂ V (H) is independent}.

Remark 2.2. Observe that a set D is a cover of H if and only if D is an independent set of
H. Further, W is a dominating set of A, if A ⊆ N(W ). Therefore, the following is easy to
observe:

γi(H) = max{γD(H) : D is a cover of H}.

The next result gives an upper bound for the collapsibility number of non-cover complexes
of hypergraphs in terms of their independence domination number.

Theorem 2.3. Let H be a hypergraph with no isolated vertices. Then

C(NC(H)) ≤ |V (H)| − γi(H)− 1.

Before proving Theorem 2.3, we review the minimal exclusion principle, which will play a
key role in the proof of Theorem 2.3.

Let X be a simplicial complex on a linearly ordered vertex set V and let ≺: γ1, . . . , γm
be a linear ordering on the maximal simplices of X. Given a γ ∈ X, the minimal exclusion
sequence mes(γ,≺) of elements of γ is defined as follows:

Let j denote the smallest index such that γ ⊆ γj . If j = 1, then mes(γ,≺) is the null
sequence. If j ≥ 2, then mes(γ,≺) = (v1, . . . , vj−1) is a finite sequence of length j − 1 such
that v1 = min(γ \ γ1) and for each k ∈ {2, . . . , j − 1},

vk =

{

min({v1, . . . , vk−1} ∩ (γ \ γk)) if {v1, . . . , vk−1} ∩ (γ \ γk) 6= ∅,

min(γ \ γk) otherwise.

Let M(γ,≺) denote the set of vertices appearing in mes(γ,≺). Define

d(X,≺) := max
γ∈X

|M(γ,≺)|.

The following result gives us a bound for the collapsibility number of the complex X using
d(X,≺).
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Proposition 2.4. [13, Theorem 6] If ≺ is a linear ordering of the maximal simplices of X,
then X is d(X,≺)-collapsible.

For a positive integer n, let [n] denotes the ordered set {1, . . . , n}. For A ⊆ [n], we let
A = [n] \ A. In the rest of the section, we assume that H be a hypergraph with no isolated
vertices, V (H) = [n] and if e = {v1, v2, . . . , vr} ∈ E(H) then v1 > v2 > · · · > vr−1 > vr. Let
<L be the lexicographic order on the set E(H). For example, let H be a hypergraph on vertex
set [4] and edge set {{3, 2, 1}, {4, 3, 1}, {4, 3, 2}}, then {3, 2, 1} <L {4, 3, 1} <L {4, 3, 2}.

One can observe that every facet of NC(H) is the complement of an edge of H. We
define a linear order ≺ on the set of facets of NC(H) as follows: γ ≺ γ′ if γ <L γ′. Let
γ1 ≺ γ2 ≺ . . . ≺ γm be all the facets of NC(H). Note that, for any 1 ≤ i < j ≤ m,
max γi ≤ max γj.

From Remark 2.2, there exists a cover D of H such that γD(H) = γi(H). If D is not
a minimal cover, then there exists some v ∈ D such that D − {v} is still a cover. Then
D − {v} = D ∪ {v} and clearly γ

D−{v}
(H) ≥ γD(H). Therefore, we can assume that D is a

minimal cover. Without loss of generality, let D = {1, . . . , |D|}.

Lemma 2.5. Let γ, γ′ ∈ NC(H). If γ ∩ D = γ′ ∩ D and the induced subgraph H[γ ∩ D]
contains an edge, then

mes(γ,≺) = mes(γ′,≺).

Proof. Let k be the smallest index such that γ ⊆ γk. Since H[γ ∩D] contains an edge, let
this edge be γt for some facet γt of NC(H). Clearly, t ≥ k as γ * γi, i.e., γi * γ for any
i < k. Since γt ⊆ D, max(γt) < |D|. Thus, γi ≺ γt (equivalently γi <L γt) implies that
max(γi) < |D| for all i ≤ t, and therefore γi ⊆ D for all i ≤ t. In particular, γk is an edge in
H[γ ∩D]. It is given that γ ∩D = γ′ ∩ D, implying that γ ∩D = γ′ ∩ D. Hence, for each
i ∈ [k], we get that

γi ∩ γ = γi ∩ γ ∩D = γi ∩ γ′ ∩D = γi ∩ γ′.

Therefore, we conclude that k is the smallest index such that γk ⊆ γ′, i.e., γ′ ⊆ γk and
for every i ∈ [k − 1], the ith entry of mes(γ′,≺) is equal to the ith entry of mes(γ,≺).

Lemma 2.6. For any S ⊆ D,

|N(S) ∩D| − |S| ≤ |D| − γD(H).

Proof. If D ⊆ N(S), then by definition of γD(H), |S| ≥ γD(H) and result follows. So assume
that D * N(S). If S = D, then D ⊆ N(S) and therefore assume that D \ S 6= ∅. Let W be
a minimal cardinality set such that S ( W ⊆ D and D ⊆ N(W ), i.e., W \ S is a minimal
cover of D \ N(S). Then γD(H) ≤ |W |. Given any set A, it is clear that the cardinality of
any minimal dominating set of A is always less than or equal to the cardinality A. Therefore,
|W | − |S| ≤ |D| − |N(S) ∩D|, and hence the result follows.

We now prove the main result of this section. This is done by extending the idea of [6] to
hypergraphs.

Proof of Theorem 2.3. For a σ ∈ NC(H), we let Ψσ = |N(σ ∩D) ∩ σ ∩D|.
Let τ ∈ NC(H). We first show that for v ∈ τ ∩D, if v ∈ M(τ,≺), then v is a neighbour

of some vertex in τ ∩D. Let k be the smallest index such that the kth entry of mes(τ,≺) is
v. Then v ∈ τ \ γk, which implies that v ∈ γk. Since D is a cover and γk ∈ E(H), γk ∩D 6= ∅.
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Choose a w ∈ γk ∩ D. Since w ∈ D and v /∈ D,w < v (recall that D = {1, 2, . . . , |D|}).
Further, since v is the kth entry of mes(τ,≺) and w < v, we get w /∈ τ which implies that
w ∈ τ ∩D. Furthermore, since v,w ∈ γk, v is a neighbour of w. Hence τ ∩D ⊆ N(τ ∩D).

Therefore,

|M(τ,≺)| ≤ |τ | = |τ ∩D|+ |τ ∩D|

= |τ ∩D|+ |N(τ ∩D) ∩ (τ ∩D)|

= |D| − |τ ∩D|+ |N(τ ∩D) ∩D| − |N(τ ∩D) ∩ τ ∩D|

= |D| − |τ ∩D|+ |N(τ ∩D) ∩D| −Ψτ

≤ |D| − γD(H) + |D| −Ψτ

= |V (H)| − γD(H)−Ψτ , (1)

where the second equality follows from the fact that τ ∩D ⊆ N(τ ∩D) and last inequality
holds by applying Lemma 2.6 to the set τ ∩D.

By Proposition 2.4, it is sufficient to show that Ψτ ≥ 1. Suppose that Ψτ = 0. Since
τ ∈ NC(H), there exist an edge e such that e ⊆ τ . If e ∩D 6= ∅, then N(τ ∩D) ∩ τ ∩D 6= ∅
(since e ∩ D 6= ∅ as D is a cover) and therefore Ψτ ≥ 1. Else, e ⊆ D and H[τ ∩ D] has
the edge e. Let τ ′ = τ ∩D. Then τ ∩ D = τ ′ ∩ D. By Lemma 2.5, mes(τ,≺) = mes(τ ′,≺)
and therefore M(τ,≺) = M(τ ′,≺). Note that Ψτ ′ = |N(τ ′ ∩D) ∩ τ ′ ∩D| = |N(τ ∩D) ∩D|
(since D ⊆ τ ′). We now show that Ψτ ′ ≥ 1. Recall that, e ⊆ τ ∩D. Let v be a vertex in e.
Then v ∈ τ ∩ D. Since D is a minimal cover, there exists an edge e′ in H[D \ {v}]. Thus,
e′ \ {v} ⊆ N(τ ∩D) ∩D implying that Ψτ ′ ≥ 1.

Thus, by replacing τ by τ ′ and using Equation (1), we conclude that |M(τ,≺)| ≤ |V (H)|−
γi(H)− 1. Hence, the definition of d(X,≺) along with Proposition 2.4 implies the following.

C(NC(H)) ≤ d(NC(H),≺) ≤ |V (H)| − γi(H)− 1. (2)

This completes the proof of Theorem 2.3.

We now compare Theorem 2.3 with the results of Kim and Kim [12], where they established
upper bounds on the Leray number of NC(H) with various domination parameters of the
hypergraphs H. To do this comparison, we first recall the required terminology from [12].

Let H be a hypergraph. Let v ∈ V (H) and B be a subset of V (H). Then B strongly
totally dominates v if there exists B′ ⊆ B \ {v} such that B′ ∪ {v} ∈ E(H).

Let W be a subset of V (H). If B ⊆ V strongly totally dominates every vertex in W , then
B is said to be strongly dominates W .

The strong total domination number of W in H is defined as

γ(H;W ) := min{|B| : B ⊆ V (H), B strongly dominates W}.

Definition 2.7. The strong total domination number γ̃(H) ofH is the strong total domination
number of V (H), i.e., γ̃(H) = γ(H;V (H)).

A set I ⊆ V (H) is said to be strongly independent in H if it is independent and every edge
of H contains at most one vertex of I.

Definition 2.8. The strong independence domination number of H is the integer

γsi(H) := max{γ(H;I) : I is a strongly independent set of H}.
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Definition 2.9. The edgewise-domination number of H is the minimum number of edges
whose union strongly dominates the V (H), i.e.

γE(H) := min{|F| : F ⊆ E(H),
⋃

e∈F

e strongly dominates V (H)}.

Theorem 2.10. [12, Theorem 1.6] Let H be a hypergraph with no isolated vertices. Then

(i) If |e| ≤ 3 for every e ∈ E(H), then L(NC(H)) ≤ |V (H)| −
⌈

γ̃(H)
2

⌉

− 1.

(ii) If |e| ≤ 2 for every e ∈ E(H), then L(NC(H)) ≤ |V (H)| − γsi(H)− 1.

(iii) L(NC(H)) ≤ |V (H)| − γE(H)− 1.

The following lemma shows that Theorem 2.10 (ii) is a special case of Theorem 2.3.

Lemma 2.11. Let H be a hypergraph. If |e| ≤ 2 for all e ∈ E(H), then γi(H) = γsi(H).

Proof. Since every strongly independent set is independent, it is clear from definitions of
γi(H) and γsi(H) that γi(H) ≥ γsi(H). We now show that γsi(H) ≥ γi(H).

Let D be a cover of H such that γD(H) = γi(H). Since D is a cover, for each cardinality
one edge {x}, x ∈ D. Further, since |e| ≤ 2 for all e ∈ E(H), we see that D is an strongly
independent set. Let S ⊆ D such that |S| = γi(H) and D ⊆ N(S). Then S will be of minimal
cardinality which strongly dominates D. Hence γsi(H) ≥ |S| = γi(H).

We now give an example of a class of hypergraphs for which the difference γi(H) −
max{⌈γ̃(H)/2⌉ , γE(H)} can be made arbitrarily large.

Example 2.12. Let n ≥ 2 and let H1,H2, . . . ,Hn be n distinct star graphs, where center
vertex of the graph Hi is ai for 1 ≤ i ≤ n. Let H be hyper graph on vertex set V (H1) ∪ . . . ∪
V (Hn) and edge set E(H) = E(H1)∪. . .∪E(Hn)∪{{ai, ai+1} : 1 ≤ i ≤ n−1}∪{{a1, . . . , an}}.
Then it is easy to check that I = V (H) \ {a1, . . . , an} is an independent set and {a1, . . . , an}
is the minimum dominating set of I. Therefore γI(H) = n and γi(H) ≥ n. Since the set
{a1, . . . , an} strongly dominates V (H) and it is an edge in H, we conclude that γE(H) = 1
and γ̃(H) ≤ n.

3 The Mk number of a complex

Tancer [15] showed that the collapsibility number of a simplicial complex is bounded by the
collapsibility number of link and deletion of X with respect to any vertex v. This allows for
inductive arguments to find the bounds on collapsibility number of a simplicial complex [13].

For any simplicial complex X and σ ∈ X, the subcomplexes link and deletion of σ in X
are defined as follows

lk(σ,X) = {τ ∈ X : σ ∩ τ = ∅, σ ∪ τ ∈ X},

del(σ,X) = {τ ∈ X : σ * τ}.

Biyikoğlu and Civan [4] defined M(G) inductively for any graph G and then extended it
for any simplicial complex X as follows ([3]).
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Definition 3.1. Let Xo denote the set of vertices v in X such that lk(v,X) 6= del(v,X).
Define

M(X) =







0 if Xo = ∅,

min
v∈X0

{max{M(lk(v,X)) + 1,M(del(v,X)}} otherwise.

They [3] showed that C(X) ≤ M(X) for all X. In this article, we introduce a sequence
of invariants Mk(X) which lie between C(X) and M(X), where M0(X) = M(X) and show
that C(X) ≤ Mk(X) for each k ≥ 0 (see Theorem 3.7).

We first introduce the notation we use in the rest of the paper. Let X be a simplicial
complex. We denote the set of vertices ofX by V (X). For A ⊆ V (X), the induced subcomplex
on vertex set A is X[A] = {σ ∈ X : σ ⊆ A}. For k ≥ 0, we let X(k) denote the set of k-
dimensional faces of X and

Xo
(k) = {σ ∈ X(k) : lk(σ,X) 6= X[(V (X) \ V (σ)]}.

Lemma 3.2. Let X be a simplicial complex of dimension at least k. If Xo
(k) = ∅, then X is

a simplex.

Proof. If k = 0, then we prove the result by the induction on the number of vertices of
X. The base case (i.e., X is a vertex) is trivially true. Now observe that, if Xo

(0) = ∅

then lk(v,X)o(0) = ∅. Moreover, for any vertex v, lk(v,X) = X − {v}, which implies that

X = (X − {v}) ∗ {v}. Hence by induction on the number of vertices, we get that lk(v,X) is
simplex and therefore X is a simplex.

Let k > 0. Let σ ∈ X be a k-dimensional simplex. Then lk(σ,X) = X[V (X) \ σ]. Hence
X = lk(σ,X) ∗ σ. Let Y = lk(σ,X). If Y o

0 = ∅, then Y is a simplex and therefore X is a
simplex. If Y o

(0) 6= ∅, then lk(v, Y ) 6= Y − {v} for some v ∈ V (Y ). Choose w ∈ σ and let

τ = (σ \ {w}) ∪ {v}. Then lk(τ,X) 6= X[V (X) \ τ ], a contradiction. Hence Y o
(0) = ∅. By

induction Y is a simplex and therefore X = Y ∗ σ implies that X is a simplex.

Definition 3.3. Let X be simplicial complex and let k be a non negative integer. Define
M0(X) = M′

0(X) = M(X) and for k ≥ 1, define Mk inductively as follows;

M′
k(X) =







Mk−1(X) if Xo
(k) = ∅,

min
σ∈Xo

(k)

{max{M′
k(del(σ,X)),M′

k(lk(σ,X)) + k + 1} otherwise,

and Mk(X) = min{M′
k(X),Mk−1(X)}.

Remark 3.4. Note by definition Mk(X) ≤ Mk−1(X) for all k ≥ 1.

We now give an example where M1 < M0.

Example 3.5. (Example V6F10-6 from [14]) Let ∆ be the simplicial complex on the vertex
set {1, 2, 3, 4, 5, 6} with the set of facets

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}.

This example was also discussed in [7] as an example of a complex which is 1-vertex
decomposable but not 0-vertex decomposable. Thus, from Theorem 3.11, we get that C(∆) =
M1(∆). We now show that M1(∆) ≤ 2 < 3 ≤ M0(∆).
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To compute M1(∆), let us look at M1(lk({1, 5},∆)) and M1(del({1, 5},∆)). Observe
that lk({1, 5},∆) is a point {2} implying that M1(lk({1, 5},∆)) = 0. Thus,

M1(∆) ≤ max{M1(del({1, 5},∆)), 2}.

Here, the set of facets of del({1, 5},∆)) is

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}.

It is easy to verify by doing a similar calculation on the deletion complexes using the se-
quence {{1, 6}, {2, 3}, {1, 3}, {1, 2}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} of 1-faces, link complex
at every step is a simplex and the deletion complex at the end is 1-dimensional. Observe
that C(X) is always less than or equal to the dimension of X. Hence by using the sequence
{{1, 6}, {2, 3}, {1, 3}, {1, 2}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} of 1-faces in the del({1, 5},∆),
we conclude that M1(∆) ≤ 2.

Observe that the link of every vertex contains an induced subcomplex isomorphic to a
triangulation of a circle. Hence the collapsibility number of link of every vertex is 2. Thus for
each vertex v ∈ ∆, M0(lk(v,∆)) ≥ C(lk(v,∆)) ≥ 2. Hence by definition M0(∆) ≥ 3.

Lemma 3.6 ([15, Proposition 1.2]). Let X be a simplicial complex and let v be a vertex of
X. Then C(X) ≤ max{C(delX, v), C(lk(v,X)) + 1}.

Theorem 3.7. Let X be a simplicial complex. Then for any k ≥ 0,

C(X) ≤ Mk(X).

Proof. Proof is by induction on k. If k = 0 and Xo
(0) = ∅, then X is a simplex and C(X) =

0 = M0(X). If k = 0 and Xo
(0) 6= ∅, then the result follows from Lemma 3.6 and the definition

of M0(X). Let k ≥ 1 and assume that C(X) ≤ Mr(X) for 0 ≤ r < k. We now prove that
C(X) ≤ Mk(X) by induction on the number of k-simplices of X. If X has no k-simplex then
clearly Xo

(k) = ∅ implying that Mk(X) = Mk−1(X) and hence the result follows.

By definition, Mk(X) = min{Mk−1(X),M′
k(X)}. If Mk(X) = Mk−1(X) then the result

follows from induction. Now assume that Mk(X) = M′
k(X).

We first prove a generalization of Lemma 3.6.

Claim 3.8. For any σ ∈ X(k) (i.e., σ is a k-face)

C(X) ≤ max{C(del(σ,X), C(lk(σ,X)) + k + 1}.

Proof of Claim 3.8. Let lk(σ,X) be d-collapsible. Then there exist a sequence of elementary
d-collapses such that

lk(σ,X) = X0
σ1−→ X1

σ2−→ X2 . . .
σr−→ Xr = ∅.

Since lk(σ,X)
σ1−→ X1 is an elementary collapse, there exist a facet τ1 ∈ lk(σ,X) such that σ1

is a free face of τ1 in lk(σ,X). Therefore, σ1 ∪ σ is a free face of τ1 ∪ σ in X. Furthermore,
since |σ1∪σ| ≤ d+k+1, we get an elementary (d+k+1)-collapse in X. Hence, the sequence

X = Y0
σ1∪σ−−−→ Y1

σ2∪σ−−−→ Y2 . . .
σr∪σ−−−→ Yr = del(σ,X)

gives a sequence of elementary (d + k + 1)-collapses of X onto del(σ,X). This implies that
the collapsibility number of X is less than or equal to max{C(del(σ,X)), d + k + 1}.
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If Xo
(k) = ∅, then the result follows from the induction on k (since Mk(X) = Mk−1(X)).

For Xo
(k) 6= ∅, let σ ∈ X(k) such that M′

k(X) = max{M′
k(del(σ,X)),M′

k(lk(σ,X)) + k + 1}.
From the previous claim, we have that

C(X) ≤ max{C(del(σ,X), C(lk(σ,X)) + k + 1}

≤ max{Mk(del(σ,X)),Mk(lk(σ,X)) + k + 1}

≤ max{M′
k(del(σ,X)),M′

k(lk(σ,X)) + k + 1}

= M′
k(X) = Mk(X).

Here, the second inequality follows from induction, and the third inequality follows from the
fact that Mk(X) ≤ M′

k(X).

Remark 3.9. Note that Theorem 3.7, along with Example 3.5, implies that M1 is a better
approximation to C(X) than M0.

In our next result, we show that the bound obtained in Theorem 3.7 is tight for a particular
class of complexes known as k-vertex decomposable complexes. Given a simplicial complex
X its pure n-skeleton, X [n] is the subcomplex of X spanned by all n-faces of X. The complex
X is said to be pure n-dimensional complex if X = X [n].

A pure d-dimensional simplicial complex X is said to be shellable, if its maximal simplices

can be ordered Γ1,Γ2 . . . ,Γt in such a way that the subcomplex (
k−1
⋃

i=1
Γi)∩Γk is pure and (d−1)-

dimensional for all k = 2, . . . , t. A pure simplicial complex X is said to be Cohen Macaulay if,
for all simplices σ ∈ X, the complex lk(σ,X) is homologically (dim(lk(σ,X))− 1)-connected,
i.e., H̃i(lk(σ,X)) = 0 for all i < dim(lk(σ,X). As a consequence, we get that if X is Cohen
Macaulay, then lk(σ,X) is also Cohen Macaulay for any σ ∈ X.

Alternatively, a pure simplicial complex X is said to be Cohen Macaulay if each induced
subcomplex A of X is homologically (dim(A)− 1)-connected. From this definition and stan-
dard facts on homology, it can be easily verified that if X is Cohen Macaulay, then any
skeleton of X is also Cohen Macaulay.

Definition 3.10. [7, Definition 5.1] For k ≥ 0, a pure r-dimensional simplicial complex X is
said to be k-vertex decomposable if X is a simplex or X contains a face σ such that

1. dim(σ) ≤ k.

2. both del(σ,X) and lk(σ,X) are k-vertex decomposable, and

3. del(σ,X) is pure and the dimension is same as that of X. (Such a face σ is called a
shedding face of X).

The k-vertex decomposability (k ≥ 1) of a complex interpolates between the shellability
and 0-vertex decomposability of the complex. More precisely,

0-vertex decomp. =⇒ k-vertex decomp. =⇒ shellability =⇒ Cohen Macaulay.

The first two implications are discussed in [7, Section 5]. The last implication follows from
[5, Section 11].

Theorem 3.11. If X is k-vertex decomposable for some k ≥ 0, then

C(X) = Mk(X) = M′
k(X).
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To prove Theorem 3.11, we need a few results which we prove now. Recall that Xo
(k) =

{σ ∈ X(k) : lk(σ,X) 6= X[(V (X) \ V (σ)]}.

Lemma 3.12. Let X be of a k-vertex decomposable simplicial complex of dimension at least
k. Then Xo

(k) 6= ∅.

Proof. Let X be r-dimensional, where r ≥ k. Since X is k-vertex decomposable, there exists
a shedding face τ ∈ X such that dim(τ) ≤ k and dim(del(τ,X)) = r. Since X is pure and
r ≥ k, there exists a k-face σ ∈ X such that τ ⊆ σ. We now prove that σ ∈ Xo

(k). On contrary,

assume that σ /∈ Xo
(k), i.e., lk(σ,X) = X[(V (X)\V (σ)]. Let γ be a facet of X[(V (X)\V (σ)].

This implies that γ ⊔ σ is a facet of X. Hence, (γ ∪ σ) \ τ is a facet of del(τ,X). Now observe
that dim((γ ∪ σ) \ τ) < dim(γ ∪ σ) = r. This contradicts the fact that del(τ,X) is pure and
of dimension r. Hence σ ∈ Xo

(k).

The following proposition is a generalization of [9, Theorem 4.2].

Lemma 3.13. Let Y be a simplicial complex and suppose that H̃n−k(lk(σ, Y )) 6= 0 for a k-
face σ ∈ Y . If lk(σ, Y )[n−k] is contained in a subcomplex Y0 of del(σ, Y ) with H̃n−k(Y0) = 0,
then H̃n+1(Y ) 6= 0.

Proof. Given a k-face σ, let st(σ, Y ) = {τ ∈ Y : σ ⊆ τ}. Then, Y = del(σ, Y ) ∪ st(σ, Y ) and
del(σ, Y ) ∩ st(σ, Y ) = lk(σ, Y ) ∗ ∂(σ), where ∂(σ) = {τ : τ ( σ}.

Using Mayer-Vietoris we get that the sequence

H̃n+1(Y ) → H̃n(lk(σ, Y ) ∗ ∂(σ))
i
−→ H̃n(del(σ,X))

is exact. Note that,

H̃n(lk(σ, Y ) ∗ ∂(σ)) ∼= H̃n(Σ
k(lk(σ, Y ))) ∼= H̃n−k(lk(σ, Y )).

Since the map i is induced by an inclusion of lk(σ, Y )[n−k] in Y0 ⊆ del(σ, Y ), the map i is
trivial. Thus, by the exactness of the above diagram, we get the required result.

Lemma 3.14. Let k ≥ 1 be a positive integer, and Y be a simplicial complex. If τ is a shedding
k-face for Y , del(τ, Y ) is Cohen Macaulay and H̃n−k(lk(τ, Y )) 6= 0, then H̃n+1(Y ) 6= 0.

Proof. If τ is a shedding k-face for Y , then del(τ, Y ) is a pure complex of dim(Y ). Moreover,
lk(τ, Y )[n−k] will be contained in the subcomplex del(τ, Y )[n−k] ⊆ del(τ, Y )[n+1]. Further,
del(τ, Y ) is a Cohen Macaulay complex implies that del(τ, Y )[n] is Cohen Macaulay for all n ≥
1. In particular, choosing ∅ = σ ∈ del(τ, Y ) we get that del(τ, Y )[n+1] = lk(σ,del(τ, Y )[n+1])
is homologically n-connected. Therefore, H̃n+1(Y ) 6= 0 by Lemma 3.13.

Our next result establishes the commutativity of link and deletion of disjoint faces in a
complex.

Lemma 3.15. Let σ, τ ∈ X such that σ ∩ τ = ∅. Then, lk(τ, (del(σ,X)) = del(σ, lk(τ,X)).

Proof. Let γ ∈ lk((τ,del(σ,X)). Thus γ ∪ τ ∈ del(σ,X) implying that σ * (γ ∪ τ). This
gives us that σ * γ. Moreover, we know that γ ∈ lk(τ,del(σ,X)) ⊆ lk(τ,X). Therefore, the
last two statements imply that γ ∈ del(σ, lk(τ, x)).

Now let η ∈ del(σ, lk(τ,X)). So, σ * η. Furthermore, σ ∩ τ = ∅ implies that σ * η ∪ τ .
Hence η ∪ τ ∈ del(σ,X) which gives us that η ∈ lk(τ,del(σ,X)).

10



Definition 3.16. A simplicial complex X is called k-Leray if H̃i(L) = 0 for all i ≥ k and for
every induced subcomplex L ⊆ X. The Leray number L(X) of X is the least integer k for
which X is k-Leray.

Proposition 3.17. If σ is a shedding k-face for a simplicial complex X such that del(σ,X)
is Cohen-Macaulay, then L(X) ≥ max{L(del(σ,X)),L(lk(σ,X)) + k + 1}.

Proof. The proof for the case k = 0 follows from [9, Theorem 1.5].
By [9, Lemma 2.3], L(X) ≥ d if and only if H̃d−1(lk(γ,X)) 6= 0 for some γ ∈ X. Let

L(lk(σ,X)) = d, then there exists a face τ ∈ lk(σ,X) such that H̃d−1(lk(τ, lk(σ,X))) 6= 0.
Since τ ∩ σ = ∅, by Lemma 3.15, lk(τ, (del(σ,X)) = del(σ, lk(τ,X)). Furthermore, since

the link of any simplex in a Cohen-Macaulay complex is again Cohen-Macaulay, the complex
lk(τ, (del(σ,X)) = del(σ, lk(τ,X)) is Cohen-Macaulay. Since the link of any face in a pure
complex is again pure, it is easy to check that σ is a shedding face for lk(τ,X) as well. Since
H̃d−1(lk(σ, lk(τ,X)) 6= 0, by Lemma 3.14, we get that H̃d+k(lk(τ,X)) 6= 0. This implies that
L(X) ≥ d+ k + 1.

Now it is sufficient to prove that L(X) ≥ L(del(σ,X)). The proof is by induction on
number of vertices in X. Let Y = del(σ,X). Let A ⊆ V (Y ). Then observe that Y [A] =
del(σ ∩ A,X[A]). By induction, L(X[A]) ≥ L(Y [A]). Since L(X) ≥ L(X[A]) by taking
A = V (Y ), we get that

L(X) ≥ L(X[A]) ≥ L(Y [A]) = L(Y ).

We can now prove Theorem 3.11.

Proof of Theorem 3.11. We know that L(X) ≤ C(X) ≤ Mk(X) ≤ M′
k(X). We will now

prove that M′
k(X) ≤ L(X) by induction on the number of k-faces of X. The base case

is when the complex has only one k-face, i.e., the complex is a simplex. In this case
L(X) = 0 = M′

k(X). Since X is k-vertex decomposable, Lemma 3.12 implies that Xo
(k) 6= ∅

and any shedding k-face is in Xo
(k). Also, since X is k-vertex decomposable there exists a

k-dimensional shedding face σ of X such that σ ∈ Xo
(k) and del(σ,X) is a pure k-vertex

decomposable complex and therefore Cohen-Macaulay. From Proposition 3.17 we get that
L(X) ≥ max{L(del(σ,X),L(lk(σ,X) + k + 1}. Thus, from Definition 3.3, we have that

M′
k(X) ≤ max{M′

k(del(σ,X)),M′
k(lk(σ,X)) + k + 1}

≤ max{L(del(σ,X)),L(lk(σ,X)) + k + 1}

≤ L(X).

Here, the second inequality follows from induction.

The following can be easily inferred from Theorem 3.11 and the fact that k-vertex decom-
posability implies shellability.

Remark 3.18. If X is k-dimensional pure complex and Mk(X) 6= C(X), then X is not
shellable.

We now show that the number d(X,≺) produced by minimal exclusion sequence is also an
upper bound for M0(X). The proof of [13, Theorem 6] can be modified to show that M0(X)
is bounded above by d(X,≺).

11



Proposition 3.19. Let X be a simplicial complex, then M0(X) ≤ d(X,≺).

Proof. The proof is by induction on number of vertices ofX. IfX is a simplex thenM0(X) =
0 ≤ d(X,≺). If X is not a simplex and therefore has at least one non-cone vertex v, then by
definition M0(X) ≤ max{M0(del(v,X)),M0(lk(v,X)) + 1}.

The argument in [13, Theorem 6] shows that

d(lk(v,X),≺) − 1 ≤ d(X,≺) and d(del(v,X),≺) ≤ d(X,≺).

Hence the proof follows by induction.

By using Equation (2) and Proposition 3.19, Theorem 2.3 can be restated as follows.

Theorem 3.20. Let H be a hypergraph with no isolated vertices. Then

C(NC(H)) ≤ M0(NC(H)) ≤ |V (H)| − γi(H)− 1.

Example 3.21. Let H be the hypergraph whose edges are the maximal simplices of the
complex ∆ given in Example 3.5. Observe that for each vertex v of H, {v} is a dominating
set of {1, 2, 3, 4, 5, 6} \ {v}, and the set {1, 2, 3, 4, 5, 6} is not an independent set. Thus we
conclude that γi(H) = 1. Since the complement of each edge is an edge in H, we see that the
maximal simplices of NC(H) are precisely the edges of H. Hence NC(H) = ∆. Therefore,
M0(NC(H)) ≥ 3 and from our bound in Theorem 3.20, we get that M0(H) ≤ 4.

4 Future directions

In Example 3.5, we gave a simplicial complex X such that Mk(X) < Mk−1(X) for k = 1.
However, we are unable to find examples for general k. Therefore, we pose the problem here.

Question 4.1. Given a k ≥ 2, does there exist a simplicial complex X such that Mk(X) <
Mk−1(X)?

In Theorem 3.11, we proved that C(X) = Mk(X), if X is k-vertex decomposable. It
would be interesting to find other classes of simplicial complexes for which Mk is equal to the
collapsibility number.

Question 4.2. Classify simplicial complexes X for which C(X) = Mk(X).
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[4] Türker Biyikoğlu and Yusuf Civan. The M-number of graphs. preprint, 2023.

[5] A. Björner. Topological methods. In Handbook of combinatorics, Vol. 1, 2, pages 1819–
1872. Elsevier Sci. B. V., Amsterdam, 1995.

[6] Ilkyoo Choi, Jinha Kim, and Boram Park. Collapsibility of non-cover complexes of
graphs. Electron. J. Combin., 27(1):Paper No. 1.20, 8, 2020.

[7] Michaela Coleman, Anton Dochtermann, Nathan Geist, and Suho Oh. Completing and
extending shellings of vertex decomposable complexes. SIAM Journal on Discrete Math-
ematics, 36(2):1291–1305, 2022.

[8] Jürgen Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of convex
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