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Abstract. A connection between the response and fluctuation in general

nonequilibrium stationary states is investigated. We focus on time-symmetric

quantities and find that the fluctuation of a kind of empirical measure can be expressed

with the response of the empirical measure, current, and the time-symmetric current.

This relation is proven by using the fictitious stalling decomposition: We decompose a

single observed transition (edge in the state space) between two microscopic states into

two transitions such that one of the transitions stalls in this stationary state. Through

this trick, relations for stalling stationary states apply to general nonequilibrium

stationary states, which leads to the desired relation.

1. Introduction

The fluctuation-response relation around equilibrium states is one of the most important

results in nonequilibrium statistical mechanics. This relation connects two apparently

independent quantities: One is the conductivity against small external driving including

heat conductivity and electrical conductivity. The other is the equilibrium fluctuation of

the current conjugate to the aforementioned external driving. The fluctuation-response

relation tells us that if we measure the response (conductivity) against external driving,

then we immediately find the amount of the equilibrium fluctuation of the current

without experiments, and vice versa. In fact, the fluctuation-response relation was first

found by Johnson in the experiment of the electric conduction and the fluctuation of

electric current [1]. From the theoretical side, this relation was first explained by the

consistency with the second law of thermodynamics [2], and then formulated based on

the microscopic foundation [3].

Bridging two different quantities is highly important in physics so that nontrivial

conjectures are provided waiting for experimental verification. The fluctuation-response

relation clearly meets this desire, and to follow this success a number of studies have

investigated fluctuation-response relations beyond the linear response regime. One

notable success is the discovery of the irreversible circulation [4], which characterizes

http://arxiv.org/abs/2211.11437v2
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the violation of the Onsager reciprocity relation [5] in nonequilibrium stationary states.

Another success is the Harada-Sasa relation [6]: Although this relation applies only to

Langevin systems, it clarifies the fact that the violation of the fluctuation-response

relation is directly connected to the amount of stationary heat dissipation. One

traditional approach to the extension of the fluctuation-response relation, which is

adopted by many papers, is the use of a time-evolution operator, with which we can

obtain various formal extensions of the fluctuation-response relation [7–13]. However,

in several cases, the obtained relations consist of complicated mathematical quantities

whose physical meaning is not clear.

One pathway to avoid such formality is an approach with inequalities connecting

the fluctuation and the response instead of equalities. Since they are not equalities

but bounds, there remain rooms to establish relations between established physical

quantities. One prominent example is the thermodynamic uncertainty relation [14–16]

bounding stationary current fluctuations by entropy production. The thermodynamic

uncertainty relation is in fact a corollary of the fluctuation-response inequality [17],

which now becomes a standard technique to derive the thermodynamic uncertainty

relation and its extensions [18–21]. Besides them, many inequalities including response

bounds for stationary distributions [22] and trade-off relations between speed and

dissipation [23–25] can also be regarded as inequalities connecting fluctuation and

response.

Most of the previous attempts to seek fluctuation-response relations treat currents

or similar time-antisymmetric quantities (i.e., change its sign under time reversal).

Instead, in this paper, we shall focus on time-symmetric quantities (i.e., invariant under

time reversal). It is frequently claimed that time-symmetric quantities play key roles

to understand nonequilibrium physics beyond the linear response regime [26, 27]. We

in particular treat the time-symmetric current [28], which is time-symmetric while its

average takes the same value as that of the conventional (time-antisymmetric) current.

Very recently, it is shown that if the observed edge (a transition path between two

microscopic states in interest) is stalling (i.e., the average probability current on this

edge is zero), then the time-symmetric current satisfies the fluctuation-response relation

even when the system is in a highly nonequilibrium stationary state [28]. This relation

is violated as the system deviates from a stalling state.

In this paper, we extend the fluctuation-response relation for the time-symmetric

current to general nonequilibrium stationary states beyond the stalling states. We use

two different expressions of the fluctuation-response relation: One is with the time-

symmetric current as mentioned above, and the other is with the twisted empirical

measure, which consists of the empirical measures of two microscopic states. The

time-symmetric current and the twisted empirical measure have a simple relationship

when the system stalls, while this connection no longer holds in general nonequilibrium

stationary states. We employ these two quantities and find that the fluctuation of

the twisted empirical measure can be written in terms of the responses of the twisted

empirical measure, the time-symmetric current, and the conventional current in general
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nonequiliburium stationary states. This connection serves as an experimental probe of

empirical measure fluctuation, which is uneasy to measure experimentally, through the

measurement of responses of time-cumulative quantities.

We prove this relation by reducing it to the fluctuation-response relation in stalling

states. To this end, we decompose the observed edge into two edges A and B such

that edge A stalls. We apply the fluctuation-response relation to edge A and draw the

desired relation from it.

This paper is organized as follows. In section 2, we describe our setup and

introduce key time-symmetric quantities: the time-symmetric current and the twisted

empirical measure. Using these time-symmetric quantities, we state our main result; the

fluctuation-response relation around general nonequilibrium stationary states. Since our

proof of the main result heavily relies on the fluctuation-response relations in stall states,

in section 3 we explain these relations in detail. These relations are derived through the

Taylor expansion of the fluctuation theorems for two slightly-different partial entropy

productions. In section 4, we present the proof of our main result. The key idea to

prove this relation is the fictitious stalling method, which enables us to utilize results

for stalling states in general nonequilibrium stationary states.

2. Setup and main result

2.1. Setup and key quantities

Throughout this paper, we employ the framework of stochastic thermodynamics [29,30]

and consider stationary continuous-time Markov jump processes on discrete states in

0 ≤ t ≤ τ , where we finally take the long-time limit τ → ∞. The time evolution of the

probability distribution p follows the master equation

d

dt
p(t) = Rp(t), (1)

where R is a transition matrix. We suppose the local detailed-balance condition, that

is, the entropy production rate σ̇(t) is expressed as

σ̇(t) =
∑

i,j

Rijpj(t) ln
Rijpj(t)

Rjipi(t)
. (2)

Let 〈A〉τ be an ensemble average of an observable A in the stationary state in the time

interval 0 ≤ t ≤ τ . We denote its long-time average by the bracket without superscript

〈A〉 := lim
τ→∞

1

τ
〈A〉τ . (3)

The cumulative probability current from state i to another state j is defined as

Ĵij := n̂ij − n̂ji, (4)

where n̂ij is the number of jumps from state j to i and the hat symbol implies stochastic

variables. The current is a typical example of time-antisymmetric quantities in statistical

mechanics.
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We now proceed to time-symmetric quantities. In Ref. [28], the cumulative time-

symmetric current Îij defined as

Îij := Rij τ̂j −Rjiτ̂i (5)

is introduced, where

τ̂i :=

∫ τ

0

dtaw(t),i (6)

is the empirical staying time quantifying how long the state of the system w(t) stays as

state i.

We here notice two important properties of time-symmetric current. First, the

current and the time-symmetric current have the same ensemble average

Jij := 〈Ĵij〉 = 〈Îij〉 =: Iij. (7)

Second, by denoting the value of the cumulative current and the time-symmetric current

with a trajectory Γ by Jij(Γ) and Iij(Γ) respectively, the time-reversal of the trajectory

(Γ → Γ†) changes the sign of the current, Jij(Γ
†) = −Jij(Γ), while it keeps the sign of

the time-symmetric current, Iij(Γ
†) = Iij(Γ).

We denote the affinity from state j to i by

xij := ln
Rij

Rji

. (8)

If this transition is induced by a heat bath with inverse temperature β, we have

xij = β(Ej − Ei), where Ei is the energy of state i. If this transition is a chemical

reaction induced by a particle bath with inverse temperature β and chemical potential

µ, we have xij = βµ∆n, where ∆n is the change in the number of particles through this

reaction. The time-symmetric current itself depends on x through Rij and Rji in Î. To

emphasize this point, we also write Îij as Îij,x.

We further introduce another time-symmetric quantity named twisted empirical

measure [28, 31] related to the time-symmetric current. The twisted empirical measure

is defined as

Ĉij,x :=
τ̂j

pssj (x)
−

τ̂i
pssi (x)

, (9)

which quantifies the difference between empirical measures of states i and j relative to

their averages. Here, pss(x) is the stationary distribution with parameter x. If the edge

ij stalls (i.e., Rji(x
∗)pssi (x

∗) = Rij(x
∗)pssj (x

∗) holds), the twisted empirical measure is

connected to the time-symmetric current as

Îij,x∗ = Rij(x
∗)pssj (x

∗)Ĉij,x∗ . (10)

On the other hand, if the edge ij does not stall, the above relation no longer holds, and

there is no simple relationship between the time symmetric current Îij,x and the twisted

empirical measure Ĉij,x.
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2.2. Main result

For notational simplicity, we express the derivative of the current and the time-

symmetric current on edge ij around x = x
′ as

〈Ĵ 〉′
x=x′ :=

d〈Ĵij〉x
dxij

∣

∣

∣

∣

∣

x=x′

, (11)

〈Îij,x′〉′
x=x′ :=

d〈Îij,x′〉x
dxij

∣

∣

∣

∣

∣

x=x′

. (12)

In the latter relation, we need care in defining the derivative, since both the time-

symmetric current itself and the path probability depend on affinity xij . In this paper,

we define the derivative such that the transition rate in the time-symmetric current is

fixed at x
′, while that in the path probability is perturbed. Similarly, we define the

response of a twisted empirical measure around x = x
′ as

〈Ĉij,x′〉′
x=x′ :=

d〈Ĉij,x′〉x
dxij

∣

∣

∣

∣

∣

x=x′

. (13)

We note that this derivative is equal to the derivative of the stochastic entropy difference

between states i and j:

〈Ĉij,x′〉′
x=x′ =

d

dxij

ln

(

pssj (x)

pssi (x)

)
∣

∣

∣

∣

x=x′

. (14)

Now we shall connect these three responses to the fluctuation of the twisted

empirical measure. Around a general nonequilibrium stationary state with x = x
′,

we have the following equality

2

〈Ĉ2
ij,x′〉x′

=
〈Îij,x′〉′

x=x′ − 〈Ĵij〉
′
x=x′

〈Ĉij,x′〉′
x=x′

, (15)

which is the main result of this paper. As clearly seen, the fluctuation of empirical

measures is directly connected to responses of time-cumulative quantities. Remark that

we can measure the right-hand side experimentally even with low time resolution, since

these responses concern only time-cumulative quantities, which is tractable with low

time resolution. Recalling that measurement of the fluctuation of empirical measure

requires high time resolution tracking, we find that this relation will serve as a tool to

quantifying a kind of empirical measure fluctuation with accessible responses.

From the theoretical side, (15) can be read as a relation that the ratio of the response

and the fluctuation of the twisted empirical measure is equal to the discrepancy between

the responses of the current and the time-symmetric current:

〈Ĉij,x′〉′
x=x′

〈Ĉ2
ij,x′〉x′

=
1

2

(

〈Îij,x′〉′
x=x′ − 〈Ĵij〉

′
x=x′

)

. (16)
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3. Brief review on relations in stall states

Since our main result (15) is derived by the reduction to the result for stall states, in

this section we describe fluctuation-response relations for stall states in detail. Here,

a stationary state is called stalling if the observed edge (the edge in interest) has zero

average probability current (i.e., Ĵij = 0). We emphasize that a stall state may have a

finite stationary probability current outside the observed edge. This section serves as a

quick review of the fluctuation-response relations for nonequilibrium stall states, which

are shown in Refs. [28, 32, 33].

3.1. Fluctuation-response relation on currents and time-symmetric currents

Let x
∗ be a parameter with which the probability current between i and j stalls:

Jij(x
∗) = 0. In this setting, we have the following fluctuation-response relations on

current Ĵij and time-symmetric current Îij,x∗ around the stalling state with x = x
∗:

d〈Ĵij〉x
dxij

∣

∣

∣

∣

∣

x=x∗

=
1

2
〈Ĵ 2

ij〉x∗ , (17)

d〈Îij,x∗〉x
dxij

∣

∣

∣

∣

∣

x=x∗

= −
1

2
〈Î2

ij,x∗〉x∗ , (18)

The former relation (17) was derived by Altaner, Polletini, and Esposito [32], and the

latter relation (18) was derived by the author [28]. Remarkably, the same form of the

fluctuation-response relations as the conventional fluctuation-response relation around

equilibrium states are satisfied around nonequilibrium stationary states as long as the

observed edge ij stalls.

3.2. Proof of Eqs. (17) and (18)

A standard derivation of the fluctuation-response relation around equilibrium states

is the use of the Taylor expansion of the fluctuation theorem 〈e−σ̂〉 = 1 [30, 34].

Similarly to this, two fluctuation-response relations, (17) and (18), can be derived

by the Taylor expansion of the fluctuation theorem for two different partial entropy

productions; the original, or passive, partial entropy production [31] and the informed

partial entropy production [33, 35]. The partial entropy production is a generalization

of entropy production to a subset of all possible transitions (edges in the state

space). The partial entropy productions have various applications from information

thermodynamics [36, 37], the efficiency of autonomous engines [38, 39], to the inference

of dissipation [35, 40]. Both partial entropy productions satisfy fluctuation theorems,

which lead to two different fluctuation-response relations on currents [31, 32].

Consider a system with parameter x, where the edge ij does not necessarily

stall. We first introduce two partial entropy productions. The original partial entropy

production with the edge ij is defined as

σ̂ij := aij(x)Ĵij − Jij(x)Ĉij,x, (19)
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where

aij(x) := ln
Rij(x)p

ss
j (x)

Rji(x)pssi (x)
(20)

is the total force associated with edge ij with the stationary probability distribution pss.

This partial entropy production satisfies the following fluctuation theorem [31]
〈

e−σ̂ij
〉τ

x
= 1. (21)

We here remark on two facts on the partial entropy production. First, aij(x) is a

small parameter around the stalling state of the order of ∆x := x − x
∗. Second, the

second term of the right-hand side of (19) is evaluated as

Jij(x)Ĉij,x = (eaij(x) − 1)Rji(x)p
ss
i (x)Ĉij,x

= aij(x)Îij,x +O(aij(x)
2), (22)

which implies a useful expression of the partial entropy production:

σ̂ij := aij(x)(Ĵij − Îij,x) +O(aij(x)
2). (23)

Next, we introduce the informed partial entropy production with edge ij, which is

defined as

σ̂I
ij := Ĵij ln

Rij(x)p
ss
j (x

∗)

Rji(x)p
ss
i (x

∗)
. (24)

The informed partial entropy production appears very similar to the first term of the

original partial entropy production (19), while the referred probability distribution is not

x but x∗. Since the present system in interest is with parameter x, not x∗, to measure

the informed partial entropy production experimentally we need to prepare another

system where edge ij stalls. The informed partial entropy production also satisfies the

fluctuation theorem [33]

〈e−σ̂I

ij〉τ
x|pss(x∗) = 1, (25)

where 〈·〉τ
x|p(x∗) is the ensemble average with the transition rate R(x) starting from the

initial distribution p(x∗).

We now derive two fluctuation-response relations. By expanding (25) with xij

around the stalling state (x = x
∗), the coefficients of x2

ij reads

d〈Ĵij〉x
dxij

∣

∣

∣

∣

∣

x=x∗

=
1

2
〈Ĵ 2

ij〉x∗ , (26)

which is the fluctuation-response relation of currents (17). In addition, by expanding

Eq. (21) with aij around the stalling state (x = x
∗), the coefficients of a2ij reads

d

daij
(〈Ĵij + Îij,x〉x)

∣

∣

∣

∣

a=0

=
1

2
(〈(Ĵij + Îij,x∗)2〉x∗). (27)

In order to transform (27), we use the following four relations.
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(i) For any x,

〈Îij,x〉x = 0 (28)

is satisfied, which implies that the left-hand side of (27) equals d〈Ĵij〉/daij|a=0.

(ii) The cross-correlation of the current and the time-symmetric current vanishes:

〈ĴijÎij,x∗〉x∗ = 0. (29)

In the case around equilibrium states, this relation is ensured by the fact that

the observable ĴijÎij,x∗ is time-antisymmetric. In contrast, in the case around

nonequilibrium stalling states, this relation is shown through straightforward but

long calculation with the method of a counting field (see the Supplemental Material

of [28]).

(iii) We transform the variable from aij to xij . The derivative is calculated as

daij
dxij

∣

∣

∣

∣

x=x∗

=
d

dxij

[

xij + ln

(

pssl (x)

pssk (x)

)]
∣

∣

∣

∣

x=x∗

= 1 +
1

Rij(x∗)pssl (x
∗)

d〈Îkl,x∗〉x
dxij

∣

∣

∣

∣

∣

x=x∗

. (30)

(iv) The derivative of 〈Ĵij〉x = Rij(x)p
ss
j (x) − Rji(x)p

ss
i (x) with respect to aij at the

stalling state a = 0 is directly calculated as

d

daij
(〈Ĵij〉x)

∣

∣

∣

∣

a=0

=
d

daij
(Rij(x)p

ss
j (x)aij +O(a2ij))

∣

∣

∣

∣

a=0

= Rij(x
∗)pssj (x

∗). (31)

Combining these four relations, we finally have

d

dxij

(〈Ĵij〉x)

∣

∣

∣

∣

x=x∗

=
daij
dxij

d

daij
(〈Ĵij〉x)

∣

∣

∣

∣

a=0

=
d

daij
(〈Ĵij〉x)

∣

∣

∣

∣

a=0

+
d

daij
(〈Ĵij〉x)

∣

∣

∣

∣

a=0

1

Rij(x∗)pssl (x
∗)

d〈Îij,x∗〉x
dxij

∣

∣

∣

∣

∣

x=x∗

=
d

daij
(〈Ĵij〉x)

∣

∣

∣

∣

a=0

+Rij(x
∗)pssj (x

∗)
1

Rij(x∗)pssl (x
∗)

d〈Îij,x∗〉x
dxij

∣

∣

∣

∣

∣

x=x∗

=
1

2
(〈Ĵ 2

ij〉x∗ + 〈Î2
ij,x∗〉x∗) +

d〈Îij,x∗〉x
dxij

∣

∣

∣

∣

∣

x=x∗

. (32)

Subtracting (17) from the above relation, we obtain the desired result (18).

4. Proof of (15)

4.1. Main proof idea: fictitious stalling method

Our key idea to prove (15) is the fictitious stalling method, where we decompose a (non-

stalling) edge into two edges such that one of the edges stalls. Through this trick, we
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can apply results for stalling edges to general non-stalling edges in a nonequilibrium

stationary state.

We decompose edge ij in interest fictitiously into two edges A and B. The transition

rates of these two edges are decomposed as

Rji(xij) = RA
ji(xij) +RB

ji, (33)

Rij(xij) = RA
ij(xij) +RB

ij . (34)

Here, we set the transition rates in B fixed independent of xij . We further require that

the edge A stalls at x = x
′:

RA
ji(xij)pi(xij) = RA

ij(xij)pj(xij). (35)

Note that given a nonequilibrium stationary state, we have freedom of the choice of

RA
ji(x

′
ij) in the decomposition. We call the description with two edges A and B as

fictitious description and that with a single edge ij as original description.

Applying results on a stalling edge to the edge A, we can derive (15) in general

nonequilibrium steady states.

4.2. Proof

Henceforth, we drop xij- and x-dependence in case of no confusion.

We denote the affinity of edge A by

xA
ij := ln

RA
ij

RA
ji

. (36)

Suppose that we apply a small perturbation on edge ij by ∆xij (in the original

description), which induces the change in the transition rates ∆Rij and ∆Rji. Since

edge B is fixed, all the changes in the transition rates are put on the change in the

transition rates on edge A. With this perturbation, the change in xA
ij is calculated as

∆xA
ij = ln

RA
ij +∆Rij

RA
ji +∆Rji

− ln
RA

ij

RA
ji

=
∆Rij

RA
ij

−
∆Rji

RA
ji

+O(∆x2
ij)

= D∆xij +O(∆x2
ij), (37)

where we defined

D :=
1

RA
ij(x

′)

d

dxij

Rij(x)

∣

∣

∣

∣

x=x′

−
1

RA
ji(x

′)

d

dxij

Rji(x)

∣

∣

∣

∣

x=x′

(38)

From (37), we easily see

dxA
ij

dxij

= D. (39)
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We shall rewrite the fluctuation-response relation (18) around a stall state in terms

of the twisted empirical measure. Since the response and the fluctuation of the time-

symmetric current are written as

〈Îij,x∗〉′
x=x∗ = Rij(x

∗)pssj (x
∗)〈Ĉij,x∗〉′

x=x∗ , (40)

〈Î2
ij,x∗〉x∗ = (Rij(x

∗)pssj (x
∗))2〈Ĉ2

ij,x∗〉x∗ , (41)

we find that (18) is expressed as

Rij(x
∗)pssj (x

∗) = −2
〈Ĉij,x∗〉′

x=x∗

〈Ĉ2
ij,x∗〉x∗

. (42)

Applying this relation to edge A, we have

RA
ij(x

′)pssj (x
′) = −2

1

〈Ĉ2
ij,x′〉x′

d〈Ĉij,x′〉x
dxA

ij

∣

∣

∣

∣

∣

x=x′

. (43)

Using (39), the derivative in the right-hand side is transformed into

d〈Ĉij,x′〉x
dxA

ij

∣

∣

∣

∣

∣

x=x′

=
dxij

dxA
ij

d〈Ĉij,x′〉x
dxij

∣

∣

∣

∣

∣

x=x′

=
1

D
〈Ĉij,x′〉′

x=x′ (44)

Observe that

RA
ijp

ss
j D = RA

ijp
ss
j

(

1

Rij

dRij

dxij

−
1

RA
ji

dRji

dxij

)

= pssj
dRij

dxij

− pssi
dRji

dxij

=

(

dRijp
ss
j

dxij

−
dRjip

ss
i

dxij

)

−

(

Rij

dpssj
dxij

−Rji

dpssi
dxij

)

= 〈Ĵij〉
′ − 〈Îij,x′〉′, (45)

where in the second line we used the stalling condition RA
ijp

ss
j = RA

jip
ss
i . Here, all the

derivatives are taken at x = x
′. Plugging Eqs. (44) and (45) into (43), we arrive at the

desired result (15).

From this derivation, it is easy to see that our main result (15) contains the

fluctuation-response relation for the time-symmetric current around stalling states (18)

as its corollary. In fact, when edge A stalls, we can set RB
ij = RB

ji = 0 and D = 1, which

leads to

〈Ĵij〉
′ − 〈Îij,x′〉′ = Rijp

ss
j . (46)

Plugging this into (15), we arrive at (42), which is an alternative expression of the

fluctuation-response relation for the time-symmetric current around stalling states (18).
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5. Discussion

We have shown that the fluctuation of the twisted empirical measure at any

nonequilibrium stationary state is written in terms of the response of the twisted

empirical measure, the time-symmetric current, and the conventional current. This

result elucidates a nontrivial role of time-symmetric quantities in the investigation of

nonequilibrium stationary systems. Previous studies state the importance of time-

symmetric quantities in nonequilibrium stationary states [26, 27], which is further

supported by our finding.

The proof of our result relies on relations in nonequilibrium stalling states through

a reduction technique. Some relations in equilibrium states (e.g., fluctuation-response

relation) also hold in nonequilibrium stalling states in the same form, while some others

(e.g., Onsager reciprocity relation) need some modification [28, 32]. This observation

suggests that analyses on nonequilibrium stalling systems may serve as a good relay point

in extending our understanding from equilibrium systems to general nonequilibrium

stationary systems.
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