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Abstract

The treatment of complex geometries in Computational Fluid Dynamics appli-
cations is a challenging endeavor, which immersed boundary and cut-cell tech-
niques can significantly simplify by alleviating the meshing process required by
body-fitted meshes. These methods however introduce new challenges, as the
formulation of accurate and well-posed discrete operators becomes nontrivial.
Here, a conservative cartesian cut cell method is proposed for the solution of
the incompressible Navier–Stokes equation on staggered Cartesian grids. Em-
phasis is set on the structure of the discrete operators, designed to mimic the
properties of the continuous ones while retaining a nearest-neighbor stencil.
For convective transport, a divergence is proposed and shown to also be skew-
symmetric as long as the divergence-free condition is satisfied, ensuring mass,
momentum and kinetic energy conservation (the latter in the inviscid limit).
For viscous transport, conservative and symmetric operators are proposed for
Dirichlet boundary conditions. Symmetry ensures the existence of a sink term
(viscous dissipation) in the discrete kinetic energy budget, which is beneficial
for stability. The cut-cell discretization possesses the much desired summation-
by-parts (SBP) properties. In addition, it is fully conservative, mathematically
provably stable and supports arbitrary geometries. The accuracy and robust-
ness of the method are then demonstrated with flows past a circular cylinder
and an airfoil.
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1. Introduction

A vast range of flow phenomena are dominated by the dynamics that occur
within the vicinity of solid boundaries. These include the viscous and pressure
drag observed in external flows, the conjugate heat transfer blades are subjected
to in gas turbines or the generation of vorticity in boundary layers and its subse-
quent impact on the turbulent mixing, to name a few examples. The effect of the
dynamics in the vicinity of boundaries on the overall flow singles out the treat-
ment of boundary conditions, a critical aspect that also represents a significant
challenge for many Computational Fluid Dynamics (CFD) applications.

Many numerical methods have therefore been developed to address the treat-
ment of boundary conditions on complex geometries. Unstructured techniques,
as the name suggests, leverage meshes with arbitrary polyhedral elements that
at least for piece-wise planar cases conform to the geometry, at the cost of ex-
plicitly storing connectivity information. They are very effective and powerful
to represent arbitrary geometries, and can even represent curved surface ex-
actly [16], but the generation of high-quality unstructured meshes continues to
be a challenging and time-consuming task. In addition, the design of efficient
and robust numerical algorithms targeting such meshes remains an active area
of research [19]. Finally, explicit element connectivity effectively introduces an
overhead that does not exist on structured meshes, and consequently increases
the computational cost per grid point.

These limitations are one of two compelling arguments for the use of struc-
tured meshes, the second being the simplicity and efficiency of the implemen-
tation of many algorithms on such meshes. The connectivity is implicit, which
restricts their use to simple mesh topologies, including cylindrical or curvilinear
ones. To circumvent this limitation, dedicated discretization techniques, re-
ferred to as immersed boundary methods (IBM), have been devised [20]. There
exists various approaches to represent the boundary (diffuse or sharp) and to
account for the mass and momentum transfers that occur along the solid bound-
ary. The original IBM [26], which targeted cardiovascular flows, represented the
boundary as a flexible elastic membrane, which enabled the explicit expression
of the force exerted onto the flow. This approach however is not valid for rigid
boundaries, for which a variety of techniques ranging from the use of fictitious
domain methods [12] and Lagrange multiplier methods [30].

IBM techniques have been adapted to suit the numerical representation of
PDE solutions, such as the Finite Difference Method and the Finite Element
Method. A widespread flavor of the IBM, favored by the Finite Volume com-
munity, is referred to as the cut-cell method, developed for scalar equations [8]
or the viscous compressible flows [5, 28] on collocated Cartesian grids, and for
incompressible Navier-Stokes equations on staggered Cartesian grids [9]. The
combination of the cut cell method with staggered arrangement (also referred
to as Arakawa C grid [1]), adopted in two dimensions by Cheny and Botella [9],
is a sensible choice for incompressible flows: it guarantees a strong coupling
between the pressure and velocity variables [13], and can potentially conserve
important physical invariants such as kinetic energy in the inviscid limit of the
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incompressible Navier-Stokes equations [22]. Preserving such properties in the
presence of complex boundaries is however a challenge which, to the best of the
authors’ knowledge, is yet to be fulfilled.

The proposed method attempts to fill this void. The formulation, delin-
eated in the following section, is flexible enough to support geometry defined
by various means, such as Constructive Solid Geometry primitives or surface
triangulations, provided a finite set of geometric moments can be computed
from them, such as the centroid coordinates of wet volumes or the area of wet
faces. One advantage of this method is that these geometric fields are the only
information required to modify classical finite differences formulas in the vicin-
ity of boundaries. Well-known second-order formulas are also recovered away
from the boundaries , and the formulations accommodates any stretching. The
definition of these geometric fields and their number is determined from accu-
racy considerations. It will be shown in particular that the proposed operators
degenerates to classical formulas for the mesh-aligned boundaries.

The discrete calculus of Morinishi [22, 21] is leveraged to provide concise ex-
pressions for the discrete operators, for Dirichlet boundary conditions imposed
on the velocity field. In addition, the expressivity of Morinishi’s calculus allows
for a systematic analysis of the structure of the pressure gradient, velocity diver-
gence as well as convective and viscous transport operators. First, all operators
are shown to preserve constant states, in the boundary vicinity or away from it
(free-streaming conditions). Second, divergence, advective and skew-symmetric
versions of the convective transport are proposed and shown to be equivalent
and both momentum- and kinetic-energy-conserving upon satisfaction of the
continuity equation (divergence-free condition). Third, a Dirichlet version of
the viscous transport is proposed and shown to be symmetric positive definite,
which results in the dissipation term in the discrete kinetic energy equation to
be positive all the way to the boundary for viscous flows. Standard validations
are provided that assess the scheme’s accuracy and stability.

The manuscript is structured as follows. Sec. 2 motivates the choice made in
the design of the method, in particular the set of geometric moments that must
be computed from the geometry. Sec. 3 precisely defines these moments, and the
set of notations used through Sec. 4 which introduces the semi-discretisation as
well as the segregated approach used for time-integration of the incompressible
Navier-Stokes equations for a Newtonian fluid. Sec. 5 presents the flow solution
around a cylinder and an airfoil and compares them to reference solutions.

2. Motivation

This section motivates the choices underlying the design of the proposed
cut-cell operators. To do so, the focus is set on the numerical solution of the
Poisson problem

∆T = σ

where σ is a specified source term and T is also subject to a Dirichlet boundary
condition D. Simply put, the question addressed here is: what is the minimal
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(a) Exact (b) Approximate

Figure 1: Caption

amount of geometric information required to discretize the Poisson equation on
an arbitrary domain using Cartesian grid, while guaranteeing that the discrete
Laplacian operator (i) preserves a classical three-point star-shaped stencil, while
(ii) guaranteeing first order accuracy in mesh-aligned cases. The construction
of this operator will ultimately serve for the discretization of the viscous term
in the incompressible Navier-Stokes equations.

2.1. Governing principles

Cut Cell Methods are firmly grounded in the Finite Volume Method, which
defines the primary discrete variables as cell-wise averages over mesh elements
(as opposed to point-wise values in the Finite Difference Method, for example).
The design of the Finite Volume operators is then based on the application of
Stokes’ theorem. For example, given a scalar field T , this theorem states that
in a Cartesian coordinate system, the x component of the gradient q ≡ ∇T
averaged over a cell Ω may be computed as

|Ω| qx =

ˆ
Ω

∂T

∂x
dV =

˛
∂Ω

Tex · dS (1)

where |·| denotes the measure operator, dS the outward-pointing surface ele-
ment, ex the unit vector along the x direction and ∂· the contour operator.

For the sake of presentation, the case displayed in Fig. 1a is considered
where Ω consists of the intersection of a phase domain and a computational cell
(a right hexahedron). The contour ∂Ω then consists of the union of the three
planar faces A−x , A−x and A−y as well as the boundary surface Γ. A piece-wise

linear approximation of Γ, denoted Γ̃, of length
∣∣∣Γ̃∣∣∣ and unit normal (nx, ny),

can be defined as done in Fig. 1b. Applying Eq. 1 to Ω̃ with T = 1 then yieldsˆ
Ω̃

∂1

∂x
dV =

∣∣A+
x

∣∣− ∣∣A−x ∣∣+ nx

∣∣∣Γ̃∣∣∣ = 0
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which highlights the existence of a fundamental relation∣∣A+
x

∣∣− ∣∣A−x ∣∣ = −nx
∣∣∣Γ̃∣∣∣ (2)

sometimes referred to as a Surface Conservation Law (SCL).
In other words, the knowledge of (|Aα|)α∈{x,y,z} implicitly defines a piece-

wise linear approximation to the boundary. As a consequence, this surface
information, henceforth referred to as the surface capacity, may serve to ap-

proximate the right-hand side of Eq. 1. If the unknowns
(
T±x/y

)
are defined as

averages over the wet areas
(∣∣∣A±x/y∣∣∣), the formula

˛
∂Ω̃

Tex · dS =
∣∣A+

x

∣∣T+ −
∣∣A−x ∣∣T− − (∣∣A+

x

∣∣− ∣∣A−x ∣∣)D
is exact, provided D is the Dirichlet condition averaged over the approximate
boundary Γ̃.

To complete the definition of the averaged x-component of the gradient, the
volume capacity V ≡ |Ω| is also required, which results in the following tentative
gradient operator

Qv1
x '

(∣∣A+
x

∣∣T+ −
∣∣A−x ∣∣T− − (∣∣A+

x

∣∣− ∣∣A−x ∣∣)D) /V.
It is worth stressing that the use of the SCL (Eq. 2) in Qv1

x guarantees that the
discrete gradient vanishes when the solution and boundary values are matching
constants (T+ = T− = D).

This notation can be generalized to arbitrary dimensions for any boundary
geometry using the differentiation operator δ · /δξα, α ∈ {x, y} as follows

∀α ∈ {x, y} , gradv1
α (Tα, D) =

1

V

(
δAαTα
δξα

− δAα
δξα

D

)
(3)

where all components of the discrete vector field Q = (Qα) =
(
gradv1

α (Tα, D)
)

are collocated with D. In Eq. 3, the operator δφ · /δξα denotes the discrete
differentiation operator along direction α on a mesh with unit spacing. When
α = x and φi,j is centered at (xi, yj), it is defined as

δφ

δξx

∣∣∣∣
i+1/2,j

= φi+1,j − φij . (4)

This definition is straightforward to extend to either staggered (φi+1/2,j) and
(φi,j+1/2) or nodal (Φi+1/2,j+1/2) fields. Likewise, differentiation in the second
direction, δ(·)/δξy, is defined in the same manner. Finally, extension to three
dimensions and restriction to one are obtained by adding and removing an index,
respectively.

In this first version of the gradient operator, the primary unknowns Tα are
collocated with the surface areas Aα, whereas the Dirichlet boundary condition
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(a) Arakawa C grid. (b) Arakawa E grid.

Figure 2: Variable arrangements considered in presented work.

D is staggered in between. This construction, referred to as Arakawa E grid [1]
(see Fig. 2), relies on the definition of multiple temperature fields. Such a grid
configuration is not the one adopted by the MAC approach [13], which favors
the C-grid that defines a single temperature field collocated with the D field
here. A C-grid however means that the temperature unknowns T and surface
capacities Aα are staggered, in which case the latter together with V should be
interpolated as follows

∀α ∈ {x, y} , gradv2
α (T,D) =

1

V
α

(
δA

α
T

δξα
− δAα
δξα

D

α
)

which introduces the interpolation operator ·α, α ∈ {x, y}, defined in direction
x as

φ
x
∣∣∣
i+1/2,j

=
φi+1,j + φij

2
(5)

for a field φ centered at (xi, yj). Interpolation in direction y as well as exten-
sions to staggered variables, are defined analogously, as previously discussed for
differentiation operations.

2.2. Loss of accuracy with interpolation

It should be noted that formulas other than Eq. 2.1 can also be written
without interpolation of the geometric capacities, for example by collocating
all surface capacities (Aα) with the primary variable T . However in the con-
text of a second order operator such as the scalar Laplacian (Eq. 2), the need
for interpolation will resurface in the approximation of the divergence opera-
tor. This section therefore focuses on the limitations of the second tentative
formula (Eq. 2.1), more specifically its failure to revert to a classical first order
approximation of the second order derivative in the limit where the boundary is
orthogonal to the direction of interest. This is the central point of the proposed
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Figure 3: Insufficient geometric information resulting in loss of accuracy in mesh-aligned
geometries.

cut-cell method, namely the enhancement of the geometric description of the
boundary by means of additional volume and surface capacities to revise the
gradient and divergence operators so as to achieve first-order accuracy in the
vicinity of mesh-aligned boundaries.

To illustrate the limitation of the tentative gradient formula (Eq. 2.1), the
discretization of the second-order derivative along x in the mesh-aligned two-
dimensional configuration displayed in Fig. 3 is considered, where the fluid
occupies the rightmost cells. This configuration is characterized by V0 = 0,
V1 = (hx − g)hy, V2 = hxhy, A1/2 = 0 and A3/2 = A5/2 = hy (here, A stands
for Ax since only the x contribution is considered). Using these expressions,
Eq. 2.1 simplifies to Q−1/2 = 0,

Q1/2 =
T1 −D1

g
,

and

Q3/2 =
T2 − (T1 +D1) /2

(g + hx) /2
.

This approximation of the gradient is problematic for two reasons: (i) At the
boundary, the x-gradient value (Q1/2) is under predicted by a factor of 2, since
the denominator of the right-hand side of Eq. 2.2 stands at g when it should
match the distance between the points where D1 and T1 are defined, g/2. (ii)
Away from the boundary, the x-gradient value (Q3/2) depends on the boundary
condition D1, when one would simply expect to difference T2 − T1 to appear in
the numerator of the right-hand side of Eq. 2.2.

This simple exercise highlights the loss of accuracy associated with the inter-
polation of the geometric capacities. This can be associated with the fact that
they are defined as volume and surface integrals of the characteristic function
of the fluid domain Ωf ⊂ Ω, defined as

∀x ∈ Ω, Hf (x) ≡
ˆ
y∈Ωf

δ (x− y) dV (6)
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where Ω denotes the computational domain and δ the multi-dimensional Dirac
delta function. Hf is not differentiable in the classical sense, and one should
tread carefully not to interpolate or differentiate its surface- or volume-averaged
values.

2.3. Additional geometric information to restore accuracy

An intuitive idea to alleviate the interpolations in Eq. 2.1 is to add new
information where the volume (cell-centered and denoted V ) and surface (face-
centered and denoted (Aα)) capacities were previously interpolated. These new
quantities, referred to as second-kind capacities, complement the already used
first-kind capacities V and (Aα). Volume (face-centered and denoted (Wα))
and surface (cell-centered and denoted (Bα)) forms will be defined in Sec. 3 for
arbitrary geometries.

These additional quantities yield the final gradient formula

∀α ∈ {x, y} , gradα (T,D) =
1

Wα

[
δBαT

δξα
+
δ(Aα

α −Bα)D

δξα
− δAα
δξα

D

α
]

(7)

that supersedes grad(v1)
α and grad(v2)

α .
To show how the addition of the second-kind capacity restores first-order

accuracy in the gradient computation, the configuration displayed in Fig. 4 is
considered. Since only x derivatives are considered, A again will stands for
Ax, whereas W and B will respectively stand for Wx and Bx. Bearing this in
mind, the configuration under study is characterized by V0 = 0, V1 = 2fhy and
V2 = hxhy, A−1/2 = A1/2 = 0, A3/2 = A5/2 = hy, B0 = 0, B1 = B2 = hy and
finally W−1/2 = 0, W1/2 = fhy, W3/2 = ghy and W5/2 = hxhy. Using these
expressions, Eq. 7 simplifies to Q−1/2 = 0 and

Q1/2 =
T1 −D1

f
,

Q3/2 =
T2 − T1

g

and

Q5/2 =
T3 − T2

hx
.

T0 does not appear since it is outside of the fluid domain, and the boundary
condition (D) appears only in the faces adjacent to the boundary. The formulas
obtained from Eq. 7 are classical formulas since f , g and hx are the distances
over which the differences T1 − D1, T2 − T1 and T3 − T2 are defined. Finally,
in the fluid domain and away from the boundaries, Eq. 7 simply reverts to the
classical gradient formula

Qx,i+1/2 =
Ti+1 − Ti
xi+1 − xi

.
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Figure 4: Enhanced geometric information restoring accuracy in mesh-aligned geometries.

In fact, the addition of the second-kind capacities is also sufficient to define
the (cell-centered) volume-weighted divergence operator, which consists of the
sum of the contributions from ∀α ∈ {x, y} where Nα denotes the boundary
value of Qα. If one sets the divergence to the product of the volume V with the
local value of the source term σ as in the original Poisson problem (Eq. 2), the
configuration displayed in Fig. 4 yields the trivial equation 0 = 0 in the first
cell, and

hy
(
Q3/2 −N1/2

)
= 2fhyσ1,

hy
(
Q5/2 −Q3/2

)
= hxhyσ2

in the rest. Again in the fluid domain and away from the boundary the classical
formulas are obtained, given below

hy
(
Qi+1/2 −Qi−1/2

)
= hy

(
xi+1/2 − xi−1/2

)
σi.

Finally, the unknown N = (Nα) can be eliminated by substituting the gradient
formula (Eq. 7) in the divergence formula defined below,

divα
(
Q,N

)
=
δAαQα
δξα

+
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α

. (8)

The boundary contribution (the last two terms in the right-hand side of Eq. 8)
are set to

∑
α

[
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α
]

=
∑
α

[
δ(Bα −Aα)Qα

δξα
− δBα

δξ
Qα

α
]
,

which amount to identifying the heat flow through the boundary to the normal
component of the temperature gradient. In the configuration displayed in Fig. 4,
this yields one single non-trivial equation, N1 = Q1.
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Putting it all together, the proposed gradient and divergence operators, de-
fined for arbitrary boundary geometries in Eqs. 7 and 8, discretize the Poisson
problem (Eq. 2) in the configuration displayed in Fig. 4 as 0 = 0,

hy

(
T2 − T1

g
− T1 −D

f

)
= 2fhyσ1

and

hy

(
T3 − T2

hx
− T2 − T1

g

)
= hxhyσ2

in the three cells displayed, while reverting to the classical formula

hy

(
Ti+1 − Ti
xi+1 − xi

− Ti − Ti−1

xi − xi−1

)
= hxhyσi

in the fluid domain away from the boundary.
As a consequence, formulas Eqs. 7 and 8 can be interpreted as generalizations

of the classical second-order formulas to accommodate the presence of arbitrary
boundaries while preserving first-order accuracy in the presence of mesh-aligned
cases.

3. Definitions and notation

Before generalizing the methodology presented in Sec. 2 to the discretization
of the incompressible Navier-Stokes equations, this section clarifies the notation
employed thus far, in particular the definition of volume and surface capacities
of the first and second kinds for both cell- and face-centered quantities. The
differentiation and interpolation operators are also recalled, and completed with
the definition of the permanent product.

3.1. Mesh and geometry input

As far as the Cartesian mesh is concerned, a rectilinear mesh with nx × ny
cells is defined by specifying the following sets of user-defined abscissas

x1/2 < x3/2 < · · · < xnx+1/2

and
y1/2 < y3/2 < · · · < yny+1/2.

Importantly, the mesh need not be uniform. Any given cell Ωij , identified by a
multi-index ij, (i, j) ∈ J1, nxK × J1, nyK, corresponds to the set of points (x, y)
that simultaneously satisfy xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2.

Regarding the boundary description, there exists a wide range of techniques
to define a fluid domain, such as simplicial meshes or Constructive Solid Geom-
etry (CSG) primitives and operations. Implicit representations by means of a
void fraction or distance function (Level Set) are also commonly used [6, 29]. Re-
gardless of the method employed, the assembly of the cut cell operators requires
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Figure 5: Intersection of the fluid domain (Ωf ) with Cartesian elements.

the computation of areas and volumes that correspond to the intersection of the
fluid domain with Cartesian elements (faces or cells), as displayed in Fig. 5.

In the proposed work, these computations are performed using either the
Vofi library [10] or a Marching Squares/Cubes algorithm [18], both of which
only require a signed distance function, readily available in the context of the
Level Set method but which requires some implementation efforts in other input
methods. This choice was made out of convenience, and other methods, such as
ray tracing, can equally well work as placeholders. Following the computation
of the capacities, the geometry input is discarded.

3.2. Capacities of the first kind

Consider the Cartesian mesh displayed in Fig. 5, partitioned into fluid (Ωf )
and solid (Ωs) domains separated by a boundary (Γ). In a finite volume set-
ting, the primary variables Φij consist of averages of any given continuous field
(x, y) 7→ φ (x, y) over the intersection of the fluid domain with any given hexa-
hedral cell, defined as follows

Vij ≡
ˆ

Ωij

φ (x)Hf (x) d2x, (9)

φijVij ≡
ˆ

Ωij

φ (x)Hf (x) d2x

where Hf is the fluid characteristic function defined in Eq. 6. The set V ≡ (Vij)
is referred to as the volume capacities of the first kind.

When the field under consideration is linear, these averages coincide with
the values at the fluid center of mass, displayed in Fig. 6, defined as long as
the cell is fully or partially occupied by the fluid. Although it does not appear
explicitly in the cut cell operators, the coordinates of the fluid center of mass
(displayed with crosses in Fig. 6) are still required to define the second kind
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Figure 6: First kind capacities: V (filled areas), A1 (dashed vertical lines), A2 (dashed hori-
zontal lines) and X and Y (crosses).

capacities, and are therefore temporarily stored. They are denoted as X and Y
and defined for any cell Ωij as(

Xij

Yij

)
Vij ≡

ˆ
Ωij

(
x

y

)
Hf (x) d2x. (10)

The second step consists in computing the area of each of the faces wet by the
fluid. Because the mesh is Cartesian, the faces adjacent to each cell are labelled
based on the direction they are orthogonal to. These quantities, referred to as
surface capacities, are staggered and are denoted as (Aα) (α ∈ {x, y}), and are
defined as

Axi+1/2,j ≡
ˆ yj+1/2

yj−1/2

Hf
(
xi+1/2, y

)
dy (11)

and

Ayi,j+1/2 ≡
ˆ xi+1/2

xi−1/2

Hf
(
x, yj+1/2

)
dx. (12)

3.3. Capacities of the second kind

The coordinates of the fluid center of mass are used as follows. For each
direction, the volume information is enriched by measuring how much fluid lies
between each center of mass. This yields as many sets of staggered volumes
denoted as (Wα), α ∈ {x, y}, defined as

W x
i+1/2,j ≡

ˆ yj+1/2

yj−1/2

ˆ Xi+1,j

Xij

Hf (x) d2x (13)

and

W y
i,j+1/2 ≡

ˆ Yi,j+1

Yij

ˆ xi+1/2

xi−1/2

Hf (x) d2x (14)
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(a) W1 (filled areas), B1 (dashed vertical
lines) and X and Y (crosses).

(b) W2 (filled areas), B2 (dashed horizontal
lines) and X and Y (crosses).

Figure 7: Second kind capacities.

and referred to as volume capacities of the second kind. The capacities W x and
W y are represented as colored areas in the configuration displayed in Fig. 7a
and 7b, respectively.

Likewise, the area wet by the fluid for the mesh-aligned faces that intercept
the fluid center of mass will be required in each cell. This yields an additional
set of cell-centered quantities,

Bxij =

ˆ yj+1/2

yj−1/2

Hf (Xij , y) dy (15)

and

Byij =

ˆ xi+1/2

xi−1/2

Hf (x, Yij) dx, (16)

referred to a surface capacities of the second kind. The capacities Bx and By

are represented as colored dashed lines in the configurations displayed in Fig. 7a
and 7b, respectively.

3.4. Staggering of the velocity components

It will be shown that the only capacities required for the cell-centered quan-
tities (the pressure field) are the surface capacities of the first kind

(Axi+1/2,j) and (Ayi,j+1/2).

Considering the velocities however given the staggering of the x and y compo-
nents, the computation of two additional sets of the first and second kind capac-
ities are required, per velocity component. These computations are performed
for the x component by replacing

(
x1/2, · · · , xnx+1/2

)
abscissas by (x0, · · · , xnx),

13



with half a grid spacing shift, and applying formulas of Eqs. 9 and 10, Eqs. 11
and 12 and Eqs. 13, 14, 15 and 16 to compute the following first kind

(V xi+1/2,j), (Axxij ) and (Axyi+1/2,j+1/2)

and second kind capacities

(W xx
ij ), (W xy

i+1/2,j+1/2), (Bxxi+1/2,j) and (Bxyi+1/2,j).

Likewise, abscissas
(
y1/2, · · · , yny+1/2

)
are replaced by

(
y0, · · · , yny

)
, with

half a grid spacing shift, to compute the capacities required for the y component
of the velocity field, yielding the following first kind

(V yi,j+1/2), (Ayxi+1/2,j+1/2) and (Ayyij )

and second kind capacities

(W yx
i+1/2,j+1/2), (W yy

ij ), (Byxi,j+1/2) and (Byyi,j+1/2).

4. Discretisation of the incompressible Navier-Stokes equations

This section presents the proposed discretization of the incompressible Navier-
Stokes equations for an isotropic Newtonian fluidρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ ·

(
2µs
)

+ ρg,

∇ · u = 0

where u and p respectively denote the fluid’s velocity and pressure fields, ρ its
constant density and g the gravitational acceleration. Additionally, µ denotes
the fluid’s constant dynamic viscosity and

s ≡ ∇u+ (∇u)
>

2

the strain-rate tensor. P = (Pij) represents the (cell-centered) pressure field,
and

U = (Ux, Uy) =
(

(Uxi+1/2,j), (U
y
i,j+1/2)

)
the (staggered) Cartesian components of the velocity field. Finally, D = (Dx, Dy)
denotes the (staggered) boundary conditions to be applied on the velocity field.

4.1. Velocity divergence and pressure gradient

Let Ωfij = Ωij∩Ωf denote the subset of Ωij wet by the fluid, u the continuous
fluid velocity field and d the boundary condition. Then, Stokes’ divergence
theorem ˆ

Ωfij

∇ · u =

ˆ
∂Ωfij\Γ

u · n +

ˆ
∂Ωfij∩Γ

d · n
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states that the volume integral of the velocity divergence matches the net volume
fluxes, summed over the surfaces immersed in the fluid itself and adjacent to
the boundary. The former term, referred to as homogeneous, quantifies the
exchange of volume with the neighboring fluid elements, and the latter, referred
to as heterogeneous, quantifies this exchange with the exterior domain through
the boundary.

This decomposition is reflected at the discrete level by discretizing the volume-
integrated velocity divergence as

cont (U,D) ≡
∑
α

δAαUα
δξα

+
δ
(
Bα

α −Aα
)
Dα

δξα
− δBα
δξα

Dα

α
 . (17)

The divergence free condition, then, is expressed as

cont (U,D) = 0

and the (volume integrated) α component of the pressure gradient, a linear
operator denoted as presα, is simply defined as the negative transpose of the
Jacobian of Eq. 17 with respect to Uα, namely

∀α ∈ {x, y} , ∂ presα
∂P

= −
(
∂ cont

∂Uα

)>
Uβ 6=α,D

(18)

which yields

∀α ∈ {x, y} , presα (P ) ≡ Aα
δP

δξα
.

This construction is rooted in the geometric interpretation of the incompress-
ible Navier-Stokes equations [2], which exposes the dual role of the pressure in
imposing the divergence-free condition, and commonly used in both structured
and unstructured settings [9, 25].

4.2. Strain-rate tensor
The components of the diagonal element of the strain-rate tensor are cell-

centered discrete counterparts of

sαα =
∂uα
∂xα

, α ∈ {x, y} ,

defined based upon the gradient formula Eq. 7. First, the surface and volume
capacities W = (Wβ), A = (Aβ) and B = (Bβ) are replaced by those after
shifting the mesh in half a grid spacing along direction α defined in Sec. 3.4,
namely Wα = (Wαβ), Aα = (Aαβ) and B = (Bαβ). Second, the dependent
field T and the Dirichlet boundary condition D are substituted with Uα and
Dα, respectively. This finally yields

∀α ∈ {x, y} , strainαα (U,D) =

1

Wαα

δBααUα
δξα

+
δ
(
Aαα

α −Bαα
)
Dα

δξα
− δAαα

δξα
Dα

α
 . (19)
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This process is repeated for the components of the off-diagonal elements of the
strain-rate tensor, defined in the continuous case as

sαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, α 6= β,

and in the discrete case as the node-centered field

∀ (α, β) ∈ {x, y}2 , α 6= β, strainαβ (U,D) =

1

2Wαβ

δBαβUα
δξβ

+
δ
(
Aαβ

β −Bαβ
)
Dα

δξβ
− δAαβ

δξβ
Dα

β


+
1

2Wβα

δBβαUβ
δξα

+
δ
(
Aβα

α −Bβα
)
Dβ

δξα
− δAβα

δξα
Dβ

α
 . (20)

It should finally be noted that the latter formula (Eq. 20) is also valid in the
diagonal case (α = β), in which case it simply reduces to Eq. 19.

4.3. Viscous transport term

Prior to proceeding with the discretization of the viscous transport term, it
should first be noted that, in the case where the second argument (N) of the
divergence operator (Eq. 8 summed over α) matches the first argument (Q),
Eq. 8 may be simplified using the identities presented by Morinishi [21] as

div
(
Q,Q

)
=
∑
β

Bβ
δQβ
δξβ

. (21)

Therefore, the discretization of the viscous transport term, ∇ · (2µs), is per-
formed similarly to that of the strain-rate operator, by translating the definition
of the capacities to yield

∀α ∈ {x, y} , viscα

(
S
)

=
∑
β

Bαβ
δSαβ
δξβ

where S = (Sαβ) is defined as a function of U and D by Eqs. 19 and 20.

4.4. Convective transport term

The convective term in the momentum transport equation along α ∈ {x, y}
is rewritten in conservative form using the divergence-free condition,

(u · ∇)u = ∇ · (u⊗ u)−∇ · u = ∇ · (u⊗ u)
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which in discrete form can be written as

convα

(
U,U†, D,D†

)
=

∑
β

δAβUβ
α
U†α

β

δξβ
+

δ
(
Bβ

β −Aβ
)
Dβ

α

δξβ
− δBβ
δξβ

Dβ

β
α
 U†α +D†α

2

 . (22)

This multilinear operator is typically evaluated at U† = U and D† = D but
the distinction might bear significance, in the context of Picart linearisation for
example where a distinction applies between U which is typically frozen whereas

U† is updated. This discretization can be considered as the generalisation of the
centered scheme to the cut cell method, which can be demonstrated as follows.
In the continuous case,

∀ (α, β} ∈ {x, y}2 , uα
∂uβuα
∂xβ

=
∂uβu

2
α/2

∂xβ
+
u2
α

2

∂uβ
∂xβ

, (23)

which, upon summation over α, yields a similar equation for the specific kinetic
energy k ≡ ‖u‖2/2, ultimately conserved in the inviscid limit. The proposed
discretization of the convective transport term (Eq. 22) preserves this property
at the discrete level. Using the identities presented by Morinishi [21], it can be
be shown that

∀ (α, β) ∈ {x, y}2 , U†α
δAβUβ

α
U†α

β

δξβ
=
δAβUβ

α
Ũ†αU

†
α

β

/2

δξβ
+
U†2α
2

δAβUβ
α

δξβ
(24)

where ·̃ denotes the permanent product

φ̃ψ
x
∣∣∣
i+1/2,j

=
φi+1,jψij + ψi+1,jφij

2
, (25)

also introduced by Morinishi [21] and easily extended to other dimensions and
arrangements as previously done for differentiation and interpolation. Eq. 24,
together with the continuity operator (Eq. 17), can be used to show that ∀α ∈
{x, y}

U†α convα

(
U,U†, D,D†

)
=

∑
β

δAβUβ
α
Ũ†αU

†
α

β

/2

δξβ
+

δ
(
Bβ

β −Aβ
)
Dβ

α

δξβ
− δBβ
δξβ

Dβ

β
α
 U†αD†α

2


+
U†2α
2

cont (U,D)
α
. (26)

This identity can be interpolated in each direction α, and summed over α, to
ultimately state the proposed discretization (Eq. 22) conserves kinetic energy,
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in the sense that the rate of change of the discrete kinetic energy

kinetic
(
U†
)
≡
∑
α

1

2
VαU

†
αU
†
α

α

is a result of an exchange with the neighboring fluid elements (first term in the
right-hand side of Eq. 26) and across the boundary (second term).

4.5. Semi-discrete system

The face-centered mass matrices appearing in front of the rate of change and
body forces are diagonal with coefficients V = (Vα) (the volume of the staggered
control volumes, defined in Sec. 3.4) and are denoted as

∀ {x, y} , Mα ≡ diag (Vα) .

Gathering all the terms, the proposed semi-discrete momentum equations then
read (α ∈ {x, y})

ρ

[
Mα

dUα
dt

+ convα (U,U,D,D)

]
= −presα (P )+viscα

(
2µS

)
+ρMαg, (27)

with divergence-free condition

cont (U,D) = 0. (28)

The system is closed with the discrete strain-rate tensor S, defined as a function

of U and D as follows,

∀ (α, β) ∈ {x, y}2 , Sαβ = strainαβ (U,D) (29)

where the operators strainαβ are defined by Eqs. 19 and 20.
All of the operators appearing in Eqs. 27, 28 and 29 are linear in all depen-

dent variables (P , U and S) and boundary condition D with the exception of the

convective transport operators ((convα) defined in Eq. 22) which is quadratic
when evaluated at U† = U and D† = D.

4.6. Projection method

The discretization of the aforementioned incompressible Navier-Stokes equa-
tions results in a saddle point system of equations [4], sometimes also called
Karush-Kuhn-Tucker (KKT) system [23] in optimization. A wide range of al-
gorithms have been devised to efficiently solve saddle point systems (or approx-
imation thereof). In the field of fluid mechanics, a common approach is the
fractional step method [11]. In the present work, the method referred to as
projection method II (PmII) by Brown et al. [7], which ensures a second order
discretization of the equations, is employed.

In this projection method, the convective term is discretized using the ex-
plicit second-order Adams-Bashforth scheme and the viscous term is discretized
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using the implicit Crank-Nicolson scheme. The first step of the method consists
of obtaining an intermediate velocity field U? by solving

ρMα
U?α − Unα

τ
+

3ρ

2
convα (Un, Un, Dn, Dn)

− ρ

2
convα

(
Un−1, Un−1, Dn−1, Dn−1

)
= −presα

(
Pn−1/2

)
+ viscα

(
µS?

)
+ viscα

(
µSn

)
+ ρMαg, (30)

where τ denotes the time step and the superscript n the iteration number. The
boundary conditions applicable to U? (the predicted velocity field) and used in
S? are those of the velocity field at the next time step (D? = Dn+1)

∀ (α, β) , Snαβ = strainαβ (Un, Dn) and S?αβ = strainαβ
(
U?, Dn+1

)
.

In the projection step, the velocity field is updated by projecting U? using
the intermediate pressure field Φn+1, which is obtained by solving the following
Poisson equation

τ cont
(
pres

(
Φn+1

)
, 0
)

= cont
(
U?, Dn+1

)
, (31)

with a homogeneous Neumann boundary conditions being used for the interme-
diate pressure (0). The velocity field is ultimately corrected as

Un+1
α = U?α − τ presα

(
Φn+1

)
. (32)

The pressure is finally updated as

Pn+1/2 = Pn−1/2 + Φn+1 − τµ

2ρ
cont

(
pres

(
Φn+1

)
, 0
)
, (33)

where the last term ensures the second order accuracy of the pressure field.
Thus far, only Dirichlet boundary conditions for the velocity field have been

considered, which are paired with homogeneous boundary conditions for the
pressure in the projection step. Cases will be considered in the following section
where Neumann boundary condition are required along the outflow boundaries.
Along their vicinity, a Dirichlet boundary condition for the pressure is employed
in order to uphold the compatibility equation 18.

Finally, the use of periodic and/or Neumann boundary conditions gives rise
to a rank deficiency in the Laplacian operator. This results in the pressure
field being known up to a constant. This knowledge is exploited in the iterative
solution of the Poisson equation by projecting the updates in the space of zero-
mean solutions.

5. Results

Two canonical test cases are presented to validate the methodology and
showcase that the proposed cut cell method is able to accommodate geometries
of any shape.
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Figure 8: Close-up view of grid G1.

Grid nx × ny ∆xmin ∆xmax

G1 320× 200 0.06 0.2
G2 600× 350 0.03 0.1
G3 1150× 500 0.015 0.075

Table 1: Grids parameters for the cylinder.

5.1. Flow around a cylinder

Viscous flow around a cylinder at Re = 100 is used to test the accuracy of
the proposed method. Three different grids have been tested with a domain
size D = [−15, 30] × [−15, 15] with varying resolutions, labelled G1 (coarsest)
to G3 (finest), in order to assess the accuracy of the method in a canonical
configuration and to highlight its convergence properties. Fig. 8 shows a close-
up view of the grid G1, whereas the number of points in each direction and the
minimum and maximum cell size of each grid are shown in Tab. 1.

Dirichlet boundary condition is applied on the left border of the domain
on the velocity field whereas homogeneous Neumann boundary conditions are
applied on the bottom, right and top borders as outflow boundary conditions.
On the pressure field, homogeneous Neumann is applied on the left border and
Dirichlet on the bottom, right and top borders. A no-slip Dirichlet boundary
condition is used at the wall for the velocity and homogeneous Neumann for
the pressure. The CFL number is set to 0.5 in all the simulations. The hori-
zontal and vertical components of the velocity field are initialized to 1 and 0,
respectively. The simulations are advanced 200 time units in order to reach the
periodic state.

Fig. 9 depicts the error and the order of convergence of the proposed
methodology by measuring the error as the difference in the mean drag coeffi-
cient between the values obtained using grids G1 and G2 and the value obtained
using grid G3, which is used as reference. A convergence rate of 1.606 is ob-
served. The results obtained for the Strouhal number (St), the root mean square
lift coefficient (r.m.s. Cl) and the drag coefficient (Cd) are presented in Tab. 2
for the finest grid G3 and compared with several reference solutions, showing a
good agreement.

A snapshot of the streamwise and vertical velocity fields at t = 200 is dis-
played in Fig. 10 showing the expected von Kármán vortex street.

5.2. Flow around an airfoil

The flow around the symmetric NACA 0010 airfoil at Re = 500 and an angle
of attack α = 30◦ is also simulated and compared with a reference solution [27].
In this case, a single grid has been used with a domain size D = [−15, 30] ×
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Conv. order = 1.606

Figure 9: Convergence of Cd.

St r.m.s. Cl Cd
G3 0.167 0.251 1.370± 0.008
Norberg [24] 0.164 0.265 -
Henderson [15] 0.164 - 1.350
He et al. [14] 0.167 - 1.353
Linnick and Fasel [17] 0.166 - 1.38± 0.009

Table 2: Comparison of Strouhal number, r.m.s. lift coefficient and drag coefficient for the
cylinder case at Re = 100.
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(a) Horizontal velocity component.
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(b) Vertical velocity component.

Figure 10: Colormap of the velocity components using grid G4 at t = 200.
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Figure 11: Overall and close-up views of the grid used for the NACA 0010 airfoil.

St Cl Cd
Present 0.36 1.1 0.77
Rossi et al. [27] 0.34 1.1 0.75

Table 3: Comparison of the Strouhal number, mean lift coefficient and mean drag coefficient
for NACA 0010 at [Re] = 500 and α = 30◦.

[−15, 15] using 1200×600 grid points, with a minimum cell size of ∆xmin = 0.01
and a maximum cell size of ∆xmax = 0.075. Fig. 11 displays a general and a
close-up view of the grid around the airfoil plotting the grid lines every two cells
for the sake of clarity. As in the cylinder case, the horizontal component of the
velocity is initialized to 1, and the vertical component to 0. The simulation is
advanced 80 time units until the periodic stated is reached and the same set of
boundary conditions as those of the previous case are applied. The CFL number
is set to 0.25 in this case.

Fig. 12 shows the velocity components at the last time step of the simulation,
where the wake displays alternating vortex pairs being shed. One vortex pair is
in vertical ascent while the other pair moves downstream following a descending
path. This double vortex pair generates a double wake structure downstream
of the airfoil.

6. Conclusion

The proposed cut cell methodology relies on Morninishi’s discrete calculus
to formulate discrete operators for the solution of the incompressible Navier-
Stokes equations on staggered Cartesian grids in arbitrarily-shaped domains.
Emphasis is set on both accuracy and structural properties of the first- and
second-order operators. The geometric information is encapsulated in a set
of surface and volume moments, designed to preserve constant states, recover
classical formulas away from the boundary and in the vicinity of mesh-aligned
boundaries, and retain a nearest-neighbor stencil. By construction, the spatial
operators conserve volume and linear momenta locally and globally as well as
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Figure 12: Colormaps of the velocity components around the airfoil at Re = 500.

kinetic energy in the inviscid limit. The method is shown to perform well in
canonical two-dimensional flow configurations. Future work includes the gen-
eralisation to more complex boundary conditions as well as the replacement of
the segregated approximation by a monolithic pressure-velocity solver.
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References

[1] A. Arakawa and V. R. Lamb. Computational Design of the Basic Dy-
namical Processes of the UCLA General Circulation Model. In Methods
in Computational Physics: Advances in Research and Applications, vol-
ume 17 of Methods in Computational Physics: Advances in Research and
Applications, pages 173–265. Elsevier, 1977.
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