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Abstract. We consider the jellium model of N particles on a line confined in an

external harmonic potential and with a pairwise one-dimensional Coulomb repulsion

of strength α > 0. Using a Coulomb gas method, we study the statistics of

s = (1/N)
∑N
i=1 f(xi) where f(x), in principle, is an arbitrary smooth function. While

the mean of s is easy to compute, the variance is nontrivial due to the long-range

Coulomb interactions. In this paper we demonstrate that the fluctuations around

this mean are Gaussian with a variance Var(s) ≈ b/N3 for large N . We provide

an exact compact formula for the constant b = 1/(4α)
∫ 2α

−2α
[f ′(x)]2 dx. In addition,

we also calculate the full large deviation function characterising the tails of the full

distribution P(s,N) for several different examples of f(x). Our analytical predictions

are confirmed by numerical simulations.
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1. Introduction

Understanding the probability distribution of the sum of random variables is a well

known problem in probability theory with multiple applications in physics, chemistry,

statistics and biology. Consider for instance N random variables {x1, x2, · · · , xN} drawn

from a joint probability distribution function (jPDF) Pjoint(x1, x2, · · · , xN). The general

question is: how is the sum SN =
∑N

i=1 xi distributed? In the simplest case where

the variables are independent and identically distributed (IID), each drawn from p(x)

(with zero mean for simplicity), then the jPDF factorizes, i.e., P (x1, x2, · · · , xN) =

p(x1)p(x2) · · · p(xN). In this case, the central limit theorem (CLT) guarantees that, as

long as the variance σ2 =
∫
x2 p(x) dx is finite, the sum SN converges for large N to

a Gaussian random variable, i.e., SN/(σ
√
N) → N (0, 1) where N (0, 1) is a standard

normal variable with zero mean and unit variance.

However, for correlated random variables, in particular when the correlations are

strong, the CLT does not hold in general and determining the PDF of SN for large N is a

challenging problem and appears in many different contexts. A celebrated example is a

long-ranged gas with repulsive pairwise interactions and confined in a harmonic potential

in one-dimension. This is the so-called Riesz gas where the energy of a configuration of

charges with positions xi’s on a line is given by [1, 2]

E[{xi}] =
A

2

N∑
i=1

x2
i + α sgn(k)

∑
i 6=j

|xi − xj|−k , (1)

where α > 0 and A > 0 are fixed coupling constants of order O(1). While the first

term represents the potential energy due to the external harmonic potential, the second

term represents the repulsive interaction between the i-th and j-th particle. In Eq. (1),

we assume that k > −2 (otherwise the harmonic potential is not sufficient to confine

the gas). The jPDF of the positions of the particles is given by the Gibbs-Boltzmann

distribution

P (x1, x2, · · · , xN) =
1

ZN
e−E[{xi}]/(kBT ) , (2)

where T is the temperature, kB is the Boltzmann constant and ZN is the normalising

partition function. In this case, the jPDF P (x1, x2, · · · , xN) does not factorise because

of the interaction term in Eq. (1), which is long-ranged. Hence, it represents an

example of a strongly correlated gas which has been extensively studied [3, 4, 5, 6, 7, 8].

There are three limiting cases of this Riesz gas that have been studied widely in the

literature, namely (i) k = −1: this is the famous jellium model also known as the

one-dimensional one-component plasma (1d-OCP) [9, 10, 11, 12, 13, 14, 15, 16, 17],

(ii) k → 0+: this is the well known Dyson’s log-gas [18, 19, 20, 21, 22, 23] where the

positions xi’s correspond to the eigenvalues of Gaussian random matrices and (iii) k = 2,

corresponding to the Calogero-Moser model which represents an important integrable

classical model [24, 25, 26, 27, 28]. In these examples of the Riesz gas, SN/N represents

the position of the center of mass of the particles, a natural and important physical

observable.
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More generally, one can also study the probability distribution of the so-called linear

statistics

SN =
N∑
i=1

f(xi) , (3)

where f(x) is an arbitrary function (not necessarily linear). In the case when f(x) = x,

it reduces to the center of mass (multiplied by N) of the gas. However, the case of a

general f(x) is also of interest and has been widely studied in several special cases, in

particular in the context of the random matrix theory [29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44]. Some examples are as follows

• full counting statistics in the Dyson’s log-gas [36, 45, 46, 47, 48, 49, 50] or in

the jellium model [14, 16], where one is interested in the number of particles

NL =
∑N

i=1 I[−L,L](xi) in an interval [−L,+L]. Here, f(x) = I[−L,L](x) is an

indicator function, i.e., I[−L,L](x) = 1 if −L ≤ x ≤ L and zero otherwise.

• conductance (with f(x) = x) and shot noise (f(x) = x(1− x)) in chaotic transport

through a cavity where 0 ≤ xi ≤ 1’s represent the eigenvalues of an N ×N Jacobi

random matrix [30, 38, 40, 51, 52, 53, 54, 55, 56, 57, 58].

• Rényi entropy in a random pure state of a bipartite system where f(x) = xq, with

q > 0 represents the Rényi index [59, 60, 61].

In the case of Dyson’s log-gas, i.e., k → 0+ limit of the Riesz gas, the linear statistics

SN in Eq. (3) with general f(x) have been studied extensively and several exact results

are known. In order to study the linear statistics in the log-gas, it is convenient to first

rescale xi → xi
√
N ’s such that the average density of the gas is supported, for large

N , over an interval of size of order O(1). Then one defines s = (1/N)
∑

i f(xi) where

xi’s now represent the rescaled coordinates such that s ∼ O(1) in the large N limit. It

is known that the distribution of the typical value of s for a general f(x) is Gaussian

around its mean s̄ with a variance given, for large N , by an explicit formula [30, 35, 40]

Var(s) ≈ 1

βπ2N2

∫ ∞
0

k |f̂(k)|2 dk , (4)

where f̂(k) =
∫∞
−∞ e

ikxf(x) dx is the Fourier transform of f(x) and the parameter

β = 1, 2, 4 represents the three standard symmetry classes of Gaussian random matrices.

Note that this formula assumes that the integral in (4) is convergent. For certain choices

of f(x) one has to augment this formula with some regularisation. For example for the

center of mass where f(x) = x, its Fourier transform f̂(k) is not well defined and one

cannot use the formula in Eq. (4) directly and use alternative formulas that are more

complicated [30].

A natural question is whether one can obtain an explicit formula for general f(x)

for other values of k in the Riesz model (1). The purpose of this paper is to derive an

explicit formula for k = −1, i.e., for the 1d jellium model, in the limit of large N . As

in the case of the log-gas discussed above, it is useful to first rescale xi → LN yi where



An exact formula for the variance of linear statistics in the 1d- jellium model 4

yi = O(1) and LN is an N -dependent length scale to be chosen as follows. Under this

rescaling, the energy in Eq. (1) for k = −1 reads

E[{yi}] =
A

2
L2
N

N∑
i=1

y2
i − αLN

∑
i 6=j

|yi − yj| . (5)

For the system to exhibit any interesting physical behavior, the two terms in Eq. (5)

must scale in the same way for large N . The first term scales as AL2
N N since the sum∑

i y
2
i ∼ N as yi = O(1). The second term scales as αLN N

2 since there are N(N − 1)

terms of order O(1) each in the double sum. Equating these two, one gets, for large N ,

ALN ∼ αN . (6)

Since both the coupling constants A and α are of order O(1), this tells us that we must

choose LN = O(N). Choosing LN = N and setting A = 1 for convenience the energy

in Eq. (5) can be written as

E[{yi}] =
N2

2

N∑
i=1

y2
i − αN

∑
i 6=j

|yi − yj| . (7)

For convenience, we henceforth will denote yi → xi and write the energy as

E[{xi}] =
N2

2

N∑
i=1

x2
i − αN

∑
i 6=j

|xi − xj| . (8)

Note that, since xi’s are typically of order O(1), both terms in the energy in (8) scale as

N3. Hence the total energy scales as N3. In this case, the average density is defined by

〈ρN(x)〉 =
1

N

〈 N∑
i=1

δ(x− xi)
〉
, (9)

where 〈· · · 〉 denotes an average over the Gibbs-Boltzmann measure in Eq. (2). It is

known to converge in the large N limit to a flat profile supported over [−2α, 2α] [10, 13].

lim
N→∞

〈ρN(x)〉 =
1

4α
, −2α ≤ x ≤ 2α . (10)

As in the log-gas case, we now define the linear statistics in the rescaled coordinates as

s =
1

N

N∑
i=1

f(xi) , (11)

such that s ∼ O(1) in the large N limit. In this case, using the average density in (10),

it is easy to see that the average value of s converges to

s̄ =
1

4α

∫ 2α

−2α

f(x) dx . (12)

Our main result in this paper is to obtain, using a Coulomb gas and large deviation

method, an explicit formula for the variance Var(s) = 〈(s− s̄)2〉 which simply reads for

large N

Var(s) ≈ 1

4αN3

∫ 2α

−2α

[f ′(x)]
2
dx . (13)
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This formula is valid only when [f ′(x)]2 exists and is integrable. We will discuss precisely

the assumptions implicit in deriving this explicit formula and also verify this prediction

by numerical simulations in several specific examples of f(x). Using the same Coulomb

gas method, we show how to access the full large deviation function that characterizes

the tails of the full distribution P(s,N). For some examples of f(x), we compute

explicitly the rate function describing these large atypical fluctuations. In some cases,

such as f(x) = |x|, we show from explicit computation that the rate function has a

singular point where the third derivative is discontinuous, signalling a third order phase

transition in the underlying Coulomb gas.

We will also provide an alternative derivation of this formula (13), which in addition

demonstrates that, up to an overall constant, the formula in Eq. (13) holds for a general

external potential V (xi), not necessarily harmonic.

Let us remark that the variance of linear statistics has also been studied in another

well known ensemble of RMT, namely the Ginibre ensemble where the entries are

complex Gaussian but there is no Hermitian symmetry. In this case, the eigenvalues are

complex and the eigenvalues behave like charged particles in two-dimensions repelling

each other via a logarithmic Coulomb interaction and also confined in a harmonic

potential. For this 2d-case, a formula for the variance of s = (1/N)
∑N

i=1 f(~ri) in the

large N limit was derived by Forrester [62], which looks formally very similar to our

one-dimensional formula in (13), up to overall constants and N -dependent factors, i.e.,

Var(s) ∝
∫

(∇f)2d~r where the integral is over the support of the Coulomb gas. This

result in d = 2 was later proved rigorously in the mathematics literature [63, 64] and

the formula was also extended to confined Coulomb gases in d ≥ 2 [65, 66]. However,

these rigorous methods do not seem to easily extend to the jellium model in d = 1 for

which our results show that this formula for the variance, up to an overall factor, holds

even in d = 1. Our method, in addition, gives access to the full large deviation function

for any linear statistics.

The rest of the paper is organised as follows. In Section 2, we discuss the Coulomb

gas method leading to the exact asymptotic formula in Eq. (13) for general f(x).

We also study few examples where we provide explicit results for the large deviation

function associated with the full distribution of s. In Section 3, we provide an alternative

derivation of the formula for the variance. In Section 4, we discuss the criteria for the

validity of this general formula. Finally, in Section 5, we conclude with a summary and

open problems.

2. The computation of the variance via a Coulomb gas method

We consider the linear statistics s defined in Eq. (11) with an arbitrary function f(x).

Clearly s is a random variable since the xi’s are also random variables distributed via the

Gibbs-Boltzmann weight (2) with the energy given in Eq. (8). Our goal is to calculate

the variance Var(s) of s in the large N limit. To compute it, we use the following
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strategy. We first express the PDF P(s,N) as follows

P(s,N) =

∫
dx1

∫
dx2 · · ·

∫
dxNP ({xi})δ

(
s− 1

N

N∑
i=1

f(xi)

)
, (14)

with P ({xi}) defined in Eq.(2) and (8). The idea is to evaluate this distribution in the

large N limit using a Coulomb gas method detailed below. For large N , we will see that

P(s,N) admits a large deviation form

P(s,N) ∼ e−N
3Ψ(s) , (15)

where Ψ(s) is a rate function that implicitly depends on f(x). The factor N3 in the

exponent arises from the fact that the energy scales as N3. Typically, one would expect

that Ψ(s) has a minimum around s = s̄ (where s̄ denotes the average value of s in

Eq. (12)) and behaves quadratically around its mean

Ψ(s) ≈ 1

2b
(s− s̄)2 . (16)

Substituting this behaviour in the large deviation form (15) one gets

P(s,N) ∼ e−
N3

2b
(s−s̄)2 , (17)

indicating that the distribution, near its peak, has a Gaussian form with mean s̄ and

variance

Var(s) ≈ b

N3
. (18)

Therefore the idea would be to compute first the large deviation function Ψ(s) and read

off the number b by expanding Ψ(s) up to quadratic order around its minimum at s = s̄.

In the next subsection, we outline the Coulomb gas method to compute Ψ(s).

2.1. The Coulomb gas method: general set up

We start from the multiple integral in (14). The first step is to get rid of the delta-

function by replacing it with its integral representation δ(x) = N3
∫

Γ
dµ
2π
e−µN

3x dx where

Γ is a Bromwich contour going along the imaginary axis in the complex µ-plane. We

can then rewrite (14) as (up to an overall constant scale factor N3)

P(s,N) =

∫
Γ
dµ
∫
dx1

∫
dx2 · · · dxNe−Eµ[{xi}]∫

dx1 · · · dxN e−E[{xi}]
=

∫
Γ
dµZN(µ)

ZN
. (19)

In the denominator, the energy function E[{xi}] is given in Eq. (8) – note that for

convenience we have set kBT = 1, without any loss of generality. In the numerator in

Eq. (19), the modified energy function Eµ[{xi}] reads

Eµ[{xi}] =
N2

2

N∑
i=1

x2
i −Nα

∑
i 6=j

|xi − xj|+N3µ

[
1

N

N∑
i=1

f(xi)− s
]

=
N2

2

N∑
i=1

(
x2
i + µ f(xi)

)
−Nα

∑
i 6=j

|xi − xj| − µ sN3 . (20)
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Up to a constant shift of energy −µ sN3, the energy in Eq. (20) can be interpreted as

the energy of the same jellium gas, but in the presence of an effective potential

Veff(x) =
1

2
x2 + µ f(x) . (21)

Thus the “chemical potential” µ can be interpreted as the amplitude of the perturbation

of the original potential x2/2. Consequently, ZN(µ = 0) = ZN in Eq. (19).

Evaluating the multiple integrals in the numerator and denominator of Eq.

(19) for all N is hard in general. However, for large N , one can make a

“continuum/hydrodynamic” approximation. This proceeds in two steps. In the first

step, we fix a macroscopic density profile ρ(x) (normalised to unity) and sum over all

microscopic configurations of xi’s that correspond to this macroscopic density profile.

In the second step, we integrate (functional integration) over all possible (normalised to

unity) macroscopic density profiles. Following these two steps, one can write ZN(µ) in

Eq. (19) as (up to an overall N -dependent constant factor) [67]

ZN(µ) ≈
∫
Dρ(x)e−N

3Eµ[ρ(x)]−N
∫
dx ρ(x) ln ρ(x)δ

(∫
dxρ(x)− 1

)
, (22)

where Eµ[ρ(x)] is given by

Eµ[ρ(x)] =

∫ (
x2

2
+ µf(x)

)
ρ(x) dx− α

∫ ∫
ρ(x)ρ(y)|x− y| dx dy − µ s . (23)

The second term N
∫
dx ρ(x) ln ρ(x) inside the exponent in the integrand in Eq. (22)

is an entropy term that comes from the first step of coarse-graining mentioned above,

i.e., from the sum over all possible microscopic configurations corresponding to a given

macroscopic density profile ρ(x). Note that this entropy term scales as O(N), while

the energy ∼ N3 is much bigger. Hence in the large N limit, we will henceforth

neglect the entropy term. The delta-function in Eq. (22) represents the fact that

only the normalised (to unity) macroscopic density profiles are allowed. In fact,

it is again convenient to replace this delta-function by its integral representation

δ(x) = N3
∫

Γ
dµ0
2π
e−µ0N

3x dx. Finally the distribution P(s,N) can then be written as

P(s,N) ≈
∫
Dρ(x)

∫
dµ
∫
dµ0 e

−N3S[ρ(x),µ,µ0]∫
Dρ(x)

∫
dµ0 e−N

3S[ρ(x),µ=0,µ0]
. (24)

where the effective action is given by

S[ρ(x), µ, µ0] =

∫
x2

2
ρ(x)dx− α

∫
ρ(x)ρ(y)|x− y|dxdy+

+µ

(∫
f(x)ρ(x)dx− s

)
+ µ0

(∫
ρ(x)dx− 1

)
. (25)

The next step is to evaluate both the numerator and the denominator in Eq. (24) by

the saddle point method valid for large N . We consider them separately, starting with
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the denominator.

Denominator. In this case, the saddle point equations read

δS[ρ(x), µ = 0, µ0]

δρ(x)
= 0 and

∂S[ρ(x), µ = 0, µ0]

∂µ0

= 0 . (26)

The second equation actually gives the normalisation condition
∫
ρ(x) dx = 1, while the

first equation gives the saddle point density [10, 13]

ρ∗0(x) =
1

4α
, −2α ≤ x ≤ 2α , (27)

which is flat over the finite support [−2α,+2α]. Inserting the saddle-point density into

(25) with µ = 0, one gets the leading large N behavior of the unconstrained partition

function of the jellium model [10, 13]

ZN = ZN(µ = 0) ≈ e
2
3
α2N3

. (28)

Numerator. In the case of the numerator, there are three saddle-point equations

δS[ρ(x), µ, µ0]

δρ(x)
= 0 ,

∂S[ρ(x), µ, µ0]

∂µ
= 0 and

∂S[ρ(x), µ, µ0]

∂µ0

= 0 . (29)

The last two equations give the two constraints:
∫
f(x)ρ(x) dx = s and

∫
ρ(x) dx = 1.

We therefore need to find the solution ρ∗µ(x) of the first equation that satisfies these two

constraints. The first equation in (29), using the action S[ρ(x), µ, µ0] from (25), reads

x2

2
− 2α

∫
ρ∗µ(y)|x− y|dy + µf(x) + µ0 = 0 . (30)

We assume that the saddle-point density ρ∗µ(x) has a single support x ∈ [L1, L2] (to

be determined a posteriori). This equation holds only for x belonging to the support.

Taking a derivative of Eq. (30) with respect to x gives

x− 2α

∫
ρ∗µ(y)sgn(x− y)dy + µf ′(x) = 0 . (31)

Taking further one more derivative and using d
dx

sgn(x) = 2δ(x) one finds

1 + µf ′′(x)− 4αρ∗µ(x) = 0 implying ρ∗µ(x) =
1

4α
(1 + µf ′′(x)) , L1 ≤ x ≤ L2 . (32)

For a schematic plot of this density in Eq. (32) – with f(x) = x4 as an example – see

Fig. 1. At this stage, we have four unknown parameters: L1, L2, µ0 and µ. They can

determined as follows. Setting x = L2 in Eq. (31) and using sgn(L2 − y) = 1 for all

y ≤ L2 and using the normalisation
∫ L2

L1
ρ∗µ(x) dx = 1, one gets

L2 − 2α + µf ′(L2) = 0 . (33)
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Figure 1. A schematic plot of the density ρ∗µ(x) in Eq. (32) for α = 1, µ = 1 and

f(x) = x4. The left and the right edges of the support are denoted respectively by L1

and L2.

Similarly, by setting x = L1 in in Eq. (31) and using sgn(L1 − y) = −1 for all y ≥ L1

gives

L1 + 2α + µf ′(L1) = 0 . (34)

Setting x = L2 in Eq. (30) and using |L2 − y| = L2 − y for all y ≤ L2, gives a third

independent relation

µ0 = −L
2
2

2
+ 2αL2 −

1

4
(L2

2 − L2
1)− µ

2

∫ L2

L1

yf ′′(y)dy − µf(L2) . (35)

Note that we have already used the normalisation condition in arriving at the first two

equations (33) and (34). But we are still left with one condition∫ L2

L1

f(x)ρ∗µ(x) dx = s . (36)

Inserting the saddle-point density from Eq. (32) in this condition and performing the

integral gives the desired fourth relation

µ

4α

∫ L2

L1

f(x)f ′′(x)dx = s− 1

4α

∫ L2

L1

f(x)dx . (37)

Thus the four unknown parameters (L1, L2, µ0 and µ) are determined from the four

independent non-linear relations (33), (34), (35) and (37). Once they are determined

(for a given s), they characterise the saddle-point density ρ∗µ(x) in Eq. (32) fully. Let

us remark that, when µ = 0, one recovers the unconstrained density ρ∗0(x) = 1/(4α) for

L1 ≤ x ≤ L2 with L1 = −2α and L2 = +2α. In this case, we get s = s̄ given in Eq.

(12).
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Substituting the saddle-point density ρ∗µ(x) back in Eqs. (24) and (25) gives the

leading large N behavior of the numerator∫
Dρ(x)

∫
dµ

∫
dµ0 e

−N3 S[ρ(x),µ,µ0] ∼ e−N
3S[ρ∗µ(x),µ,µ0] , (38)

where the saddle-point action S[ρ∗µ(x), µ, µ0] depends implicitly on s. Using the behavior

of the denominator in Eq. (28), we then get

P(s,N) ∼ e−N
3Ψ(s) where Ψ(s) = S[ρ∗µ(x), µ, µ0] +

2

3
α2 . (39)

By substituting the explicit solution for the saddle-point density from Eq. (32), we find

after straightforward algebra,

Ψ(s) =
L3

2 − L3
1

48α
+
L2

2 − L2
1

8
+
L2

2

4
− αL2 +

2

3
α2+

+
µ

4

[
1

4α

∫ L2

L1

x2f ′′(x)dx− 2s+ 2f(L2) +

∫ L2

L1

xf ′′(x)dx

]
, (40)

where L1, L2 and µ are functions of s and are determined from the relations (33), (34),

(35) and (37). This expression gives the exact rate function for the linear statistics

s = (1/N)
∑

i f(xi) with arbitrary f(x). This is one of the main results of this

paper. Let us end this subsection with a remark. When s approaches s̄ given in Eq.

(12), we have seen that µ → 0 [see the discussion below Eq. (37)] and the density

ρ∗µ(x)→ ρ∗0(x) = 1/(4α) for L1 ≤ x ≤ L2 with L1 → −2α and L2 → 2α. Consequently,

one can easily verify from Eq. (39) that Ψ(s) → 0 as s → s̄. Since Ψ(s) is a positive

convex function, clearly s = s̄ is a minimum of Ψ(s).

2.2. Extraction of the variance in the large N limit

In the previous section, we have determined the large deviation form of the PDF P(s,N)

in Eq. (39) with the rate function Ψ(s) given in Eq. (40). The goal of this subsection

is to extract the variance by expanding the rate function Ψ(s) around its minimum at

s = s̄, as explained in the beginning of this section. We have shown at the end of the

previous subsection that, indeed, Ψ(s) has a minimum at s = s̄ with s̄ given in Eq. (12).

For easy reading, we recall it here

s̄ =
1

4α

∫ 2α

−2α

f(x) dx . (41)

We now expand Ψ(s) around this minimum at s = s̄. We have seen that when s = s̄,

the saddle-point solution is the unconstrained flat density over [L1, L2] with L1 = −2α

and L2 = +2α. When s changes slightly from s̄, say s = s̄+ ε, we expect

s = s̄+ ε , L1 = −2α + δ1(ε) , L2 = 2α + δ2(ε) , (42)

where δ1(ε) and δ2(ε) are small. The idea is first to evaluate µ, L1 and L2 using the

independent relations (33), (34) and (37) for small ε and then substitute this result in
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Eq. (40) and evaluate Ψ(s) up to order O(ε2), where we recall that ε = s− s̄. We also

recall that Ψ(s) is just the saddle point action up to a constant – see Eq. (39). It turns

out that, in order to extract the expansion of Ψ(s) around s̄, it is enough to compute µ

only up to order O(ε). This follows from a thermodynamic identity [57, 58, 68] (for a

simple proof, see Eqs. (40)-(41) in Ref. [15]) which states that

∂Ψ

∂s
=
∂S[ρ∗µ(x), µ, µ0]

∂s
= −µ(s) , (43)

where the first equality follows from Eq. (39). From this relation (43) it is clear that to

expand Ψ(s) around s̄ up to quadratic order, it is enough to compute µ(s) only up to

linear order in ε = s− s̄. We then substitute the expansions (42) in the four independent

relations (33), (34), (35) and (37) and expand up to order ε. This straightforward

expansion leads to

µ = − 4α ε∫ +2α

−2α
[f ′(x)]2 dx

+O(ε2) . (44)

In addition, δ1(ε) and δ2(ε) are given by

δ1(ε) =
4αf ′(−2α) ε∫ +2α

−2α
[f ′(x)]2 dx

+O(ε2) (45)

δ2(ε) =
4αf ′(2α) ε∫ +2α

−2α
[f ′(x)]2 dx

+O(ε2) . (46)

We then substitute this relation (44) in (43) and integrate over s to obtain

ψ(s) =
1

2b
(s− s̄)2 +O((s− s̄)3) , with b =

1

4α

∫ 2α

−2α

[f ′(x)]2 dx . (47)

Hence, from Eq. (18), we get

Var(s) ≈ b

N3
≈ 1

4αN3

∫ 2α

−2α

[f ′(x)]
2
dx . (48)

2.3. A few examples

Here we work out two simple examples of f(x), namely f(x) = x and f(x) = x2.

• f(x) = x: in this case the effective potential in Eq. (21) reads Veff(x) = x2/2 + µx,

which is always confining for all µ and hence we expect a single support solution for

the density, an assumption which is crucial for the derivation of the general formula

for the variance of s in Eq. (48). In this case, the saddle-point density in Eq. (32)

reads

ρ∗µ(x) =
1

4α
I[L1,L2](x) , (49)

where I[L1,L2](x) is an indicator function, which is 1 if x ∈ [L1, L2] and 0 otherwise.

The parameters L1, L2 and µ are determined respectively from Eqs. (34), (33) and

(37). They simply read

L1 = s− 2α , L2 = s+ 2α , µ = −s and s̄ = 0 . (50)
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Figure 2. Left: a plot of the saddle-point density for f(x) = x and two different

values of s = s̄ = 0 and s = 1. For f(x) = x, the average unperturbed value of s is

s̄ = 0, where the density is flat over [−2α, 2α] (this is shown by the red curve). When

s changes from s = 0 to s = 1, the new density (shown by the green curve) gets shifted

by s = 1. Right: a plot of the saddle-point density for f(x) = x2 and two different

values of s = s̄ = 4α2/3 and s = 1. For f(x) = x2, the average unperturbed value of s

is s̄ = 4α2/3, where the density is flat over [−2α, 2α] (this is shown by the red curve).

When s changes from s = s̄ to s = 1, the new density (shown by the green curve), while

remaining flat over [−
√

3,+
√

3], gets rescaled (unlike in the case f(x) = x where it is

just shifted without changing the shape from the unperturbed case). In the figures,

we chose α = 1/10.

Thus the original density ρ∗0(x) = 1
4α

I[−2α,2α](x) just gets shifted for a finite s, or

equivalently for finite µ, as seen from Eq. (49) (see the left panel of Fig. 2). Since

µ(s) = −s for all s, we can integrate the exact relation (43) with the condition that

Ψ(s = s̄) = 0. This gives the full rate function

Ψ(s) =
s2

2
. (51)

Hence, clearly, from Eq. (15), it follows that the variance is Var(s) ≈ b/N3 with

b = 1, in agreement with our general formula in Eq. (48).

• f(x) = x2: in this case the effective potential in Eq. (21) reads Veff(x) = (µ+1/2)x2.

Hence, for all µ > −1/2, the potential is confining and we expect to have a single

support around x = 0. The saddle-point density from Eq. (32) reads

ρ∗µ(x) =
1

2
√

3 s
I[L1,L2](x) , (52)

with the parameters L1, L2 and µ again determined respectively from Eqs. (34),

(33) and (37). We get

L1 = −
√

3 s , L2 =
√

3 s , µ = −1

2
+

α√
3 s

and s̄ =
4α2

3
. (53)

Note that, for any s > 0, we have µ > −1/2 from Eq. (53) and hence the effective

potential Veff(x) = (µ+ 1/2)x2 will be always confining for all s, leading to a single
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Figure 3. Plot of the large deviation Ψ(s) vs s, for f(x) = x2 as given in Eq. (54),

with the choice α = 1.

support solution for any s. Thus, as in the f(x) = x case discussed before, the

saddle-point density is uniform but unlike the case f(x) = x, it is not just a shift

of ρ∗0(x) but also the height and the width gets modified (see the right panel of Fig.

2). Using the exact µ(s) from Eq. (53) in the exact relation (43), and integrating

with respect to s using Ψ(s = s̄) = 0, one gets the full rate function

Ψ(s) =
s

2
− 2α√

3

√
s+

2α2

3
. (54)

A plot of this rate function is shown in Fig. 3. By expanding around s = s̄ = 4α2/3

up to quadratic order, one gets Var(s) = b/N3 with b = 16α2/3, in agreement with

our general formula in Eq. (48).

Note that in the derivation of the general formula (48), we have assumed that the

effective potential Veff(x) = x2/2 + µf(x) is confining, so that one has a single support

for the saddle-point density and also the fact that f(x) is a smooth function such that

its first derivative f ′(x) exists and the integral in Eq. (48) is finite. In the two examples

discussed above, namely f(x) = x and f(x) = x2, both conditions are met. In Section 4,

we will demonstrate examples where either one of the two conditions breaks down and

yet we will show that the formula (48) will still be valid.

3. An alternative derivation of the formula for the variance

In this section, we provide an alternative derivation of the formula for the variance given

in Eq. (13). Following Ref. [35] for the log-gas case, we focus on the generating function

of s, namely

G(λ) = 〈e−λs〉 = 〈e− λ
N

∑N
i=1 f(λi)〉 =

∫ ∞
−∞

dsP(s,N)e−λs , (55)
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where we recall that 〈· · · 〉 denotes an average over the Gibbs-Boltzmann measure in

Eq. (2) and P(s,N) is the PDF of s given in Eq. (14). The starting point of the

analysis presented here is the following identity

∂

∂λ
lnG(λ) = − 1

N

〈 N∑
i=1

f(xi)
〉
λ
, (56)

where 〈· · · 〉λ denotes an average with respect to the modified weight

P̃λ(x1, x2, · · · , xN) =
1

Z̃N(λ)
e−E[{xi}]− λ

N

∑N
i=1 f(xi) , (57)

where Z̃N(λ) is a normalisation constant. Hence, in the large N limit the relation (55)

becomes, to leading order for large N

∂

∂λ
lnG(λ) ≈ −

∫ ∞
−∞

ρ̃λ(x)f(x) dx , (58)

where ρ̃λ(x) is the equilibrium density associated to the joint PDF in (57). By comparing

Eqs. (57) and (20), it is easy to see that, to leading order for large N ,

ρ̃λ(x) ≈ ρ∗µ=λ/N3(x) , (59)

where ρ∗µ(x) is given in Eq. (32). Hence ρ̃λ(x) reads, to leading order for large N ,

ρ̃λ(x) ≈ 1

4α

(
1 +

λ

N3
f ′′(x)

)
, L̃1(λ) ≤ x ≤ L̃2(λ) , (60)

where L̃1(λ) and L̃2(λ) are given respectively by Eqs. (34) and (33) with the substitution

µ = λ/N3, i.e.,

L̃1(λ) + 2α +
λ

N3
f ′(L̃1(λ)) = 0 (61)

L̃2(λ)− 2α +
λ

N3
f ′(L̃2(λ)) = 0 (62)

To compute the variance, we need to compute the small λ expansion of lnG(λ) in (58)

up to order O(λ2). For this purpose, it turns out that we need to expand L̃1(λ) and

L̃2(λ) up to order O(λ) only. Expanding Eqs. (61) and (62) for small λ one finds

L̃1(λ) = −2α− λ

N3
f ′(2α) +O(λ2) , L̃2(λ) = 2α− λ

N3
f ′(2α) +O(λ2) . (63)

Inserting Eq. (60) in Eq. (58) one obtains

∂

∂λ
lnG(λ) ≈ − 1

4α

∫ L̃2

−L̃1

f(x) dx− λ

4αN3

∫ L̃2

L̃1

dx f(x)f ′′(x) . (64)

Performing an integration by parts in the second integral in (64) and using the small λ

expansion of L̃1(λ) and L̃2(λ) in (63), one obtains after straightforward algebra

∂

∂λ
lnG(λ) = − 1

4α

∫ 2α

−2α

f(x) dx+
λ

4αN3

∫ 2α

−2α

dx[f ′(x)]2 +O(λ2) . (65)
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Therefore, integrating over λ, using G(λ = 0) = 1 one finds

lnG(λ) = − λ

4α

∫ 2α

−2α

f(x) dx+
λ2

8αN3

∫ 2α

−2α

dx[f ′(x)]2 +O(λ3) . (66)

From this expression, one can immediately read off the mean s̄ and the variance Var(s)

of s as

s̄ =
1

4α

∫ 2α

−2α

f(x) dx , Var(s) =
1

4αN3

∫ 2α

−2α

dx [f ′(x)]2 , (67)

which indeed coincide with the results in Eqs. (12) and (13) obtained by a different

method.

The exercice above can actually be repeated for arbitrary confining potential V (x),

not necessarily harmonic. In this case, the equilibrium density in Eq. (32) gets replaced

by

ρ̃∗µ(x) =
1

4α
[V ′′(x) + µf ′′(x)] , (68)

which is supported over the interval [L1, L2]. Note that L1 and L2 do depend on V (x).

One can then repeat the steps above and finds that the formula for the variance (67)

actually holds for a general V (x) and reads, up to an overall N -dependent constant,

Var(s) ∝
∫ L2

L1

dx [f ′(x)]2 . (69)

Thus the dependence of the variance on V (x) enters only through the support edges L1

and L2, but not explicitly.

4. Validity of the formula for the variance

As mentioned above, one of the crucial assumptions leading to the derivation of the

formula (48) is the following. Once the chemical potential is switched on, it changes

the effective potential of the jellium to Veff(x) = x2/2 + µf(x) [see Eq. (21)]. We

assume Veff(x) is still confining and the saddle-point density still has a single support.

In addition f ′(x) must exist and the integral in Eq. (48) should be finite. Below, we

discuss two examples where one of the two conditions breaks down. For instance, when

f(x) = x3, the effective potential is always non confining, except of course for µ = 0. In

some other examples, f ′(x) maybe be singular, such as f(x) = |x|, which also leads to

two disjoint supports for the density for µ < 0. However, in both cases, we will show

that the general formula (48) still gives the correct answer for the variance of s.

4.1. The special case f(x) = x3

In this case, the effective potential Veff(x) = x2/2 + µx3 is non-confining for any µ. For

example, for µ > 0, it diverges negatively as x → −∞. A plot of Veff(x in this case is

given in Fig. 5 for µ > 0.



An exact formula for the variance of linear statistics in the 1d- jellium model 16

-6 -4 -2 2

-4

-2

2

4

6

Ve↵(x)

x01

54µ2

Figure 4. Plot of the effective potential Veff(x) = x2/2 + µx3 with µ = 1/10. The

maximum on the left of the origin occurs at x = −1/(3µ), while the height of the

maximum is 1/(54µ2).

For µ > 0, the effective potential Veff(x) has always a minimum at x = 0 and a

maximum at x = −1/(3µ). The height of the maximum is given by

Veff

(
x = − 1

3µ

)
=

1

54µ2
. (70)

For small µ, the barrier height is thus very large and, hence, the minimum at x = 0 is

deep. Hence, for small µ, we expect to have a single support. For large positive µ, the

barrier height will decrease and the minimum at x = 0 will be shallow. In this case,

some charges may split from the support around x = 0 and go over the barrier to very

large negative x and our assumption about the single support will no longer be valid.

However, for the computation of the variance of s, we only need µ very small. Hence,

the single support assumption will still be correct and hence we expect that our formula

in Eq. (48) is still valid for large N . Indeed, assuming a single support solution as in

Eq. (32), one can in principle compute the parameters L1, L2 and µ and check that the

rate function Ψ(s) in Eq. (40) is again quadratic around s = s̄ with the variance given

by Eq. (48) with b given by

b =
1

4α

∫ 2α

−2α

(3x2)2 dx =
144

5
α4 . (71)

Thus, while we are able to compute the variance, from the expansion of Ψ(s) in Eq.

(40) around s = s̄, the expression of the rate function Ψ(s) –obtained by assuming a

single support – is not expected to be valid for all s. Computing the full rate function

Ψ(s) for all s is an interesting challenge left for future investigations. Note that, here,

we just discussed the specific example of f(x) = x3, but a similar discussion will hold

for any odd function f(x) that diverges faster than x2, for instance f(x) = x5, x7, · · · .
In all such cases, we expect the formula for the variance in Eq. (48) to be still valid,
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prediction for N3Var(s) for f(x) = x3 and bMC is the Monte-Carlo value of N3Var(s).

since it arises only from the small µ expansion. We have verified the validity of our

prediction for the variance in (71) for f(x) = x3 by Monte-Carlo simulations, as shown

in Fig. 5 where we plot the difference between the theoretical value of b = 144
5
α4 [see

Eq. (71)] and the Monte-Carlo value bMC = N3Var(s)
∣∣∣
MC

as a function of increasing N .

We find that it decreases to zero as N →∞, thus verifying the theoretical prediction.

4.2. The special case f(x) = |x|

In this case, the effective potential in Eq. (21) felt by the charges in the jellium model

reads

Veff(x) =
1

2
x2 + µ |x| . (72)

Clearly, for µ > 0, Veff(x) has a single minimum at x = 0. In this case, one would expect

that the saddle-point density ρ∗µ(x) will be supported over a single interval around this

minimum. In contrast, when µ < 0, the effective potential has two minima located at

±|µ| (see Fig. 6). Hence, in this case, one expects that the saddle-point density will have

two disjoint supports, one around each minimum. Below, we calculate the saddle-point

density explicitly, confirming this scenario. Before proceeding, we note that the average

value of s (corresponding to µ = 0) is given by [using f(x) = |x| in Eq. (12)]

s̄ = α . (73)

Our starting point is the action S[ρ(x), µ, µ0] in Eq. (25) with f(x) = |x|. The
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Figure 6. Effective potentials Veff(x) = x2/2 + µ|x| vs x for three values of µ. From

left to right the values of µ are −1, 0, and 1. If µ < 0 the potential has two minima

and for µ > 0 just one. The transition point is at µ = 0.

saddle point equation for the density then reads, from Eq. (31)

x− 2α

∫
ρ∗µ(y)sgn(x− y)dy + µ sgn(x) = 0 . (74)

Note that this equation holds only at points inside the support of ρ∗µ(x). We now

consider the two cases µ > 0 and µ < 0 separately.

The case µ > 0: In this case, we expect that there is a single support over [−`,+`]
where ` remains to be determined. Note that, since Veff(x) is symmetric around x = 0,

we expect the support to be also symmetric around x = 0, and hence we chose it

to be [−`,+`]. Taking one more derivative of Eq. (74) with respect to x, and using
d
dx

sgn(x) = 2δ(x), we get

ρ∗µ(x) =
1

4α
+

µ

2α
δ(x) . (75)

Thus the density has a flat profile with a spike (delta-function) at its center. This is

confirmed in our Monte-Carlo simulations (see the middle panel Fig 7). The unknown

parameters are ` and µ. The normalisation condition
∫ +`

−` ρ
∗
µ(x) dx = 1 gives the relation

`+ µ = 2α , (76)

and the other condition s =
∫ `
−` ρ(x)|x| dx gives

s =
1

4α
(2α− µ)2 . (77)

By inverting this relation, one gets µ = 2α ±
√

4α s. From Eq. (76), it is clear that

µ < 2α in order that ` > 0. Hence we choose the negative root of the quadratic equation

for µ and set

µ = 2α−
√

4α s and ` =
√

4αs . (78)

Since µ > 0, it follows that this single support solution in Eq. (74) is valid only for

s < α = s̄, where we used Eq. (73) for the last equality.
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Figure 7. Left: Plot of the Monte-Carlo simulations for the average density (red dots)

for α = 1/10 and N = 1000 for s = 0.6, compared with the saddle-point prediction

in Eq. (79). In this case, since s = 0.6 > s̄ = α = 1/10, the density has two disjoint

supports with parameters L = s + α = 0.7 and a = s − α = 0.5. Right: Plot of the

Monte-Carlo simulations for the average density (red dots) for α = 1/10 and N = 1000

for s = 0.025, compared with the saddle-point prediction in Eq. (75). In this case since

s = 0.025 < s̄ = 1/10, the density has a single support with an additional delta peak

at x = 0.

The case µ < 0: In this case, as mentioned before, we expect a two-support

solution. We need to parametrize the solution and we expect the two supports to be

symmetrically placed symmetrically around the origin. Let us assume that the supports

are [−L,−a]∪ [a, L] with 0 ≤ a ≤ L – see Fig. 7. Taking a derivative with respect to x

in the general saddle-point equation (74), we see that the density in the bulk (i.e., away

from the edges) is always flat and is given by

ρ∗µ(x) =
1

4α
for − L < x < −a or a < x < L . (79)

Note that Eq. (74) holds for all points belonging to both supports. Choosing x ∈ [a, L]

(right support), and using (79), one gets, from Eq. (74) the relation

µ = −a . (80)

The normalisation condition 2
∫ L
a
ρ∗µ(x) dx = 1 gives the relation

L− a = 2α . (81)

Furthermore, the condition 2
∫ L
a
|x| ρ∗µ(x) dx = s gives another relation

L2 − a2 = 4α s . (82)

Thus we have three equations (80)-(82) for three unknowns µ, a and L for a fixed s.

Solving them, we get the three parameters

L = s+ α , a = s− α and µ = α− s . (83)

Since µ < 0, this two-support solution holds for s > α = s̄.
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Thus summarising the two cases µ > 0 (or equivalently s < s̄) and µ < 0 (or

equivalently s > s̄), we find that, as s approaches s̄ from above, the gap 2a = 2(s−α) =

2(s− s̄) between the two supports shrinks linearly and vanishes exactly at s = s̄, where

the two supports merge with each other. When s reduces further below s̄, the delta-spike

at s = 0 appears in the single support solution. Thus there is indeed a phase transition

that occurs at s = s̄ due to the vanishing of the gap between the two supports. This

actually shows up in a singularity of the rate function Ψ(s) at s = s̄, as demonstrated

below.

In order to compute the rate function Ψ(s) from the identity (43), we need to first

determine µ(s) as a function of s for all s. Indeed, this is given from the analysis above

in Eqs. (78) and (83). We thus get

µ(s) =


2α−

√
4αs , s < s̄ = α

α− s , s > s̄ = α .

(84)

Substituting this in the identity (43), integrating with respect to s, and using Ψ(s =

s̄) = 0, we get

Ψ(s) =


−2α s+

4

3

√
αs3/2 +

2

3
α2 , s < α = s̄ ,

1
2
(s− α)2 , s > α = s̄ .

(85)

One can easily check that Ψ(s),Ψ′(s) as well as Ψ′′(s) are all continuous at s = s̄ = α.

However, the third derivative is discontinuous and is given by

Ψ′′′(s) =


− 1

2α
, s→ s̄− ,

0 , s→ s̄+ .

(86)

Thus there is a third order phase transition in Ψ(s) at s = s̄. Such phase transitions

have shown up in many other examples involving Coulomb and log-gases (for a review

see [23]). Since Ψ′′(s) is continuous at s = s̄, the expansion of Ψ(s) around s = s̄ is

quadratic in leading order Ψ(s) ≈ 1
2
(s− s̄)2, indicating from Eq. (15) that

Var(s) ≈ b

N3
with b = 1 . (87)

Thus this is completely consistent with our general formula in Eq. (48) which also

predicts b = 1 for f(x) = |x|. We have verified the validity of our prediction for the

variance in (87) for f(x) = x3 by Monte-Carlo simulations, as shown in Fig. 8 where

we plot the difference between the theoretical value of b = 1 (see Eq. (87)) and the

Monte-Carlo value bMC = N3Var(s)
∣∣∣
MC

as a function of increasing N . We find that it

decreases to zero as N →∞, thus verifying the theoretical prediction.
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Figure 8. A plot of |b − bMC| vs N where b = 1 (with α = 0.01) is the theoretical

prediction for N3Var(s) for f(x) = |x| and bMC is the Monte-Carlo value of N3Var(s).

5. Conclusion

To summarize, we have considered the jellium model of N particles in one-dimension

with energy

E[{xi}] =
N2

2

N∑
i=1

x2
i − αN

∑
i 6=j

|xi − xj| , (88)

and studied the statistics of s = (1/N)
∑N

i=1 f(xi) in the Gibbs-Boltzmann state at any

temperature of order O(1). The main result in this paper is to derive a nice and compact

general formula for the variance of s in the limit of a large N

Var(s) =
1

N34α

∫ α

−2α

(f ′(x))2 dx . (89)

One expects this formula to be valid for a wide class of f(x)’s for which the integral in

Eq. (89) is convergent. We have discussed with several examples, both analytically and

numerically, the precise criteria behind the validity of this formula. We have provided

two different derivations of this formula in this paper.

In addition to computing the formula for the variance for general f(x), we have

also shown that, for large N , the full PDF of s exhibits a large deviation form

P(s,N) ∼ e−N
3Ψ(s) and we have computed the rate function Ψ(s) for general f(x)

in Eq. (40) and provided more explicit forms in several examples such as f(x) = x, x2

and f(x) = |x|. In all cases, Ψ(s) exhibits a quadratic behavior around its minimum

at s = s̄ = (1/4α)
∫ 2α

−2α
f(x) dx. This quadratic form reads Ψ(s) ≈ (s − s̄)2/(2Var(s)),

where Var(s) is given in Eq. (89).
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It would be interesting to extend the technique presented in this paper to compute

the covariance of two different linear statistics s1 = (1/N)
∑N

i=1 f(xi) and s2 =

(1/N)
∑N

i=1 g(xi) where f(x) and g(x) are two different but arbitrary functions. In

the log-gas case, this was computed in Ref. [40] and it is natural to compute this

covariance of two linear statistics for the jellium model.
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[4] D. P. Hardin, T. Leblé, E. B. Saff, S. Serfaty, Large deviation principles for hypersingular Riesz

gases, Constr. Approx. 48, 61 (2018).

[5] S. Agarwal, A. Dhar, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, G. Schehr,

Harmonically confined particles with long-range repulsive interactions, Phys. Rev. Lett. 123,

100603 (2019).

[6] J. Kethepalli, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, Schehr, Harmonically

confined long-ranged interacting gas in the presence of a hard wall. , J. Stat. Mech., 103209

(2021)

[7] J. Kethepalli, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, G. Schehr, Edge fluctuations

and third-order phase transition in harmonically confined long-range systems, J. Stat. Mech.,

033203 (2022).

[8] S. Santra, J. Kethepalli, S. Agarwal, A. Dhar, M. Kulkarni, A. Kundu, Gap statistics for confined

particles with power-law interactions, Phys. Rev. Lett. 128, 170603 (2022).

[9] A. Lenard, Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces, J.

Math. Phys. 2, 682 (1961).

[10] S. Prager, The One-Dimensional Plasma, Adv. Chem. Phys. 4, 201 (1962).

[11] R. J. Baxter, Statistical mechanics of a one-dimensional Coulomb system with a uniform charge

background, Proc. Camb. Phil. Soc. 59, 779 (1963).

[12] M. Aizenman, P. A. Martin, Structure of Gibbs states of one dimensional Coulomb systems,

Commun. Math. Phys. 78, 99 (1980).

[13] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. Schehr, Exact extremal statistics in the

classical 1d Coulomb gas, Phys. Rev. Lett. 119, 060601 (2017).

[14] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. Schehr, Extreme statistics and index

distribution in the classical 1d Coulomb gas, J. Phys. A: Math. Theor. 51, 295001 (2018).

[15] A. Flack, and S. N. Majumdar, G. Schehr Truncated linear statistics in the one dimensional one-

component plasma, J. Phys. A: Math. Theor. 54, 435002 (2021).

[16] A. Flack, S. N. Majumdar, G. Schehr, Gap probability and full counting statistics in the one

dimensional one-component plasma, J. Stat. Mech. Theor. Exp. 5, 053211 (2022).
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