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In statistical mechanics, the generally called Stirling approximation is actually an approximation
of Stirling’s formula. In this article, it is shown that the term that is dropped is in fact the one
that takes fluctuations into account. The use of the Stirling’s exact formula forces us to reintroduce
them into the already proposed solutions of well-know puzzles such as the extensivity paradox or
the Gibbs’ paradox of joining two volumes of identical gas. This amendment clearly results in a
gain in consistency and rigor of these solutions.

Classical and phenomenological thermodynamics is
only concerned with equilibrium : “a system is in an
equilibrium state if its properties are consistently de-
scribed by thermodynamic theory” (H.B. Callen [1] p. 15).
This must be understood stricto sensu. For example,
defining equilibrium as the state that maximizes thermo-
dynamic (Clausius) entropy does not make sense because
the value of entropy at equilibrium cannot be compared
to those close to equilibrium, as there is no way to calcu-
late the latter. Classical thermodynamics does not con-
sider fluctuations. It is a major contribution of statistical
mechanics to have introduced this notion via probabili-
ties. For this reason it is quite intriguing that a rough
approximation of the Stirling formula for the asymptotic
behavior of ln(n!) is commonly used, namely the Stirling
approximation : ln(n!) ≃ n ln(n/e). Because we will see
that this approximation forces us precisely to neglect the
fluctuations.

The purpose of this article is to demonstrate this in-
consistency, through two examples of conflicts or para-
doxes between statistical mechanics and thermodynam-
ics : 1) that of extensivity of entropy; 2) one of Gibbs’
well-known paradoxes that concerns the joining of two
identical gases. The latter is very often expressed in
terms of the former, but I believe that considering them
independently increases their heuristic value. We will
see that the usual treatments of these paradoxes benefit
from the exact cancellation of two errors : 1) neglecting
fluctuations in the statement of the problem; 2) using a
rough approximation of the Stirling formula. Thus, from
a logical point of view, these paradoxes are not resolved
with these usual treatments, but can be if we properly
reconsider the two above points.

I. STIRLING FORMULA AND ITS
APPROXIMATION

In statistical mechanics, we are often confronted with
the calculation of n! in the thermodynamic limit n → ∞,

∗ didier.lairez@polytechnique.edu

or in terms of its logarithm :

ln(n!) = ln(1× 2× 3 · · · × n) =

n∑
k=1

ln(k) (1)

A first rough approach to compute this sum would be to
approximate it by an integral :

ln(n!) ≃
∫ n

0

ln(x) dx = n ln(n/e) (2)

But a better one is based on the idea that an integral
is squeezed between two Rienmann sums, or equivalently
that the sum is squeezed between two integrals. This
leads to :

ln(n!) ≃
∫ n

0

ln(x) dx+
1

2
ln(n)

≃ n ln(n/e) +
1

2
ln(n)

(3)

The factor 1
2 can be viewed as a variation of the middle-

point rule. In fact, the sequence ln(n!)− n ln(n/e) is not
convergent, contrary to un = ln(n!)−[n ln(n/e)+ 1

2 ln(n)].
The actual calculation of the latter’s limit is attributed
to Stirling, who proved that limn→∞ un = 1

2 ln(2π) (see
[2] p. 52). So that we can finally write :

ln(n!) = n ln(n/e) + ln(
√
2πn) + o(1) (4)

This is the exact Stirling formula whereas Eq. 2 will be
called Stirling approximation in the following.
For the purpose of this paper, the interesting point is

that a discerning reader can recognize in the second term
of Eq.4 the Shannon differential entropy of a Gaussian
distribution with standard deviation

√
n (for a derivation

see [3] p. 243). The usual way to demonstrate the Stir-
ling’s result passes via Wallis’ integrals (see [4] p. 616),
but actually the exact Stirling formula can also be de-
rived from the central limit theorem [5] introducing quite
naturally fluctuations.
The use of the Stirling approximation (Eq.2) is usu-

ally justified by the fact that ln(
√
2πn) is negligible com-

pared to n ln(n/e) in the thermodynamic limit (see e.g. [6]

p. 497, [7] sec.3.3.2). True, but in many cases ln(
√
2πn)

should be compared to zero instead.
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II. THE PARADOX OF EXTENSIVITY

A. Extensivity in thermodynamics

Let us consider entropy as a function S of the three
variables U the internal energy, V the volume and N the
number of particles. S is extensive if

∀α ∈ R, S(αU,αV, αN) = αS(U, V,N) (5)

For α = 1/N , one obtains the equality

S(U, V,N) = NS(U/N, V/N, 1) (6)

So that, by defining u = U/N and v = V/N as the
internal energy and the volume per particle, respectively,
one can write :

S(U, V,N) = Ns where s = S(u, v, 1) (7)

If u and v are constant, then s is too and S(N) is the
sum of N individual constant contributions. In short,
a quantity is extensive if it varies proportionally to N
while intensive quantities (e.g. density N/V ) are held
constant.

Now envisage a system, say a simple gas, made of two
disjoined subparts A and B with additive state-variables
such as

UA = αU, VA = αV, NA = αN
UB = (1− α)U, VB = (1− α)V, NB = (1− α)N

As entropy is additive, the total entropy SA∪B of the
mathematical union (see Fig.1) of these disjoined sub-
parts is :

SA∪B = S(UA, VA, NA) + S(UB , VB , NB) (8)

In addition, if entropy is extensive, using Eq.5 one has

S(UA, VA, NA) = αS(U, V,N)
S(UB , VB , NB) = (1− α)S(U, V,N)

leading to

S(U, V,N) = S(UA, VA, NA) + S(UB , VB , NB) (9)

S(U, V,N) is the entropy SJ(A,B) of the system that
would be obtained by the physical joining of A and B,
that is without physical separation between them (see
Fig.1). Finally, Eq. 8 and 9 give :

SJ(A,B) = SA∪B (10)

In thermodynamics, it is quite usual to write the fun-
damental equality as dS = 1

T dU + P
T dV − µ

T dN , where
T is the temperature, P the pressure and µ the chemical
potential. This equality would suggest that in thermody-
namics S is a function of N . Actually it is not, because
µ is an unknown function of N . It is the contribution
of statistical mechanics [8] to have made µ an explicit

FIG. 1. Mathematical union versus physical joining.

function of N . Therefore, extensivity of entropy should
not be a relevant question in thermodynamics. Actu-
ally, there is no experimental evidence for extensivity, i.e.
there is no reversible transformation that would allow S
to be measured while N would vary (this had already
been mentioned by E. Einstein in 1916 [9] p. 125). Nor is
there evidence to the contrary. Extensivity of entropy is
an undecidable question in phenomenological thermody-
namics. That is to say, whether we consider it to be or
not has no bearing on the way in which thermodynamics
can account for phenomena.

That being said, Eq.7 is a very interesting property al-
lowing great mathematical simplifications of many prob-
lems of thermodynamics (via Euler and Gibbs-Duhem
equations) [1] in the thermodynamic limit of very large N
and V when surface (finite size) effects can be neglected.
But above all, Eq. 10 is considered essential to build an
axiomatic thermodynamics [1, 6, 10]. Inspired by how
theories are constructed in other areas of physics (espe-
cially statistical mechanics), the aim of this approach is
to distance thermodynamics from its initial phenomeno-
logical approach (i.e. derive laws from experiments) and
to rebuild everything from initial postulates (i.e. put the
laws first). One of the main postulates is that the en-
tropy of a system is maximized at equilibrium. This idea
is very natural, imprinted as we are on our experience
of mechanics. It is also a result of statistical mechanics.
In thermodynamics, conjointly with the other postulate
that entropy cannot spontaneously decrease (tradition-
ally the second law of thermodynamics), the postulate
that entropy is maximized at equilibrium has two advan-
tages : 1) it ensures the stability of the equilibrium [1]
(without having to postulate it); 2) it makes it possi-
ble in principle to derive the equilibrium conditions by
maximizing the entropy. The problem is that maximiz-
ing the entropy of a system assumes that we are able to
compute it under non-equilibrium conditions. The equa-
tions of thermodynamics do not allow this, unless en-
tropy is assumed to be extensive. Consider the two pre-
vious disjoined subparts A and B. They are necessarily
in equilibrium with each other because they are indepen-
dent. So that the entropy of the disjoined system can be
computed regardless of the values of (UA, VA, NA) and
(UB , VB , NB). By using extensivity and Eq. 10 the en-
tropy of the joined system is deduced, even if the values
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for (UA, VA, NA) and (UB , VB , NB) do not correspond to
an equilibrium condition of the joined system (for exam-
ples of such calculation see e.g. [1] chap. 2).

This is the main reason why, in the thermodynamic
limit, extensivity is postulated in axiomatic thermody-
namics.

B. The paradox and its usually proposed solutions

In statistical mechanics, entropy is written as an ex-
plicit function of N , which makes it possible to check if
it is extensive, in accordance with the postulate of ax-
iomatic thermodynamics.

Consider a system made of N particles of gas in a
closed volume V expressed in unit of λ3, with λ the ther-
mal length of de Broglie. Let us express the temperature
T in Joule, so that the entropy has no dimension. The
Boltzmann entropy is :

S = lnV N = N lnV (11)

Thus, if N increases at a constant density V/N , V must
also increase. It follows that the Boltzmann entropy is
not proportional to N and is not extensive. Hence the
paradox or conflict with axiomatic thermodynamics (not
with phenomenological thermodynamics).

Before examining how the paradox is usually solved,
note that : 1) axiomatic thermodynamics was built to
match with statistical mechanics, in particular with the
postulate of maximum entropy at equilibrium; 2) this
imposes the postulate of extensivity; 3) but statistical
entropy is not always extensive; 4) so that the ball is in
the court of statistical mechanics which is urged to recon-
sider its calculation in order to match thermodynamics.
This all sounds like fallacious circular reasoning which
should be enough to disregard the paradox. But a para-
dox, by the simple fact that it can be stated, offers the
opportunity to deepen the theory.

In my knowledge all solutions to the extensivity para-
dox amount to finally write instead of Eq.11 :

S = ln
V N

N !
(12)

that is called the correct Boltzmann counting. So that,
by using the Stirling approximation (Eq. 2) one obtains :

S = N ln
V e

N
= Ns, (13)

with

s = ln
V e

N
, (14)

is constant. These last two equations express the exten-
sivity of the entropy that we were looking for.

Justifications for Eq. 12 will be discussed in the next
section. Here, let us just use the exact Stirling formula

(Eq. 4) instead of its approximation (Eq. 2), Eq. 12 trans-
forms into :

S = N ln
V e

N
− ln(

√
2πN) = Ns− ln(

√
2πN) (15)

instead of Eq. 13. The difference S − Ns diverges and
cannot be neglected as it should be actually compared to
zero. In other words, Ns is actually not an asymptote
of S and Eq. 12 does not make entropy extensive in the
thermodynamic limit.
It is quite strange to observe that the Stirling exact

formula is well known and quoted in many textbooks of
statistical mechanics (e.g. [6, 7]), but that in the same
texbooks the idea that limN→∞[S − Ns] is finite still
persists ([7] sec. 4.2), as well as the idea that the correct
Boltzmann counting makes entropy extensive ([6] p. 268
and 497). Sekerka goes even further and justifies the use
of Stirling’s approximation like this. “Other terms [i.e.
other than N ln(N/e)] in Stirling’s approximation [exact
Stirling formula in this paper] have been dropped because
they would lead to sub-extensive results” [6] p. 261. This
is clearly a circular reasoning.

C. Amendment to the solution

The correction of the counting of microstates by N !
was first introduced by Gibbs (see [11] chap.XV) but the
justification was quite obscure. Gibbs was aware that di-
viding the number of possible microstates by N ! amounts
to considering that particles are exchangeable and lose
their individuality, which was not easily conceivable in
his time. Then the ideas of quantum mechanics emerged
which made it “conceivable” that, under certain circum-
stances, particles were inherently and conceptually indis-
tinguishable. So the idea was accepted that the term
− ln(N !) in the entropy cannot be understood in a classi-
cal manner but has a quantum origin (see e.g.[12] p. 141,
[10] p. 115). In fact, it has long been shown that − ln(N !)
can also be obtained in the classical framework [13–15].
As everything from the beginning in statistical mechan-
ics has been built “classically”, for self-consistency this
latter solution is the best for classical particles, which
are always distinguishable, in the sense that there is no
conceptual impossibility to follow their trajectories, and
then to preserve their individuality or identity.
The essence of the classical-framework derivation of the

correct Boltzmann counting is as follows. Isolated sys-
tems (microcanonical ensemble with Boltzmann entropy)
and closed systems (canonical ensemble with Gibbs en-
tropy) have constant number of particles N . Thus, any
multiplicative factor applied to the number of microstates
that should be a function of N (such as 1/N !) would fi-
nally results in an additional constant in the entropy.
This constant will vanish when calculating the change
in entropy of the system when it undergoes any process
(remember that thermodynamical experiments give only
access to entropy differences). Actually, varying N , by
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applying a scaling factor as in Eq. 5, only makes sense for
an open system (grandcanonical ensemble). It has been
shown that computing entropy in the grandcanonical en-
semble gives the correct Boltzmann counting [13–17].

Interestingly, one can wonder how it is possible that
distinguishable particles in an open system give the same
result as indistinguishable particles in an isolated sys-
tem ? The answer is quite simple. In an open system,
particles are continuously renewed by exchanges with the
surroundings. In other words, individual particles at a
given time are not the same as those a little later. The
fact that we consider an open volume of gas as a “system”
implies that it is totally independent of the identity of the
particles of which it is made up and that its integrity is
not affected by the exchange of certain particles by oth-
ers of the same species. The identity of particles is an
unnecessary information for its description. This opens
the door to an interpretation of the correct Boltzmann
counting precisely in terms of information.

Let us consider the state of the system as a random
variable and its entropy as a measure of uncertainty
about its outcome [18–20]. Uncertainty or missing infor-
mation about this outcome. At a microscopic level, states
are microstates and the outcome that the system is cur-
rently adopting. The greater the number of microstates,
the greater the uncertainty. This is the meaning of the
Boltzmann entropy in an isolated system (i.e. a special
case of statistical (Gibbs’ or Shannon’s) entropy of uni-
form distribution). In this case, a given microstate is
described (identified) by the momentum and position of
each particles. If we do not care about the identity of
particles because the system is open, which specific mi-
crostate the system is currently adopting among the N !
possible permutations of particles is not a relevant infor-
mation. This is the meaning of the quantity ln(N !) that
must be subtracted to the total information that we are
missing. But there is another source of uncertainty, inde-
pendent of the previous one, that of the fluctuating num-
ber N of particles of which the system is made up. This
number obeys a binomial distribution, which (according
to the central limit theorem) tends toward a Gaussian

distribution of standard deviation
√
N ([21] p.9) and en-

tropy
√
2πN . Finally the uncertainty (the entropy) is :

S = N lnV − ln(N !) + ln(
√
2πN) (16)

So that by using the exact Stirling formula (Eq. 4) we
obtain Eq.13 but following a way which is more rigorous
(Ns is now an asymptote of S) and consistent (an open
system cannot be conceived without fluctuations).

Incidentally, this solution of the extensivity puzzle em-
phasizes that extensivity in only obtained for open fluctu-
ating systems, consistently with its definition as a scaling
property.

III. THE GIBBS PARADOX ON JOINING TWO
VOLUMES OF THE SAME GAS

A. Joining/disjoining cycles in thermodynamics

Consider a system made of two isolated compartments,
each with a volume V , filled with the same ideal gas at
the same temperature and the same pressure (see Fig.2).
Join the two volumes by removing the partition between
compartments. This happens without an exchange of
work or heat with the surroundings. There are other
processes like this, for instance the free expansion of a
gas. But in the latter case, it is necessary to provide
mechanical work with a piston to restore the system to
its initial state. In our case, after joining two volumes
of the same gas, it is enough to put the separation back
to restore the initial state without any energy expendi-
ture. Thus, the joining of two volumes of identical gas
occurs without difference of the Clausius entropy. Note
that in the literature, this cycle is most often called mix-
ing/unmixing, even if the gases are identical and there is
nothing to mix and unmix, because this refers to another
Gibbs paradox that is out of the scope of this paper.

FIG. 2. Joining/disjoining cycle of two volumes of the same
gas at the same temperature and the same pressure as viewed
in thermodynamics. The joining process produces no differ-
ence in Clausius entropy.

B. The paradox and its usually proposed solutions

According to the ideal gas law, the number N of par-
ticles in each compartment is also the same on average.
Initially when compartments are disjoined, since they are
isolated the statistical entropy of each consists of the
Boltzmann entropy lnV N . As entropy is additive, the
total statistical entropy, S0, of the system is :

S0 = 2N lnV (17)

Once the two volumes are joined, we have 2N particles
in a volume 2V , so that the Boltzmann entropy is S1 =
ln(2V )2N , or :

S1 = 2N lnV + 2N ln 2 (18)

The difference in statistical entropy is non-zero :

∆S = S1 − S0 = 2N ln 2 (19)
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The paradox lies in the apparent contradiction with ther-
modynamics, as Clausius and statistical entropies are the
same, the latter being derived from the former [22].

As an echo to §IIA, note that : 1) the difference of
Clausius entropy between the joined and disjoined states
is zero; 2) the disjoined state is made of two identical
parts. Thus, it can be stated that the entropy of the
joined state is twice that of one part of the disjoined state
(provided that an absolute values of Clausius entropy
makes sense). This result is often viewed as an evidence
for the extensivity of Clausius entropy leading to express
the above Gibbs paradox in these terms (e.g. [23]). Ac-
tually, in thermodynamics the entity in question is ∆S,
not S0 or S1 which are meaningless. This expression of
the paradox seems to offer an easy solution that does not
give us the opportunity to deepen its meaning.

In my knowledge, all solutions to the paradox (see e.g.
[12, 15–17, 23–27]) amount in one way or another to write
finally instead of Eq.19 :

∆S = 2N ln 2− ln

(
2N

N

)
(20)

Even if the ways to derive this equation are numerous
and correspond to different physical meanings, it can be
given a common interpretation in terms of the informa-
tion (as for the paradox of extensivity) needed to describe
the system, or equivalently in terms of the uncertainty
about its current microstate (the outcome). In Eq.20,
the term 2N ln 2 that originates from the difference in
Boltzmann entropy, is due to the increasing number of
possible microstates that increases the uncertainty. For
one given microstate of the joined system, there are

(
2N
N

)
other possible microstates obtained by the different com-
binations with respect to the original compartments of
particles. At the macroscopic level of thermodynamics,
all these microstates are the same. The original com-
partments of particles is not a relevant information to
describe thermodynamically the joined system. So that
the variation of the missing information (the increase of

uncertainty) has to be reduced by the term − ln
(
2N
N

)
.

The next step of the usual reasoning to solve the Gibbs
paradox is to use the Stirling approximation (Eq.2) that
leads to :

ln

(
2N

N

)
= ln(2N !)− 2 ln(N !)

= 2N ln(2N/e)− 2N ln(N/e)

= 2N ln 2

(21)

Then, with Eq.20 the statistical entropy of mixing van-
ishes, consistently with thermodynamics. The paradox
is claimed to be solved.

Justifications for Eq.20 are numerous, basically the
same as those to justify the correct Boltzmann count-
ing. Here, the purpose is not to discuss them, but only
to point out that the solutions thus proposed are not con-
sistent for the same reason that the usual solutions of the

problem of extensivity were not. If the exact Stirling for-
mula (Eq. 4) is used instead of its approximation (Eq. 2),
Eq.21 should be more properly written as :

ln

(
2N

N

)
= 2N ln 2− ln(

√
2πN) (22)

So that, by using Eq.20 the correct result for the differ-
ence of entropy should be

∆S = ln(
√
2πN) (23)

that is non-zero and diverges in the thermodynamic limit.
The paradox is actually not solved in this way, but only
seems to be because it benefits from a second errors in
Eq. 20 and in the way the problem is posed.

C. Amendment to the solution

In thermodynamics, the variation of Clausius entropy
is only defined for reversible transformations (i.e. in-
finitesimally slow). If a process is not reversible, the cor-
responding entropy variation can only be determined by
the mean of a reversible way to go back to the initial
state. Therefore, in the general case, to decide whether a
process is reversible or not, it must be considered as be-
longing to a cycle performed repeatedly and reproducibly.
The first cycle of a series cannot be regarded as belonging
to such a stationary regime, it must be at least the second
for that. In the case of joining/disjoining two volumes of
gas, even if initially the numbers of particles in the two
compartments are exactly equal, after putting back the
separation they differ due to fluctuations and the random
repartition of particles between the two compartments.
The system is not returned to its initial state. Thus, the
first joining/disjoining iteration is not a true cycle, but
subsequent iterations are. Therefore, in the framework
of statistical mechanics, the joining/disjoining cycle as
depicted in Fig.2 is not correct. Figure 3 is the correct
representation of what is really happening.

FIG. 3. Joining/disjoining cycle as it should be considered
in statistical mechanics. The number of particles in each dis-
joined compartment is known up to

√
N due to fluctuations,

but their sum is constant as the system is isolated.

Fluctuations of the number of particles in each com-
partment must be taken into account in the calculation
of the entropy of the disjoined state. For that, the most
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direct way is probably the interpretation of entropy in
terms of missing information we already used. In de-
scribing the disjoined state, a source of uncertainty is
the exact number of particles a given compartment has.
If this number is known for one, that of the other is also
known. It follows that the uncertainty about the dis-
joined state is in reality increased by a term ln(

√
2πN)

(the Shannon entropy of a Gaussian distribution with

standard deviation
√
N , i.e. the same as it was in §II C).

There is no equivalent term in the uncertainty about the
joined state, since it is closed and its number of particles
does not fluctuate. It follows that the joining process
decreases the uncertainty by − ln(

√
2πN) and that the

difference of entropy of Eq.20 should be rewritten as :

∆S = 2N ln 2− ln

(
2N

N

)
− ln(

√
2πN) (24)

that is zero in the thermodynamic limit if we use the
exact Stirling formula (Eq. 4 leading to 22). By doing so,
the paradox is solved in a consistent manner.

IV. CONCLUSION

Considering the exact Stirling formula, instead of its
usual approximation, one can see that ln(N !) has not
a linear asymptote. The consequence is that the cor-
rect Boltzmann counting alone does not make statistical

entropy extensive and does not allow to solve the Gibbs
paradox of joining two volumes of the same gas. The cor-
rect Boltzmann counting must be accompanied by con-
sideration of fluctuations. In the literature, the linear
asymptote is forced by using an approximation of the
Stirling’s formula, and fluctuations are not considered.
So that the solutions proposed for the above paradoxes
benefit from the cancellation of these two errors and are
logically invalidated.

Despite its obvious successes, statistical mechanics is
not, by far, the best-regarded theory in physics. Proba-
bly because “Statistical mechanics is notorious for con-
ceptual problems to which it is difficult to give a con-
vincing answer” (O. Penrose [28]). The Gibbs paradox,
in view of its longevity and the ink it has spilled, can
be considered as one of them. In my opinion a rigorous
treatment of this paradox, which would start by using
the correct asymptotic formula for ln(N !) and by tak-
ing into account fluctuations, would certainly help to be
more convincing.
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