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Nowadays, magnetoresponsive soft materials, based not simply on magnetic nanoparticles, but
rather on multiple components with distinct sizes and magnetic properties, both in liquid and
polymeric carriers, are becoming more and more wide-spread due to their unique and versatile
macroscopic response to an applied magnetic field. The variability of the latter is related to a
complex interplay of the magnetic interactions in a highly non-uniform internal fields caused by
spatial inhomogeneity in multicomponent systems. In this work, we present a combine analytical
and simulation study of binary superparamagnetic systems, containing nanoclusters and dispersed
single-domain nanoparticles, both in liquid and solid carrier matrices. We investigate the equilibrium
magnetic response of these systems in wide ranges of concentrations and interaction energies. It
turns out that, while the magnetisation of a binary solid can be both above and below that of an ideal
superparamagnetic gas, depending on the concentration of the dispersed phase and the interparticle
interactions, the system in a liquid carrier is highly magnetically responsive. In liquid, a spatial
redistribution of the initially homogeneously dispersed phase in the vicinity of the nanocluster
is observed – the effect that is reminiscent of the so-called “haloing” effect previously observed
experimentally on micro- and milli-scales.

I. INTRODUCTION

Magnetic soft matter is a family of artificially synthe-
sized materials based on a distributed system of mag-
netic particles embedded in a non-magnetic carrier ma-
trix. Notable members of the said family are ferroflu-
ids [1], magnetorheological fluids [2], ferrogels [3] and
magnetoactive elasomers [4]. The behavior and prop-
erties of these systems can be controlled using applied
magnetic fields, which makes them highly attractive in
various branches of nanotechnology and nanomedicine.
Examples of applications include soft crawling robots [5],
tissue engineering scaffolds [6], adaptive dampers and
seals [7], ferrofluid cooling systems [8], magnetic lubri-
cants [9], targeted drug delivery systems [10], magnetic
hyperthermia of cancer [11] and magnetic particle imag-
ing [12].

Modern methods of magnetic soft matter synthesis
have achieved a tremendous success. In particular, par-
ticles can vary greatly in size and can have very different
internal magnetic structure. The common types of par-
ticles are single-domain ferro- or ferrimagnetic nanopar-
ticles with linear sizes ∼ 10 nm [13], dense cluster of
single-domain nanocrystals (magnetic “nanoflowers” [14]
and “multicore nanoparticles” [15, 16] with the size of the
order of ∼ 102 nm) and multi-domain microparticles with
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low or high coercivity [17]. Recently, multicomponent
systems, which simultaneously employ several types of
magnetic particles, attracted a lot of scientific attention.
For instance, these are hybrid elastomers containing both
magnetically soft and hard microparticles [18]. Report-
edly, they allow for a much larger degree of a magneto-
mechanical fine-tuning than analogous one-component
systems [19]. In Ref. [20], an elastic sphere filled with
magnetically saturated colloidal particles of two differ-
ent sizes was considered – it was shown that for certain
spatial arrangements of particles, variation in the quan-
titative ratio between small and large particles can lead
to qualitative changes in the system overall deformation
response. Another example are bimodal magnetorheolog-
ical fluids, which consist of magnetic microparticles sub-
merged in a nanodispersed ferrofluid [21]. They are con-
sidered to be an improved substitution for conventional
magnetorheological fluids due to their superior colloidal
stability and sedimentation behavior [22, 23]. Recently,
a novel type of binary ferrofluids containing a mixture
of magnetically hard and magnetically soft nanoclusters
was experimentally investigated in Ref. [24]. Even some
samples of traditional ferrofluids are known to contain
a fraction of large nanoclusters, which results in a sub-
stantial alteration of their magnetic, mass-transport and
rheological properties [25–28].

The more the magnetic soft matter systems that con-
tain two types of magnetic components are developed,
the clearer becomes the demand to understand the fun-
damental interplay between interactions of those compo-
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nents and their impact on the system overall magnetic
response. The latter is of particular importance as it
forms the basis for the efficient usage of these materials.

Here, we will focus mainly on composite materials that
are based on single-domain fine particles. It is known
that if the internal anisotropy energy of such particles
is comparable or smaller than the energy of thermal
fluctuations (which is common for iron oxide nanopar-
ticles [13]), then the average ensemble magnetization in
zero field is zero. As the field increases, the magneti-
zation will non-linearly and reversibly grow towards the
saturation value. Such behaviour is known as “superpara-
magnetism” and corresponding materials can be referred
to as “superparamagnetic” [29]. While interactions in
one-component superparamagnetic systems are very im-
portant, both in liquid [30, 31] and solid [32, 33] car-
riers, the situation becomes even more complex, if the
material is multi-component. A clear evidence of this
are direct and inverse ferrofluid emulsions that are bi-
nary systems with only one magnetic component [34–37].
Here, the non-uniformity of the internal magnetic field
inside the sample leads to a very sophisticated magnetic
response. It is, however, clear that the internal field gra-
dients will become even stronger and more important, if
a true binary magnetic material is addressed. So far, a
detailed description as well as a fundamental understand-
ing of the magnetisation processes in such materials is not
available in the scientific literature. This work aims at
filling this gap and puts forward a combined analytical-
computational study of a system, containing both large
superparamagnetic nanoclusters (the sources of strong
internal field and spatial inhomogeneity) and a dispersed
phase of single-domain superparamagnetic particles that
are forced to react to the perturbations created by the
cluster. As long as we expect a drastic change depend-
ing on the carrier, we investigate two extreme cases: the
disperse phase is either frozen in space, maintaining only
the rotational degrees of freedom, mimicking a material,
based on a rubber-like rigid matrix; or the whole sys-
tem is immersed in a liquid, where the disperse phase
can freely diffuse. It turns out that in the latter, a pro-
nounced gathering of a dispersed phase in the vicinity of
the nanocluster is observed, causing qualitative changes
in the magnetisation behaviour.

The article is organised as follows. First, we describe
the model in detail in Sec. II. In Sec. III, we adapt the
analytical approach, developed by Subbotin [35, 36], and
calculate the magnetization of our binary system. The re-
sults and discussions in Sec. IV are split, according to the
carrier: we discuss solid matrix in IVA; a liquid carrier
is studied in IVB and IVC of the Results. In particular,
spatial redistribution of a dispersed phase is investigated
in Sec. IVC. The summary and a short outlook are pro-
vided in Sec. V.
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FIG. 1. Schematic representation of the investigated system

II. MODEL OF A BINARY
SUPERPARAMAGNETIC MIXTURE

The system under consideration is an isolated magnetic
nanocluster embedded in a superparamagnetic medium
(see Fig. 1). The system is subjected to an external uni-

form magnetic field H⃗0 and thermostated at a constant
temperature T . Nanocluster is modelled as a sphere of
diameter Dcl filled with Nin spherical magnetic particles
of diameter d. Particles are distributed within the clus-
ter randomly and uniformly, without overlapping, their
volume fraction is

φin = Nin
v

Vcl
= Nin

(
d

Dcl

)3

, (1)

where v = (π/6)d3 and Vcl = (π/6)D3
cl are volumes

of the particle and the nanocluster, respectively. Po-
sitions of particles within the nanocluster are rigidly
fixed. Particles are assumed to be single-domain and
magnetically-isotropic (the validity of this approxima-
tion is commented on in Appendix A). Each particle has
a magnetic moment m⃗, which magnitude is fixed, but
its orientation can change under the influence of an ap-
plied magnetic field, dipolar magnetic fields created by
other magnetic moments in the system and thermal fluc-
tuations. As a result, the nanocluster as a whole will
exhibit a superparamagnetic behaviour according to the
definition introduced in the previous section. It does not
have a net magnetic moment in the absence of an ap-
plied field, but will be non-linearly magnetized, if the field
is turned on [38]. The superparamagnetic medium sur-
rounding the nanocluster is modelled in a similar fashion.
It consists of Nex magnetically-isotropic spherical single-
domain particles, which are exactly the same as particles
that constitute the cluster, i.e. they also have diameter d
and rotatable magnetic moment m⃗. The particle volume
fraction in the medium is

φex = Nex
v

Vtot − Vcl
, (2)
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where Vtot is the total system volume. Magnetic nanopar-
ticles in the medium always retain their rotational de-
grees of freedom.

The interaction of magnetic moments with the external
field is governed by the Zeeman potential

UZ = −µ0(m⃗ · H⃗0), (3)

where µ0 is the magnetic permeability of vacuum. Addi-
tionally, each pair of particles interacts via the magnetic
dipole-dipole potential

Udd(i, j) =
µ0

4π

[
(m⃗i · m⃗j)

r3ij
− 3 (m⃗i · r⃗ij) (m⃗j · r⃗ij)

r5ij

]
,

(4)
where m⃗i and m⃗j are magnetic moments of two parti-
cles and r⃗ij is the vector connecting their centers. We
use two dimensionless energy parameters to characterize
these magnetic interactions. The first one is the Langevin
parameter

ξ0 =
µ0mH0

kBT
, (5)

that is the ratio of the Zeeman energy to the thermal
energy kBT , kB is the Boltzmann constant, m = |m⃗i|.
For a ten nanometer magnetite grain (with the saturation
magnetization Ms = 450 kA/m), ξ0 = 1 corresponds
to H ≃ 14 kA/m at room temperature. The second
parameter is the so-called dipolar coupling constant

λ =
µ0

4π

m2

d3kBT
, (6)

that is the characteristic energy scale of two adjacent
particles, whose dipoles are aligned head-to-tail, divided
by kBT and calculated per particle. At T = 300 K, this
parameter for a pair of magnetite grains will roughly go
from λ ∼ 1 to λ ∼ 10 as their diameter increases from 10
to 20 nanometers.

Modelling of different carriers will be done by chang-
ing the way we treat the translational degrees of free-
dom of our particles. In a solid carrier matrix (SCM),
single-domain particles surrounding the cluster will be
randomly distributed in the medium and would not be
able to move (just like the particles that constitute the
nanocluster itself). In a liquid carrier matrix (LCM),
particles will be subjected to a translational Brownian
motion and could change their position relative to the
nanocluster. They are assumed to be sterically stabilized
and are not allowed to overlap. Of course, in a liquid
the nanocluster should undergo the Brownian motion as
well. However, we can make use of the fact that charac-
teristic time scales for 3D Brownian motion of a cluster
and a particle, τcl = 3ηVcl/kBT and τp = 3ηv/kBT , re-
spectively (η is the carrier viscosity), are very different.
Indeed, if Dcl/d ∼ 10, the cluster motion is three orders
of magnitude slower than that of surrounding particles.
Thus, in LCM simulations the cluster will be treated as
if its position is fixed.

Our main quantities of interest in this work are the nor-
malized equilibrium magnetic moment of the nanocluster

M⃗cl =

〈
Nin∑
i=1

m⃗i

〉
1

mNin
, (7)

as well as the total normalized magnetic moment of the
whole system

M⃗tot =

〈
Ntot∑
i=1

m⃗i

〉
1

mNtot
, (8)

where Ntot = Nin +Nex is the total number of particles
in the system, ⟨. . .⟩ denotes an ensemble average.
In this work, we use both analytical theory (Sec-

tion III) and Langevin dynamics simulations (for details,
see Appendix B). However, already at this point, it is
important to specify that the system in simulations is
subjected to 3D periodic boundary conditions. It ap-
proximately corresponds to a suspension of nanoclusters
with a nanocluster volume fraction

Φcl =
Vcl

Vtot
=

(
1 +

φin

φex

Nex

Nin

)−1

. (9)

We will consider systems with Nin = 500 and Nex =
2500. Particle concentration in the cluster is always
φin = 0.3 (correspondingly, Dcl ≃ 12d), while the con-
centration of the surrounding medium will be changed
from a small value of φex = 0.002 to φex = 0.15. Cor-
respondingly, the cluster concentration will change from
Φcl ≃ 0.0013 to Φcl ≃ 0.09. Magnetic interaction param-
eters also will vary in wide ranges: 1 ≤ λ ≤ 5, 0 ≤ ξ0 ≤ 5.

III. MAGNETIC RESPONSE THEORY

In this section, we will summarize the works of Sub-
botin on inverse ferroemulsions [35, 36] and adapt them
to binary superparamagnetic mixtures. Let us consider a
suspension of spherical magnetizable bodies (clusters) in
a magnetizable medium with a relative magnetic perme-
ability µex. Assume that the volume fraction of clusters
is Φcl and they are made of some material with relative
magnetic permeability µin. According to Refs. [35, 36],
the field inside clusters is homogeneous and parallel to
the external field, its magnitude is given by

Hin = H0
1

1 + (1− Φcl)κ
(

µin

µex
− 1
) , (10)

where κ is the cluster demagnetization factor. For a
sphere, κ = 1/3. The field in the surrounding medium
is

Hex = H0

1 + Φclκ
(

µin

µex
− 1
)

1 + (1− Φcl)κ
(

µin

µex
− 1
)
 . (11)
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Permeabilities, in general, can be considered as non-
linear functions of the field:

µin = 1 +
Min(Hin)

Hin
, (12)

µex = 1 +
Mex(Hex)

Hex
, (13)

where Min and Mex are magnetizations of the cluster
material and of the medium, respectively. The total mag-
netization of the system is

Mtot = ΦclMin(Hin) + (1− Φcl)Mex(Hex). (14)

Normalized magnetic moments then can be found as

Mcl =
MinVcl

mNin
, 0 ≤ Mcl ≤ 1, (15)

Mtot =
MtotVtot

mNtot
, 0 ≤ Mtot ≤ 1. (16)

Further on, the set of equations (10)–(16) will be referred
to as the binary mixture magnetization (BMM) model.
The key assumption of BMM is that magnetic field

in the medium Hex is a sum of the external field H0

and some average field that is created by all magnetized
clusters, distributed in the system. This latter field is
assumed to be uniform and so is Hex itself. However, it
is known that the local magnetic field (and subsequently
µex) in the vicinity of a magnetized spherical body is
non-uniform [13]. Thus, Eqs. (10)–(11) are only an ap-
proximation. BMM, however, converges to a well-known
Maxwell-Wagner formula for the initial permeability of
a binary dielectric mixture [39]. In the weak-field limit,
it also shows a good agreement with experimental data
on the effective permeability of inverse ferroemulsions.
This model, however, overestimates experimental results
slightly as the applied field increases. Applicability of
BMM to our system is to be determined.

In order to close the set of BMM equations, some
explicit expressions for magnetization curves Min =
Min(Hin) and Mex = Mex(Hex) are required. For
this purpose, the so-called modified mean-field (MMF)
theory can be used. It was initially developed to de-
scribe static magnetic properties of concentrated fer-
rofluids [40, 41]. Subsequently, the approach has been
extended for the description of the ferrofluid dynamic
response [31] as well as magnetic properties of single-
domain nanoparticle ensembles immobilized in a solid
non-magnetic matrix [32]. Ref. [36] also used the first-
order MMF to describe the magnetic component of an
inverse ferroemulsion. Within a more accurate second-
order MMF approach [42], magnetization of a one-
component superparamagnetic material can be written
as

M(H) = MsL

(
ξeff

(
µ0mH

kBT
, χL

))
, (17)

ξeff (ξ, χL) = ξ + χL (1 + χLL
′(ξ)/16)L(ξ), (18)

L(ξ) = coth ξ − 1/ξ, (19)

where Ms = (6/πd3)mφ is the material saturation mag-
netization, φ is the particle volume fraction, χL = 8λφ is
the so-called Langevin susceptibility, L(ξ) is the Langevin
function that describes magnetic response of an ensem-
ble of non-interacting dipoles (i.e., at χL ≪ 1), L′(ξ) =
dL(ξ)/dξ, ξeff is the effective dimensionless field that is
acting locally on an arbitrary chosen particle in an en-
semble with dipole-dipole interactions. If we assume that
both components of our binary mixture can be described
by MMF, permeabilities can be written down as

µin = 1 + 3χin
L

L
(
ξeff (ξin, χ

in
L )
)

ξin
, (20)

µex = 1 + 3χex
L

L (ξeff (ξex, χ
ex
L ))

ξex
, (21)

where χin
L = 8λφin, χ

ex
L = 8λφex, ξin = µ0mHin/kBT ,

ξex = µ0mHex/kBT .

IV. RESULTS AND DISCUSSION

A. Equilibrium magnetization of a mixture in a
solid carrier

Magnetization curves for a superparamagnetic cluster
embedded in a solid matrix with immobilized nanopar-
ticles are shown in Fig. 2 for different values of λ and
φex. The first noticeable feature of magnetization curves
is that at any given λ an increase in φex leads to a qual-
itative change in how the system magnetization relates
to the Langevin function. Langevin magnetization cor-
responds to a system of non-interacting dipoles. So, if
the normalized magnetization is lower than correspond-
ing Langevin value, it means that dipole-dipole interac-
tions hinder the overall magnetic response. Vice versa,
magnetization higher than the Langevin value indicates
that dipole-dipole interactions play a reinforcing role. It
is known that equilibrium magnetostatic response of su-
perparamagnetic clusters in an empty space always lies
below the Langevin curve [38] – this is the result of
the demagnetization effect. Similar behavior is observed
in our system for a cluster in a diluted medium with
φex = 0.002. However, as the concentration of particles
in the surrounding medium increases (and as the mag-
netic permeability of the medium µex becomes closer to
the permeability of the cluster µin), demagnetization ef-
fects slowly disappear – magnetization of both the clus-
ter and the mixture eventually becomes larger than the
Langevin value. Interestingly enough, at φex ≥ 0.05
and λ ≥ 3 the impact of dipole-dipole interactions on
the mixture magnetization depends non-monotonically
on the field – while the initial section of the magneti-
zation curve is larger than that of the Langevin function,
simulation points eventually fall below L(ξ) in the satu-
ration regime.
As for the theoretical predictions, it is seen that the

combination of BMM and MFT gives very accurate pre-
dictions for the initial slope of magnetization curves in
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FIG. 2. Equilibrium magnetization curves of a superparamagnetic mixture in a solid carrier. The first row (panels (a)–(c))
demonstrates dependencies of a normalized magnetization (or, identically, of a normalized magnetic moment) of the whole
system Mtot on the Langevin parameter ξ0. Insets in (a)–(c) shows the difference between Mtot values from the corresponding
panels and the Langevin function L(ξ0). The latter is indicated on the main panels with dotted lines. The second row (panels
(d)–(f)) shows corresponding values of the cluster normalized magnetic moment Mcl. Different columns correspond to different
dipolar coupling parameters: (a), (d) λ = 1; (b), (e) λ = 3; (c), (f) λ = 5. Particle volume fraction in the surrounding medium
φex is indicated by color (see colorbar). Simulation results are shown with circles (transparent lines connecting them are
guides for eyes), solid lines are predictions from BMM model [Eqs. (10)-(16)] combined with MMF expressions for magnetic
permeabilities [Eqs. (20)-(21)]. Dashed lines are “corrected” BMM predictions with permeabilities values directly extracted
from auxiliary simulations of one-component superparamagnetic systems rather than from MMF.

the whole investigated parameter ranges. However, as
the field increases, theory and simulation data start to
diverge rapidly. The larger φex and/or λ reinforce the
discrepancy. Theoretical (solid) curves in Fig. 2 are al-
ways above simulation points at ξ0 > 1. At φex = 0.15
and λ = 5, the error between numerical and theoretical
values of the mixture magnetization reaches almost 20%
of the corresponding saturation value.

To understand the reason for the discrepancy between
theory and simulations, a set of auxiliary simulations was
performed. We simulated a one-component ensemble of
immobilized nanoparticles randomly and uniformly dis-
tributed in a standard cubic box with 3D periodic bound-
ary conditions. Ensemble of N = 2000 particles was con-
sidered. Using simulation data, a non-linear magnetic
permeability of the ensemble was calculated as a func-
tion of the field ξ at different λ and particle volume frac-
tions φ. The results are demonstrated in Fig. 3 in com-
parison with MMF predictions. It can be seen that while

MMF mostly predicts correct zero-field permeability val-
ues, at large fields it overestimates µ. In more details this
feature of immobilized superparamagnetic ensembles was
discussed in Ref. [38]. To take it into account the follow-
ing procedure was performed. Calculated permeability
of a one-component system were interpolated (with cubic
splines) and then put in BMM instead of MMF predic-
tions Eqs. (20) and (21). The results of this procedure
are shown in Fig. 2 with dashed lines. We can see that
the accuracy of BMMwith “corrected” permeabilities im-
proves drastically. New theoretical curves closely follow
Mtot dependencies. The magnetization curves for the
cluster still overestimate numerical results but it is much
better than MMF for λ ≥ 3 and φex ≥ 0.05. The proba-
ble reason for the remaining discrepancy is the inherent
BMM assumption that the magnetic field Hex and per-
meability of the surrounding medium µex are constant
and uniform in cluster vicinity, which is not correct at
large enough applied fields [13]. Thus, the agreement
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FIG. 3. Field dependencies of the magnetic permeability for
a one-component ensemble of randomly distributed immobi-
lized magnetic nanoparticles. Solid lines are MMF theory
predictions [Eqs. (17)-(18)], symbols are simulation results.
Different panels correspond to different dipolar coupling con-
stants: λ = 3 (a) and 5 (b). Particle volume fractions are
indicated by color.

with simulation potentially can only be improved by di-
rectly solving a nonlinear magnetostatic boundary-value
problem and correctly determining the magnetic field dis-
tribution in the system. However, this task is beyond the
scope of the present paper.

B. Equilibrium magnetization of a mixture in a
liquid carrier

Now let us consider a different type of a binary mix-
ture – a superparamagnetic nanocluster submerged in a
suspension of magnetic nanoparticles in a non-magnetic
liquid matrix. Essentially, a nanocluster in a ferrofluid or
in a very loose gel, in which the cluster is too large to dif-
fuse, but a dispersed phase is not constrained [43]. The
magnetization curves for this case are shown in Fig. 4.
The first thing that is seen here is that the magnetization
of the mixture and the cluster are larger than correspond-
ing SCM values for every set of investigated parameters.
A noticeable feature of previously considered SCM is that
Mtot at large φex can be higher than the correspond-
ing Langevin value in weak fields, but smaller than the
Langevin value in strong fields. The role of dipole-dipole
interactions changes as the field increases. For LCM, this
feature is no longer present – there are no crossing of the
Langevin curve, at least not at ξ0 ≤ 5.
MMF does not make any distinctions between liquid

and solid superparamagnetic ensembles – thus, theoreti-
cal curves in Fig. 4 are exactly the same as in Fig. 2. At
λ = 1, these curves actually describe simulation data for

LCM quite well – better than the data for SCM (compare
insets in Fig. 2(a) and Fig. 4(a)). But already at λ = 3
the agreement breaks down. Surprisingly, the error does
not increase with φex as in SCM case – the strongest dis-
agreement between theory and simulations takes place
at intermediate and low concentrations. For λ = 3 and
φex = 0.05, theoretical predictions are incorrect both
for initial and saturation portions of the LCM magne-
tization curve (Figs. 4(b),(e)). At λ = 5, the strongest
disagreement takes place at even smaller concentrations,
φex = 0.002 (Figs. 4(c),(f)).
In order to improve the agreement, the same proce-

dure was employed as for SCM. Namely, an auxiliary
set of simulations of a one-component superparamagnetic
system was performed. This time, the one-component
system was a liquid suspension of single-domain parti-
cles. The results for a non-linear magnetic permeability
of this system at different particle concentrations and
dipolar coupling constants are given in Fig. 5. Compar-
ing it to Fig. 3, we can see that the relation between
actual permeability and MMF predictions for liquid and
solid one-component superparamagnets is completely op-
posite. For solid systems, zero-field permeabilities are
correctly described by MMF, but the theory overesti-
mates the magnetic response as the field increases. These
features of solid superparamagnets are well documented
in the literature [38, 44]. For a liquid, zero-field perme-
abilities are larger than MMF predictions, but in strong
fields the agreement significantly improves. This behav-
ior can be attributed to the particle self-assembly, which
is not taken into account within the MMF framework. It
is known that magnetic particles with sufficiently strong
dipole-dipole interactions tend to form chain-like aggre-
gates in viscous [45] and even in soft elastic environ-
ments [46]. In monodisperse ferrofluids, the chain for-
mation increases the initial magnetic response [47], but
under saturation condition the influence of chains on the
magnetization reduces [48].
Once again, numerically obtained permeability curves

were interpolated with cubic splines and then used within
BMM approach instead of MMF predictions Eqs. (20)
and (21). The results of this correction are shown in
Fig. 4 with dashed lines. Unfortunately, the correction no
longer gives the same accuracy boost as for SCM. In fact,
it only improves the initial slope of the magnetization
curves. But at large fields, simulation results persistently
lie above the predictions of the corrected BMM. It is most
clearly demonstrated by Mtot and Mcl dependencies for
λ = 5 and φex = 0.002 (Fig. 4(c), (f)).
So, it can be deduced that some qualitative change is

happening in LCM system, as the field increases:

• it leads to a significant increase of normalized mag-
netic moments Mtot and Mcl;

• it cannot be explained within BMM approach;

• it is more pronounced at larger λ and smaller φex;

• it does not take place in SCM.
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FIG. 4. Equilibrium magnetization curves for a superparamagnetic mixture in a liquid carrier. The notation is identical to
Fig. 2. Note that colored solid curves corresponding to MMF predictions are also exactly the same as in Fig. 2.
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FIG. 5. Field dependencies of the magnetic permeability
for a one-component ensemble of magnetic nanoparticles sus-
pended in a liquid matrix (i.e., particles are subjected to a
translational Brownian motion). The notation is identical to
Fig. 3.

To get a better understanding of what is happening

here, a deeper analysis of the system microstructure is
presented below.

C. Field-controlled haloing in a liquid carrier

Let us look closely on the behavior of the simulated
LCM system at λ = 5 and φex = 0.002 – i.e., in the
parameter ranges, where the deviations from theoreti-
cal magnetization curves are most pronounced. Corre-
sponding simulation snapshots are collected in Fig. 6 for
different values of the applied field strength. At a rela-
tively small field, ξ0 = 1, free nanoparticles form chain-
like structures, as is expected at λ = 5 [47]. The presence
of a cluster does not produce any clearly visible effects on
the system microstructure. However, already at ξ0 = 2
and, especially, at ξ0 = 4 a significant change takes place
– particles (or rather, particle chains) start to concentrate
near the nanocluster poles forming clouds stretched along
the field direction.
The described phenomenon is qualitatively reminiscent

of the so-called “haloing” effect, experimentally observed
in bimodal magnetorheological fluids [21, 49]. The only
difference is that in the latter systems superparamag-
netic nanoclusters form thick clouds (or “halos”) around
a magnetizable microsphere. On an even larger scale
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(a) ξ0 = 1 (b) ξ0 = 2 (c) ξ0 = 4

FIG. 6. Simulation snapshots of the system in a liquid carrier at φex = 0.002 and λ = 5. Different panels correspond to
different Langevin parameters: ξ0 = 1 (a), 2 (b) and 4 (c). Applied field is oriented vertically.
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FIG. 7. Local particle volume fraction φex, loc in the vicinity
of the cluster at ξ0 = 3. Numerical values of φex, loc are indi-
cated by the color (see colorbar), the cluster itself is colored
grey. Maps are constructed using space- and time-averaged
data from 3D Langevin dynamics simulations. They are plot-
ted in a cylindrical coordinates (R,Z) with the origin at the
cluster center. Only the upper right corner is shown due to the
system symmetry. The field is directed along Z axis. Dipolar
coupling constant is increasing from left to right: (a),(d),(g)
λ = 1; (b),(e),(h) λ = 3; (c),(f),(i) λ = 5. The average volume
fraction of particles is increasing from top to bottom: (a)–(c)
φex = 0.002; (d)–(f) φex = 0.05; (g)–(i) φex = 0.15.

the phenomenon was reproduced in Ref. [50]: authors
observed the condensation of drop-like aggregates of a
phase-separated ferrofluid on the surface of a millimeter-
sized iron sphere. The physical reason behind this halo

formation in both cases is the phenomenon of magne-
tophoresis – i.e., the motion of magnetic nanoparticles in
a gradient magnetic field [27, 51]. The source of the in-
homogeneous field in our problem is the magnetized nan-
ocluster [13]. The stronger the applied field, the stronger
the cluster’s own field gradient. This gradient is directed
towards poles of the cluster, where free nanoparticles and
nanoparticle chains tend to accumulate.

It is known that the transport of magnetic nanoparti-
cles in a viscous medium is affected strongly by interpar-
ticle interactions [52, 53]. Namely, dipole-dipole interac-
tions, controlled by λ, are acting as effective attraction
between particles. They decrease the gradient diffusion
coefficient of the system and make it much easier to cre-
ate a highly inhomogeneous particle distribution with a
given applied field. The effect of dipole-dipole interac-
tions on particle transport is typically most pronounced
at intermediate average concentrations φ ≤ 0.1. In more
dense systems, the steric repulsion (i.e., the excluded vol-
ume effect) starts to dominate and substantially increases
the gradient diffusion coefficient. To put it simply, it is
hard to create a noticeable concentration gradient in a
highly concentrated system. All these theoretical con-
siderations are well illustrated and validated by LCM
concentration maps shown in Fig. 7. First, halos con-
centration increases with λ. At φex = 0.002 and λ = 5,
the local concentration of particles near cluster poles is
actually comparable with the cluster concentration it-
self (φin = 0.3) and two order of magnitude higher than
near the cluster “flanks”. Thus, the situation can be in-
terpreted as follows – the cluster, which is spherical in
small fields, start to absorb free particles with increasing
ξ0 and turns into an elongated aggregate aligned with
the field. As the aggregate shape changes, its demagne-
tization factor [κ in Eqs. (10)-(11)] decreases. It is very
similar to the behavior of magnetic droplets in ferroemul-
sions [34], and can explain the anomalous increase of the
cluster magnetization seen in Fig. 4(f). The haloing is
still present at larger average concentrations. However,
an important difference is that at higher average volume
fractions the inhomogeneity of the local concentration de-
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creases. In the most dense environment with the average
particle concentration φex = 0.15, the local particle con-
centration near cluster surface is always φex, loc ≥ 0.1.
Correspondingly, variations of µex in the cluster vicinity
are getting smaller. As the result, BMM (which assumes
the system homogeneity) works much better for concen-
trated LCM samples.

V. CONCLUSIONS

In this work, equilibrium magnetic response of a bi-
nary superparamgnetic mixture is studied both theoreti-
cally and numerically (with the help of Langevin dynamic
simulations). One component of the mixture is a spheri-
cal nanocluster, consisting of immobilized magnetically-
isotropic single-domain particles. The cluster is sub-
merged in a superparamagnetic medium, which itself
constitutes an ensemble of single-domain particles in a
non-magnetic matrix. Two cases are separately consid-
ered. In the first case (SCM), particles of the surrounding
medium are spatially immobilized, although they fully re-
tain rotational degrees of freedom. This case allows us
to neglect possible effects of Brownian motion and par-
ticle aggregation. In the second case (LCM), particles in
the medium have both translation and rotational degrees
of freedom. It is shown that magnetostatic response of
the SCM system can be accurately described theoreti-
cally within BMM approach [Eqs. (10)-(16)], if the non-
linear permeabilities of individual mixture components
are known. It is also shown that MMF predictions for
permeabilities [Eqs. (20)-(21)] give accurate description
of the simulation data only at relatively small values of
the dipolar coupling constant (λ ≤ 1). The situation
changes qualitatively for LCM system. If the average
particle concentration in the medium is low enough, mag-
netization of the mixture grows anomalously fast with the
field (compared to BMM prediction). The apparent rea-
son for this growth is the so-called haloing effect: the gra-
dient field of the magnetized nanocluster leads to the lo-
cal redistribution of particles in the surrounding medium.
It is shown that particles form concentrated clouds near
the cluster poles, this way effectively reducing the demag-
netization effect and making it more susceptible to the
applied field. A strong dependence of the haloing effect
on the intensity of dipole-dipole interactions is revealed.

We can conclude that an accurate theoretical descrip-
tion of the magnetostatic response of a binary super-
paramagnetic mixture at λ > 1 cannot simply assume
the spatial homogeneity of the systems magnetic prop-
erties. The local inhomogeneity of the cluster field and
the subsequent drift-diffusion particle transport must be
explicitly taken into account. In practice, it will require
the solution of a combined magneto-diffusive boundary
value problem, similar to those previously considered in
Refs. [54, 55]. The solution of this problem is left for
future studies.
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Appendix A: Approximation of
magnetically-isotropic nanoparticles

Let us give here a more detailed explanation of our
particles being “magnetically-isotropic”.
The simplest and most common model for an internal

magnetic anisotropy of single-domain particles is the easy
axis anisotropy [56]. It assumes that the particle pos-
sesses a special internal direction (easy axis), which can
be characterized by a unit vector n̂. The orientational
coupling between the axis and the magnetic moment of
any given particle is described by the potential

Ua = −Kv(m̂ · n̂)2, (A1)

where K is the particle anisotropy constant, m̂ = m⃗/m.
The interplay between anisotropy and thermal fluctua-
tions is described by the dimensionless anisotropy pa-
rameter

σ =
Kv

kBT
. (A2)

For a 10 nm particle with K ∼ 104 J/m
3
, the anisotropy

parameter is σ ∼ 1.
It is known, that the variation in σ strongly affects the

dynamic magnetic response of single-domain particles in
different matrices [57, 58]. However, in this work we are
interested only in the equilibrium magnetic response to
a static applied field. And it is known that equilibrium
magnetization curves of superparamagnetic particles sus-
pended in a liquid simply do not depend on σ [32]. Situ-
ation becomes more complicated, if particles are immobi-
lized in a solid carrier. In principle, now one has to take
into account the “magnetic texture” of the system, i.e.,
the specific orientational distribution of particles’ easy
axes. The texture can be created by applying a strong
field during the synthesis stage and can have a major
impact on the system magnetic response [33, 59]. How-
ever, non-textured composites with random and uniform
distribution of easy axes are more similar to liquid super-
paramagnets – their initial magnetic response also does
not depend on the anisotropy parameter σ [32, 60]. In-
creasing σ can lower magnetic response at larger fields
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(at ξ0 > 2), but it will not affect the magnetization
curve qualitatively [38]. Taking all said into consider-
ation, we decided to investigate here only the limiting
case σ ≪ 1, i.e., in zero field all internal orientations
of magnetic moments are equiprobable. Such approach
allows us to considerably simplify both the theoretical
treatment and the simulation protocol. We believe that
all the results obtained here for magnetically-isotropic
systems can be extrapolated to liquids and non-textured
solids with finite σ.

Appendix B: Simulation details

In a numerical realization of our mixture model, we

consider a cubic simulation box with length l = V
1/3
tot .

The cluster is placed in the center of this box. Its posi-
tion does not change during the simulation. 3D periodic
boundary conditions are imposed on a box. The field is
directed along Z-axis. All the results reported are ob-
tained using ESPResSo 4.1.4 simulation package [61].

Rotational motion of the i-th particle is governed by
the Langevin equation

J∗ dω⃗
∗
i

dt∗
= τ⃗∗i − γ∗Rω⃗∗

i + η⃗∗Ri ,
dm⃗i

dt∗
= ω⃗∗

i × m⃗i. (B1)

For LCM, translational motion of the i-th particle in a
viscous carrier is additionally described by an analogous
equation

dv⃗∗i
dt∗

= f⃗∗
i − γ∗T v⃗∗i + η⃗∗Ti . (B2)

All simulation are performed using reduced quantities,
denoted here with the asterisk. They are formally in-
troduced through the usage of three parameters: the
thermal energy kBT , the diameter of a single parti-
cle d, and the mass of a single particle M. Specifi-
cally, v⃗∗i = v⃗i

√
M/kBT and ω⃗∗

i = ω⃗i

√
Md2/kBT are

the reduced linear and angular velocities, correspond-
ingly. J∗ = J/Md2 is the reduced moment of inertia,

γ∗T = γT
√

d2/MkBT and γ∗R = γR
√
1/d2MkBT are

the reduced translational and rotational friction coeffi-
cients, η⃗∗Ri and η⃗∗Ti are the random force and torque,
that have zero mean values and satisfy the standard
fluctuation-dissipation relationship [62]

⟨η∗T (R)
iα (t∗1)η

∗T (R)
jβ (t∗2)⟩ = 2γ∗T (R)δαβδijδ

∗(t∗1− t∗2), (B3)

α and β denote Cartesian vector components, δ∗(t∗)
is the Dirac delta function, δij is the Kronecker

delta, the reduced time is t∗ = t
√
kBT/Md2.

τ⃗∗i = µ0

[
m⃗i ×

(
H⃗0 + H⃗dd(i)

)]
/kBT is the re-

duced magnetic torque acting on a given particle,

H⃗dd(i) = −(1/µ0)
∑

j ̸=i ∂Udd(i, j)/∂m⃗i is the sum

of all dipolar fields in the particle center, f⃗∗
i =

−(d/kBT )
∑

j ̸=i ∂ (Udd(i, j) + UWCA(i, j)) /∂r⃗i is the to-

tal reduced force on the particle, UWCA(i, j) is the
Weeks-Chandler-Andersen (WCA) pair potential that
models the steric repulsion between particles [63]:

UWCA(i, j) =

{
ULJ(rij)− ULJ(rcut), rij < rcut
0, rij ≥ rcut,

,

(B4)

ULJ(r) = 4ε

[(
d

r

)12

−
(
d

r

)6
]
, (B5)

where ULJ is the Lennard-Jones potential, rcut = 21/6d.
The forces and torques due to long-range dipole-dipole

interactions are computed using the dipolar P3M algo-
rithm with “metallic” boundary conditions [64]. All the
results are reported for J∗ = γ∗

R = γ∗
T = ε∗ = 1, simula-

tion time step is ∆t∗ = 0.01. Typically, the first 2× 105

time steps are used for the system equilibration, and
the subsequent production run lasts for at least another
8× 105 time steps.
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