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Active particles that translate chemical energy into self-propulsion can maintain a far-from-
equilibrium steady state and perform work. The entropy production measures how far from equilib-
rium such a particle system operates and serves as a proxy for the work performed. Field theory offers
a promising route to calculating entropy production, as it allows for many interacting particles to
be considered simultaneously. Approximate field theories obtained by coarse-graining or smoothing
that draw on additive noise can capture densities and correlations well, but they generally ignore the
microscopic particle nature of the constituents, thereby producing spurious results for the entropy
production. As an alternative we demonstrate how to use Doi-Peliti field theories, which capture the
microscopic dynamics, including reactions and interactions with external and pair potentials. Such
field theories are in principle exact, while offering a systematic approximation scheme, in the form
of diagrammatics. We demonstrate how to construct them from a Fokker-Planck equation (FPE)
of the single-particle dynamics and show how to calculate entropy production of active matter from
first principles. This framework is easily extended to include interaction. We use it to derive exact,
compact and efficient general expressions for the entropy production for a vast range of interact-
ing particle systems. These expressions are independent of the underlying field theory and can
be interpreted as the spatial average of the local entropy production. They are readily applicable
to numerical and experimental data. In general, any pair interaction draws at most on the three
point, equal time density and an n-point interaction on the (2n−1)-point density. We illustrate the
technique in a number of exact, tractable examples, including some with pair-interaction.

I. INTRODUCTION

Active matter has been the focus of much research in
statistical mechanics and biophysics over the past decade,
because of many surprising theoretical features [1–4], the
rich phenomenology [5, 6] and a plethora of applications
[7–9]. At the heart of active matter lies the conversion of
chemical fuel into mechanical work, often in the form of
self-propulsion, which leads to sustained non-equilibrium
behaviour that is distinctly different from that of relaxing
equilibrium thermodynamic systems [2]. How different, is
quantified by the entropy production, which also quanti-
fies the work performed. If we want to harvest and utilise
this work, we need to quantify and control the system at
the level it is observed and in the degrees of freedom that
can be manipulated, rather than at a coarse-grained or
smoothed level. The problem is illustrated by a team of
horses observed from high above, when they may look al-
most like a droplet squeezing through a pore as they push
past obstacles. At this level of description it may be dif-
ficult to distinguish a forward from a backward movie of
the scene. Zooming in on the individual animal, however,
reveals the details of their movement [10] and thus the
difference between forward and backward immediately.
If the horses are to be hitched to a plough, this is the
level of observation needed to asses their utility. Assess-
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ing smoothed quasi-horses [11] does not help.
Field theory has been the work-horse of statistical

mechanics for many decades [12], because it allows for
an efficient calculation and a systematic approximation of
universal and non-universal observables in many-particle
systems by means of a powerful machinery, that can be
cast in an elegant, physically meaningful language in the
form of diagrams. To apply this framework to active
particle systems, effective field theories have been pro-
posed, that use the continuously varying local particle
density as the relevant degree of freedom. However, the
entropy production of an approximating field theory is
not necessarily a good approximation of the microscopic
entropy production of the actual particle system. An
exact, fully microscopic framework to calculate the en-
tropy production systematically in active many-particle
systems remains a theoretical challenge. In recent years,
several exact results have been found [13], although those
are limited to linear interaction forces [14, 15], or cases
where the full time-dependent particle probability dens-
ity is known [16].

The entropy production crucially depends on the de-
grees of freedom used to describe the system state.
Coarse-graining by integrating out degrees of freedom or
by mapping sets of microstates to mesostates generally
underestimate the entropy production [17–20]. In [21]
the particle dynamics has instead been approximated by
recasting it as a continuously varying density subject to
a Langevin equation of motion with additive noise. This
approach captures much of the physics well, notably pre-
dicting that most of the entropy is produced at interfaces
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between dense and dilute phases [21–23]. Yet, it does not
provide a lower bound of the entropy production, as it re-
places the countably many particle degrees of freedom by
the uncountably many of a density in space. Suppl. S-VI
illustrates this in a simple, tractable example displaying
a divergent entropy production.

Doi-Peliti field theories [24, 25] on the other hand, re-
tain the particle nature of the constituent degrees of free-
dom, but can be cumbersome to derive, normally requir-
ing discretisation and an explicit derivation of a master
equation. Instead, we demonstrate how a Doi-Peliti ac-
tion can be determined using the Fokker-Planck oper-
ator governing the single particle dynamics. Interactions
through external and pair potentials, as well as reactions
can be added by virtue of the same Poissonian “super-
position principle”, that allows a master equation to ac-
count for concurrent processes by adding corresponding
gain and loss terms. We further show how the ensuing
perturbation theory and its diagrammatics can be used to
derive the entropy production, which turns out to draw
only on the bare propagator and the lowest order per-
turbative vertices, as well as certain correlation functions.
The diagrammatics of a field theory provides the small
number of terms needed to calculate entropy production
exactly. Our procedure results in very general formulae
that need as system-specific input the details of the in-
teraction potentials and a few low-order correlation func-
tions. In the simplest case of non-interacting particles,
the latter reduce to the one-point density, so that the
entropy production becomes a spatial average of a local
property. In general, if the interaction allows for up to
n particles interacting simultaneously, only the (2n− 1)-
point equal-time correlation function needs to be known,
effectively quantifying where and how frequently such in-
teractions take place. We thus introduce a generic scheme
to derive tractable expressions for the entropy produc-
tion of complex many-particle systems on the basis of
their microscopic, stochastic equation of motion. We il-
lustrate the technique in a number of examples.

The present work brings to bear the power of field the-
ory to the field of active matter, while retaining particle
entity, by calculating entropy production of the relevant
degrees of freedom using diagrammatics and avoiding ap-
proximations altogether. Details of our derivations can
be found in the supplemental material. We list the key
results according to the structure of the article:

Section II: We show how a Doi-Peliti field theory is read-
ily derived from a Fokker-Planck Equation, in par-
ticular Eq. (4) from Eq. (1) (also Suppl. S-I).

Section III: We introduce the framework to calculate
entropy production, proceeding from the defin-
ition Eq. (8) via Eq. (12) to the diagrammat-
ics of Eqs. (18) and (19) (also Suppl. S-I.4 and
Suppl. S-II).

Section III B: We include interaction, determining the
relevant diagrams in Eq. (21), which immediately

simplify to produce general expressions for N
pair-interacting indistinguishable particles such as
Eq. (23) (also Suppl. S-V). A corresponding nu-
merical scheme is readily derived as Eq. (24). We
find that the entropy production of pair-interacting
particles draws at most on the 3-point density
[26, 27].

Section IV: We give concrete examples: a Markov
chain, drift-diffusion of a single particle (also
Suppl. S-III), Eq. (27), and two distinct particles
on a circle (also Suppl. S-IV).

We conclude in Section V with a discussion, a summary
of our results and an outlook.

II. FIELD THEORY FROM FOKKER-PLANCK
EQUATION

An efficient way to characterise a many-particle system
is in terms of occupation numbers, which allows for, in
principle, arbitrary particle numbers and species without
having to change the parameterisation, as opposed to a
description in terms of the individual particle degrees of
freedom. Doi-Peliti (DP) field theories provide a frame-
work that readily caters for the spatio-temporal evolution
of particles in terms of occupation numbers, in contrast
to, say, the response field formalism [28–31] which need
correction terms in the form of Dean’s equation [32, 33].
As the derivation of a DP field theory from a master
equation can be cumbersome in particular in the presence
of external fields [34, 35], we demonstrate in Suppl. S-I
that a DP field theory of non-interacting particles inherit
the evolution operator of the one-particle Fokker-Planck
equation (FPE). In particular, any continuum limit that
has to be taken in a lattice-based master equation to de-
rive the continuum FPE can equivalently be applied in
the field theory. In other words, if the FPE of a density
ρ(y, t) reads

∂tρ(y, t) =
∑∫
x

Ly,xρ(x, t) (1)

with Fokker-Planck kernel Ly,x, then the Doi-Peliti ac-
tion reads

A0 =

∫
dt
∑∫
x,y

φ̃(y, t)(Ly,x − δ(y − x)∂t)φ(x, t) (2)

with annihilator field φ(x, t), Doi-shifted creator field [35]

φ̃(y, t) and observables calculated in the path-integral
[31, 34]

〈•〉0 =

∫
DφDφ̃ eA0 • . (3)

The simple relationship between Eqs. (1) and (2) is the
first key-result of the present work. For continuous de-
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grees of freedom, the kernel in Eq. (1) is usually writ-

ten as Ly,x = L̂†xδ(x − y) = L̂yδ(x − y) so that∑∫
x
Ly,xρ(x, t) = L̂yρ(y, t) with FP operator L̂y and L̂†y

its adjoint. In this case the action simplifies to

A0 =

∫
dt

∫
ddy φ̃(y, t)(L̂y − ∂t)φ(y, t). (4)

The bare propagator

〈
φ(y, t′)φ̃(x, t)

〉
0
,

x, ty, t′
(5)

of the action Eq. (2) is the Green function of the FPE (1),

Suppl. S-I, and thus solves ∂t′〈φ(y, t′)φ̃(x, t)〉0 =

L̂y〈φ(y, t′)φ̃(x, t)〉0 with limt′↓t〈φ(y, t′)φ̃(x, t)〉0 = δ(y −
x).

The action Eq. (2) has by construction the same form
as the action obtained by formally applying the MSR-
trick [28–31] to the FPE, despite the absence of a noise
term. However, the DP field theory retains the particle
nature of the constituent degrees of freedom without the
need of additional terms, like Dean’s [32, 33]. As a small
price, a DP field theory is endowed with a commutator
relation that needs to be consulted every time an observ-
able is constructed from operators. As a consequence,
unlike an effective Langevin-equation on the density, the
annihilator field φ of a DP field theory is not the particle
density [35], and the action is not the particle density
probability functional. Recasting the action in terms of
a Langevin equation on the field φ can produce unexpec-
ted features, such as imaginary noise [36, 37]. In a sense,
the fields of a DP field theory are proxies, such that after
expressing a desired observable in terms of fields accord-
ing to the operators, the expectation of these fields is
identical to that of the observable.

Drawing on the wealth of knowledge and intuition
available for the construction of master equations, it is
easy to incorporate into a DP field theory a wide range of
terms, including reactions, transmutations, interactions,
pair-potentials or external potentials, as the field the-
ory’s action inherits the additivity of concurrent Poisson
processes in a master equation. Some terms can be incor-
porated into the FP operator, others have to be treated
perturbatively. Henceforth, we will assume that the full
action

A = A0 +Apert (6)

may contain perturbative terms such that expectations
are calculated by expanding the exponential on the right
hand side of

〈•〉 =

∫
DφDφ̃ eA• = 〈 • exp (Apert)〉 0 , (7)

and taking expectations as in Eq. (3). Even without
interaction, Apert may absorb terms of L that are not
readily integrated in Eq. (3), so that the solution of the

FPE (1) becomes in fact a perturbation theory. This is
illustrated in Suppl. S-III for drift-diffusion in an arbit-
rary, periodic potential and in [38] for Run-and-Tumble
in a harmonic potential.

III. ENTROPY PRODUCTION

In the present framework, the entropy production can
be elegantly expressed in terms of the bare propagators
and the perturbative part of the action. We will demon-
strate this first for a single particle before generalising to
multiple particles.

Following the scheme by Gaspard [13] to calculate en-
tropy production in Markovian systems, we draw on the
propagator 〈φ(y, t′)φ̃(x, t)〉 as the probability (density)
for a particle to transition from x at time t to y at time
t′. The internal entropy production of an evolving degree
of freedom may then be written as a functional of the in-
stantaneous probability (density) ρ(x) to find it in state
x, namely

Ṡint[ρ] =
∑∫
x,y

ρ(x)Ky,x

{
Lny,x + ln

(
ρ(x)

ρ(y)

)}
(8)

with

Ky,x = lim
t′↓t

d

dt′

〈
φ(y, t′)φ̃(x, t)

〉
(9)

and

Lny,x = lim
t′↓t

ln

(
〈φ(y, t′)φ̃(x, t)〉
〈φ(x, t′)φ̃(y, t)〉

)
(10)

as we show in Suppl. S-I.4. Eq. (8) is the starting point
for the derivation of the entropy production from a Doi-
Peliti field theory. Much of what follows focuses on how
to extract Ky,x and Lny,x from the action.

As the field-theory correctly shows, Suppl. S-I.4, if the
states y,x are discrete and the process is a simple Markov
chain, Ky,x reduces to the Markov (rate) matrix W̊yx of
the process of transitioning from x to y, and Lny,x is the
logarithm of ratios of these rates,

Lny,x = ln

(
W̊yx

W̊xy

)
, (11)

Eqs. (S-I.43) and (S-I.44). If the states x,y are con-
tinuous, then Ky,x can be cast as a kernel, which in
the absence of a perturbative contribution to the ac-
tion is identical to the FP kernel, Ky,x = Ly,x, given
that the propagator is the Green function of the FPE,
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Suppl. S-I.4. Integrating by parts then gives

Ṡint[ρ] =
∑∫
x,y

ρ(x)δ(y − x)L̂†y
{
Lny,x + ln

(
ρ(x)

ρ(y)

)}
.

(12)
In principle, the density to use in Eqs. (8) and (12) is

given by the propagation from the initial state up until
time t, in which case it becomes an explicit function of t

ρ(x; t) =
〈
φ(x, t)φ̃(x0, t0)

〉
. (13)

In general, this density might be well approximated by
an effective theory, that omits the microscopic details en-
tering into the entropy production via Eqs. (9) and (10).

The entropy production Eqs. (8) and (12) simplifies
further if ρ(x) is stationary,

ρ(x) =
∑∫
y

〈
φ(x, t′)φ̃(y, t)

〉
ρ(y) (14)

for any t′− t > 0, in which case ln(ρ(x)/ρ(y)) disappears
from Eq. (8) and the expression reduces to that of the
negative of the external entropy production [16]. In that

case, Eq. (8) may be interpreted as the average Ṡint =

σ̇(x) =
∑∫

x
ρ(x)σ̇(x) of the local entropy production

σ̇(x) =
∑∫
y

Ky,x Lny,x , (15)

which derives from the dynamics only and is independent
of the density. We will discuss the formalism in this form
in greater detail below, after introducing interaction.

A priori, the full propagator is needed in Eqs. (9) and
(10). However, as it turns out, provided the process is
time-homogeneous, generally in the discrete case as well
as in continuous perturbation theories about a Gaus-
sian (details in Suppl. S-III), Ky,x and Lny,x draw only
on the bare propagator and possibly on the first order
perturbative term. As detailed in Suppl. S-I.4, the key
argument for this simplification is that the propagator
〈φ(y, t′)φ̃(x, t)〉 only ever enters in the limit t′ ↓ t, either
in the form of an explicit derivative, Eq. (9), or in the
form of a ratio, Eq. (10), which may also draw on the de-
rivative via L’Hôpital. The propagator therefore needs to
be determined only to first order in small t′−t. If the full
propagator 〈φ(y, t′)φ̃(x, t)〉 is given by a perturbative ex-
pansion of the action Eq. (7), diagrammatically written
as

〈
φ(y, t′)φ̃(x, t)

〉
,

x, ty, t′
+

x, ty, t′
+

x, ty, t′
+ . . . , (16)

in principle every order in the perturbation theory might
contribute to 〈φ(y, t′)φ̃(x, t)〉 to first order in t′ − t. As
outlined in the following, closer inspection, however, re-
veals a simple relationship, namely that the nth order
in t′ − t is fully given by the first n diagrams on the
right hand side of Eq. (16). In continuum field theor-
ies, this needs careful analysis, but it holds for perturb-
ation theories about drift-diffusion, Suppl. S-III, where
the highest order derivative in Ky,x is a second and Lny,x,
necessarily odd in y − x, therefore does not need to be
known beyond second order.

Leaving the details to the supplement Suppl. S-I.4
and Suppl. S-II, we proceed by demonstrating that
the first time derivative of the second order contribu-
tion on the right hand side of Eq. (16)
vanishes at t′ = t. This follows from differentiat-
ing with respect to t′ the inverse Fourier-transform of

, which for time-homogeneous processes
has the form

İ(t′ − t) =

∫
dω′
−̊ıω′ exp(−̊ıω′(t′ − t))C∏3

j=1(−̊ıω′ + pj)
, (17)

where the three propagators are (−̊ıω′ + pj)
−1 with

j = 1, 2, 3 and C denotes the couplings. The poles −̊ıpj
may be repeated, which does not affect the argument.
Crucially, all poles are situated in the lower half-plane,
which is required by causality of each bare propagator en-
tering in Eq. (17). After taking t′ → t the contour can be
closed in the upper half-plane, as the integrand ∝ 1/ω′2

decays fast enough. It follows that İ(0), Eq. (17), van-
ishes. This argument easily generalises to higher deriv-
atives and correspondingly higher orders. Consequently,
only the first two diagrams on the right hand side of
Eq. (16) contribute to the propagator to first order in
t′ − t.

The argument above draws on the structure of the dia-
grams where bare propagators connect “blobs”. The dia-
grams in the propagators of Eqs. (9) and (10) that end
up contributing, contain at most one such blob. How
the blob enters into Ky,x and Lny,x is explained in the
following. The blobs can contain tadpole-like loops only
in the presence of source terms, such as Eq. (S-II.11). If
such source terms are absent, the blobs are merely the
vertices of the perturbative part of the action. If the phe-
nomenon studied is not time-homogeneous, ω might have
sinks and sources and the structure of the integrals rep-
resenting contributions to the propagator are no longer
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of the form Eq. (17).
With these provisos in place, the kernel needed in

Eq. (9) reduces to the bare propagator plus the first order
correction,

Ky,x , Ly,x +
xy
, (18)

where L refers to the non-perturbative part of the action
Eq. (2), and to the first order, one-particle irredu-
cible, amputated contributions due to the perturbative
part of the action, the “blob”. It may contain perturbat-
ive contributions due to the single-particle Fokker-Planck
operator, or due to additional processes, such as interac-

tions and reactions. In field-theoretic terms, Ly,x is the

inverse bare propagator evaluated at ω = 0 and is a
contribution to the ”self-energy”. In stochastic particle
systems, Ly,x = (D∂2

y − w∂y)δ(y − x) would be drift-

diffusion (Suppl. S-III) and = −r an additional ex-
tinction with rate r. Generally, no higher orders, such
as , or any loops carrying ω, such as the middle
term in Eq. (22), enter (Suppl. S-II). While maybe un-
surprising as far as the kernel Ky,x is concerned, this
simplification to one blob carries through to the logar-
ithm on the basis of Eqs. (11) and (S-I.47) if states are
discrete, and by an expansion of the form

Lny,x , lim
t′↓t

ln

 x, ty, t′

y, tx, t′

+

x, ty, t′

x, ty, t′
−

y, tx, t′

y, tx, t′

 , (19)

in the continuum, Eq. (S-I.54) and similarly Suppl. S-III,
Eq. (S-III.32).

In summary, what is needed to calculate the entropy
production Eq. (8) of a single degree of freedom is: (a)
the density ρ(x; t), which at stationarity may be well
approximated by an effective theory, and (b) the mi-
croscopic action Eq. (6) to construct kernel Ky,x, via
Eq. (18), and logarithm Lny,x via Eq. (19) using at most
one blob.

A. Many conserved particles

In the presence of N > 1 distinguishable particles,
Eq. (8) remains in principle valid if x,y are under-
stood to encapsulate all N particle coordinates at once,
with the density in Eq. (8) replaced by the joint density
ρ(x1, . . . ,xN ) and the propagator in Eqs. (9) and (10)
replaced by the joint propagator

〈
φ1(y1, t

′)φ2(y2, t
′) . . .

φN (yN , t
′)φ̃1(x1, t)φ̃2(x2, t) . . . φ̃N (xN , t)

〉
, where the in-

dices of the fields refer to distinguishable particle spe-
cies. Without interaction, the overall entropy produc-
tion is the sum of the individual entropy productions,
Eq. (S-V.41). If particles are indistinguishable, dropping
the indices generally results in N ! as many terms from
permutations of the fields, as well as the joint density
ρ(x1, . . . ,xN ) at stationarity being N ! that of distin-
guishable particles. At the same time, the phase space
summed or integrated over in Eq. (8) has to be adjus-
ted to reflect that occupation numbers are the degrees
of freedom, not particle positions [16, 27]. In the case
of sparse occupation, where every site is occupied by at
most one particle, a condition usually met in continuum
space, this can be done by means of the Gibbs factor
[39], which amounts to dividing the phase space of dis-
tinguishable particles by N !,

Ṡ
(N)
int [ρ] =

1

(N !)2

∫
ddx1 . . .d

dxN

∫
ddy1 . . .d

dyN ρ
(N)(x1, . . . ,xN )K(N)

y1,...,yN ,x1,...,xN Ln(N)
y1,...,yN ,x1,...,xN (20)

with N -particle kernel K(N)
y1,...,xN and logarithm

Ln(N)
y1,...,xN defined by using the joint propagator〈

φ(y1, t
′) . . . φ̃(xN , t)

〉
on the right of Eqs. (9) and

(10). At stationarity, the Gibbs factor precisely can-
cels the multiplicity of the terms mentioned above,
Suppl. S-V.2.1. Again, without interaction, the entropy

production of N indistinguishable particles is linear in
N , Eq. (S-V.98).

The diagrams contributing to the joint propagator are
generally disconnected, say and may, in principle,

involve any number of vertices, such as , say

or . However, as detailed in Suppl. S-II, the ar-
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gument that reduces to at most one vertex contributions
to a single particle propagator, similarly applies to mul-
tiple particle propagators, so that any blob inside a joint
propagator raises the order of t′−t by one. Any contribu-
tion to the joint propagator

〈
φ(y1, t) . . . φ̃(xN , t)

〉
in the

joint kernel Ky1,...,xN or the joint logarithm Lny1,...,xN

therefore contains at most one vertex. The set of dia-
grams to be considered can be reduced further with an
argument best made after allowing for interaction.

B. Interaction

In the presence of interaction, the joint propagator con-
tains contributions of the form . Each such vertex

is also of order t′ − t, Suppl. S-II. If particles are con-
served, each vertex must have at least as many incoming
legs as outgoing ones. At this stage, the joint propagator

entering the N particle kernel K(N) and logarithm Ln(N)

is of the form

〈
φ(y1, t

′) . . . φ(yN , t
′)φ̃(x1, t) . . . φ̃(xN , t)

〉
,

x1, ty1, t
′

x2, ty2, t
′

...
xN , tyN , t

′

+ perm. +
x1, ty1, t

′
x2, ty2, t

′
...

xN , tyN , t
′

+ perm. +
x1, ty1, t

′
x2, ty2, t

′
...

xN , tyN , t
′

+ perm. +O
(
(t′ − t)2

)
,

(21)

each with all distinct permutations of incoming and out-
going particle coordinates, xi and yi respectively, as in-
dicated by perm.. What does not enter (Suppl. S-II) are
terms involving more than one vertex, such as

...
or ...

or ...
. (22)

Even with the restriction to a single blob, Eq. (21) con-
tains many diagrams, seemingly involving many per-
mutations of many initial and final coordinates. Sim-
ilarly, the N -point equal time density ρ(N)(x1, . . . ,xN )
is needed in Eq. (20), which would be an ardeous task
to determine. However, because every bare propagator

degenerates into a δ-function as t′ ↓ t, they can consider-
ably simplify the expression for the entropy production.
As discussed in Suppl. S-V any bare propagator featur-
ing together with, i.e. multiplying, a blobbed diagram,
effectively drops out in the limit t′ ↓ t. As the bare
propagators drop away, so does the need for higher order
densities. As a result the entropy production of a system
whose ”largest blob” has n incoming and n outgoing legs
can be calculated on the basis of the (2n− 1)-point joint
density, restricting a hierarchy of terms to 2n− 1 rather
than N [26].

For example, N indistinguishable particles with self-
propulsion speed w, diffusionD and pair-interaction, n =
2, via an even potential U have entropy production,

Ṡ
(N)
int [ρ(N)] =

∫
ddx1 ρ

(N)
1 (x1)

{
w2

D

}
(23a)

+

∫
ddx1,2 ρ

(N)
2 (x1,x2)

{
1

D
(∇U(x1 − x2))

2 −4U(x1 − x2)

}
(23b)

+

∫
ddx1,2,3 ρ

(N)
3 (x1,x2,x3)

{
1

D
∇U(x1 − x2) · ∇U(x1 − x3)

}
, (23c)

which is Eq. (S-V.109) with external potential Υ ≡ 0 and further simplified by using that the pair potential
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U is even. It demonstrably vanishes in the absence of
drift w, as shown in Suppl. S-V.2.3. Eq. (23) and (S-
V.109) are exact results, assuming pair interaction being
the highest order interaction as well as sparse occupa-
tion, which here means merely that two particles cannot
be located at exactly the same point in space, something
that in the continuum is practically always fulfilled. The

densities ρ
(N)
n (x1, . . . ,xn) thus denote the density of n

distinct particles at positions x1, . . .xn, normalising to
N !/(N − n)!. Each term in curly brackets in Eq. (23)
can be cast as a local entropy production, depending

on one, two or three coordinates. Eq. (23a) is the en-
tropy production or work due to self-propulsion by indi-
vidual particles, Nw2/D, Eq. (23b) is the work due to
two particles excerting equal and opposite forces on each
other and Eq. (23c) is the work performed by one particle
in the potential of another particle as it is being pushed
or pulled by a third particle.

In the form of Eq. (23), entropy production in an ex-
periment or simulation can be estimated efficiently by
using Q samples q = 1, 2, . . . , Q of N particle coordin-

ates x
(q)
i with i = 1, . . . , N ,

Ṡint =
1

Q

Q∑
q=1

 N∑
i1=1

σ̇
(1)
1

(
x

(q)
i1

)
+

N∑
i1,i2=1
i1 6=i2

σ̇
(2)
2

(
x

(q)
i1
,x

(q)
i2

)
+

N∑
i1,i2=1

i1 6=i2 6=i3 6=i1

σ̇
(3)
3

(
x

(q)
i1
,x

(q)
i2
,x

(q)
i1

) . (24)

with the σ̇
(i)
i with i = 1, 2, 3 given by the three pairs of

curly brackets in Eq. (23) and generally in Eq. (S-V.104).
All sums run over distinct particle indices, so that for

example (1/Q)
∑
q

∑N
i1,i2=1
i1 6=i2

δ(x1 − x
(q)
i1

)δ(x2 − x
(q)
i2

) es-

timates ρ
(N)
2 (x1,x2). Entropy production in a particle

system with interaction can thus be estimated on the
basis of ”snapshots” and the microscopic action, without
the need of introducing a new measure [40, 41]. In the
case of n-particle interaction, it generally draws on equal-
time (2n−1)-point densities and the time-evolution terms
given by the action. Neither the full N -point density
nor the 2N -point two-time correlation function is needed,
which is what Eq. (20) suggests.

If the number of particles is not fixed but becomes
itself a degree of freedom, the phase space integrated or
summed over in Eq. (8) needs to be adjusted. This case
is beyond the scope of the present work.

IV. EXAMPLES

In the following we illustrate the methods introduced
above by calculating the entropy production of 1) a con-
tinuous time Markov chain, 2) a drift-diffusion Brownian
particle on a torus with potential, and 3) two drift-
diffusion particles on a circle interacting via a harmonic
pair potential.

Continuous time Markov chain. The single-particle
master equation of a continuous time Markov chain is
Eq. (1) with Lyx the Markov-matrixMyx for transitions
from discrete state x to y. Following standard procedure
[34], Suppl. S-I, the action of the resulting field theory is
Eq. (2),

A0 =
∑
xy

dt φ̃(y, t)(Myx − δy,x∂t)φ(x, t) . (25)

From Eqs. (8), (11) and (18) in the absence of a perturb-
ative term, the entropy production immediately follows,

Ṡint[ρ] =
∑
x,y

Myxρ(x) ln

(
Myxρ(x)

Mxyρ(y)

)
, (26)

Suppl. S-I.4.1, consistent with [13, 16]. The contribu-
tions to first order in the perturbative vertex in Eqs. (18),
(S-I.46a) and (S-I.47) ensure that this expression for the
entropy production does not change even when some con-
tributions to M are moved to the perturbative part of
the action, B in Eqs. (S-I.46a) and (S-I.47).

Drift-diffusion. This process is a paradigmatic ex-
ample of a continuous space process as many other,
more complicated ones, in particular many active mat-
ter models [42–44] can be studied as a perturbation of
it. The continuity of the degree of freedom means that
a transform is needed to render the process local in a
new variable, here the Fourier-mode k, so that the path-
integral Eq. (7) can be performed. However, as detailed
in Suppl. S-III, the transform can in principle spoil the
relationship between the number of blobs in the dia-
gram and its order in t′− t as discussed around Eq. (17).
It turns out, Suppl. S-III.2.1, that in the case of drift-
diffusion processes, the number of blobs determines the
leading order in the distance y − x of any contribution
finite in the limit t′ ↓ t, in fact preserving Eqs. (18) and
(19).

To be general, we allow for an external potential, but
to render drift diffusion stationary even without an ex-
ternal potential, we restrict it to a d-dimensional torus
of circumference L. As detailed in Suppl. S-III, the drift
can be captured either exactly or perturbatively, while
an external potential generally has to be treated per-
turbatively. The FPE of a particle diffusing with con-
stant D and drifting with velocity w on a torus with
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periodic external potential Υ(y) is Eq. (1) with L̂y =
D∇2

y + ∇y(−w + Υ′(y)), where the operators act on
everything to the right and Υ′ = ∇Υ denotes the gradi-

ent of the potential. The propagator to first order is
(Suppl. S-III, Eqs. (S-III.36))

〈
φ(y, t′)φ̃(x, t)

〉
=
θ(t′ − t) exp(− (y−x)2

4D(t′−t) )

(4πD(t′ − t))d/2

(
1 + (y − x) · w −∇Υ(x)

2D
+O

(
(y − x)2

))

,
x, ty, t′

+
x, ty, t′

w
+

x, ty, t′

−Υ′

+O
(
(t′ − t)2

)
, (27)

so that with Eq. (19)

Lny,x =
y − x

2D
·
[
2w −Υ′(x)−Υ′(y)

]
+O

(
(y − x)3

)
, (28)

Eqs. (S-III.9) and (S-III.32c). Using this with Ky,x =

L̂yδ(y − x) in Eq. (8), then correctly produces
Eqs. (S-III.33) [16]

Ṡint[ρ] =

∫ L

0

ddx

{
ρ(x)

(
(w −Υ′(x))2

D
−4Υ(x)

)

+D
(ρ′(x))2

ρ(x)
+ Υ′(x)ρ′(x)

}
(29)

with the last two terms that involve ρ′(x) = ∇xρ(x)
cancelling at stationarity, 0 = ∂tρ = Dρ′′ − ∂x(w−Υ′)ρ,
and the first two terms involving the potential cancelling
at vanishing current 0 = j = −Dρ′ + (w −Υ′)ρ.

Harmonic trawlers. A free particle with diffusion con-
stant D, drifting with velocity w on a circle without ex-
ternal potential produces entropy with rate w2/D [16].
Entropy production being extensive, without interaction
two identical particles produce twice as much entropy. If
they have different drift velocities w1 and w2 the total
entropy production is (w2

1 + w2
2)/D. If they are coupled

by an attractive (binding) pair-potential, as if coupled by
a spring, they behave like a single particle drifting with
velocity (w1 +w2)/2 and diffusing with constant D/2, so
that the overall entropy production is (w1 + w2)2/(2D).
If w1 = w2, then the entropy production is identical to
that of free particles, but if w1 6= w2, the pair potential
becomes “visible”.

While easily derived using physical arguments, de-
termining this expression perturbatively from a field
theory that is ”oblivious” to such physical intricacies
is a non-trivial task and a good litmus test for the
power of the scheme presented in this work. As de-
tailed in Suppl. S-IV, the entropy production is indeed
correctly reproduced, drawing in particular explicitly on

Eq. (21). The process is generalised to arbitrary attract-
ive pair-potentials in Suppl. S-V.1.3 and further qual-
ified in Suppl. S-V.2.3 where it is confirmed that in
the present framework arbitrarily many identical pair-
interacting particles do not produce entropy without
drift.

V. DISCUSSION, SUMMARY AND OUTLOOK

Above we have demonstrated how to construct a Doi-
Peliti field theory, Eqs. (2), (3) and (4), from the Fokker-
Planck or master equation (1) governing single particle
dynamics, without having to resort to explicit discret-
isation. The resulting expression for the entropy pro-
duction, Eq. (12), is of a particularly simple form, in-
dicating that entropy production can be interpreted as
a mean of a local expression Eq. (15). Additional pro-
cesses, reactions and interaction, can be added and, if
necessary, treated perturbatively, Eqs. (6) and (7). Ex-
pressing the entropy production in terms of propagators,
Eqs. (8), (9) and (10), it turns out that the perturbative
contributions enter only to first order, Eqs. (18) and (19),
because each such perturbation introduces a term of or-
der t′− t, Eq. (17). Loops enter into the entropy produc-
tion only in the presence of external sources (tadpole-like
diagrams).

Treating interaction perturbatively, the results are gen-
eralised to many interacting particles, Suppl. S-V, with
significant simplifications taking place as diagrams with
more than one blob do not enter, e.g. Eq. (21) (also
Suppl. S-II), and disconnected diagrams that simplify as
bare propagators turn into δ-functions. The resulting sta-
tionary entropy production, Eq. (23), can again be un-
derstood as a spatial average involving equal-time dens-
ities. If interactions involve at most n particles at once,
the highest order density needed is 2n−1. Because of this
structure, it can be used to estimate the entropy produc-
tion in experimental and numerical systems, Eq. (24), as
well as on the basis of effective theories.

While the results are derived by means of a Doi-Peliti
field theory, they apply universally. Results such as
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Eqs. (23), (S-V.109) or (29) are exact and can be ex-
tended to include higher order interactions or even re-
actions. They can be used to answer vital questions in
applied and theoretical active matter that have previ-
ously been studied using approximative schemes [40, 41],
such as the energy dissipation in hair-cell bundles [17], in
neuronal responses to visual stimuli [26], or in Kramer’s
model [45].

The general recipe to calculate entropy production in
any system is thus to determine the basic or ”bare” char-
acteristics, such as the self-propulsion speed or the pair-
potential, as well as the 2n− 1 densities, which are used
as the weight in an integral like Eq. (23). Extensions to
the formulae derived in the present work are a matter of
inserting the new blobs into the field theory.

The present scheme allows the systematic calculation
of the entropy production based on the microscopic dy-
namics of the process, while retaining the particle nature
of the degrees of freedom. Calculating field theoretically
the entropy production of particle systems has been at-
tempted before, notably by Nardini et al. [21]. Their ap-
proach is based on an effective dynamics, given by Active
Model B [46], that describes the particle density as a con-
tinuous function in space by means of a Langevin equa-
tion with additive noise in order to smoothen or coarse-
grain the dynamics. However, particle systems necessar-
ily require multiplicative noise, for example in the form
of Dean’s equation [32, 33], to allow the density to faith-
fully capture the dynamics of particles. If not endowed
with a mechanism to maintain the particle nature of the
degrees of freedom, recasting the dynamics in terms of
an unconstrained density constitutes a massive increase
of the available phase space rather than a form of coarse
graining. There is no reason to assume that the entropy
production of such an effective field theory is an approx-
imation of the microscopic entropy production. We are
not aware of an example of a particle system, whose en-
tropy production is correctly captured by an effective
field theory based on a Langevin equation on the continu-
ously varying particle density with additive noise [21].
In fact, attempting to use such an approximation of a
most basic, exactly solvable process and using the coarse-
graining scheme in [21], produces a spurious dependence
on the size of the state space and a lack of extensiv-
ity in the particle number, Suppl. S-VI, Eq. (S-VI.37),
while the present field theory trivially produces the ex-
act expression for the microscopic entropy production,
Eq. (S-VI.2) in Suppl. S-VI.1. We argue that the observ-
able of entropy production needs to be constructed from

the microscopic dynamics, which is partially integrated
out or ”blurred” in effective theories of the particle dens-
ity. These generally capture correlations effectively and
efficiently, but they do so at the expense of smoothing the
microscopic details that give rise to entropy production,
as they change the description of the dynamics from one
in terms of particles to one in terms of space. However,
the expression for the entropy production needs to be
determined from the microscopics of the particle dynam-
ics, even when eventually calculated from (2n− 1)-point
densities. Effective theories may contain the necessary
information to determine these densities, but not to con-
struct the functional for the entropy production in the
first place.

In future research we may want to exploit further the
general expressions for the entropy production of multiple
interacting particles, such as Eq. (23) and those derived
in Suppl. S-V. One may ask, in particular, for bounds
on the entropy production by an ensemble of interacting
particles and the shape of the pair-interaction potential
to maximise it. The present framework can also be ex-
tended to the grand canonical ensemble, where particles
are created and annihilated, as they branch and coagu-
late. From a theoretical point of view, it might be in-
teresting to consider the case of non-sparse occupation
by identical particles. The grand challenge, however,
is to extend the present framework to non-Markovian
systems, as to calculate the entropy production in sys-
tems where not all degrees of freedom are known, such
as the orientation-integrated entropy production of Run-
and-Tumble particles in a harmonic potential [38].
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S-1

Supplemental Material: Field theories of active particle systems and their entropy
production

S-I FROM MASTER AND FOKKER-PLANCK EQUATION TO FIELD THEORY TO ENTROPY
PRODUCTION

Abstract In this section, we derive a Doi-Peliti field theory with arbitrarily many particles from the parameterisa-
tion of a single particle master equation with discrete states. Eq. (S-I.16) shows that the transition matrix of the
master Eq. (S-I.4) is identically the transition matrix in the action of the field theory. It is further shown that any
continuum limit that is taken in the master equation in order to obtain a Fokker-Planck equation (FPE), can equival-
ently be performed in the action of the field theory. As a result, we find a direct mapping from an FPE to a Doi-Peliti
action, Eqs. (S-I.11) and (S-I.19). Rather than taking therefore the canonical, but cumbersome route from FPE to
discretised master equation to discrete action to continuum action, we determine a direct and very simple route from
FPE to action. In Suppl. S-I.3 we construct the bare propagator Eq. (S-I.26) of a Markov chain in ω and Eq. (S-I.27)
in direct time. Allowing for a perturbative term in the action leads in principle to infinitely many additional terms
in the propagagator, but crucially only a single correction in the short-time derivative Eq. (S-I.33b), Suppl. S-II.
Suppl. S-I.4 retraces the basic reasoning by Gaspard’s formulation [13] of the (internal) entropy production (rate) of
a Markovian system, introducing in particular the kernel Kyx, Eq. (S-I.38), the logarithm Lnyx, Eq. (S-I.40), and the
local entropy production σ̇, Eq. (S-I.42). In Suppl. S-I.4.1 kernel and logarithm are expressed in terms of diagrams
and thus in terms of the propagator, Eq. (S-I.46), and ultimately the action and the master equation, Eqs. (S-I.46a)
and (S-I.47). In Suppl. S-I.4.2 this result is extended to continuous degrees of freedom, Eqs. (S-I.51) and (S-I.54).

S-I.1 Master equation

In the following Myx for y 6= x are non-negative rates for the transitioning of a particle from state x to state
y. The object M may be thought of as a “hopping matrix”. A particle is then being lost from state y by a hop
with rate

∑
x,x 6=yMxy. With suitable definition of Myy, Eq. (S-I.3), Myx has the form of a usual (conservative)

Markov-matrix in continuous time.

If ρ(x, t) is the probability to find an individual particle at time t in state x, which might be interpreted as a position
in space, then a single degree of freedom evolves according to the master equation of a continuous time Markov chain,

ρ̇(y, t) =
∑

x
x6=y

(
Myxρ(x, t)−Mxyρ(y, t)

)
, (S-I.1)

which is the usual Markovian evolution. The sum in Eq. (S-I.1) runs over all states x, excluding x = y.

To cater for the needs of the field theory, we need to break conservation of the Markovian evolution. We therefore
amend Eq. (S-I.1) by a term representing spontaneous extinction of a particle in state y with rate ry,

ρ̇(y, t) = −ryρ(y, t) +
∑

x
x6=y

(
Myxρ(x, t)−Mxyρ(y, t)

)
. (S-I.2)

The mass ry > 0 is necessary to make the Doi-Peliti field theory causal. In the present work, it is a mere technicality
and will be taken to 0+ whenever convenient.

Introducing the additional definition

Myy = −
∑

x
x 6=y

Mxy , (S-I.3)

allows us to rewrite the master equation in terms of a single rate matrix or kernel −ryδy,x +Myx, so that

ρ̇(y, t) =
∑
x

ρ(x, t) [−ryδy,x +Myx] , (S-I.4)

using the Kronecker δ-function δy,x.
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S-I.1.1 Continuum limit

It is instructive to consider the example of discretised drift-diffusion in one dimension,

Mba = hr
(
δa+1,b − δa,b

)
+ hl

(
δa−1,b − δa,b

)
(S-I.5)

with hl and hr the rates of hopping left and right respectively, with a and b numbering the position of origin
and destination on a ring. In this case, the continuum limit of the master equation can be taken by introducing
the parameterisation D = (hr + hl)∆x

2/2 and w = (hr − hl)∆x, so that hr = D/∆x2 + w/(2∆x) and hl =
D/∆x2 − w/(2∆x). The rates hr and hl are bound to be positive for any D > 0 and sufficiently small ∆x. The
master Eq. (S-I.4) with the rate matrix Mba given in Eq. (S-I.5) can now be rewritten as

ρ̇(b, t) = −rbρ(b, t) +D
ρ(b+ 1, t)− 2ρ(b, t) + ρ(b− 1, t)

∆x2 − wρ(b+ 1, t)− ρ(b− 1, t)

2∆x
(S-I.6)

which turns into

˙̃ρ(y, t) = Lyρ̃(y, t) with L̂y = −ry +D∂2
y − w∂y , (S-I.7)

after introducing ρ̃(y = b∆x, t) = ρ(b, t)/∆x and taking the continuum limit ∆x→ 0 while maintaining
∫

dy ρ̃(y) = 1.

The continuum limit may be taken directly on the rates Mba in Eq. (S-I.5),

lim
∆x→0

hr
∆x

(
δa+1,b − δa,b

)
+

hl
∆x

(
δa−1,b − δa,b

)
= Dδ′′(y − x)− wδ′(y − x) (S-I.8)

using

lim
∆x→0

∆x−1
(
δa+1,b − δa−1,b

)
= −2∂yδ(y − x) = −2δ′(y − x) (S-I.9a)

lim
∆x→0

∆x−1
(
δa+1,b − 2δa,b + δa−1,b

)
= ∂2

yδ(y − x) = δ′′(y − x) (S-I.9b)

with y = b∆x and δ(y − x) = lim∆x→0 ∆x−1δa,b, the Dirac δ-function defined in terms of the Kronecker δ-function.
The kernel to be used in Eq. (S-I.4) thus becomes a rate density,

lim
∆x→0

∆x−1 [−rbδb,a +Mba] = [−ryδ(y − x) +Dδ′′(y − x)− wδ′(y − x)]

=L̂yδ(y − x) = Lyx (S-I.10)

to be used in the continuum limit of Eq. (S-I.4), which now produces an integral,

ρ̇(y, t) =

∫
dxLyxρ(x, t) , (S-I.11)

that turns into the usual FPE

ρ̇(y, t) =
(
D∂2

y − w∂y − r
)
ρ(y, t) , (S-I.12)

using Eq. (S-I.10). The procedure above is readily generalised to higher dimensions. To summarise this section, a
master equation of the form Eq. (S-I.4) can be turned into a FPE like Eqs. (S-I.11) or (S-I.12) via a suitable continuum
limit. Eqs. (S-I.2), (S-I.4) and later (S-I.11) form the basis of the action to be determined in the following.

S-I.2 Doi-Peliti field theory

To build a Doi-Peliti field theory on the basis of the hopping matrixM and the extinction rates ry that parameterise
the master Eq. (S-I.2), we need to introduce the probability P ({n}; t) of occupation numbers {n} = {n1, . . . , ny, . . .},
which quantify the number of particles on each site y. Each of these particles is concurrently subject to a Poissonian
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change of state,

d

dt
P ({n}; t) =

∑
y

{
(ny + 1)ryP ({. . . , ny + 1, . . .}; t)− nyryP ({n}; t)

}
+
∑
y

∑
x

x6=y

{
(nx + 1)MyxP ({. . . , nx + 1, . . . , ny − 1, . . .}; t)− nyMxyP ({n}; t)

}
. (S-I.13)

The second index x in the double-sum cannot take the value x = y, as otherwise the configuration {. . . , nx+1, . . . , ny−
1, . . .} is ill-defined. That Myx features on the right only with P whose arguments {n} have identical

∑
i ni is an

expression of the conservation of particles in the dynamics parameterised by Myx.

The master Eq. (S-I.13) on the basis of occupation numbers differs crucially from the master Eq. (S-I.2) on the
basis of the state of a particle, in that the former tracks many particles simultaneously, while explicitly preserving
the particle nature of the degrees of freedom, whereas the latter captures only the one-point density, i.e. strictly
the probability to find a single particle at a particular point. However, there is nothing in Eq. (S-I.2) that forces
x to be the sole degree of freedom of a particle and ρ(x, t) to be its probability. In fact, ρ(x, t) may equally be an
arbitrarily divisible quantity such as heat and Eq. (S-I.2) its evolution. Eq. (S-I.2) correctly describes the evolution of
the one-point density of a particle, but it makes no demand on the particle nature and contains no information about
higher correlation functions. In Eq. (S-I.13), on the other hand, the occupation numbers are strictly particle counts,
i.e. non-negative integers. In order to arrive at Eq. (S-I.13) from Eq. (S-I.2) we have to demand that Eq. (S-I.2)
describes the probabilistic evolution of a single particle and Eq. (S-I.13) the corresponding independent evolution of
many of them. And yet, because Eq. (S-I.13) draws on the same transition matrix as Eq. (S-I.2), we will be able to
take in Eq. (S-I.13) the same continuum limit that turned Eq. (S-I.2) into (S-I.7).

We proceed by casting Eq. (S-I.13) in a Doi-Peliti action following a well-established procedure [24, 25, 31, 34, 35].
The temporal evolution of the weighted sum over Fock states |{n}〉 ,

|ψ〉 (t) =
∑
{n}

P ({n}; t) |{n}〉 (S-I.14)

can be written in terms of ladder operators a† = 1 + ã and a as

d

dt
|ψ〉 (t) = Â |ψ〉 (t) (S-I.15)

with a time-evolution operator as simple as

Â = −
∑
y

ryã(y)a(y) +
∑
y

∑
x

x6=y

Myx

{
ã(y)− ã(x)

}
a(x) . (S-I.16)

The term ã(y) − ã(x) indicates a conservative particle transition from state x to state y parameterised by Myx,
whereas ryã(y)a(y) in Eq. (S-I.16) is the signature of spontaneous particle extinction from state y with rate ry.

Using Eq. (S-I.3) to rewrite Eq. (S-I.16) again as

Â =
∑
y

ã(y)
∑
x

a(x)

[
− ryδy,x +Myx

]
(S-I.17)

reveals how closely the time evolution operator of the Fock-space Â is related to the master Eq. (S-I.4), as the square
bracketed rate matrix [−ryδy,x +Myx] in Eq. (S-I.17) is the same as the one Eq. (S-I.10). In Eq. (S-I.10) we show
that its continuum limit is the kernel Lyx.

Proceeding along the canonical path [31, 34, 35] turns Eq. (S-I.17) into the harmonic action

A0 =

∫
dt
∑
y

φ̃(y, t)
∑
x

[
− ∂tδy,x − ryδy,x +Myx

]
φ(x, t) . (S-I.18)

Comparing again to the original master Eqs. (S-I.2) and (S-I.4) shows their simple relationship to the action. Upon
taking the continuum limit, just as in Eq. (S-I.11), the sum over x turns into an integral. To turn the sum over y

into an integral, the product of the fields φ̃φ is to be rescaled to a density. This is a trivial operation, as the fields
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are dummy variables,

A0 =

∫
dt

∫
ddxddy φ̃(y, t)

[
− ∂tδ(y − x) + Lyx

]
φ(x, t) . (S-I.19)

Again, Eq. (S-I.19) bears a striking resemblance to the master Eq. (S-I.11). Of course, Eq. (S-I.19) simplifies signific-
antly as some of the integrals can easily be carried out in the presence of δ-functions.

After turning observables into fields, expectations on the basis of the harmonic action are calculated as

〈•〉0 =

∫
DφDφ̃ • exp (A0) . (S-I.20)

In a Doi-Peliti field theory all terms in the action arise from a master equation. More complicated ones, in particular
those that describe interaction and reaction, are generally not bilinear and therefore need to be dealt with perturb-
atively. Yet, they are simply added to the action, just as they are added to the master equation, being concurrent
Poisson processes. The full action A is then a sum of the harmonic part A0, whose path integral can be taken, and a
perturbative part Apert.

After turning observables into fields, expectations are now calculated as

〈•〉 =

∫
DφDφ̃ • exp (A) =

∫
DφDφ̃

(
• exp (Apert)

)
exp (A0) = 〈• exp (Apert)〉0 (S-I.21)

with full action A = A0 +Apert and calculated perturbatively by expanding in powers of Apert.

It is tempting to interpret φ(x, t) as a particle density with corresponding units and φ̃(y, t) as an auxiliary field
like the one used in the response field formalism [31]. In fact, Eq. (S-I.19) looks very much like the Martin-Siggia-
Rose-Janssen-De Dominicis ”trick” [28–31] applied to the FP Eq. (S-I.11), but without a noise source, given that the
FPE is not a Langevin equation and thus does not carry a noise. There are, however, two crucial differences between
Doi-Peliti field theories and reponse field field theories: Firstly, in Doi-Peliti field theories the fields are conjugates
of operators that obey a commutation relation. The operator formalism guarantees that the particle nature of the
particles is maintained. The fields are not densities. Consequently, observables are not simply fields φ. Rather, any
observable has to be constructed on the basis of operators. That commutator produces additional terms that spoil
any apparent interpretation of φ as the density. If φ were a particle density and exp(A) its statistical weight, the path
integral would have to be constrained to those paths that correspond to sums of δ-functions. Secondly, observables
in a Doi-Peliti field theory generally need to be initialised explicitly, with φ† = 1 + φ̃ ”generating” a particle. This
”auxiliary field” is not the response of the system to an external perturbation. The difference between response field
and Doi-Peliti formalism is further illustrated and discussed in [33].

The Doi-Peliti formalism provides us with an action A, a path integral and a commutator that allows us to construct
desired observables which can be calculated as an expectation with exp(A) as the apparent weight. The formalism
may be seen as a recipe to replace a difficult calculation of observables in a particle system by an easier one in terms
of continuously varying, unconstrained fields. But because φ(x, t) is not the particle density and the path integral not

an integral over allowed paths,
∫
Dφ̃ exp(A[φ, φ̃]) is not the weight of a particular density history. This is the reason

why the approach in [21] does not apply to Doi-Peliti field theories.

S-I.3 The propagator

Using the canonical procedure [31, 34, 35], in the following we will derive some properties of the propagator

〈φ(y, t′)φ̃(x, t)〉, which, strictly, is the expected particle number in discrete state y at time t′, given a single particle
was initially placed in discrete state x at time t. In this case, because there is only one particle, the expected number
of particles at x is identical to the probability that the particle is at x. We determine first the bare propagator
〈φ(y, t′)φ̃(x, t)〉0 for the discrete state action Eq. (S-I.18) and then the full propagator perturbatively for an additional
generic perturbative action

Apert =

∫
dt
∑
y,x

φ̃(y, t)Byxφ(x, t) , (S-I.22)

using Eq. (S-I.21). The perturbative expansion of the propagator will feed into an exact expression for the entropy
production in Suppl. S-I.4. That Eq. (S-I.22) is bilinear might look like a significant loss of generality, yet what
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matters below is not the precise form of the action, but the expansion of the propagator that results from it. We shall
therefore consider Byx as a generic higher order correction to the propagator. As qualified further below, we need to
make certain assumptions on the time-dependence of Byx. For now, we may think of it as having no time-dependence.
Given the conservative nature of the dynamics and general time-homogeneity this is not a strong restriction. In the
continuum, a suitable perturbation might be self-propulsion or a potential, in discrete state space, the perturbation
could be transitions beyond those convenient for the harmonic part.

The discreteness of the state space considered thus far also seems to reduce generality. This is indeed an important
constraint, which will require careful resolution in Suppl. S-III, in particular Suppl. S-III.2.1. Even when we are able
to determine the action of a continuous state process from its FPE, Eq. (S-I.19) from Eq. (S-I.11), and derive an
expression for the entropy production in the final Section S-I.4.2, in the following we will focus entirely on discrete
states and leave the generalisation of the arguments for later.

S-I.3.1 The bare propagator

The bare propagator 〈φ(y, t′)φ̃(x, t)〉0 is most easily calculated after Fourier-transforming the fields,

φ(y, t) =

∫
dω e−̊ıωtφ(y, ω) and φ̃(x, t′) =

∫
dω′ e−̊ıω

′t′φ(x, ω′) (S-I.23)

with dω =dω /(2π), so that the harmonic part of the action Eq. (S-I.18) becomes

A0 =

∫
dω
∑
y,x

φ̃(y,−ω)

[̊
ıωδy,x − ryδy,x +Myx

]
φ(x, ω) (S-I.24)

and correspondingly

Apert =

∫
dω
∑
y,x

φ̃(y,−ω)Byxφ(x, ω) . (S-I.25)

The bare propagator is

x, ωy, ω′
,
〈
φ(y, ω′)φ̃(x, ω)

〉
0

= δ̄ (ω′ + ω)
(

[−̊ıω1 + diag(r)−M]
−1
)
yx

, (S-I.26)

derived, if necessary, using a transformation that diagonalises M. Using that M is a Markov matrix and <(ry) > 0,
this may be transformed into direct time

x, ty, t′
,
〈
φ(y, t′)φ̃(x, t)

〉
0

= θ(t′ − t)
(

exp
(
(t′ − t)

[
M− diag(r)

]) )
yx

. (S-I.27)

Eq. (S-I.27) implies that 〈φ(y, t′)φ̃(x, t)〉0 solves the master Eq. (S-I.4) for t′ > t, as

lim
t′↓t

〈
φ(y, t′)φ̃(x, t)

〉
0

= δy,x with lim
t′↓t

〈
φ(y, t′)φ̃(x, t)

〉
0

= δ(y − x) in the continuum (S-I.28)

and

∂t′
〈
φ(y, t′)φ̃(x, t)

〉
0

= δy,xδ(t
′ − t) +

∑
z

(Myz − ryδy,z)
〈
φ(z, t′)φ̃(x, t)

〉
0
, (S-I.29)

and correspondingly the bare propagator will solve the FPE after taking the continuum limit. In other words, the
propagator is indeed the Green function of the FPE. The term δy,xδ(t

′ − t) is due to the derivative of the Heaviside
θ-function and δ(t′ − t) exp ((t′ − t)(M− diag(r))) = 1δ(t′ − t).
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S-I.3.2 Perturbative expansion of the full propagator

The full propagator 〈φ(y, t′)φ̃(x, t)〉 acquires corrections from the perturbative part of the action Eq. (S-I.22), so
that, Eq. (16),

x, ty, t′
+

x, ty, t′
+

x, ty, t′
+ . . . ,

〈
φ(y, t′)φ̃(x, t)

〉
=
〈
φ(y, t′)φ̃(x, t)

〉
0

+

∫ ∞
−∞

ds
∑
a,b

〈
φ(y, t′)φ̃(b, s)

〉
0
Bba

〈
φ(a, s)φ̃(x, t)

〉
0

+ . . . (S-I.30)

The bare propagator is stated in Eq. (S-I.27) and the first order correction is easily determined explicitly,

x, ty, t′
,
∫ t′

t

ds
∑
a,b

(exp ((t′ − s)M− diag(r)))yb Bba (exp ((s− t)M− diag(r)))ax . (S-I.31)

This is generally not trivial to evaluate, because the matrix exponentials and B generally do not commute. Yet,
Eq. (S-I.31) clearly vanishes as t′ ↓ t. The derivative of Eq. (S-I.31) with respect to t′ produces two terms, one from
the differentiation of the integrand and one from the differentiation of the integration limits. In the limit t′ ↓ t only
the latter contributes, as the integral vanishes for t′ ↓ t, so that

lim
t′↓t

∂t′
x, ty, t′

,
∑
a,b

δy,bBbaδa,x = Byx . (S-I.32)

The diagrammatics in terms of perturbative ”blobs” is further discussed in Suppl. S-II. Based on these arguments, or
by direct evaluation of the convolutions using Eq. (S-I.27), one can show that a term to nth order in the perturbation
vanishes like (t′ − t)n.

In summary,

lim
t′↓t

〈
φ(y, t′)φ̃(x, t)

〉
= δy,x (S-I.33a)

lim
t′↓t

∂t′
〈
φ(y, t′)φ̃(x, t)

〉
=Myx − ryδy,x + Byx (S-I.33b)

When we discuss entropy production in the following, we will drop the mass term ryδy,x, as in the present work we
treat only conservative dynamics.

S-I.4 Entropy production

To calculate the entropy production we cannot follow [21] and attempt to derive a ”path density” in the form

P([φ]) ∝
∫
Dφ̃ exp(A), firstly because this integral generally cannot be sensibly performed as φ̃ is introduced as

the complex conjugate of φ, and secondly because φ(x, t) is not a particle density, but rather the conjugate of the
annihilation operator. The quantity P([φ]) therefore does not have the meaning of a probability density of a particular
history of particle movements.

We will now use the propagator as characterised in Eq. (S-I.33) to calculate the entropy production of the continuous
time Markov chain Eq. (S-I.2) with the interaction Eq. (S-I.22) added. The internal entropy production (rate) by a
single particle, whose sole degree of freedom is its state x, is generally given by [13]

Ṡint[ρ] = lim
∆t↓0

1

2∆t

∑
yx

{
ρ(x)Wyx(∆t)− ρ(y)Wxy(∆t)

}
ln

(
ρ(x)Wyx(∆t)

ρ(y)Wxy(∆t)

)
(S-I.34)

where we define 0 ln(0/0) = 0 to make the expression well-defined even when some transition rates Wyx vanish.
The external entropy production is closely related and identical to the negative of the internal entropy production
at stationarity [13, 16]. The functional Ṡint[ρ] is the rate of entropy production by the system given ρ(x) as the
probability of finding the particle in state x. Compared to Eq. (S-I.2) we have dropped the time dependence of ρ(x)
to emphasise that in the expression above we consider the density as given.
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Further, Wyx(∆t) denotes the probability of the particle transitioning from state x to state y over the course of
time ∆t. With lim∆t→0Wyx(∆t) = δy,x and

W̊yx = lim
∆t↓0

d

d∆t
Wyx(∆t) = lim

∆t↓0

Wyx(∆t)−Wyx(0)

∆t
. (S-I.35)

we have

lim
∆t↓0

1

∆t

{
ρ(x)Wyx(∆t)− ρ(y)Wxy(∆t)

}
= ρ(x)W̊yx − ρ(y)W̊xy . (S-I.36)

Given we are studying a continuous time Markov chain, W̊yx is a rate matrix, so that [13]

Wyx(∆t) = δy,x + ∆tW̊yx +O
(
∆t2

)
, (S-I.37)

with W̊yx ≥ 0 for y 6= x and W̊yy < 0, accounting for the loss of any state y into all other accessible states, as
normally implemented by definition of a Markovian rate matrix, Eq. (S-I.3). In the Markov chain introduced at the

beginning of the present supplement, the rate matrix W̊ of Eq. (S-I.35) is in fact the Markov matrixM of the master

Eq. (S-I.2) with Eq. (S-I.3), i.e. W̊ = M. We will keep the notation separate to allow for W̊ to acquire corrections
beyond M due to perturbations.

Below, we will demonstrate that the transition rate matrix W̊ plays the role of a kernel. Indeed, in the continuum,
Suppl. S-I.4.2, it can be written as the Fokker-Planck operator acting on a Dirac δ-function. To this end, we introduce
separately

Kyx = lim
∆t↓0

d

d∆t
Wyx(∆t) (S-I.38)

even when in the present case of a Markov chain we simply have that K = W̊, Eq. (S-I.35). This term is the focus of
much of this work.

Using Eq. (S-I.36) in (S-I.34), the entropy production (rate) is

Ṡint[ρ] =
1

2

∑
yx

{
ρ(x)W̊yx − ρ(y)W̊xy

}
lim
∆t↓0

ln

(
ρ(x)Wyx(∆t)

ρ(y)Wxy(∆t)

)
=
∑
yx

ρ(x)Kyx lim
∆t↓0

ln

(
ρ(x)Wyx(∆t)

ρ(y)Wxy(∆t)

)
(S-I.39)

assuming that both limits exist and defining now also 0 ln(0) = 0.

The logarithm vanishes for y = x and we shall therefore proceed assuming y 6= x. It may be considered to be
comprised of two terms: The first one, ln(ρ(x)/ρ(y)), contains only the density ρ and is independent of the time ∆t.
The contribution from this term to the entropy production vanishes when ρ(x) is stationary. The second logarithmic
term in Eq. (S-I.39) we define as

Lnyx = lim
∆t↓0

ln

(
Wyx(∆t)

Wxy(∆t)

)
. (S-I.40)

This term generally contributes at stationary and is the second term the present work focuses on. With definitions
Eqs. (S-I.38) and (S-I.40) we can write the entropy production as

Ṡint[ρ] =
∑
yx

ρ(x)Kyx

{
Lnyx + ln

(
ρ(x)

ρ(y)

)}
=
∑
x

ρ(x)σ̇(x) +
∑
x

ρ(x)Kyx

∑
y

ln

(
ρ(x)

ρ(y)

)
(S-I.41)

where we have introduced the (stationary) local entropy production,

σ̇(x) =
∑
y

Kyx Lnyx . (S-I.42)

This notation is also a reminder that this expression for the entropy production goes back to Kullback and Leibler



S-8

[47].
Focusing now on a Markov chain, the kernel is simply the transition rate matrix,

Kyx = W̊yx , (S-I.43)

Eq. (S-I.38) and (S-I.35). The logarithm term Lny,x, Eq. (S-I.40), obviously vanishes when y = x and is otherwise
easily determined using Eq. (S-I.37) and L’Hôpital’s rule. In principle, this requires higher order derivatives beyond

W̊yx, if it vanishes. However, in this case Kyx in Eqs. (S-I.41) and (S-I.42) vanishes as well and we thus write

Lnyx =


0 for y = x (S-I.44a)

0 for y 6= x and W̊yx = 0 (S-I.44b)

ln

(
W̊yx

W̊xy

)
otherwise , (S-I.44c)

making use of 0 ln(0/0) = 0 = 0 ln(0) in case W̊yx or both W̊yx and W̊yx vanish. Strictly, Eq. (S-I.44) is thus the

limit Eq. (S-I.40) only in case of y = x or whenever Kyx = W̊yx does not vanish.
In the present section, we have determined expressions for the entropy production given the transition rate matrix

W̊. We proceed by showing how transition rate matrix and thus entropy production are determined by a field theory.

S-I.4.1 Expressing the entropy production in terms of propagators

Both K and Ln are based on the transition probability Wyx(∆t), Eqs. (S-I.38) and (S-I.40). In a field-theoretic
description, the probability to be in state y having started from state x is given by Eq. (S-I.30)

Wyx(∆t) =
〈
φ(y, t+ ∆t)φ̃(x, t)

〉
,

x, ty, t+ ∆t
+

x, ty, t+ ∆t
+

x, ty, t+ ∆t
+ . . . , (S-I.45)

which is independent of t due to time translational invariance. Using this expression in Eqs. (S-I.38), (S-I.40) and
(S-I.33) with ry ↓ 0 gives

Kyx = lim
∆t↓0

d

d∆t

〈
φ(y, t+ ∆t)φ̃(x, t)

〉
=Myx + Byx

, lim
∆t↓0

d

d∆t

(
x, ty, t+ ∆t

+
x, ty, t+ ∆t

)
(S-I.46a)

Lnyx = lim
∆t↓0

ln

(
〈φ(y, t+ ∆t)φ̃(x, t)〉
〈φ(x, t+ ∆t)φ̃(y, t)〉

)

, lim
∆t↓0

ln

 x, ty, t+ ∆t
+

x, ty, t+ ∆t

y, tx, t+ ∆t
+

y, tx, t+ ∆t

 (S-I.46b)

where the diagrams are shown only to first order in the perturbation, as higher orders, those ∝ ∆t2 and higher, cannot
possibly contribute, Suppl. S-I.3.2.

Eq. (S-I.46a) is explicitly the first order contribution in ∆t to the propagator and is determined immediately using
Eq. (S-I.33b) with ry ↓ 0 to preserve the particle number, unity. In the logarithm, we might first use Eq. (S-I.33a),
but that produces a meaningful result only for y = x, in which case indeed Lnyy = 0, Eq. (S-I.44a). For y 6= x we
need to apply L’Hôpital, so that with Eq. (S-I.33b) for ry ↓ 0 (conserved particle number),

Lnyx = ln

(
Myx + Byx
Mxy + Bxy

)
. (S-I.47)

In summary, the entropy production of a continuous time Markov chain with density ρ(x) given, stationary or not,
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is Eq. (S-I.41) with kernel K in Eq. (S-I.46a) and Ln in Eq. (S-I.47).

S-I.4.2 Continuum Limit

As long as states are discrete and rates therefore finite (Suppl. S-III.2.1) the logarithm Ln Eq. (S-I.47) is a function of
the kernel K, Eq. (S-I.46a). In the continuum this simple relationship breaks down. To find the relevant expressions
in the continuum, we return to the propagator in the continuum, replacing rate matrices etc. by their continuum
counterparts. Much of the following is done in further detail in Suppl. S-III and illustrated further in Suppl. S-V.
Below we present only the basic argument.

For continuous states x,y the probability ρ(x) in Eq. (S-I.41) is a density which we denote by the same symbol
ρ(x). Similarly, the kernel Ky,x, which for discrete states is a rate, has units of a rate density on y, with x given.
Correspondingly, the expression for the entropy production Eq. (S-I.41) becomes the double integral

Ṡint[ρ] =

∫
dxdy ρ(x)Kyx

{
Lnyx + ln

(
ρ(x)

ρ(y)

)}
=

∫
dx ρ(x)σ̇(x) +

∫
dx ρ(x)Kyx

∫
dy ln

(
ρ(x)

ρ(y)

)
(S-I.48)

with Eq. (S-I.42) replaced by

σ̇(x) =

∫
dyKyx Lnyx . (S-I.49)

The continuum limit of the kernel is easy to determine using Eq. (S-I.46a) with Eqs. (S-I.10) and (S-I.19), effectively
replacing Myx − ryδy,x in Eq. (S-I.46a) by Lyx, setting again ry = 0 to preserve the particle number.

Using further the definition similar to Eq. (S-I.10),

Ĝyx = lim
∆x→0

1

∆x
Byx ,

xy
(S-I.50)

to capture the contribution from the perturbative part in the continuum limit of Eq. (S-I.46a), we obtain Eq. (18),

Kyx = Lyx + Ĝyx , Lyx +
xy
. (S-I.51)

The kernel Kyx turns into an operator acting on δ-functions in the continuum. Using the L’Hôpital route, one
might expect the same for the logarithm, but it is hard to see how such ill-defined objects can be evaluated as a
ratio within the logarithm. Instead, we assume at this stage and later demonstrate explicitly, Suppl. S-III, that the
following approach is useful. We write

x, ty, t+ ∆t
+

x, ty, t+ ∆t

y, tx, t+ ∆t
+

y, tx, t+ ∆t
=

x, ty, t+ ∆t

y, tx, t+ ∆t

1 +
x,ty,t+∆t

x,ty,t+∆t

1 +
y,tx,t+∆t

y,tx,t+∆t

, (S-I.52)

where we assume that

y, tx, t+ ∆t

y, tx, t+ ∆t
(S-I.53)

is small in a sense further discussed in Suppl. S-III. Taking the limit of the logarithm of the above expression gives
the right hand side of Eq. (S-I.46b) in the continuum limit,

Lnyx , lim
∆t↓0

ln

 x, ty, t+ ∆t

y, tx, t+ ∆t

+

x, ty, t+ ∆t

x, ty, t+ ∆t
−

y, tx, t+ ∆t

y, tx, t+ ∆t

 , (S-I.54)
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as illustrated in Suppl. S-III, in particular Eq. (S-III.32). The limit of the logarithm of the ratio of bare propagators
is in general available, because the bare propagator is known explicitly. The ratio of the correction and the bare
propagator can be expected to be finite, as the correction draws itself on the bare propagation.

The above continuum limit concludes the present supplement Suppl. S-I. It contains essentially all technical details
of how to proceed from the a master equation such as Eq. (S-I.4) or a FPE such as Eq. (S-I.7) or (S-I.11) to an
action Eqs. (S-I.18) or (S-I.19). Expanding the resulting propagator for short times, Eq. (S-I.33), finally produces
expressions for the entropy production, Eq. (S-I.41) with (S-I.46), and in the continuum Eq. (S-I.48) with (S-I.51)
and (S-I.54).

S-II SHORT-TIME SCALING OF DIAGRAMS

Abstract In the following we will consider different types of diagrams that possibly contribute to the propagator
up to first order in time ∆t = t′ − t, which are the diagrams that contribute to the entropy production. The general
rule emerging from the arguments below is that a diagram containing m blobs decays at least as fast as ∆tm in small
∆t. To calculate the entropy production only diagrams with up to one blob are needed.

Diagrams enter in the entropy production either through the kernel Ky,x Eq. (18) or Eq. (S-I.46a) or the logarithmic
term Lny,x Eq. (19) or Eq. (S-I.46b). By construction, both of these terms draw only on the first order in the small
time difference ∆t = t′ − t between creation at time t and annihilation at time t′. For the kernel, this is established
by the limit limt′↓t after differentiation taken in Eqs. (9) and (S-I.46a). Such an operation extracts the first order in
∆t only, reducing it to the single particle Fokker-Planck operator plus corrections due to interactions and reactions.
For the kernel, there is no need to extract any terms beyond linear order in ∆t. In other words, if the linear order
vanishes, the kernel vanishes and thus the entropy production.

For the logarithm, the reason why diagrams enter only to first order in ∆t is more subtle; although Eqs. (19)
and (S-I.46b) contain a limit similar to Eqs. (9) and (S-I.46a), a priori, L’Hopital’s rule might require much higher
derivatives: The first order is needed if the zeroth vanishes, the second if the first and zeroth order both vanish and
so on. However, if the first order vanishes, then the kernel Ky,x vanishes too, and the contribution to the entropy
production according to Eq. (8) is nil (Suppl. S-I, remark after Eq. (S-I.44)).

In this section we derive some general principles on the short-time scaling of diagrams firstly in systems with single
particles (see Suppl. S-III) and later also in systems with multiple particles (see Suppl. S-V). In Suppl. S-II.1 we
present the basic arguments why contributions to the propagator order by order in the perturbation, shown as a
”blob” in the diagram, are in fact also order by order in the time ∆t that passes between creation and annihilation,
i.e. between initialisation and measurement. The argument carries through to more complicated objects, such as star-
like vertices, Suppl. S-II.2, although the notion of blobs needs to be clarified in the case of an interaction potential,
Eq. (S-II.15), and joint propagators, Suppl. S-II.3. The scaling of diagrams with internal loops follows the pattern
above, Suppl. S-II.4. We include a discussion about branching and coagulation vertices in the context of particle-
conserving intereactions, Suppl. S-II.5. We complete this section with a power-counting argument to show that a
diagram with m blobs is of order ∆tm, Suppl. S-II.6.

S-II.1 Contributions to the full propagator

First, we determine which diagrams in the full propagator contribute to zeroth order in small ∆t. Starting with
the simplest such diagrams, we consider first the bare propagator like Eq. (S-I.26) (Suppl. S-I.3.1)

k, ωk′, ω′
,
〈
φ(k′, ω′)φ̃(k, ω)

〉
0

= δ̄ (ω + ω′)δ̄ (k + k′)

{
1

−̊ıω′ + p
+O

(
ω′−2

)}
, (S-II.1)

where we assume the typical conservation of momentum in the propagator and allow for some implicit dependence of
the pole ω′ = −̊ıp on the momentum, p = p(k). The momenta are a proxy for any state-dependence and we will not
make use of either δ̄ (k+k′) or p(k). Poles may be repeated, but that does not matter in the following considerations.
For the following discussion, it is helpful to retain the δ̄ (ω+ ω′) function, even when it can be easily integrated. It is
an indicator of time-translational invariance, to be discussed further.

All that matters in Eq. (S-II.1) for the following arguments is that the bare propagator decays at least as fast as
(−̊ıω′ + p)−1 in large ω′, as shown for example in the case of a Markov chain in Eq. (S-I.26). However, since it must
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implement the feature (S-I.28)

lim
t′↓t

〈
φ(y, t′)φ̃(x, t)

〉
0

= δy,x (S-II.2)

for discrete states and, say

lim
t′↓t

〈
φ(k′, t′)φ̃(k, t)

〉
0

= δ̄ (k + k′) (S-II.3)

for continuous states, it is also clear that it cannot decay faster than ω−1. If it were to decay like, say, ((−̊ıω′ +
p1)(−̊ıω′ + p2))−1, then

lim
t′↓t

∫
dω′ e−̊ıω

′(t′−t) 1

−̊ıω′ + p1

1

−̊ıω′ + p2
=

∫
dω′

1

−̊ıω′ + p1

1

−̊ıω′ + p2
= 0 , (S-II.4)

as will be discussed in further detail below.

As indicated in Eq. (S-II.1), a bare propagator might thus have contributions that vanish in large ω′ as fast as
O
(
ω′−2

)
or even faster [38, 42, 48], but it always has one contribution of the form (−̊ıω′ + p)−1. Its inverse Fourier

transform reads ∫
dωdω′ e−̊ı(ωt+ω

′t′) δ̄ (ω + ω′)

−̊ıω′ + p
= θ(<(∆tp)) sgn(∆t)e−∆tp where ∆t = t′ − t , (S-II.5)

and <(∆tp) is the real part of ∆tp. Causality, i.e. that a particle’s presence cannot be measured before it is created,
is then enforced by demanding that the real-part of p is positive, so that the Heaviside θ-function in Eq. (S-II.5)
vanishes for ∆t = t′ − t < 0. It is therefore safe to assume that all poles ω′ = −̊ıp of all propagators are located in
the lower half-plane.

To simplify the following discussion, we shall henceforth assume

k, ωk′, ω′
,
〈
φ(k′, ω′)φ̃(k, ω)

〉
0

= δ̄ (ω + ω′)δ̄ (k + k′)
1

−̊ıω′ + p
(S-II.6)

and thus ignore the terms O
(
ω′−2

)
in Eq. (S-II.1).

Are there any other diagrams contributing to the full propagator to zeroth order in ∆t? Corrections to the
propagator due to the perturbative part of the action, e.g. Eq. (S-I.30) (Suppl. S-I.3.2), may be written as

k, ωk′, ω′
,
δ̄ (ω + ω′)δ̄ (k + k′)

−̊ıω′ + p2
B21

1

−̊ıω′ + p1
(S-II.7)

with p1, p2 real and positive, and generally dependent on k = −k′. The effect of the blob in the diagram is captured
by B21.

If B21 is a function of ω′, its ω′ dependence has to be analysed in more detail: Firstly, it cannot introduce
poles in ω′ that are located in the upper half-plane, as that would break causality. Secondly, B21 may diverge in
ω′ but never as fast as ω′ itself, as it would not be captured in a perturbation theory in general, so it is safe to
assume that limω′→∞ B21(ω′)/ω′ = 0. Thirdly, B21(t) might be dependent on absolute time t, as if subject to some
external forcing [49], which amounts to allowing for sinks and sources of ω′ in diagrams, which then no longer carry
a factor of δ̄ (ω + ω′). This generalisation of B21 does indeed invalidate the following arguments, because breaking
time-translational invariance means that not all propagators might have to ”carry” the same ω′. To keep what
follows simple, we will, however, assume time translational invariance, as will be manifest by any contribution to the
propagator being proportional to δ̄ (ω + ω′).

To determine to what order in ∆t the diagram in (S-II.7) contributes to the full propagator, we need to calculate its
inverse Fourier transform. We may consider more generally an integral similar to Eq. (17), consisting of n propagators
and n− 1 blobs,

In(∆t) =

∫
dω′

exp(−̊ıω′∆t)∏n
j=1(−̊ıω′ + pj)

(
Bnn−1(ω′)Bn−1n−2(ω′) · · · B21(ω′)

)
, (S-II.8)

which corresponds to the contribution of a diagram involving n propagators each carrying ω′, which vanishes most
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slowly in ω′. If B is constant in ω′, the integrand at ∆t = 0 decays like ∝ ω′−n. If B(ω′) diverges in ω′, say B(ω′) ∝ ω′µ
the overall behaviour of the integrand of Eq. (S-II.8) is ∝ ω′−n+µ(n−1), with µ < 1 as discussed above. An example
of I1(∆t) and I2(∆t) are the Fourier transforms of (S-II.6) and (S-II.7) respectively.

Given that all poles of the integrand in Eq. (S-II.8) are in the lower half-plane, repeated or not, In(∆t) generally
vanishes at ∆t < 0, for the same reason as Eq. (S-II.5) vanishes. At ∆t = 0 and n ≥ 2, the contour can be closed by
the ML lemma [50] either in the lower or in the upper half-plane, as the integrand vanishes strictly faster than ω′−1

in large ω′. Because all poles are in the lower half-plane, the integral thus vanishes at ∆t = 0 and n ≥ 2, meaning
that a diagram like Eq. (S-II.7) does not contribute at ∆t = 0. Not much can be said for ∆t = 0 and n = 1, because
then the integral Eq. (S-II.8) is logarithmically divergent.

Strictly speaking, however, we are interested in the behaviour of diagrams in the limit ∆t ↓ 0, as required in Eqs. (9)
and (10), not at ∆t = 0. To make this connection, we make the following observation: In the limit of ∆t ↓ 0 or ∆t ↑ 0,
the effect of the exponential like the one in Eq. (S-II.8) is solely that it directs the closure of the auxiliary contour
to determine any of the integrals by the ML lemma. Otherwise, the exponential exp(−̊ıω′∆t) has no further effect,
its contribution to the residue in the limit ∆t → 0 from above or from below is always a factor 1, as it converges to
unity irrespective of the value of the pole in ω′. Of course, that by itself does not mean that the value of the integral
is the same in both limits, as is known, for example, from the Fourier-transform of a Heaviside θ-function. However,
if the integral exists at ∆t = 0 (not just its principle value) and if the auxiliary path can be taken in both half planes
without contributing by the ML lemma, then the value of the integral at ∆t = 0 is independent of the orientation of
the auxiliary path. The integral at ∆t = 0 provides the ”glue” between the two limits. In other words, if the integral
at ∆t = 0 exists, then it must be identical to the integral in the limit ∆t ↓ 0, but in fact also identical to the integral
in the limit ∆t ↑ 0. The latter vanishes by causality, which means that if the integral at ∆t = 0 exists, it vanishes
as well and so does the one for ∆t ↓ 0. In brief: Defining I±n = lim∆t→0± In(∆t), Eq. (S-II.8), then the existence of
In(0) and its independence from the orientation of the auxiliary path guarantees In(0) = I+

n as well as In(0) = I−n ,
but I−n = 0, which thus implies I+

n = 0. If In(0) exists, then In(∆t) is continuous at ∆t = 0.
We can use the argument in the following form: If a diagram with n ≥ 2 bare propagators can be calculated for

∆t = 0, then it is identical to its limits ∆t → 0± and necessarily vanishes. Therefore, contributions to the zeroth
order in ∆t solely come from the bare propagator, Eqs. (S-II.2), (S-II.3) and (S-II.5).

Next, we determine which other diagrams in the full propagator contribute to first order in small ∆t. All of the
following reasoning is done in Fourier time, i.e. frequencies ω, because in Fourier time it comes down to mere power
counting, although equivalent arguments can of course be made in direct time.

Considering the first derivative of In(∆t), Eq. (S-II.8), with respect to ∆t, differentiation brings down a factor
of −̊ıω′. If there are n bare propagators carrying ω′ and thus n − 1 factors of perturbative B(ω′), the integrand
vanishes as fast as ω′1−n+µ(n−1). By the same arguments as outlined above, this integral vanishes at ∆t = 0 provided
1 − n + µ(n − 1) < −1, i.e. 2 − µ < n(1 − µ). For this to hold for all n ≥ 3 we would need to require henceforth
µ < 1/2. To simplify what follows, we will assume, however, B(ω′) to be independent of ω′.

For example

d

d∆t
In(∆t) =

∫
dω′
−̊ıω′ exp(−̊ıω′∆t)∏n

j=1(−̊ıω′ + pj)

n−1∏
i=1

Bi+1 i , (S-II.9)

which vanishes by the ML lemma for ∆t = 0 and n ≥ 3, such that, say

∂t′

(
k1, tk′1, t

′

)∣∣∣∣
∆t=0

, 0 . (S-II.10)

Similar arguments apply to higher derivatives, but these are not relevant in the present work. For B(ω′) constant in
ω′ it follows that a contribution to the propagator with n legs and thus n − 1 blobs behaves like In(∆t) ∈ O

(
∆tn−1

)
in small ∆t.

A tadpole diagram like

∈ O (∆t) (S-II.11)

does not contribute to order ∆t0, but does so to order ∆t, for the same reasons as Eq. (S-II.7). The additional loop
does not carry ω′ and is in fact independent of external frequencies and momenta. The loop provides a constant
pre-factor and does not modify the inverse Fourier transform in any other way. Tadpoles are a rather exotic type
of diagram in Doi-Peliti field theories, as they require a source, which is, however, generally found in response field
theories [31, 51].
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In summary, corrections to the propagator of the form Eq. (S-II.7) with n ≥ 2 bare propagators carrying ω′ vanish
at ∆t = 0 and in the limit ∆t ↓ 0 provided µ < 1. Similarly, their first derivatives vanish at ∆t = 0 and in the limit
∆t ↓ 0 for all n ≥ 3 provided µ < 1/2.

S-II.2 Interaction vertices

Taking the Fourier transform of a star-like diagram

t
t

t

t′

t′

t′

, I∗(∆t) =

∫
dω1,...,ndω′1,...,n e

−̊ı(ω1+...+ωn)∆t (S-II.12)

× δ̄ (ω1 + . . .+ ωn + ω′1 + . . .+ ω′n)

(
n∏
i=1

1

−̊ıωi + pi

)(
n∏
i=1

1

ı̊ω′i + p′i

)

one can show that

I∗(∆t) = θ(∆t)
exp(−∆t

∑n
i=1 p

′
i)− exp(−∆t

∑n
i=1 pi)∑n

i=1 pi −
∑n
i=1 p

′
i

, (S-II.13)

so that I∗(0) = lim∆t↓0 I∗(∆t) = lim∆t↑0 I∗(∆t) = 0, and

I∗(∆t) ,
t
t

t

t′

t′

t′

∈ O (∆t) . (S-II.14)

The interaction vertices in Eqs. (S-IV.18) and (S-IV.19) of the type

k1, tk′1, t
′

k2, tk′2, t
′

∈ O (∆t) (S-II.15)

are in fact of the form I∗(∆t) with n = 2 even when Eq. (S-II.15) seems to contain two blobs. However, the dash-dotted
vertical line, which represents the interaction potential, is not a propagator ∝ ω−1 and has no frequency dependence.
In Eq. (S-II.15) we show the two blobs suggestively as if located inside a large, faintly drawn blob.

S-II.3 Joint propagators

The same arguments as above apply to joint propagators, which are just products of diagrams, such as

k1, tk′1, t
′

k2, tk′2, t
′ ∈ O (∆t) and

k1, tk′1, t
′

k2, tk′2, t
′ ∈ O

(
∆t2

)
and

k1, tk′1, t
′

k2, tk′2, t
′ ∈ O

(
∆t3

)
(S-II.16)

in the sense that these diagrams vanish in small ∆t at least like ∆t, ∆t2 and ∆t3 respectively. Similarly,

k1, tk′1, t
′

k2, tk′2, t
′

k3, tk′3, t
′

∈ O (∆t) and
k1, tk′1, t

′

k2, tk′2, t
′

k3, tk′3, t
′

∈ O
(
∆t2

)
(S-II.17)

where the scaling of the interaction vertex I∗(∆t) with n = 2 is that of Eq. (S-II.14).
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S-II.4 Internal blobs and loops

The order of more complicated diagrams such as

tt′

tt′ ∈ O
(
∆t2

)
,

tt′

tt′
∈ O

(
∆t2

)
,

tt′

tt′
tt′ ∈ O

(
∆t2

)
, (S-II.18)

can be determined by studying them as a variation of star-like diagram Eq. (S-II.12). The key insight is that any
additional internal propagator adds a pole on the same half-plane as they can be found in the star-like diagrams.
Loops result in additional integrals, but do not change the general argument.

S-II.5 Branching and Coagulation vertices

The propagators considered in the entropy production of N particles, Eqs. (20) and (21) are of the form

〈φ(k′1,∆t) . . . φ(k′N ,∆t)φ
†(k1, 0) . . . φ†(kN , 0)〉. After the Doi-shift φ† = 1 + φ̃, these are represented by possibly

disconnected diagrams that have N outgoing legs and at most N incoming legs.
Since here we consider only processes where the total particle number is conserved, there is no diagram with more

outgoing than incoming legs, such as the branching diagram

t
t′

t′
. (S-II.19)

To have N outgoing legs it therefore takes at least N incoming legs. All contributions to
〈φ(k′1,∆t) . . . φ(k′N ,∆t)φ

†(k1, 0) . . . φ†(kN , 0)〉, which in principle can contain diagrams with fewer than N incoming
legs, in the processes considered here therefore have exactly N incoming legs and N outgoing legs. This constraint,
together with the absence of branching vertices, implies that coagulation-like vertices, which have more incoming legs
than outgoing legs, such as

t

t
t′ (S-II.20)

do not contribute to the propagators needed to calculate the entropy production, even if they are present in the
Doi-Peliti field theory as a result of particles interactions, e.g. Eqs. (S-IV.18) and (S-IV.19).

S-II.6 General power counting

We complete the present discussion with a power counting argument showing that any diagram containing m blobs,
or vertices, scales like ∆tm in the short-time limit ∆t → 0. This section is a generalisation of Suppl. S-II.1, since it
includes diagrams possibly involving internal loops. As disconnected diagrams scale like their product, we restrict the
discussion to connected diagrams. Those are made from propagators and blobs, so that any two blobs are connected
by a propagator proportional to ω−1 (but Eq. (S-II.15)). Since here we consider vertices with as many legs coming
in as coming out only, we can further restrict the discussion to diagrams having as many legs coming in as come out.

A connected diagram with n incoming and outgoing legs can be thought of as being made from n disconnected bare
propagators which are ”tied together” by inserting m vertices. Initially, the n propagators each scale like ω′−1δ̄ (ω′+ω).
The insertion of an `-legged vertex, with ` incoming and ` outgoing legs, splices ` propagators, effectively creating `
”internal” ones, where we may ignore any additional internal δ̄ -functions as having cancelled with internal integrals.
These internal integrals are trivial, as opposed to the ones discussed below. As the vertex is time-translational
invariant, it will further introduce integrals over ` internal ω as well as a single δ̄ -function.

As each such `i-legged vertex i with i = 1, . . . ,m effectively introduces `i new propagators by splicing, the total
count of such new propagators being L =

∑m
i=1 `i. Each of those gives rise to an internal ω-integral, so that there are

I = L such internal, non-trivial integrals. There are m vertices inserted, each will give rise to a frequency conserving
δ̄ -function, so that starting with n such δ̄ -functions from the initially disconnected n propagators, there is a total
K = n+m δ̄ -functions and a total of N = n+ L propagators.
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The final diagram is obtained by carrying out the I internal integrals, using up as many δ̄ -functions as possible,
but at most K − 1 as the overall diagram has a δ̄ -prefactor. The remaining I − (K − 1) ≥ 0 integrals are loops.
Starting with an integrand that goes like ω−N in large ω and integrating I times with the help of K − 1 δ̄ -functions
produces a final diagram that scales like ω′−N+I−(K−1)δ̄ (ω′1 + . . .). From the above

−N + I − (K − 1) = −(n+ L) + L − (n+m− 1) = −2n−m+ 1 , (S-II.21)

i.e. the diagram behaves in large, external ω′ like ω′−2n−m+1δ̄ (ω′1 + . . .). Carrying out the inverse Fourier transform
over 2n external ω′ using up the remaining δ̄ -function, thus produces an integral proportional to ∆tm. This is the
desired scaling behaviour.

S-III ENTROPY PRODUCTION OF DRIFT-DIFFUSION PARTICLES ON A TORUS WITH
POTENTIAL

Abstract In this section we consider a drift-diffusion particle with diffusion constant D and drift w on a d-
dimensional torus with circumference L and external potential Υ(x). We calculate their entropy production in
three different ways, to show that different perturbative expansions produce the same result and to highlight some
peculiarities of continuum theories. It is a pretty straight forward exercise to calculate the entropy production from
first principles [16, Sec. 3.11]. This is done in the following within the framework of the main text, first by drawing
directly on Wissel’s short-time propagator [52] in Suppl. S-III.1, Eq. (S-III.10), and then field-theoretically in two
different setups: In Suppl. S-III.2, only the potential is dealt with perturbatively, Eq. (S-III.33), in Suppl. S-III.3,
both the potential and the drift are dealt with perturbatively. In Suppl. S-III.2.1 we discuss some of the details of
continuous space and the particular role of the Fourier-transform.

The Fokker-Planck equation for the present setup is

∂tρ(y, t) = L̂yρ(y, t) with L̂y = D∇2
y −∇y · (w −Υ′(y)) = D∇2

y − (w −Υ′(y)) · ∇y + Υ′′(y) (S-III.1)

where Υ′(y) = ∇Υ(y) and Υ′′(y) = 4Υ(y) are used to emphasise that a derivative acts only on Υ(y), in contrast to
the nabla in front of the bracket, ∇y(w − Υ(y)), which acts on everything to the right of it, just like the first term
D∇2

y = D4y. After adding a small mass r ↓ 0 to maintain causality, the action in real-space and direct time, Eq. (2),
is

A =

∫
ddxddyddt φ̃(y, t)(−δ(y − x)∂t + Ly,x − r)φ(x, t) =

∫
ddxddt φ̃(x, t)(−∂t + L̂x − r)φ(x, t) (S-III.2)

according to Eq. (S-I.19) as Ly,x = L̂†xδ(x−y). In one dimension the Fokker-Planck equation has a known stationary
solution and the entropy production can readily be calculated [16].

S-III.1 Entropy production from the short-time propagator

In the present section we derive the entropy production on the basis of the short-time propagator introduced by
Wissel [52]. This will serve as a reference for the following sections. The short-time propagator GWi(x → y; t′ − t)
may be constructed by some very basic physical reasoning, namely that “the derivative of the potential plays the
same role as a drift”. It is the probability density to transition from position x to y within time ∆t = t′ − t, is given
by [52]

GWi(x→ y; t′ − t) =
θ(t′ − t)

(4πD(t′ − t))d/2
exp

−
(
y − x− (w −Υ′(x))(t′ − t)

)2

4D(t′ − t)

 (S-III.3)

which, by inspection, solves the differential equation

∂t′GWi(x→ y; t′ − t) = D∇2
yGWi(x→ y; t′ − t)− (w −Υ′(x))∇yGWi(x→ y; t′ − t) . (S-III.4)
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Eq. (S-III.3) is therefore not the solution of the FP Eq. (S-III.1), but because limt′↓tGWi(x → y; t′ − t) = δ(y − x)
and (

w −Υ′(x)
)
· ∇yδ(y − x) = ∇y ·

(
(w −Υ′(x))δ(y − x)

)
= ∇y ·

(
(w −Υ′(y))δ(y − x)

)
(S-III.5)

Eq. (S-III.3) produces the correct kernel,

lim
t′↓t

∂t′GWi(x→ y; t′ − t) = L̂yδ(y − x) (S-III.6)

in other words, the full propagator 〈φ(y, t′)φ̃(x, t)〉 is approximated to first order by the short-time propagator
GWi(x→ y; t′ − t), 〈

φ(y, t′)φ̃(x, t)
〉

= GWi(x→ y; t′ − t)
(

1 +O
(
(t′ − t)2

) )
. (S-III.7)

The kernel Ky,x, Eq. (9), calculated from the short-time propagator Eq. (S-III.3) therefore reproduces correctly the
Fokker-Planck kernel,

Ky,x = lim
t′↓t

∂t′GWi(x→ y; t′ − t) = L̂yδ(y − x) , (S-III.8)

Eq. (S-III.6).
As for the logarithm Lny,x, Eq. (10), using Eq. (S-III.7) gives

Lny,x = lim
t′↓t

ln

(
〈φ(y, t′)φ̃(x, t)〉
〈φ(x, t′)φ̃(y, t)〉

)
=

(y − x)

(
2w −Υ′(x)−Υ′(y)

)
2D

. (S-III.9)

by explicit use of Eq. (S-III.3) and thus the local entropy production Eq. (15)

σ̇(x) =

∫
ddyKy,x Lny,x = −Υ′′(x) +

(w −Υ′(x))2

D
so that Ṡint[ρ] =

∫
ddx ρ(x)σ̇(x) . (S-III.10)

Away from stationarity, the logarithm ln(ρ(x)/ρ(y)) needs to be added to σ̇ to capture all entropy production, but
this contribution is not considered in the present derivation. The results above are very well known, e.g. [53] or [16,
Sec. 3.11], and are here retraced only to highlight which short-time details enter.

S-III.2 Entropy production from a perturbation theory about drift diffusion

In the present section, we calculate the entropy production of a drift-diffusion particle in an external potential
in a perturbative field theory about drift-diffusion. To this end, we split the action Eq. (S-III.2) into two terms,
A = A0 +Apert with

A0 =

∫
ddx

∫
dt φ̃(x, t)(D∇2

x −w · ∇x − ∂t)φ(x, t) (S-III.11a)

and

Apert = −
∫

ddx

∫
dt (Υ′(x)φ(x, t)) · ∇xφ̃(x, t) , (S-III.11b)

so that any expectation of the full theory can be calculated along the lines of Eq. (7). The bare propagator

Gw(x→ y; t′ − t) =
θ(t′ − t)

(4πD(t′ − t))d/2
exp

−
(
y − x−w(t′ − t)

)2

4D(t′ − t)

 (S-III.12)

, x, ty, t′



S-17

solves

∂t′Gw(x→ y; t′ − t) =
(
D∇2

y −w · ∇y

)
Gw(x→ y; t′ − t) , (S-III.13)

less vividly denoted by g(y;x; t′ − t) in Suppl. S-V.1. The bare propagator may be read off from A0 either in its
present form or after Fourier transforming

kn, ωkm, ω
′ ,

δ̄ (ω′ + ω)Ldδm+n,0

−̊ıω′ +Dk2
m + ı̊w · km + r

, (S-III.14)

with discretised kn = 2πn/L and n ∈ Zd. Although the Fourier-transform does not add anything crucial to the
calculations to come, we discuss it here nevertheless, because of some puzzling implications.

S-III.2.1 Fourier transformation

To have a guaranteed stationary state, we need the present system to have a finite size of Ld in the following. We
therefore need to introduce a Fourier series representation for the spatial coordinates and a Fourier transform for time

φ(x, t) =
1

Ld

∑
n∈Zd

eı̊kn·x
∫

dω e−̊ıωtφn(ω) (S-III.15a)

φn(ω) =

∫
ddx e−̊ıkn·x

∫
dt eı̊ωtφ(x, t) . (S-III.15b)

The action Eq. (S-III.11) may then be written as

A0 =
1

Ld

∑
n∈Zd

∫
dω φ̃−n(−ω)(−Dk2

n − ı̊w · kn − r + ı̊ω)φn(ω) (S-III.16a)

Apert =
1

L3d

∑
nm`

∫
dω φ̃n(−ω)km · k`Υ`φm(ω)Ldδn+m+`,0 , (S-III.16b)

with

Υ(x) =
1

Ld

∑
`∈Zd

eı̊k`·xΥ` and Υ` =

∫
ddx e−̊ık`·xΥ(x) . (S-III.17)

The bare propagator then follows immediately, Eq. (S-III.14),

Gw(kn → km;ω → ω′) =
〈
φ(km, ω

′)φ̃(kn, ω)
〉

0

=
δ̄ (ω′ + ω)Ldδm+n,0

−̊ıω′ +Dk2
m + ı̊w · km + r

, kn, ωkm, ω
′ , (S-III.18)

with δm+n,0 enforcing n = −m and thereby momentum conservation. The diagrammatic expansion produces correc-
tions of the form

〈
φ(km, ω

′)φ̃(kn, ω)
〉
,

kn, ωkm, ω
′

+
kn, ωkm, ω

′

+
km, ω

′ kn, ω
+ . . . ,

(S-III.19)

where each ”bauble” represents the effect of the external potential that serves as a source for momentum, thereby
breaking translational invariance.

Apart from the technical subtleties of the full propagator not being a Gaussian but rather a Jacobi-theta function,
which is of little interest in the following, allowing for a spatial Fourier transform has deeper consequences. To see
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this, we determine the first order correction

kn, ωkm, ω
′

, − δ̄ (ω′ + ω)

−̊ıω′ +Dk2
m + ı̊w · km + r

km · km+nΥm+n
1

−̊ıω′ +Dk2
n − ı̊w · kn + r

(S-III.20)

for the spurious potential k`Υ` = ı̊νLdδ`,0, which has the same effect as an additional drift by ν, as can be verified
by direct evaluation in Eq. (S-III.16b) and comparison to the corresponding term in Eq. (S-III.16a). Such a potential
does not converge in real-space, but that has no bearing on the arguments that follow.

After inversely Fourier transforming Eq. (S-III.20) back to direct time,

kn, tkm, t
′

, −̊ı(t′ − t)θ(t′ − t)km · ν exp
(
−(t′ − t)(Dk2

m + ı̊w · km + r)
)

(S-III.21)

one can see explicitly the linear dependence on t′ − t. This observation, of ”each blob producing an order of t′ − t”,
Suppl. S-II, is what simplifies the calculation of the entropy production in the field-theoretic framework so dramatically.

The right-hand side of Eq. (S-III.21) can be recognised as the Fourier-transform in space of a gradient, Eqs. (S-III.12)
and (S-III.14), which is immediately inverted to real space,

x, ty, t′
, −(t′ − t)ν · ∇yGw(x→ y; t′ − t)

= ν · y − x−w(t′ − t)
2D

Gw(x→ y; t′ − t) (S-III.22)

using Eq. (S-III.12).
The key-difference between Eqs. (S-III.21) and (S-III.22) is the absence of the t′ − t pre-factor in the latter. In a

perturbation theory of the propagator, terms that are of order t′ − t in one representation of the degree of freedom,
say k, may no longer seem to be of that order after a Fourier transform. However, the right-hand side of Eq. (S-III.22)
still vanishes as t′− t ↓ 0 for any y−x 6= 0 due to the exponential in Gw, Eq. (S-III.12), and indeed it vanishes much
faster than linearly in t′ − t > 0 for any such y− x 6= 0. For t′ − t < 0 it vanishes for any y− x due to the Heaviside
θ-function in Gw and for y − x = 0 it vanishes linearly in t′ − t > 0 as the prefactor becomes −ν ·w(t′ − t)/(2D).

This phenomenon, that the order in t′ − t is changed by a transformation, is unique to continuous states and
physically related to infinite rates being at play in the continuum limit, Suppl. S-I.1.1. If all rates remain finite, as
is generally the case for discrete states, it cannot occur, and neither does it happen when all ”states” decouple, as is
the case after a Fourier-transform here.

S-III.2.2 K and Ln for drift diffusion in a perturbative potential

Following from the arguments in the main text and in Suppl. S-II, we re-state the key-ingredients to calculate
the entropy production. Firstly, the kernel Ky,x can immediately be read off from the action or the Fokker-Planck
operator, Eq. (S-III.1),

Ky,x = L̂yδ(y − x) =
(
D∇2

y −∇y · (w −Υ′(y))
)
δ(y − x) , (S-III.23)

with ∇y ·Υ′δ(y−x) intended to result in two terms by the product rule and with Eq. (S-III.5) available to re-arrange
the right-hand side. Even though the kernel is extracted easily, we will reproduce it below via the propagator to
illustrate our scheme. Secondly, the logarithm Lny,x is constructed from the propagator to first order. To this end, we
state the first order correction Eq. (S-III.20) in real space and direct time for arbitrary potentials using Eq. (S-III.11b)

x, ty, t′
, −

∫
ddz

∫
dsGw(x→ z, s− t)Υ′(z) · ∇zGw(z→ y, t′ − s) , (S-III.24)

which was previously stated in Eq. (S-III.21) only for the specific choice of the (spurious) potential that has the effect
of a uniform drift.

To simplify Eq. (S-III.24) by direct calculation, we draw on four ”tricks”: Firstly,

∇zGw(z→ y, t′ − s) = −∇yGw(z→ y, t′ − s) (S-III.25)
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so that the ∇z can be taken outside the integral in Eq. (S-III.24). Secondly, we Taylor-expand Υ′(z) about (x+y)/2,

∇zΥ(z) = Υ′(z) = Υ′
(
y + x

2

)
+

(
z− x

2
− y − z

2

)
· ∇Υ′

(
y + x

2

)
+ . . . (S-III.26)

so that parity in y − x is readily determined, in contrast to, say, expanding about x or y. Eq. (S-III.26) also allows
us to use, thirdly, Eq. (S-III.12),

(z− x)Gw(x→ z; s− t) = (s− t)
(
2D∇x + w

)
Gw(x→ z; s− t) . (S-III.27)

Finally, by the time-uniformity of the bare Markov process of drift-diffusion∫
ddz Gw(x→ z, s− t)Gw(z→ y, t′ − s) = θ(s− t)θ(t′ − s)Gw(x→ y, t′ − t) , (S-III.28)

so that the spatial integral in Eq. (S-III.24) can be carried out.

It turns out that of the expansion Eq. (S-III.26) only the first order is needed,

x, ty, t′
, (t′ − t)∇y ·

(
Υ′
(
x + y

2

)
Gw(x→ y; t′ − t)

)
+ . . .

= −Gw(x→ y; t′ − t)
(
y − x−w(t′ − t)

2D

)
·Υ′

(
x + y

2

)
+ . . . (S-III.29)

as higher order terms do not contribute to the kernel nor to the logarithm. In particular, the Laplacian of the external
potential is preceded by a factor t′− t and thus vanishes from the logarithm as t′ ↓ t. As the logarithm is odd in y−x
by construction and the highest spatial derivative in the kernel is a second, the logarithm needs to be known only to
linear order in y − x. Similarly, the kernel is a limit of a first derivative in time and thus needs to be known only to
linear order in time, related to orders in space via Eq. (S-III.27). The propagator may thus be written as〈

φ(y, t′)φ̃(x, t)
〉

= Gw(x→ y; t′ − t) + (t′ − t)∇y ·
(

Υ′
(
x + y

2

)
Gw(x→ y; t′ − t)

)
+ . . . . (S-III.30)

Applying Eq. (9) and equally Eq. (18) to (S-III.30) reproduces the kernel Eq. (S-III.23),

Ky,x =
(
D∇2

y −w · ∇y

)
δ(y − x) +∇y ·

{
Υ′
(
x + y

2

)
δ(y − x)

}
(S-III.31)

using Eq. (S-III.13) and limt′↓tGw(x→ y; t′−t) = δ(y−x). As Υ′((x+y)/2)δ(y−x) = Υ′(y)δ(y−x) = Υ′(x)δ(y−x)
the gradient of the potential can be taken outside the divergence, Eq. (S-III.5), but under an integral, this manipulation
makes no difference.

The logarithm Eq. (10) is correspondingly

Lny,x , lim
t′→t

ln


x, ty, t′

+
x, ty, t′

y, tx, t′
+

y, tx, t′

 (S-III.32a)

, lim
t′→t

ln

(
Gw(x→ y; t′ − t)
Gw(y→ x; t′ − t)

)
+ ln

1−
(

y−x−w(t′−t)
2D

)
·Υ′

(
x+y

2

)
+ . . .

1−
(

x−y−w(t′−t)
2D

)
·Υ′

(
x+y

2

)
+ . . .

 (S-III.32b)

=
(y − x) ·w

D
− y − x

D
·Υ′

(
x + y

2

)
+O

(
(y − x)3

)
, (S-III.32c)

using Eq. (S-III.29) to arrive at Eq. (S-III.32b). This expression is identical to Eq. (S-III.9) based on Wissel’s short-
time propagator if one allows for corrections of order (y − x)3, where the expansion of Υ′ being about (x + y)/2
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becomes important. Together with Eq. (S-III.31) this reproduces Eq. (S-III.10)

σ̇(x) =

∫
ddyKy,x Lny,x = −Υ′′(x) +

(w −Υ′(x))2

D
. (S-III.33)

This concludes the present derivation.

S-III.3 Entropy production from a perturbation theory about diffusion

We repeat the above derivation treating both potential and drift perturbatively. Expanding about pure diffusion,
the action Eq. (S-III.2) is split into two terms, A = A0 +Apert with

A0 =

∫
ddx

∫
dt φ̃(x, t)(D∇2

x − ∂t)φ(x, t) (S-III.34a)

and

Apert =

∫
ddx

∫
dt
(
(w −Υ′(x))φ(x, t)

)
· ∇xφ̃(x, t) , (S-III.34b)

where the drift w now features as a shift of the force exerted by the potential Υ′. The bare propagator from
Eq. (S-III.34a) is Gw of Eq. (S-III.12) with w = 0,

GD(x→ y; t′ − t) =
θ(t′ − t)

(4πD(t′ − t))d/2
exp

(
− (y − x)2

4D(t′ − t)

)
, x, ty, t′ (S-III.35)

and the two corrections from Eq. (S-III.34b) are Eq. (S-III.29) with Υ′ replaced by Υ′ −w,

〈
φ(y, t′)φ̃(x, t)

〉
,

x, ty, t′
+

x, ty, t′

w
+

x, ty, t′

−Υ′

+ . . . (S-III.36a)

, GD(x→ y; t′ − t) + (t′ − t)∇y ·
([

Υ′
(
x + y

2

)
−w

]
GD(x→ y; t′ − t)

)
+ . . . (S-III.36b)

= GD(x→ y; t′ − t)
{

1−
(
y − x

2D

)
·
[
Υ′
(
x + y

2

)
−w

]}
+ . . . (S-III.36c)

As the total action Eq. (S-III.34) is identical to Eq. (S-III.11), the kernel from the action of course is the same as
Eq. (S-III.31), as confirmed by reading it off from the propagator in the form Eq. (S-III.36b),

Ky,x = D∇2
yδ(y − x) +∇y ·

{[
Υ′
(
x + y

2

)
−w

]
δ(y − x)

}
. (S-III.37)

Similarly, the logarithmic term Eq. (S-III.32) is confirmed

Lny,x = −y − x

D
·
[
Υ′
(
x + y

2

)
−w

]
+O

(
(y − x)3

)
(S-III.38)

obviously reproducing Eq. (S-III.33).

This completes the present supplemental section. We have shown that the short-time propagator Eq. (S-III.3) by
by Wissel [52] used in Eqs. (9), (10) and (15) reproduces the entropy production Eq. (S-III.10) in the literature [16].
We have further shown that a field-theoretic perturbation theory about drift-diffusion, Suppl. S-III.2, or about pure
diffusion, Suppl. S-III.3, equally reproduces these results. This is not a triviality, given the effect of spatial Fourier
transform in a continuous state process, cf. Eqs. (S-III.21) and (S-III.22).
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1

w1
2 w2

Figure S-IV.1: Cartoon of two harmonically coupled drift-diffusion particles. They are of two different species, such that one drifts
with velocity w1 and the other with veclocity w2. The two are interacting by a harmonic potential with spring constant k. The particles

are placed on a circle only as to maintain a stationary state.

S-IV ENTROPY PRODUCTION OF HARMONICALLY COUPLED DRIFT-DIFFUSION PARTICLES ON
A CIRCLE: HARMONIC TRAWLERS

Abstract In this section we consider the entropy production of two harmonically coupled distinguishable drift-
diffusion particles on the circle of circumference L, Figure S-IV.1. We calculate the entropy production firstly using
simple physical reasoning, Eqs. (S-IV.8) and (S-IV.9), and secondly using the field-theoretic methods outlined in the
main text from first principles Eq. (S-IV.30), to illustrate the formalism with a pedagogical example. In Section S-V
.1.3 the results are re-derived using the more general multi-particle framework of Section S-V.

S-IV.1 Entropy production from physical reasoning

Two particles, indexed as 1 and 2, are placed on a circle only as to ensure that the marginal distributions of their
positions x1, x2 and in fact their centre of mass (x1 + x2)/2 reach a steady state distribution, which is uniform. The
particles both diffuse with diffusion constant D and self-propel with velocities w1 and w2 respectively. In addition,
they interact by an attractive, harmonic pair potential, which may be thought of as a spring. This spring, pulling the
particles towards each other, may stretch around the circle, implying that the interaction potential is not periodic,
but for simplicity, one may think of L as being so large that the particles never end up stretching the spring beyond
one circumference. A cartoon of the setup is shown in Fig. S-IV.1. The Langevin dynamics of the particles is

ẋ1 = w1 − (x1 − x2)k + ξ1(t) (S-IV.1a)

ẋ2 = w2 − (x2 − x1)k + ξ2(t) (S-IV.1b)

with positive spring constant k and two independent, white Gaussian noise terms, ξ1(t) and ξ2(t), so that

〈ξ1(t′)ξ1(t)〉 = 2Dδ(t′ − t) (S-IV.2)

〈ξ2(t′)ξ2(t)〉 = 2Dδ(t′ − t) . (S-IV.3)

To implement the stretching of the spring beyond L, the coordinates x1 and x2 in Eq. (S-IV.1) are not periodic.
The two Langevin Eqs. (S-IV.1) decouple when considering the motion of the centre of mass,

z =
x1 + x2

2
, (S-IV.4)

and the fluctuations of their distance x1 − x2 about the expected distance (w1 − w2)/(2k),

∆r = x1 − x2 −
w1 − w2

2k
, (S-IV.5)
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so that

ż =
w1 + w2

2
+

1

2
(ξ1(t) + ξ2(t)) (S-IV.6a)

∆̇r = −2∆rk + ξ1(t)− ξ2(t) . (S-IV.6b)

The two linear combinations of the independent noises ξ1 and ξ2 are uncorrelated and given they are Gaussian therefore
independent, in particular 〈

1

2
(ξ1(t′) + ξ2(t′))

1

2
(ξ1(t) + ξ2(t))

〉
= Dδ(t′ − t) (S-IV.7a)

〈(ξ1(t′)− ξ2(t′)) (ξ1(t)− ξ2(t))〉 = 4Dδ(t′ − t) (S-IV.7b)〈
1

2
(ξ1(t′) + ξ2(t′)) (ξ1(t)− ξ2(t))

〉
= 0 . (S-IV.7c)

The two degrees of freedom z and ∆r therefore are independent and their joint entropy production is expected to be
the sum of the individual entropy productions.

The equations of motion (S-IV.6) describe a Brownian particle on a circle and an Ornstein-Uhlenbeck process, so
that their respective stationary distribution can be written down immediately. The stationary distribution of z is
uniformly 1/L on the circle and that of ∆r is a Boltzmann distribution with potential k∆r2, Eq. (S-IV.6b), and
temperature 2D, Eq. (S-IV.7b),

ρ∆r(∆r) =

√
k

2πD
e−

k∆r2

2D . (S-IV.8)

Of the two degrees of freedom z and ∆r, the latter does not produce entropy, as, being confined by a potential, it
cannot generate any stationary probability flux. The other degree of freedom, z, ”goes around in circles” with a net
drift of (w1 + w2)/2, Eq. (S-IV.6a), and diffusion constant D/2, Eq. (S-IV.7a), resulting in an entropy production of
[16]

Ṡint =
(w1 + w2)2

2D
. (S-IV.9)

This result is to be reproduced below by field-theoretic means. This is a real challenge without the shortcut of rewriting
the setup so that only one degree of freedom has a finite probability current. Eq. (S-IV.9) should be independent of
the details of the pair-potential which enters only in so far as it confines the relative motion. This independence is
indeed confirmed in Suppl. S-V.1.3.

S-IV.2 Entropy production using field-theoretic methods

S-IV.2.1 Action

The non-perturbative part of the action is immediately given by Eq. (2) and the Fokker-Planck operator of drift-
diffusion, Eq. (S-III.1)

Lyi,xi = (D∂2
yi − wi∂yi)δ(yi − xi) (S-IV.10)

which gives rise to the bare propagators in realspace and direct time〈
φi(yi, t

′)φ̃i(xi, t)
〉

=
θ(t′ − t)√
4πD(t′ − t)

exp

(
− (yi − xi − wi(t′ − t))2

4D(t′ − t)

)
. (S-IV.11)

The harmonic interaction via the pair potential

U(xi − xj) =
1

2
k(xi − xj)2 (S-IV.12)
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can be implemented as an effective drift in the presence of the other particle species. For example, the constant drift
w1 enters into the action as

A0 = . . .+

∫
dx1dt φ̃1(x1, t)(−∂x1

w1)φ1(x1, t) + . . . (S-IV.13)

Correspondingly, the drift
∫

dx2 ρ(x2)(−U ′(x1 − x2)) due to the interaction with the other species with density ρ(x2)
enters as

A1 =

∫
dx1dt φ̃1(x1, t)∂x1

[(∫
dx2 U

′(x1 − x2)φ†2(x2, t)φ2(x2, t)

)
φ1(x1, t)

]
(S-IV.14)

= −
∫

dx1dt
(
∂x1

φ̃1(x1, t)
)(∫

dx2 U
′(x1 − x2)φ†2(x2, t)φ2(x2, t)

)
φ1(x1, t) (S-IV.15)

where φ†2(x2, t)φ2(x2, t) probes for the local density of particles of the second species and U ′(x1 − x2) denotes the
derivative of U(x1 − x2) with respect to its argument. Correspondingly, the contribution to the action due to the
effect of particle species 1 on the drift velocity of particle species 2 is

A2 =

∫
dx2dt φ̃2(x2, t)∂x2

[(∫
dx1 U

′(x2 − x1)φ†1(x1, t)φ1(x1, t)

)
φ2(x2, t)

]
(S-IV.16)

= −
∫

dx2dt
(
∂x2 φ̃2(x2, t)

)(∫
dx1 U

′(x2 − x1)φ†1(x1, t)φ1(x1, t)

)
φ2(x2, t) . (S-IV.17)

Diagrammatically, each of the actions result in two vertices, as φ†i = 1 + φ̃i by the Doi-shift. These are from A1

and (S-IV.18)

and from A2

and (S-IV.19)

where the dash-dotted, vertical, black line accounts for the pair potential, that carries no time-dependence.

S-IV.2.2 Two-particle propagator

The first order two-particle propagator is thus diagrammatically〈
φ1(y1, t

′)φ2(y2, t
′)φ̃1(x1, t)φ̃2(x2, t)

〉
, + + + h.o.t. . (S-IV.20)

The diagrams are easily translated to mathematical expressions using the bare propagators 〈φiφ̃i〉 from Eq. (S-IV.11).
In particular

x1, ty1, t
′

x2, ty2, t
′ ,

〈
φ1(y1, t

′)φ̃1(x1, t)
〉 〈

φ2(y2, t
′)φ̃2(x2, t)

〉
, (S-IV.21)
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and the convolution

x2, ty2, t
′

x1, ty1, t
′

,
∫

dx′1dx′2

∫ t′

t

ds
{
−∂x′1

〈
φ1(y1, t

′)φ̃1(x′1, s)
〉}

×
〈
φ1(x′1, s)φ̃1(x1, t)

〉
U ′(x′1 − x′2)

〈
φ2(y2, t

′)φ̃2(x′2, s)
〉 〈

φ2(x′2, s)φ̃2(x2, t)
〉
, (S-IV.22)

and similarly for the contribution from the third diagram in Eq. (S-IV.20). To calculate (S-IV.22) to leading order in
t′ − t, we use Eqs. (S-III.25) to (S-III.28), in particular expanding U ′(x′1 − x′2) about x1 − x2, finally resulting in

x2, ty2, t
′

x1, ty1, t
′

,
(
∂y1

〈
φ1(y1, t

′)φ̃1(x1, t)
〉)

U ′(x1 − x2)
〈
φ2(y2, t

′)φ̃2(x2, t)
〉 (

(t′ − t) +O
(
(t′ − t)2

))
.

(S-IV.23)

Similarly, for the right-most diagram in (S-IV.20) we obtain,

x1, ty1, t
′

x2, ty2, t
′

,
〈
φ1(y1, t

′)φ̃1(x1, t)
〉
U ′(x2 − x1)

(
∂y2

〈
φ2(y2, t

′)φ̃2(x2, t)
〉) (

(t′ − t) +O
(
(t′ − t)2

))
.

(S-IV.24)

S-IV.2.3 Entropy production

From Eqs. (S-IV.20), (S-IV.21), (S-IV.23) and (S-IV.24) the leading order of the two-particle propagator is〈
φ1(y1, t

′)φ2(y2, t
′)φ̃1(x1, t)φ̃2(x2, t)

〉
=
(
1 + (t′ − t)U ′(x1 − x2)∂y1 + (t′ − t)U ′(x2 − x1)∂y2 +O

(
(t′ − t)2

))
×
〈
φ1(y1, t

′)φ̃1(x1, t)
〉 〈

φ2(y2, t
′)φ̃2(x2, t)

〉
. (S-IV.25)

It follows from Eqs. (9) and (10) that

K(2)
y1,y2,x1,x2

= lim
t′↓t

d

dt′

〈
φ1(y1, t

′)φ2(y2, t
′)φ̃1(x1, t)φ̃2(x2, t)

〉
=
(
D∂2

y1
− w1∂y1 +D∂2

y2
− w2∂y2 + U ′(x1 − x2)∂y1 + U ′(x2 − x1)∂y2

)
δ(y1 − x1)δ(y2 − x2) . (S-IV.26)

and

Ln(2)
y1,y2,x1,x2

= lim
t′↓t

{
ln

(
〈φ1(y1, t

′)φ̃1(x1, t)〉〈φ2(y2, t
′)φ̃2(x2, t)〉

〈φ1(x1, t′)φ̃1(y1, t)〉〈φ2(x2, t′)φ̃2(y2, t)〉

)

+ ln

(
1− U ′(x1 − x2)y1−x1−w1(t′−t)

2D − U ′(x2 − x1)y2−x2−w2(t′−t)
2D +O

(
(t′ − t)2

)
1− U ′(y1 − y2)x1−y1−w1(t′−t)

2D − U ′(y2 − y1)x2−y2−w2(t′−t)
2D +O ((t′ − t)2)

)}
. (S-IV.27)

For suitably small x1 − y1 and x2 − y2 the logarithm can be expanded,

Ln(2)
y1,y2,x1,x2

=(y1 − x1)
w1

D
+ (y2 − x2)

w2

D
− y1 − x1

2D
(U ′(x1 − x2) + U ′(y1 − y2))

− y2 − x2

2D
(U ′(x2 − x1) + U ′(y2 − y1)) + . . . (S-IV.28)
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before taking the derivatives of Eq. (S-IV.26) by an integration by parts in

Ṡint[ρ
(2)
12 ] =

∫
dx1dx2dy1dy2 ρ

(2)
12 (x1, x2)K(2)

y1,y2,x1,x2
Ln(2)

y1,y2,x1,x2
. (S-IV.29)

This integral may be messy but straight-forward to evaluate by integration by parts, avoiding derivatives of the joint

stationary probability density ρ
(2)
12 (x1, x2) = ρ∆r(∆r)/L, Eq. (S-IV.8). It follows that indeed

Ṡint[ρ
(2)
12 ] =

(w1 + w2)2

2D
(S-IV.30)

confirming Eq. (S-IV.9) through field-theoretic means. This concludes the derivation. Reproducing Eq. (S-IV.9)
shows that the field theory provides a straight-forward, systematic path to entropy production even in the presence of
interactions that have complex physical implications. In Suppl. S-V.1.3 we will re-derive Eq. (S-IV.30) more generally.

S-V ENTROPY PRODUCTION OF MULTIPLE PARTICLES

Abstract In the following we derive expressions for the entropy production of a system of N particles. This particle
number is fixed, i.e. particles do not appear or disappear spontaneously. We treat distinguishable and indistinguishable
particles separately. In the case of distinguishable particles, the set of indexed particle coordinates describes a state
fully. In the case of indistinguishable particles, all permutations of the indexed particle coordinates correspond to
the same state. In the case of sparse occupation, in the sense of never finding more than one particle in the same
position, this ambiguity can be efficiently discounted by dividing phase space by N !, known as the Gibbs-factor. Sparse
occupation is commonly found for continuous states, such as particle coordinates in space, which we will assume in
the following.

In the following sections we build up our framework step-by-step from distinguishable, non-interacting particles,
to particles with interactions, to indistinguishable particles, using the derivations for distinguishable particles as a
template. First for N distinguishable and then also for indistinguishable particles, we derive the general principles in
Suppl. S-V.1 and S-V.2 respectively, before considering more concretely independent particles, Suppl. S-V.1.1 and S-V
.2.1, and then generalising to pair-interacting particles, Suppl. S-V.1.2 and S-V.2.2. We apply the present framework
to calculate the entropy production Eq. (S-V.79) of two pair-interacting, distinguishable particles in Suppl. S-V.1.3,
reproducing in a generalised form the ”trawler” system of Suppl. S-IV. We further apply this framework to calculate
the entropy production Eq. (S-V.109) of N indistinguishable, pair-interacting particles in an external potential in
Suppl. S-V.2.3, reproduced without external potential in Eq. (23).

S-V.1 N distinguishable particles

For distinguishable particles, the starting point of the derivation is the entropy production of a single particle Eq. (8),
with the particle coordinates x and y re-interpreted as those of multiple particles, so that, say, components (i−1)d+1
to id of x and y are the components of xi and yi of particle i respectively. The one-point probability or density ρ(x) is
then rewritten as the N -point probability or density ρ(N)(x1,x2, . . . ,xN ) of N distinguishable particles. The constraint
of being distinguishable comes about, because in Eq. (8) each component of x and y refers to distinguishable spatial
directions. This “shortcut” of deriving the expression for the entropy production of N particles can therefore not be
taken in the case of indistinguishable particles, which we treat separately in Suppl. S-V.2.

In the field theory, distinguishability is implemented by having different species of particles, each represented by a

pair of fields φi and φ†i , whereas indistinguisable particles belong to the same species, and are then represented by

a single pair of fields φ and φ†. The propagator of a single particle 〈φ(y, t′)φ̃(x, t)〉 that used to make up the kernel
Ky,x and the log-term Lny,x, Eqs. (9) and (10), correspondingly is to be replaced by the joint propagator of all N

particle coordinates,
〈
φ1(y1, t

′)φ2(y2, t
′) . . . φN (yN , t

′)φ†1(x1, t)φ
†
2(x2, t) . . . φ

†
N (xN , t)

〉
, which contains the sum of all

diagrams with N incoming and N outgoing legs. The entropy production Eq. (8) can then be written as a functional
of the N -point density ρ(N)(x1,x2, . . . ,xN ) as

Ṡ
(N)
int [ρ(N)] =

∑∫
x1,...,xN
y1,...,yN

ρ(N)(x1, . . . ,xN )K(N)
y1,...,yN ,x1,...,xN

{
Ln(N)

y1,...,yN ,x1,...,xN + ln

(
ρ(N)(x1, . . . ,xN )

ρ(N)(y1, . . . ,yN )

)}
, (S-V.1)
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where we allow for a sum over discrete states or an integral over continuous states, with

K(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
∂t′
〈
φ1(y1, t

′) . . . φN (yN , t
′)φ̃1(x1, t) . . . φ̃N (xN , t)

〉
(S-V.2)

and

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
ln

(
〈φ1(y1, t

′) . . . φN (yN , t
′)φ̃1(x1, t) . . . φ̃N (xN , t)〉

〈φ1(x1, t′) . . . φN (xN , t′)φ̃1(y1, t) . . . φ̃N (yN , t)〉

)
. (S-V.3)

The density ρ(N)(x1,x2, . . . ,xN ) disappears from the curly bracket in Eq. (S-V.1) at stationarity. Indeed, in the
following, we focus on the entropy production at stationarity, neglecting the term

∆Ṡ
(N)
int [ρ(N)] =

∑∫
x1,...,xN
y1,...,yN

ρ(N)(x1, . . . ,xN )K(N)
y1,...,yN ,x1,...,xN

{
ln

(
ρ(N)(x1, . . . ,xN )

ρ(N)(y1, . . . ,yN )

)}
. (S-V.4)

In Eq. (S-V.1), the entropy production at stationarity is written as a functional of ρ(N), which may be “supplied
externally”, to emphasise that the entropy production can be thought of as a spatial average of the local entropy
production

σ̇(N)(x1, . . . ,xN ) =
∑∫

y1,...,yN

K(N)
y1,...,yN ,x1,...,xN Ln(N)

y1,...,yN ,x1,...,xN , (S-V.5)

which is a function of x1, . . .xN only, so that

Ṡ
(N)
int [ρ(N)] =

∑∫
x1,...,xN

ρ(N)(x1, . . . ,xN )σ̇(N)(x1, . . . ,xN ) (S-V.6)

is a spatial mean.

The need to know the full ρ(N)(x1, . . . ,xN ) is generally a major obstacle. If N is large then little is generally known
analytically about it in an interacting system. Even numerical or experimental estimates of the ρ(N) are of limited
use, because often the statistics is poor. Below, this obstacle is overcome as it turns out that a theory with n-point
interaction needs at most the (2n−1)-density and, under the assumption of short-rangedness, only the n-point density.
In the field theory, the exact, stationary N -point density ρ(N) is

ρ(N)(x1,x2, . . . ,xN ) = lim
t01,...,t0N→−∞

〈
φ1(x1, t) . . . φN (xN , t)φ̃1(x01, t01) . . . φ̃N (x0N , t0N )

〉
, (S-V.7)

independent of the initialisation x01, . . . ,x0N provided the system is ergodic. The limit of each t0i → −∞ may be
replaced by t→∞.

In principle, the propagator 〈φ1 . . . φ̃N 〉 entering into the entropy production Eq. (S-V.1) via K(N) and Ln(N),
Eqs. (S-V.2) and (S-V.3) contains a plethora of terms. Without perturbative terms, however, it is simply the product
of N single-particle propagators,

〈
φ1(y1, t

′)φ2(y2, t
′) . . . φN (yN , t

′)φ†1(x1, t)φ
†
2(x2, t) . . . φ

†
N (xN , t)

〉
=

N∏
i

〈
φi(yi, t

′)φ̃i(xi, t)
〉

0

,
x1, ty1, t

′ 1

x2, ty2, t
′ 2

...
...

...
xN , tyN , t

′
N

, (S-V.8)

each propagator distinguishable by the particle species as indicated by the additional label on the line. To simplify
the diagrammatics, we will omit many of the labels in the following. Throughout this work, we are not considering
multiple particles of the same of many species. We are also not considering any form of branching, such that all
diagrams have the same number of incoming and outgoing legs, as discussed in Suppl. S-II.5.
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Next, allowing for perturbative terms, such as a single ”blob”, , for example, when particle drift or an external
potential is implemented perturbatively, produces〈

φ1(y1, t
′)φ2(y2, t

′) . . . φN (yN , t
′)φ†1(x1, t)φ

†
2(x2, t) . . . φ

†
N (xN , t)

〉
,

x1y1
1

x2y2
2

...
...

...
xNyN

N

+

x1y1
1

x2y2
2

...
...

...
xNyN

N

+

x1y1
1

x2y2
2

...
...

...
xNyN

N

+ . . .+

x1y1
1

x2y2
2

...
...

...
xNyN

N

+ h.o.t. (S-V.9)

On the right there is a single product of bare propagators without a blob, followed by N terms consisting of a product
of N−1 bare propagators and a single propagator with blob. Higher order terms with multiple bobs do not contribute,
Suppl. S-II.

Simplified notation and example

To facilitate the derivations in the following sections, we introduce a simplified notation and an example at this
stage. Firstly, a plain, bare propagator of particle species i shall be written as

xi, tyi, t
′ i ,

〈
φi(yi, t

′)φ̃i(xi, t)
〉

0
= gi(yi;xi; t

′ − t) = gi (S-V.10)

with Eq. (S-I.28)

lim
t′↓t

〈
φi(yi, t

′)φ̃i(xi, t)
〉

0
= lim

t′↓t
gi(yi;xi; t

′ − t) = δ(yi − xi) = δi (S-V.11)

where we have also introduced the shorthand δi, whose gradient and higher order derivatives we will denote by dashes.
We further denote the time derivative of gi in the limit of t′ ↓ t by

lim
t′↓t

∂t′
〈
φi(yi, t

′)φ̃i(xi, t)
〉

0
= lim

t′↓t
∂t′gi(yi;xi; t

′ − t) = ġi(yi;xi) = ġi . (S-V.12)

The latter derives its properties from the Fokker-Planck operator, Ly, in Eq. (1)

ġi = L̂yiδ(yi − xi) . (S-V.13)

The perturbative, generic transmutation-like terms, such as those with a single blob in Eq. (S-I.30), will be denoted
by

xi, tyi, t
′ i

, fi(yi;xi; t
′ − t) = fi . (S-V.14)

Such a term may contain a complicated dependence on t′ − t, but is generally evaluated to first order in t′ − t. We
denote its time derivative in the limit of t′ ↓ t as

lim
t′↓t

∂t′fi(yi;xi; t
′ − t) = ḟi(yi;xi) = ḟi . (S-V.15)

The notation of gi and fi allows us to succinctly express the full propagator as〈
φi(yi, t

′)φ̃i(xi, t)
〉

= gi + fi +O
(
(t′ − t)2

)
, (S-V.16)

where fi generally vanishes linearly in t′ − t, Suppl. S-II and S-III, so that

lim
t′↓t

fi = 0 . (S-V.17)
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The time derivatives of the full propagators that we will need can be succinctly expressed as

lim
t′↓t

∂t′
〈
φi(yi, t

′)φ̃i(xi, t)
〉

= ġi + ḟi . (S-V.18)

Beyond the narrow definitions above, expanding the propagator can be rather dangerous. For example, it would be
wrong to say that 〈φi(yi, t′)φ̃i(xi, t)〉 = δ(yi − xi) + (t′ − t)(ġi + ḟi) + O

(
(t′ − t)2

)
, because the δ-function is truly

absent from 〈φiφ̃i〉 at t′− t > 0. Also, ġi and ḟi are kernels, generally containing derivatives of δ-functions, unsuitable,
for example, to appear in the logarithm. There, we will need limits of the form limt′↓t fi/gi, such as Eq. (S-V.26). It
is further useful to introduce a succinct notation for gi and fi with reversed arguments

gi = gi(xi;yi; t
′ − t) (S-V.19a)

f i = fi(xi;yi; t
′ − t) . (S-V.19b)

A useful example of gi and ġi is drift-diffusion in d dimension, Eq. (S-III.12),

gi =
θ(t′ − t)

(4πDi(t′ − t))d/2
exp

(
− (yi − xi −wi(t

′ − t))2

4Di(t′ − t)

)
(S-V.20)

with drift velocity wi and diffusion constant Di of particle species i, so that

lim
t′↓t

gi
gi

= exp

(
wi · (yi − xi)

Di

)
. (S-V.21)

A propagator has generally the property Eq. (S-III.28),

gi(yi;xi; t
′ − t) =

∫
ddzi gi(yi; zi; t

′ − s)gi(zi;xi; s− t) (S-V.22)

for any s ∈ (t, t′). For s /∈ (t, t′) the integral vanishes, as each gi enforces causality via a Heaviside-θ function,
Eq. (S-V.20). The bare propagator in Eq. (S-V.20) solves the FPE (1) for individual particle species i with operator

L̂(i)
yi = Di∇2

yi −wi · ∇yi , (S-V.23)

and therefore

ġi =
(
Di∇2

yi −wi · ∇yi

)
δ(yi − xi) = Diδ

′′(yi − xi)−wi · δ′(yi − xi) . (S-V.24)

The perturbative term fi may be another source of drift, either constant or due to an external potential Υi(x). It is
constructed via the convolution Eq. (S-III.24)

xi, tyi, t
′

Υ′i
, fi(yi;xi; t

′ − t)

= (t′ − t)∇yi ·
(

Υ′i

(
xi + yi

2

)
gi(yi;xi; t

′ − t)
)

+ h.o.t. , (S-V.25)

where Υ′i denotes the gradient of Υi with respect to its argument. Of the two terms resulting from the gradient
acting on the product on the right, only the differentiation of gi results in a term that eventually enters in the entropy
production, as discussed after Eq. (S-III.29), Suppl. S-III.2.2. Using Eq. (S-V.10) explicitly, one finds in particular
the ratio fi/gi as it will be useful for the logarithm,

lim
t′↓t

fi
gi

= −yi − xi
2Di

·Υ′i
(
yi + xi

2

)
, (S-V.26)

so that δi limt′↓t fi/gi = 0. In general, we will make the weaker assumption

lim
t′↓t

δi
fi
gi

= 0 , (S-V.27)
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which might be taken most easily as the δi in front of fi/gi can greatly simplify this ratio. As for the kernel,
differentiating Eq. (S-V.25) with respect to t′, Eq. (S-V.15), gives

ḟi = lim
t′↓t
∇yi ·

(
Υ′i

(
xi + yi

2

)
gi(yi;xi; t

′ − t)
)

= ∇yi ·
(

Υ′i

(
xi + yi

2

)
δi

)
= Υ′i

(
xi + yi

2

)
· δ′i , (S-V.28)

similar to Eq. (S-III.31) and discussion thereafter.

Carrying on with the simplified notation, we also need to introduce the notation for pair interactions. The structure
of a pair potential term follows that of the external potential Eq. (S-V.25), to leading order in t′ − t,

xj , tyj , t
′

xi, tyi, t
′

, hij(yi,yj ;xi,xj ; t
′ − t)

= −
∫

dsddzid
dzj gi(zi;xi; s− t) (∇ziUij(zi − zj)) · (∇zigi(yi; zi; t

′ − s)) gj(zj ;xj ; s− t)gj(yj ; zj ; t′ − s)

= (t′ − t) (∇xiUij(xi − xj)) · (∇yigi(yi;xi; t
′ − t)) gj(yj ;xj ; t′ − t) + h.o.t. (S-V.29)

where we have used ”tricks” similar to Eqs. (S-III.25) to (S-III.28). In brief, we may write hij as Eq. (S-IV.23)

hij = hij(yi,yj ;xi,xj ; t
′ − t) = (t′ − t)U ′ij(xi − xj) · g′i(yi;xi; t′ − t)gj(yj ;xj ; t′ − t) + h.o.t. . (S-V.30)

Just like fi, the interaction hij is only ever evaluated to first order in t′ − t and we may therefore be occasionally
found sloppilly dropping higher order terms in their entirety. We denote the limit of the time-derivative of hij by

lim
t′↓t

∂t′hij(yi,yj ;xi,xj ; t
′ − t) = ḣij(yi,yj ;xi,xj) = ḣij , (S-V.31)

and assume that it is δ-like in yj − xj ,

ḣij ∝ δj . (S-V.32)

For the example in Eq. (S-V.30), this means

ḣij = U ′ij(xi − xj) · δ′iδj . (S-V.33)

The interaction term evaluated with inverted arguments is denoted by

hij = hij(xi,xj ;yi,yj ; t
′ − t) , (S-V.34)

corresponding to the notation introduced above. The properties of hij are very similar to those of fi, as it affects the
motion of particle i, otherwise only evaluating the position of particle j.

S-V.1.1 N independent, distinguishable particles

When particles are independent, the propagator factorises,

〈
φ1(y1, t

′) . . . φN (yN , t
′)φ†1(x1, t) . . . φ

†
N (xN , t)

〉
=

N∏
i

〈
φi(yi, t

′)φ̃i(xi, t)
〉

=

N∏
i

gi +

N∑
i

fi

N∏
j 6=i

gj +O
(
(t′ − t)2

)
, (S-V.35)
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so that the kernel becomes, using Eqs. (S-V.11), (S-V.12), (S-V.15) and (S-V.17), or simply Eqs. (S-V.8) and (S-V.18),

K(N)
y1,...,yN ,x1,...,xN =

N∑
i=1

lim
t′↓t

(
∂t′
〈
φi(yi, t

′)φ̃i(xi, t)
〉) N∏

j 6=i

〈
φj(yj , t

′)φ̃j(xj , t)
〉

=

N∑
i

(ġi + ḟi)

N∏
j 6=i

δj (S-V.36)

and the logarithm of the ratio of the propagators,

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
ln

(∏N
i gi +

∑N
i fi

∏N
j 6=i gj +O

(
(t′ − t)2

)∏N
i gi +

∑N
i f i

∏N
j 6=i gj +O ((t′ − t)2)

)
, (S-V.37)

where we have made use of the barred notation Eq. (S-V.19). There is no need to retain terms of order (t′ − t)2,
because if the lower order terms vanish, so does the kernel and the entire logarithm does not contribute. For a
continuous variable, the logarithm is efficiently written as

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t

N∑
i

ln

(
gi
gi

)
+ ln

(
1 +

∑N
i fi/gi

1 +
∑N
i f i/gi

)
. (S-V.38)

If states are discrete, a slightly different approach is needed and Ln(N) is best kept in the form Eq. (S-V.37) as neither
gi/gi nor fi/gi might be well-defined in the limit t′ ↓ t, while δi itself evaluates to either 0 or 1 inside the logarithm.
Henceforth, we will focus entirely on continuous states xi.

As the kernel K(N) is expected to be at most second order in spatial derivatives, Suppl. S-III.2.2, the logarithm

Ln(N), which is odd in y − x, can be expanded in small y − x,

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t

N∑
i

ln

(
gi
gi

)
+

N∑
i

[
fi
gi
− f i
gi

]
, (S-V.39)

so that the local entropy production Eq. (S-V.5) at stationarity, is

σ̇(N)(x1, . . . ,xN ) =

∫
ddy1,...,N


N∑
i

(ġi + ḟi)

N∏
j 6=i

δj

 lim
t′↓t

{
N∑
k

[
ln

(
gk
gk

)
+
fk
gk
− fk
gk

]}
. (S-V.40)

The two sums in this expression produce N2 terms in total. Under the integral, the product
∏N
j 6=i δj forces gk/gk to

converge to 1 and fk/gk to vanish for all k 6= i, Eq. (S-V.27). Of the second sum, only the terms k = i remain, so
that

σ̇(N)(x1, . . . ,xN ) =

∫
ddy1,...,N

N∑
i

(ġi + ḟi)


N∏
j 6=i

δj lim
t′↓t

[
ln

(
gi
gi

)
+
fi
gi
− f i
gi

]
=

N∑
i

σ̇
(N)
i (xi) (S-V.41)

with

σ̇
(N)
i (xi) =

∫
ddyi (ġi + ḟi) lim

t′↓t

[
ln

(
gi
gi

)
+
fi
gi
− f i
gi

]
, (S-V.42)

in fact independent of any other particles around, so that σ̇
(N)
i (xi) = σ̇

(1)
i (xi). The local entropy production is
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therefore the sum of the local entropy production of each particle. Using this expression in Eq. (S-V.6),

Ṡ
(N)
int [ρ(N)] =

∫
ddx1,...,N ρ

(N)(x1, . . . ,xN )

N∑
i

σ̇
(1)
i (xi) (S-V.43)

allows all integrals except the one over xi to be carried out as a marginalisation,

ρ
(N)
i (xi) =

∫
ddx1...i−1,i+1,...,N ρ

(N)(x1, . . . ,xN ) , (S-V.44)

so that ρ
(N)
i (xi) is the density of particle species i at xi and

Ṡ
(N)
int [ρ(N)] =

N∑
i

∫
ddxi ρ

(N)
i (xi)σ̇

(1)
i (xi) , (S-V.45)

confirming the overall entropy production as the sum of single particle entropy productions, i.e. confirming extensivity.
To illustrate Eq. (S-V.42) with an example,

σ̇
(1)
i (xi) =

∫
ddyi

(
Diδ

′′
i −wi · δ′i + Υ′i

(
yi + xi

2

)
· δ′i +

1

2
Υ′′i

(
yi + xi

2

)
δi

)
×
[
wi · (yi − xi)

Di
− yi − xi

Di
·Υ′i

(
yi + xi

2

)]
= −∇2Υi(xi) +

(∇Υ(xi)−wi)
2

Di
(S-V.46)

using Eqs. (S-V.20), (S-V.21), (S-V.24), (S-V.26) and (S-V.28). This result is identical to Eq. (S-III.33). Without

drift, it is easy to show that the spatial average of Eq. (S-V.46) vanishes for a Boltzmann density, ρ
(N)
i (xi) ∝

exp(−Υ(xi)/Di) so that the entropy production vanishes.
Eqs. (S-V.42) and (S-V.45) are the central results of this section. Adding interaction, as done in the next section,

results in more terms, but a remarkably similar structure.

S-V.1.2 N pairwise interacting, distinguishable particles

In the presence of interaction, the n-point propagator acquires additional terms to order t′ − t. Diagrammatically,
such terms to be added to 〈φ1(y1, t

′) . . . φ̃N (xN , t)〉, beyond those shown in Eq. (S-V.9), are of the form Eq. (S-V.29),

〈
φ1(y1, t

′) . . . φ̃N (xN , t)
〉
, . . .+

x2, ty2, t
′

x1, ty1, t
′

x3, ty3, t
′

...
...

...
xN , tyN , t

′

+
x3, ty3, t

′

x1, ty1, t
′

x2, ty2, t
′

...
...

...
xN , tyN , t

′

+ x3, ty3, t
′

x2, ty2, t
′

...
...

...

x1, ty1, t
′

xN , tyN , t
′

+ . . .

(S-V.47)

each particle potentially interacting with any other particle. The underlying vertex, (S-V.29), is not symmetric, as
the force is exerted on a particle attached via a dashed, red leg by the particle attached via undashed legs. The force
is mediated by the dash-dotted line and need not be symmetric. There are therefore N(N − 1) such contributions.

With each of the interaction terms Eq. (S-V.47) being of order t′ − t, Eq. (S-V.30), they add to the propagator
Eq. (S-V.35) in the form

〈
φ1(y1, t

′) . . . φ̃N (xN , t)
〉

=

N∏
i

gi +

N∑
i

fi

N∏
j 6=i

gj +

N∑
i

N∑
j 6=i

hij
∏

k/∈{i,j}

gk +O
(
(t′ − t)2

)
, (S-V.48)

affecting both the kernel K(N), Eq. (S-V.2), and the logarithm Ln(N), Eq. (S-V.3), of the entropy production
Eq. (S-V.1).

The effect of the interaction term hij on the kernel is similar to that of fi, Eq. (S-V.14), as the time derivative of
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hij in the limit t′ ↓ t renders it a kernel on yi,xi. The coordinates yj and xj enter into the amplitude of the force,
but otherwise, under the limit, enter merely into a δ-function, so that, starting from Eq. (S-V.36)

K(N)
y1,...,yN ,x1,...,xN =

N∑
i

(ġi + ḟi)

N∏
j 6=i

δj +

N∑
i

N∑
j 6=i

ḣij

N∏
k/∈{i,j}

δk . (S-V.49)

Because of the δj-like nature of ḣij , each term multiplied by it has yj = xj enforced for all j except j = i.

The logarithm Ln(N) also acquires N(N − 1) new terms, conveniently written in the form

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t

N∑
i

ln

(
gi
gi

)
+ ln

(
1 +

∑N
i fi/gi +

∑N
i

∑N
j 6=i hij/(gigj)

1 +
∑N
i f i/gi +

∑N
i

∑N
j 6=i hij/(gigj)

)
. (S-V.50)

following the steps from Eq. (S-V.37) to (S-V.38). Again, we expand the terms in the rightmost logarithm, so that

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t

N∑
i

ln

(
gi
gi

)
+

N∑
i

[
fi
gi
− f i
gi

]
+

N∑
i

N∑
j 6=i

[
hij
gigj

− hij
gigj

]
, (S-V.51)

producing an expression that is more efficiently analysed. Using Eq. (S-V.49) for K(N) and Eq. (S-V.51) for Ln(N) in
Eq. (S-V.5), we have

σ̇(N)(x1, . . . ,xN ) =

∫
ddy1,...,N


N∑
i

(ġi + ḟi)

N∏
j 6=i

δj +

N∑
i

N∑
j 6=i

ḣij
∏

k/∈{i,j}

δk


× lim
t′↓t


N∑
`

ln

(
g`
g`

)
+

N∑
`

[
f`
g`
− f `
g`

]
+

N∑
`

N∑
m6=`

[
h`m
g`gm

− h`m
g`gm

] , (S-V.52)

which contains all the terms of Eq. (S-V.41), in addition to any terms involving hij , in particular

σ̇
(N)
term 1(x1, . . . ,xN ) =

∫
ddy1,...,N

(
N∑
i

N∑
j 6=i

ḣij
∏

k/∈{i,j}

δk

)

× lim
t′↓t

{
N∑
`

ln

(
g`
g`

)
+

N∑
`

[
f`
g`
− f `
g`

]
+

N∑
`

N∑
m6=`

[
h`m
g`gm

− h`m
g`gm

]}
(S-V.53)

and

σ̇
(N)
term 2(x1, . . . ,xN ) =

∫
ddy1,...,N

(
N∑
i

(ġi + ḟi)

N∏
j 6=i

δj

)
lim
t′↓t


N∑
`

N∑
m 6=`

[
h`m
g`gm

− h`m
g`gm

] , (S-V.54)

so that with the simplifications from Eqs. (S-V.41) and (S-V.42)

σ̇(N)(x1, . . . ,xN ) = σ̇
(N)
term 1(x1, . . . ,xN ) + σ̇

(N)
term 2(x1, . . . ,xN ) +

N∑
i

σ̇
(1)
i (xi) . (S-V.55)

Analysing Eq. (S-V.53) first, the term ḣij
∏
k δk enforces y` = x` for all ` except ` = i, because ḣij is proportional to

δj . As a result, ln(g`/g`) vanishes for all ` 6= i, as do f`/g` and f `/g`, Eq. (S-V.27). For the same reason, the terms

h`m/(g`gm) and h`m/(g`gm) vanish. The only terms in the curly brackets of Eq. (S-V.53) that do not vanish by the

ḣij
∏
k δk pre-factor are therefore ` = i.
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The first set of terms Eq. (S-V.53) thus simplify to

σ̇
(N)
term 1(x1, . . . ,xN ) =

∫
ddy1,...,N

N∑
i

N∑
j 6=i

ḣij
∏

k/∈{i,j}

δk lim
t′↓t

{
ln

(
gi
gi

)
+

[
fi
gi
− f i
gi

]
+
∑
m 6=i

[
him
gigm

− him
gigm

]}

=

N∑
i

N∑
j 6=i

∫
ddyi,j ḣij

{
ln

(
gi
gi

)
+

[
fi
gi
− f i
gi

]
+

[
hij
gigj

− hij
gigj

]}

+

N∑
i

N∑
j 6=i

∑
m/∈{i,j}

∫
ddyi,j,m ḣijδm

[
him
gigm

− him
gigm

]
, (S-V.56)

where the last term contributes only when particles are sufficiently densely packed on the scale of the potential range.
This is because a term of the form

ḣij

[
him
gigm

− him
gigm

]
needs xj to be sufficiently close to xi such that ḣij contributes, and xm to be sufficiently close to xi such that him
and him contribute. In other words, this term contributes only if three particles might be interacting simultaneously
by pairwise interaction [54–56].

The second set of terms, Eq. (S-V.54), can be simplified similarly. Since y` = x` for all ` 6= i, all terms h`m/(g`gm)
and h`m/(g`gm) vanish for all ` 6= i,

σ̇
(N)
term 2(x1, . . . ,xN ) =

∫
ddy1,...,N

N∑
i

(ġi + ḟi)

N∏
j 6=i

δj lim
t′↓t


N∑
m6=i

[
him
gigm

− him
gigm

]
=

N∑
i

N∑
m 6=i

∫
ddyi,m (ġi + ḟi)δm lim

t′↓t

[
him
gigm

− him
gigm

]
. (S-V.57)

This term has a smaller contribution the quicker him drops off when particle i and particle m are far apart. This is
because (ġi + ḟi)δm does not provide extra weight for i and m being close to each other, which is the condition for
him and him in the logarithmic term him/(gigm)− him/(gigm) to contribute.

The local entropy production of interacting, distinguishable particles thus consists of three types of terms: Firstly,

σ̇
(1)
i (xi), Eq. (S-V.42), collects all contributions due to gi and fi only, which are due to the free motion of particle

i and the effect of any external potential on it. Secondly, σ̇
(N)
ij (xi,xj) = σ̇

(2)
ij (xi,xj), which contains those terms of

σ̇
(N)
term 1 and σ̇

(N)
term 2, that depend on the coordinates, xi and xj of only two distinct particles i and j, Eq. (S-V.56) and

Eq. (S-V.57),

σ̇
(2)
ij (xi,xj) =

∫
ddyi,j

(
ḣij lim

t′↓t

{
ln

(
gi
gi

)
+

[
fi
gi
− f i
gi

]
+

[
hij
gigj

− hij
gigj

]}
+ (ġi + ḟi)δj lim

t′↓t

{
hij
gigj

− hij
gigj

})
.

(S-V.58)

It gives the entropy produced by particle i due to its interaction with particle j. Thirdly, a term that depends on
three coordinates, the last term of Eq. (S-V.56) for one triplet i, j, k of distinct particles, that contributes only for
particle systems so dense that more than two particles might be interacting at once,

σ̇
(N)
ijk (xi,xj ,xk) = σ̇

(3)
ijk(xi,xj ,xk) =

∫
ddyi,j,k ḣijδk lim

t′↓t

[
hik
gigk

− hik
gigk

]
. (S-V.59)

This term gives the entropy produced by particle i due to its interaction with particles j and k simultaneously. In
general, the local entropy productions are not invariant under index permutations, as the order of indices determines

the specific role each particle plays. We calculate σ̇
(1)
i , σ̇

(2)
ij and σ̇

(3)
ijk explicitly in the examples studied in Suppl. S-V.1.3

and S-V.2.3.

By construction, an n-point vertex will result in a local entropy production depending on up to 2n − 1 locations,
namely one location of the particle experiencing the displacement, n− 1 locations of other particles interacting with
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it in the kernel and another n − 1 of particles interacting with it in the logarithm. Under the assumption of short-
rangedness, terms depending on more than n locations may be neglected, by assuming that if n particles happen to
be close enough to interact, the probability of finding more than n will be exceedingly low. We are not making any
such assumption in the present work.

With these local entropy productions of N pair-interacting, distinguishable particles in place, the overall entropy
production at stationarity is

Ṡ
(N)
int [ρ(N)] =

N∑
i

∫
ddxi ρ

(N)
i (xi)σ̇

(1)
i (xi) +

N∑
i

N∑
j 6=i

∫
ddxid

dxj ρ
(N)
ij (xi,xj)σ̇

(2)
ij (xi,xj)

+

N∑
i

N∑
j 6=i

∑
k/∈{i,j}

∫
ddxid

dxjd
dxk ρ

(N)
ijk (xi,xj ,xk)σ̇

(3)
ijk(xi,xj ,xk) , (S-V.60)

where we have introduced various marginalisations of the density, similar to Eq. (S-V.44),

ρ
(N)
ij (xi,xj) =

∫ N∏
`/∈{i,j}

ddx` ρ
(N)(x1,x2, . . . ,xN ) (S-V.61a)

ρ
(N)
ijk (xi,xj ,xk) =

∫ N∏
`/∈{i,j,k}

ddx` ρ
(N)(x1,x2, . . . ,xN ) . (S-V.61b)

The two-point density ρ
(N)
ij (xi,xj) is the joint density of particle species i at xi and species j at xj , and similarly for

the three-point density ρ
(N)
ijk (xi,xj ,xk). These densities are invariant under permutations of the indices, say

ρ
(N)
ij (xi,xj) = ρ

(N)
ji (xj ,xi) and ρ

(N)
ijk (xi,xj ,xk) = ρ

(N)
kij (xk,xi,xj) . (S-V.62)

Because the local entropy production Eqs. (S-V.42), (S-V.58) and (S-V.59) depends only on a very reduced set of
coordinates, the others can be integrated out. These marginalisations, Eqs. (S-V.44) and (S-V.61), are what makes
the calculation of the entropy production feasible in practice. Having to know the full N -point density, according
to Eq. (S-V.6) is normally an insurmountable obstacle in a theory and marred by significant experimental errors.

Eq. (S-V.60), however, makes this task doable. Denoting by x
(q)
i the particle locations of species i in measurement q

of Q measurements, with the help of Eq. (S-V.60) the entropy production may then be estimated by

Ṡ
(N)
int =

1

Q

Q∑
q


N∑
i

σ̇
(1)
i (x

(q)
i ) +

N∑
i

N∑
j 6=i

σ̇
(2)
ij (x

(q)
i ,x

(q)
j ) +

N∑
i

N∑
j 6=i

∑
k/∈{i,j}

σ̇
(3)
ijk(x

(q)
i ,x

(q)
j ,x

(q)
k )

 , (S-V.63)

replacing, for example, ρ
(N)
2 (x1,x2) by the experimental estimate (1/Q)

∑Q
q

∑N
i1,i2=1
i1 6=i2

δ(x1 − x
(q)
i1

)δ(x2 − x
(q)
i2

).

For drift-diffusive particles in pair and external potentials, the expressions derived in this section are exact. The
qualification to drift-diffusion and potentials is necessary, only in so far as asumptions have been made about the
properties of gi, fi and hij under various limits, such as Eqs. (S-V.11), (S-V.17), (S-V.27) and (S-V.32).

This concludes the derivations for distinguishable particles, with the crucial results Eq. (S-V.45) drawing on
Eq. (S-V.42), and Eq. (S-V.60) drawing on Eqs. (S-V.42), (S-V.58) and (S-V.59). In the next example, we re-derive
the results of Suppl. S-IV using the present, general framework, and in Suppl. S-V.2, we extend this framework to
indistinguishable particles.

S-V.1.3 Example: Entropy production of two pair-interacting distinguishable drift-diffusion particles without external potential

To illustrate the framework outlined in Suppl. S-V.1.2, we use the example of two pair-interacting drift-diffusion
particles on a circle of circumference L, which is calculated “from first principles” in Suppl. S-IV, where it is found
that the entropy production is Ṡint = (w1 + w2)2/(2D), if the particles drift with velocities w1 and w2 respectively
and both diffuse with diffusion contant D. This result ought to be independent of the details of the pair potential U ,
given the simple physical reasoning in Suppl. S-IV.1, as we confirm in the following.
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To calculate the entropy production on the basis of Eq. (S-V.60), we need the local entropy productions, σ̇
(1)
i (xi),

Eq. (S-V.42), and σ̇
(2)
ij (xi, xj), Eq. (S-V.58), but in the absence of a third particle, not σ̇

(3)
ijk. We further need the

obviously uniform one-point densities

ρ
(2)
1 (x1) = ρ

(2)
2 (x2) = 1/L (S-V.64)

at stationarity, Suppl. S-IV, and the two-point densities ρ
(2)
12 and ρ

(2)
21 . As it turns out, these do not need to be known

explicitly in terms of the interaction potential U(x1−x2). Firstly, by translational invariance, the two-point densities
factorise into a uniform distribution and a distribution of the distance r = x1 − x2,

ρ
(2)
12 (x1, x2) = ρ

(2)
21 (x2, x1) =

1

L
ρr(x1 − x2) . (S-V.65)

Secondly, assuming Newton’s third law, so that the force acting on one particle U ′12(x1 − x2) = U ′(x1 − x2) is the
negative of the force acting on the other particle, U ′21(x2−x1) = −U ′(x1−x2) [14, 57] and further assuming that the
potential is even so that U ′ is odd, we can write the equations of motion

ẋ1 = w1 − U ′(x1 − x2) + ξ1(t) (S-V.66a)

ẋ2 = w2 − U ′(x2 − x1) + ξ2(t) (S-V.66b)

where U(r) = kr2/2 in Suppl. S-IV, but shall be left unspecified here. We can then, thirdly, determine the equation
of motion of the distance r because the right hand sides of Eq. (S-V.66) are solely a function of r,

ṙ =
(
w1 − w2 − 2U ′(r)

)
+ ξ1(t)− ξ2(t) , (S-V.67)

so that r diffuses with diffusion constant 2D and drifts with velocity w1−w2− 2U ′(r), giving rise to a Fokker-Planck
equation of the density ρr(r, t) of r,

ρ̇r = −∂r
((
w1 − w2 − 2U ′(r)

)
ρr

)
+ 2D∂2

rρr , (S-V.68)

which determines the probability current jr via ρ̇r = −D∂rjr up to a constant. A simplifying assumption that allows
simple physical reasoning to reproduce the results below, Suppl. S-IV.1, is that one particle ends up towing the other,
implying that the particle distance r does not increase indefinitely. We thus demand that jr vanishes at stationarity,

0 = −jr = 2ρ′r(r) +
1

D

(
2U ′(r)− (w1 − w2)

)
ρr(r) , (S-V.69)

which, in the presence of drift w1 −w2 implies that the potential U(r) is binding. The differential Eq. (S-V.69) is all
we need to know about ρr(r) in the following.

To calculate the local entropy production σ̇
(1)
i (xi) on the basis of Eq. (S-V.42), we require fi and gi. Without an

external potential and with the drift being dealt with non-perturbatively, fi vanishes and gi is given by Eq. (S-V.20),
so that, from Eqs. (S-V.21) and (S-V.24),

ġi = Dδ′′i − wiδ′i , (S-V.70a)

ln

(
gi
gi

)
=

(yi − xi)wi
D

, (S-V.70b)

where dashed δ-functions are differentiated with respect to their argument, δi = δ(yi − xi), and therefore

σ̇
(1)
i (xi) =

∫
dyi (Dδ′′i − wiδ′i)

(yi − xi)wi
D

=
w2
i

D
. (S-V.71)

The interaction term is equally easily determined, Eqs. (S-V.30) and (S-V.33) give

ḣij = U ′(xi − xj)δ′iδj (S-V.72)
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and by Eq. (S-III.27)

hij = −yi − xi
2D

gigjU
′(xi − xj) + h.o.t. . (S-V.73)

Using Eqs. (S-V.72) and (S-V.73) in the local entropy production in Eq. (S-V.58),

σ̇
(2)
ij (xi, xj) =

∫
dyi,j

(
U ′(xi − xj)δ′iδj

{
(yi − xi)wi

D
+

[
−yi − xi

2D
U ′(xi − xj) +

xi − yi
2D

U ′(yi − yj)
]}

+ (Dδ′′i − wiδ′i)δj
[
−yi − xi

2D
U ′(xi − xj) +

xi − yi
2D

U ′(yi − yj)
])

= −U
′(xi − xj)
D

(
2wi − U ′(xi − xj)

)
− U ′′(xi − xj) . (S-V.74)

We proceed to calculate the entropy production by using σ̇
(1)
i (xi), Eq. (S-V.71), and σ̇

(2)
ij (xi, xj), Eq. (S-V.74), in

Eq. (S-V.60),

Ṡ
(2)
int [ρ(2)] =

∫ L

0

dx1 ρ
(2)
1 (x1)σ̇

(1)
1 (x1) +

∫ L

0

dx2 ρ
(2)
2 (x2)σ̇

(1)
1 (x2)

+

∫ L

0

dx1dx2

{
ρ

(2)
12 (x1, x2)σ̇

(2)
12 (x1, x2) + ρ

(2)
21 (x2, x1)σ̇

(2)
21 (x2, x1)

}
(S-V.75)

Given that ρ
(2)
1 (x1) = ρ

(2)
2 (x2) = 1/L is constant, the first two integrals give simply∫ L

0

dx1 ρ
(2)
1 (x1)σ̇

(1)
1 (x1) +

∫ L

0

dx2 ρ
(2)
2 (x2)σ̇

(1)
1 (x2) =

w2
1

D
+
w2

2

D
, (S-V.76)

which is the entropy production of two, independent drift-diffusion particles. The remaining double integrals are∫ L

0

dx1dx2

{
ρ

(2)
12 (x1, x2)σ̇

(2)
12 (x1, x2) + ρ

(2)
21 (x2, x1)σ̇

(2)
21 (x2, x1)

}
= −2

∫ L

0

dx1dx2 ρ
(2)
12 (x1, x2)

{
U ′(x1 − x2)

D

(
w1 − w2 − U ′(x1 − x2)

)
+ U ′′(x1 − x2)

}
(S-V.77)

where we have used that U ′ is odd and U ′′ is even. Inserting Eq. (S-V.65) and using ρr(U
′2/D−(w1−w2)U ′/D−U ′′) =

Dρ′′r − (w1 − w2)2ρr/(4D) from Eq. (S-V.69) finally gives∫ L

0

dx1dx2

{
ρ

(2)
12 (x1, x2)σ̇

(2)
12 (x1, x2) + ρ

(2)
21 (x2, x1)σ̇

(2)
21 (x2, x1)

}
= − (w1 − w2)2

2D
. (S-V.78)

The sum of Eqs. (S-V.76) and (S-V.78) gives the total entropy production Eq. (S-V.75),

Ṡ
(2)
int [ρ(2)] =

w2
1

D
+
w2

2

D
− (w1 − w2)2

2D
=

(w1 + w2)2

2D
, (S-V.79)

where the two-particle contributions σ̇
(2)
12 and σ̇

(2)
21 cancel some of the entropy generated by the free case. Eq. (S-V.79)

is indeed identical to the result Eq. (S-IV.30) in Suppl. S-IV. As opposed to the calculation there, the present result
holds for all even, reciprocal [14, 57] interaction potentials as outlined before Eqs. (S-V.66). As particles drag each
other by attraction or push each other by repulsion, provided only the potential prevents a current in r = x1 − x2

Eq. (S-V.69), the entropy production is independent of its details.

S-V.2 N indistinguishable particles

Assuming that no particle position is occupied more than once, the integral over the phase space occupied by
N indistinguishable particles is correctly captured by the N -fold integral over the particle coordinates, as if the
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particles were distinguishable, but dividing by N ! to compensate for the N !-fold degeneracy and thus overcounting
of equivalent states. Using the Gibbs factor 1/N ! to account for indistinguishability is allowable whenever multiple
occupation of the same position has vanishing measure, an assumption which we refer to as sparse occupation. Sparse
occupation re-establishes distinguishability at equal times, so that indistinguishability needs to be accounted for only
in transitions: Observing two particles at y1,y2 at one time and x1,x2 a moment later allows for the transitions
(y1,y2) → (x1,x2) or (y1,y2) → (x2,x1). Obviously, observables, such as the entropy production, must reflect
that particles are indistinguishable and thus must be invariant under permutations of coordinates, but this apparent
simplification is difficult to implement.

The difference between distinguishable and indistinguishable particles becomes apparent already at the level of

the N -point density ρ
(N)
N (x1,x2, . . . ,xN ), which for indistinguishable particles is invariant under permutations of the

arguments and is normalised differently. While the N -point density ρ(N)(x1,x2, . . . ,xN ) of distinguishable particles
equals the probability density to find the different particles i at their respective locations xi, for indistinguishable
particles it is the number density of any particle at x1, any other particle at x2 and so on. As long as all coordinates
are distinct, there is no need to re-introduce distinguishability in order to satisfy the requirement of locating another
particle.

Similar to Eq. (S-V.7), the density ρ(N) can be determined elegantly on the basis of the field theory with one pair
of fields, φ and φ†. At stationarity, we introduce

ρ(N)
n (x1, . . . ,xn) = lim

t01,...,t0N→−∞

〈
φ(x1, t) . . . φ(xn, t)φ

†(x01, t01) . . . φ†(x0N , t0N )
〉
, (S-V.80)

as the n-point number density of N particles of the same species. Fixing n − 1 particle coordinates and considering
only the dependence of the n-point density on xn, the latter might “encounter” any of the “undetermined, other”
N − (n− 1) particles in an integral, so that integrating over xn produces∫

ddxn ρ
(N)
n (x1, . . . ,xn) =

(
N − (n− 1)

)
ρ

(N)
n−1(x1, . . . ,xn−1) . (S-V.81)

This marginalisation property is owed to the density accounting for distinct particles, Eq. (S-V.80), as it constructed
using n annihilator operators, which each contribute with a local particle number count and then remove (annihilate)
one particle locally, so that it cannot contribute towards further counts.

Using Eq. (S-V.81) repeatedly gives

ρ
(N)
1 (x1) =

1

(N − 1)!

∫
ddxN,N−1,...,2 ρ

(N)
N (x1,x2, . . . ,xN ) , (S-V.82)

and generally

ρ(N)
n (x1, . . . ,xn) =

1

(N − n)!

∫
ddxN,N−1,...,n+1 ρ

(N)
n (x1,x2, . . . ,xN ) (S-V.83)

to be contrasted with the one-point density of distinguishable particles, Eq. (S-V.44).

For the special case of n = 1 in Eq. (S-V.81) we may define ρ
(N)
0 (∅) = 1, so that∫

ddx ρ
(N)
1 (x) = N and

∫
ddxN,...,1 ρ

(N)
N (x1, . . . ,xN ) = N ! . (S-V.84)

The integral over the phase space of occupation numbers then suggestively produces

1

N !

∫
ddxN,...,1 ρ

(N)
N (x1, . . . ,xN ) = 1 . (S-V.85)

Propagators in a Doi-Peliti field theory, designed for occupation-number states, naturally implement indistin-
guishability. Unless different species are specified in the form of different fields, an expression such as Eq. (S-V.80)
produces diagrams of all possible permutations of incoming and outgoing coordinates by virtue of Wick’s theorem.
The propagators used in Eqs. (9) and (10) are therefore naturally the transition probability densities of occupation
number states and the expression for the entropy production rate only needs to account for the phase space being
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that of indistinguishable particles,

Ṡ
(N)
int [ρ

(N)
N ] =

1

(N !)2

∫
ddx1,...,Nddy1,...,N ρ

(N)
N (x1, . . . ,xN )K(N)

y1,...,yN ,x1,...,xN

×

{
Ln(N)

y1,...,yN ,x1,...,xN + ln

(
ρ

(N)
N (x1, . . . ,xN )

ρ
(N)
N (y1, . . . ,yN )

)}
(S-V.86)

with K(N) and Ln(N) given by the expressions for indistinguishable particles corresponding to Eqs. (S-V.2) and (S-V.3)
respectively,

K(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
∂t′
〈
φ(y1, t

′) . . . φ(yN , t
′)φ̃(x1, t) . . . φ̃(xN , t)

〉
(S-V.87)

and

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
ln

(
〈φ(y1, t

′) . . . φ(yN , t
′)φ̃(x1, t) . . . φ̃(xN , t)〉

〈φ(x1, t′) . . . φ(xN , t′)φ̃(y1, t) . . . φ̃(yN , t)〉

)
. (S-V.88)

The joint propagator used here accounts for strictly distinct particles as we characterise the transition probabilities
of all particles. Allowing for the same particle to be counted several times gives rise to terms containing factors of
δ(yi − yj) and fewer creator fields. That these terms do not feature in the propagators above is consistent with the
assumption of sparse occupation that allows the Gibbs factor 1/N ! to account for indistinguishability when integrating
over all phase space.

In keeping with Eqs. (S-V.5) and (S-V.6), we can write Eq. (S-V.86) at stationarity as a weighted average,

Ṡ
(N)
int [ρ

(N)
N ] =

1

N !

∫
ddx1,...,N ρ

(N)
N (x1, . . . ,xN )σ̇(N)(x1, . . . ,xN ) (S-V.89)

with the local entropy production σ̇(N) for independent particles at stationarity defined as

σ̇(N)(x1, . . . ,xN ) =
1

N !

∫
ddy1,...,N K(N)

y1,...,yN ,x1,...,xN Ln(N)
y1,...,yN ,x1,...,xN . (S-V.90)

To ease notation, in the following we use the notation of gi, fi, etc., as introduced in Eq. (S-V.10), for example〈
φ(yi, t

′)φ̃(xi, t)
〉

0
= gi = g(yi;xi; t

′ − t) , (S-V.91)

adopted for indistinguishable particles by dropping the index from the fields. However, all gi now are the same
function evaluated for different variables, namely yi and xi, as suggested by the final g(yi;xi; t

′ − t) in Eq. (S-V.91)
not carrying an index i. The same applies to fi, hij and the corresponding functions with inverted arguments yi and
xi, for example

f i = f(xi;yi; t
′ − t) . (S-V.92)

S-V.2.1 N independent, indistinguishable particles

The N -particle joint propagator
〈
φ(y1, t

′)φ(y2, t
′) . . . φ(yN , t

′)φ̃(x1, t)φ̃(x2, t) . . . φ̃(xN , t)
〉

immediately factorises in
the absence of interactions. However, rather than resulting in a single product of N propagators like Eq. (S-V.8), it
is the sum of the N ! distinct products of propagators, each accounting for a particular pairing of Doi-shifted creator
and annihilator fields,〈

φ(y1, t
′)φ(y2, t

′) . . . φ(yN , t
′)φ̃(x1, t)φ̃(x2, t) . . . φ̃(xN , t)

〉
=
〈
φ(y1, t

′)φ̃(x1, t)
〉 〈

φ(y2, t
′)φ̃(x2, t)

〉
. . .
〈
φ(yN , t

′)φ̃(xN , t)
〉

+
〈
φ(y2, t

′)φ̃(x1, t)
〉 〈

φ(y1, t
′)φ̃(x2, t)

〉
. . .
〈
φ(yN , t

′)φ̃(xN , t)
〉

+ . . . (S-V.93)
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As a result of Eq. (S-V.93), both K(N) and Ln(N) contain N ! times as many terms as in the case of distinguishable

particles. As far as K(N) is concerned, Eq. (S-V.87), this seems to barely complicate the expression for the entropy
production, because the permutation of the fields can be undone by a permutation of the dummy variables of the

integral it is sitting in, so that, say yi is paired with xi in each and every of the propagators appearing in K(N)

according to Eq. (S-V.93). As Ln(N) and the logarithm of the joint density both are invariant under permutations of

the yi, and the joint density ρ
(N)
N (x1, . . . ,xN ) in the pre-factor is not even affected by such a permutation of the yi,

there are N ! such permutations, all equal and therefore cancelling the factor of 1/N ! in Eq. (S-V.90), so that

σ̇(N)(x1, . . . ,xN ) =

∫
ddy1,...,N


N∑
i=1

(ġi + ḟi)

N∏
j 6=i

δj

Ln(N)
y1,...,yN ,x1,...,xN , (S-V.94)

similar to Eq. (S-V.36).

Using Eq. (S-V.93) in Eq. (S-V.88) to calculate the logarithm, we have

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t

{
ln
(〈

φ(y1, t
′)φ̃(x1, t)

〉 〈
φ(y2, t

′)φ̃(x2, t)
〉
. . .
〈
φ(yN , t

′)φ̃(xN , t)
〉

+
〈
φ(y2, t

′)φ̃(x1, t)
〉 〈

φ(y1, t
′)φ̃(x2, t)

〉
. . .
〈
φ(yN , t

′)φ̃(xN , t)
〉

+ . . .
)

− ln
(〈

φ(x1, t
′)φ̃(y1, t)

〉 〈
φ(x2, t

′)φ̃(y2, t)
〉
. . .
〈
φ(xN , t

′)φ̃(yN , t)
〉

+
〈
φ(x2, t

′)φ̃(y1, t)
〉 〈

φ(x1, t
′)φ̃(y2, t)

〉
. . .
〈
φ(xN , t

′)φ̃(yN , t)
〉

+ . . .
)}

. (S-V.95)

We will use Eq. (S-V.11) in the form that any of the propagators 〈φ(yi, t
′)φ̃(xj , t)〉 in the limit of t′ ↓ t will vanish if

i 6= j because yi = xj for i 6= j is not enforced by the δ-functions in the kernel and therefore yi = xj has vanishing
measure under the integral. As the kernel enforces yi = xj only for i = j, under the integral the logarithm simplifies
just like in Eq. (S-V.41). Because all the gi and fi are the same function for indistinguishable particles just with
different arguments yi and xi, the local entropy production of indistinguishable particles corresponding to Eq. (S-V.41)

is invariant under permutations of the arguments x1, . . . ,xN and the single-particle local entropy production σ̇
(N)
i (xi)

is the same for any particle i, i.e. σ̇
(N)
i (xi) = σ̇

(1)
1 (xi), Eq. (S-V.42). Inserting σ̇(N) in Eq. (S-V.41) into the entropy

production Eq. (S-V.89), and using that σ̇(N) and ρ
(N)
N are invariant under permutations of x1, . . . ,xN , we obtain

Ṡ
(N)
int [ρ

(N)
N ] =

N

N !

∫
ddx1,...,N ρ

(N)
N (x1, . . . ,xN )σ̇

(1)
1 (x1) . (S-V.96)

Using Eq. (S-V.82) to marginalise ρ
(N)
N over x2, . . . ,xN finally gives

Ṡ
(N)
int [ρ

(N)
N ] =

∫
ddx1 ρ

(N)
1 (x1)σ̇

(1)
1 (x1) , (S-V.97)

which is N times the entropy production of a single particle, provided ρ
(N)
1 (x1) = Nρ

(1)
1 (x1), Eq. (S-V.84). This is not

necessarily the case, in particular not when “the system is not ergodic” or not stationary, for example when particles

are trapped or their position is not equilibrated. If the density, however, obeys ρ
(N)
1 (x1) = Nρ

(1)
1 (x1) we can write

Ṡ
(N)
int [ρ

(N)
N ] = N

∫
ddx1 ρ

(1)
1 (x1)σ̇

(1)
1 (x1) . (S-V.98)

For indistinguishable particles, we use the notation σ̇
(N)
n (x1, . . . ,xn) for the local entropy production depending on n

locations in an N particle system.



S-40

S-V.2.2 N pairwise interacting, indistinguishable particles

In the following, we generalise the result in Eq. (S-V.97) to interacting, indistinguishable particles. In the case of
interaction, neither density nor propagator factorise. However, just as in the discussion of interacting distinguishable
particles, the propagator can still be expanded systematically, very much along the same lines as Eq. (S-V.47), with
the added benefit of having to draw only on one type of interaction,

hij = h(yi,yj ;xi,xj ; t
′ − t) , (S-V.99)

which is, similar to g and f , Eqs. (S-V.91) and (S-V.92), the same function h for any two particles with positions as
indicated. Using the propagator in Eq. (S-V.48) as the starting point, we may write

〈
φ(y1, t

′) . . . φ̃(xN , t)
〉

=

N∏
i

g(yi;xi; t
′ − t) +

N∑
i

f(yi;xi; t
′ − t)

N∏
j 6=i

g(yj ;xj ; t
′ − t)

+

N∑
i

N∑
j 6=i

h(yi,yj ;xi,xj ; t
′ − t)

∏
k/∈{i,j}

g(yk;xk; t′ − t) + perm. +O
(
(t′ − t)2

)
, (S-V.100)

where ”perm.” refers to distinct permutations of the coordinates, as seen earlier in Eq. (S-V.93). For example, the
term

∏
i g exists in N ! distinct permutations: One being the first term in Eq. (S-V.100),

∏
i gi, and the remaining

containing at least two terms such as g(y1;x2; t′ − t), that do not adhere to the pattern of the shorthand gi =
g(yi,xi; t

′ − t). When xi = yi is enforced for all i except one, all these additional permutations essentially vanish
under the integral, as discussed below. The term

∑
i f
∏
j g exists in N(N !) distinct permutations, as f(yi;xj ; t

′ − t)
exists in N2 permutations and the remaining

∏
j g in a further (N−1)!. The term involving h, correspondingly comes

in N(N − 1)(N !) permutations.

Eq. (S-V.100) enters the kernel with a time-derivative and a limit t′ ↓ t, producing N(N !) distinct terms of the

form (ġ+ ḟ)
∏
δ, as seen in the case without interaction, Eq. (S-V.94). Permuting the y1, . . . ,yN , so that every yi is

paired with xi produces N ! times the same N terms involving (ġ + ḟ) and N(N − 1) terms involving h, specifically,

σ̇(N)(x1, . . . ,xN ) =

∫
ddy1,...,N


N∑
i=1

(ġi + ḟi)

N∏
j 6=i

δj +

N∑
i=1

N∑
j 6=i

ḣij

N∏
k/∈{i,j}

δk

Ln(N)
y1,...,yN ,x1,...,xN , (S-V.101)

similar to Eq. (S-V.94).

As in the previous section, the logarithmic term is a priori unaffected by any of the permutations, because being
based on the propagator it is invariant under any permutations among the yi and among the xi. However, the same
argument as in the previous section applies to all terms that the logarithm is comprised of, namely that in each one
which demands yi to be arbitrarily close to xj , this needs to be enforced by a δ-function in the kernel, as it otherwise
happens only with vanishing measure. All terms entering the logarithm make this demand in N − 1 of N pairs of yi
and xj , as h(yk,y`;xi,xj ; t

′ − t) is δ-like in y` − xj . What remains of the logarithm in Eq. (S-V.101) is therefore

Ln(N)
y1,...,yN ,x1,...,xN = lim

t′↓t
ln

(∏N
` g` +

∑N
` f`

∏N
m6=` gm +

∑N
`

∑N
m6=` h`m

∏N
n/∈{`,m} gn + . . .∏N

` g` +
∑N
` f `

∏N
m 6=` gm +

∑N
`

∑N
m 6=` h`m

∏N
n/∈{`,m} gn + . . .

)
, (S-V.102)

with the terms in . . . vanishing as some of the proximities are not enforced. After dividing out
∏N
` g`/g` from

the argument of the logarithm, the resulting expression for σ̇(N)(x1, . . . ,xN ) in Eq. (S-V.90) is identical to that for
distinguishable particles, Eq. (S-V.52). The factor of 1/N ! in Eq. (S-V.86), and the factorial factors produced by
marginalisation, Eq. (S-V.81), further simplify the total entropy production. Moreover, since the functions g, f and
h are the same for all particles, the resulting expressions simplify considerably.

Focussing firstly on the overall structure, using σ̇(N)(x1, . . . ,xN ) in Eq. (S-V.89) with the same simplifications
as carried out on Eq. (S-V.52) via Eq. (S-V.55) to Eq. (S-V.59) in the case of distinguishable particles gives, for
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indistinguishable particles,

Ṡ
(N)
int [ρ

(N)
N ] =

1

N !

∫
ddx1,...,N ρ

(N)
N (x1, . . . ,xN )


N∑
i

σ̇
(1)
i (xi) +

N∑
i

N∑
j 6=i

σ̇
(2)
ij (xi,xj) +

N∑
i

N∑
j 6=i

∑
k/∈{i,j}

σ̇
(3)
ijk(xi,xj ,xk)


(S-V.103)

with the local entropy production σ̇
(1)
i (xi), σ̇

(2)
ij (xi,xj) and σ̇

(3)
ijk(xi,xj ,xk) as defined in Eqs. (S-V.42), (S-V.58), and

(S-V.59) respectively. Eq. (S-V.103) is essentially Eq. (S-V.60) but with a different notion of the N -point density

ρ
(N)
N , which can ber further simplified by marginalisation, Eqs. (S-V.81), (S-V.82) and (S-V.83). Finally, because the

functions gi, fi and hij depend on the particle index only in as far as the coordinates are concerned, the summations
above can all be carried out and the local entropy productions reduce to

σ̇
(1)
1 (x1) =

∫
ddy1 (ġ1 + ḟ1) lim

t′↓t

[
ln

(
g1

g1

)
+
f1

g1
− f1

g1

]
(S-V.104a)

σ̇
(2)
2 (x1,x2) =

∫
ddy1,2 ḣ12 lim

t′↓t

{
ln

(
g1

g1

)
+

[
f1

g1
− f1

g1

]
+

[
h12

g1g2
− h12

g1g2

]}
+ (ġ1 + ḟ1)δ2 lim

t′↓t

{
h12

g1g2
− h12

g1g2

}
(S-V.104b)

σ̇
(3)
3 (x1,x2,x3) =

∫
ddy1,2,3 ḣ12δ3 lim

t′↓t

[
h13

g1g3
− h13

g1g3

]
, (S-V.104c)

using a slightly more suitable notation, where the subscript of σ̇
(N)
n refers to the number of particles considered rather

than the particle index, as in Eqs. (S-V.42), (S-V.58) and (S-V.59). With these definitions, the integrated entropy
production is then

Ṡ
(N)
int [ρ(N)] =

∫
ddx1 ρ

(N)
1 (x1)σ̇

(1)
1 (x1) +

∫
ddx1,2 ρ

(N)
2 (x1,x2)σ̇

(2)
2 (x1,x2) +

∫
ddx1,2,3 ρ

(N)
3 (x1,x2,x3)σ̇

(3)
3 (x1,x2,x3) ,

(S-V.105)

neatly cancelling the factorial pre-factor.

S-V.2.3 Example: Entropy production of N pair-interacting indistinguishable particles in an external potential

The example of a drift-diffusion particle in an external potential has been introduced in Suppl. S-V.1, in particular
Eq. (S-V.46): An example for g is shown in Eq. (S-V.20), ġ in Eq. (S-V.24), f in Eq. (S-V.25), ḟ in Eq. (S-V.28), h

in Eq. (S-V.30) and ḣ in Eq. (S-V.33). We will use those for σ̇(1,2,3), Eqs. (S-V.104), in Eqs. (S-V.105). The local

entropy production σ̇
(1)
1 is given by Eqs. (S-V.46) with the same velocity and diffusion for all particles,

σ̇
(1)
1 (x1) = −Υ′′(x1) +

1

D
(w −Υ′(x1))

2
, (S-V.106)

which is due to self-propulsion with velocity w in the external potential Υ(x), while σ̇
(2)
2 from Eq. (S-V.104b) is, using

Eq. (S-V.28) and (S-V.72),

σ̇
(2)
2 (x1,x2) =

2

D
U ′(x1 − x2) ·

(
Υ′(x1)−w

)
+

1

D
U ′2(x1 − x2)− U ′′(x1 − x2) (S-V.107)

which originates from pair interactions, and equals Eq. (S-V.74) when Υ ≡ 0 and all drifts are the same. Finally, σ̇
(3)
3

in Eq. (S-V.104c) is, using Eq. (S-V.73),

σ̇
(3)
3 (x1,x2,x3) =

∫
ddy1,2,3 U

′(x1 − x2) · δ′1δ2δ3
[
−U ′(x1 − x3) · y1 − x1

2D
+ U ′(y1 − y3) · x1 − y1

2D

]
=

1

D
U ′(x1 − x2) · U ′(x1 − x3) , (S-V.108)
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showing that, for this choice of interactions, σ̇
(3)
3 has a distinctive role for particle 1 while particles 2 and 3 play the

same role.
Collecting all terms to construct the entropy production of N pair-interacting, indistinguishable particles according

to Eq. (S-V.105) from σ̇
(1)
1 in Eq. (S-V.106), σ̇

(2)
2 in Eq. (S-V.107) and σ̇

(3)
3 in Eq. (S-V.108), then gives

Ṡ
(N)
int [ρ(N)] =

∫
ddx1 ρ

(N)
1 (x1)

(
−Υ′′(x1) +

1

D
(w −Υ′(x1))

2
)

+

∫
ddx1,2 ρ

(N)
2 (x1,x2)

(
2

D
U ′(x1 − x2) · {Υ′(x1)−w}+

1

D
U ′2(x1 − x2)− U ′′(x1 − x2)

)
+

∫
ddx1,2,3 ρ

(N)
3 (x1,x2,x3)

(
1

D
U ′(x1 − x2) · U ′(x1 − x3)

)
. (S-V.109)

If U is even, then the term ρ
(N)
2 (x1,x2)U ′(x1−x2) ·w in the second line of Eq. (S-V.109) changes sign under exchange

of the dummy variables x1 and x2 and thus drops out under integration. The corresponding term projecting on Υ′(x1)
rather than w does not posses the same symmetry. Eq. (S-V.109) with external potential vanishing, Υ ≡ 0, and even
pair potential, U ′(x1 − x2) = −U ′(x2 − x1), is Eq. (23) in the main text.

No entropy production of pair-interacting, indistinguishable, diffusive particles without drift

As a sanity check of Eq. (S-V.109), we calculate the entropy production of N pair-interacting, indistinguishable
particles, which are subject to diffusion but not to drift, assuming stationarity. In this case, the N -point density is
Boltzmann,

ρ
(N)
N (x1,x2, . . . ,xN ) = N−1e−H/D with H =

N∑
i=1

Υ(xi) +

N∑
i=1

N∑
j=i+1

U(xi − xj) (S-V.110)

and suitable normalisation N−1, such that Eq. (S-V.84) holds. Without drift the entropy production should vanish.
The Hamiltionian written in the form Eq. (S-V.110) assumes an even pair-potential U , but this does not amount to
a loss of generality, because odd contributions can be shown to cancel in a Hamiltonian invariant under permutations
of indeces, as is the case for indistinguishable particles. To show that the entropy production with Eq. (S-V.110)

vanishes, we use that the integral of ∇2
x1
ρ

(N)
N over all space vanishes by Gauss’ theorem, and calculate it explicitly,

0 =
D

(N − 1)!

∫
ddx1,...,N ∇2

x1
ρ

(N)
N (x1,x2, . . . ,xN ) (S-V.111a)

=

∫
ddx1 ρ

(N)
1 (x1)

{
−Υ′′(x1) +

Υ′2(x1)

D

}
+

∫
ddx1,2 ρ

(N)
2 (x1,x2)

{
−U ′′(x1 − x2) +

U ′2(x1 − x2)

D
+

2Υ′(x1)

D
· U ′(x1 − x2)

}
+

∫
ddx1,2,3 ρ

(N)
3 (x1,x2,x3)

U ′(x1 − x2)

D
· U ′(x1 − x3) , (S-V.111b)

where we have used Eqs. (S-V.81), (S-V.82) and (S-V.83) and the symmetry of the density under permutation of the
arguments. By inspection we find that Eq. (S-V.111b) is Eq. (S-V.109) at w = 0. In other words, the stationary
entropy production of N identical particles, subject to a pair- and an external potential, vanishes in the absence
of drift, provided the particles are Boltzmann-distributed. Of course, this is what we expect from simple physical
reasoning, but the present calculation offers an important sanity check in particular for the somewhat unusual 3-point
term.

S-VI CONTINUOUS PARTICLE NUMBER APPROXIMATION OF BIASED HOPPING ON A RING

Abstract Particle systems may be described by a continuous density field φ(x, t), whose temporal evolution is
approximated by a conservative Langevin equation with additive noise. That is the case, for instance, in Active
Model B [21], a far-from-equilibrium extension of Hohenberg and Halperin’s Model B [58]. In this section we study



S-43

Figure S-VI.1: Cartoon of an M -state Markov process. Periodic states i = 1, 2, . . . ,M are reached by transitions with rate α from i− 1
and with rate β from i+ 1.

a simple, exactly solvable system under the same approximation: N particles hopping on a ring-lattice of M states.
Our results show that, although spatial correlations are captured correctly, the framework devised in [21] produces an
unphysical entropy production, as it is not extensive in the particle number N , but instead extensive in the number
of states M , consistent with those being the degrees of freedom of the description in terms of φ(x, t).

The outline of our derivation is as follows: In S-VI.1 we define the model and state its basic properties, such as
average particle number, variance and entropy production, in S-VI.2 we introduce its continuum particle number
description with additive noise, which finally produces the Onsager-Machlup functional Eq. (S-VI.26), in S-VI.3 and
S-VI.4. We derive the correlation function of the Fourier modes of the density field description in S-VI.5 and validate
it, before deriving the entropy production under this approximation as outlined in [21], Eq. (S-VI.37) in S-VI.6.

S-VI.1 Biased hopping on a ring

In the following we consider N independent particles subject to an M -state Markov process. The basic setup is
sketched in Figure S-VI.1. States i = 1, 2, . . . ,M are connected periodically, so that i = 1 may be thought of i = M+1
and i = M as i = 0. Transitions from i to i+ 1, clockwise moves, happen with rate α and transitions from i to i− 1,
anti-clockwise moves, with rate β, implying M > 2 to render the setup and the notion of clockwise and anti-clockwise
meaningful. No other transitions are allowed. The Markovian degree of freedom is φi(t), the number of particles on
site i at time t. As a count per site, we may refer to φi(t) as a density.

The density and its variance at stationarity are

φi := lim
t→∞

〈φi(t)〉 =
N

M
, and lim

t→∞

〈
φ2
i (t)

〉
− 〈φi(t)〉 2 =

N(M − 1)

M2
, (S-VI.1)

by considering the stationary occupation of any site as a N -times repeated Bernoulli process with success probability
1/M .

The entropy production of a single particle can be determined by elementary considerations [16] to be (α−β) ln(α/β)
so that for N particles,

Ṡint = N(α− β) ln

(
α

β

)
for M > 2 (S-VI.2)

at stationarity, distinguishable or not. In the framework discussed in the present work, this is immediately confirmed
by Eqs. (26) and Suppl. S-I.4.

S-VI.2 Continuum particle number description

Following the approach in [21, 46, 59], we consider the particle density field φi(t) of state i as a function of time
t as a continuum, φi ∈ R. Like Eq. (1) in [21], the density field φi(t) can be considered as being governed by a
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conservative Langevin equation with additive noise such as

φ̇φφ(t) = (αS + βST)φφφ(t) +

√
fα

N

M
Sξα(t) +

√
fβ

N

M
STξβ(t) (S-VI.3)

where the column vector φφφ(t) has components φi(t). The matrices

S =


−1 0 0 · · · 0 1

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1

 (S-VI.4)

and its transpose ST, denoted by T, result in a conservative movement of particles from site i to i+ 1 and from i to
i − 1 respectively. These matrices possess a number of very useful algebraic properties, discussed in Suppl. S-VI.3.
To ease notation, we further introduce

σ := αS + βST , (S-VI.5)

for the deterministic part of the Langevin Eq. (S-VI.3). Without the noise the Langevin equation is the exact master
equation of a single particle. Eq. (S-VI.3) may thus be seen as an attempt to, somewhat ad hoc, express the master
equation on the particle count, by adding to the single particle dynamics a noisy ”bath”.

We have introduced a fudge-factor f in (S-VI.3) as a way to trace the noise amplitude through the calculation. It

also provides a mechanism to adjust the noise amplitude a posteriori. The amplitude ∝
√
N/M is otherwise chosen

to reflect that the variance of the noise is proportional to the mean, as for a Poisson distribution. We will verify below
that this choice results in the density field φφφ governed by Eq. (S-VI.3) reproducing the single site variance Eq. (S-VI.1)
for f = 1. The two independent noise vectors ξα(t) and ξβ(t) have vanishing mean and correlation matrices〈

ξα(t)ξTα(t′)
〉

= δ(t− t′)1 and
〈
ξβ(t)ξTβ (t′)

〉
= δ(t− t′)1 (S-VI.6)

with ξα and ξβ column vectors and 1 an M ×M identity matrix. The noise vectors can, of course, be summed into
a single noise term,

ζ(t; f) =

√
fα

N

M
Sξα(t) +

√
fβ

N

M
STξβ(t) (S-VI.7)

with vanishing mean, 〈ζ(t; f)〉 = 0, and correlator

〈
ζ(t; f)ζT(t′; f)

〉
= f

N

M
(α+ β)SSTδ(t− t′) . (S-VI.8)

As shown in Suppl. S-VI.3, one eigenvalue of S, say λ0, vanishes, which means that the corresponding 0-mode of
ζ has no variance. To write a path-density P[ζ(t; f)] for the noise in the current form, we would need to regularise
this correlation matrix, as well as the deterministic part of Eq. (S-VI.3). This is straight-forwardly doable, however,
somewhat messy. To avoid this distraction, we change to a basis which allows the removal of the 0-mode from the
path-densities altogether.

With the noise defined above and the deterministic part of the original Langevin Eq. (S-VI.3) effectively captured
by σ, Eq. (S-VI.5), it may finally be written as

φ̇φφ(t) = σφφφ(t) + ζ(t; f) . (S-VI.9)

Eq. (S-VI.3) thus contains two approximations: Firstly, φφφ ∈ RM is a continuous degree of freedom that evolves
without any constraints other than the conservation imposed by S and ST, even though it is introduced as a local,
instantaneous particle count, which requires φi(t) ∈ N0. Secondly, the additive noise has a (squared) amplitude
proportional to the steady state N/M , rather than the instantaneous occupation number φi(t). There is no easy
remedy for either of these two approximations, which ultimately will produce the wrong entropy production.
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S-VI.3 Properties of the lattice derivative matrix S

The matrix S as defined in Eq. (S-VI.4) plays the rôle of a spatial derivative and, unsurprisingly, has corresponding
Fourier-mode eigenvectors, which we define as

eµ =


exp(̊ıkµ · 1)
exp(̊ıkµ · 2)
exp(̊ıkµ · 3)

...
exp(̊ıkµ ·M)

 (S-VI.10)

where the · is there to emphasise the multiplication in the exponent. The coefficients kµ = 2πµ/M parameterise
the M distinct modes µ = 0, 1, 2, . . . ,M − 1 and, in fact eµ = eM+µ. By definition, the jth component of eµ is
(eµ)j = exp(̊ıkµj). Writing Sij = −δMi,j + δMi−1,j with

δMi,j =

{
1 for i = j mod M
0 otherwise

(S-VI.11)

the eigenvalues are easily determined, Seµ = λµeµ with

λµ = e−̊ıkµ − 1 (S-VI.12)

and, correspondingly, STeµ = λ∗µeµ, so that the eigenvectors are orthogonal,

eµ · eν = e†−µeν = MδMµ+ν,0 . (S-VI.13)

The eigenvalue of the 0-mode vanishes, λM = λ0 = 0, and we will henceforth consider only µ = 1, 2, . . . ,M − 1.

From Eq. (S-VI.4) it follows by elementary calculation that

SST = −
(
S + ST

)
= STS , (S-VI.14)

i.e. S and ST commute. The eµ are also eigenvectors of σ introduced in Eq. (S-VI.5), as σeµ = pµeµ with

pµ = αλµ + βλ∗µ = −(α+ β)(1− cos(kµ)) + ı̊(β − α) sin(kµ) , (S-VI.15)

which has negative realpart for all kµ as kµ 6= 0 for µ 6= 0. The eigenvectors eµ can be used to re-express ζ(t; f) and

φφφ(t) in terms of a more suitable basis, omitting the undesired 0-mode, say, ζ(t; f) = 1
M

∑M−1
µ=1 eµzµ(t; f), or simply

ζ(t; f) =


ζ1(t; f)
ζ2(t; f)
ζ3(t; f)

...
ζM (t; f)

 =
1

M
E


z1(t; f)
z2(t; f)
z3(t; f)

...
zM−1(t; f)

 with E =
(
e1 e2 e3 . . . eM−1

)
(S-VI.16)

so that the M × (M − 1) matrix E is composed from the column vectors e1, . . . , eM−1, and is ”essentially unitary”,
because

E† = E∗T =


e†1
e†2
e†3
...

e†M−1

 obeys E†E = M1 , (S-VI.17)

with 1 an (M − 1)× (M − 1) identity matrix, as e∗µ = e−µ by construction. Of course, not being square E cannot be
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unitary and indeed EE† looks rather grim, Eq. (S-VI.33). It follows that

z(t; f) = E†ζ(t; f) . (S-VI.18)

By definition, the elements (E)iµ = (eµ)i = exp(̊ıkµi) depend only on the product iµ and therefore E is symmetric,
(E)iµ = (E)µi, for 1 ≤ i, µ ≤M − 1. One can further show that

SE = EΛ with Λ =


λ1 0

λ2

λ3

. . .

0 λM−1

 so that E†ST = Λ∗E† (S-VI.19)

and similarly

STE = EΛ∗ so that E†S = ΛE† and E†σ =
(
αΛ + βΛ∗

)
E† . (S-VI.20)

The noise correlator of z is determined by Eqs. (S-VI.8) and (S-VI.18) by direct computation〈
z(t; f)z†(t′; f)

〉
= fN(α+ β)δ(t− t′)ΛΛ∗ (S-VI.21)

using E†SSTE = MΛΛ∗. As opposed to the correlator of ζ, Eq. (S-VI.8), the matrix on the right can be inverted and
thus be used as the basis of an Onsager-Machlup functional.

While the noise ζ is fully determined by the noise z, as neither has a 0-mode, the density field φφφ can have any
0-mode, only that it does not evolve in time and therefore is not to be considered a degree of freedom. We therefore
introduce the modes aµ(t) of φφφ with an extra parameter φφφ = φe0 that is constant in time and has identical components,
so that

∂tφφφ = 0 = σφφφ , (S-VI.22)

and φ = N/M , Eq. (S-VI.1). Any M -component density field may then be written in terms of the background φφφ and
an (M − 1)-component vector a(t) of modes,

φφφ(t) = φφφ+
1

M
Ea(t) , so that a(t) = E†φφφ(t) . (S-VI.23)

With this in place, we can write the Langevin Eq. (S-VI.9) in diagonal form, by acting from the left with E†,

ȧ(t) =
(
αΛ + βΛ∗

)
a(t) + z(t; f) . (S-VI.24)

Via Eq. (S-VI.23), Eq. (S-VI.24) provides an alternative equation of motion of the present Langevin dynamics that
is more easily analysed.

S-VI.4 The Onsager-Machlup functional

The path density of the noise z follows from its correlator Eq. (S-VI.21) as

P[z(t; f)] ∝ exp

(
− 1

2fN(α+ β)

∫
dt z†(t; f)(ΛΛ∗)−1z(t; f)

)
(S-VI.25)

and since a path z(t) is uniquely determined from that of a and vice versa via Eq. (S-VI.24), z = ȧ− (αΛ + βΛ∗)a,
the Onsager-Machlup functional follows immediately, P[a(t)] ∝ exp(G[a(t)]) with

G[a(t)] = − 1

2fN(α+ β)

∫
dt
(
ȧ− (αΛ + βΛ∗)a

)†
(ΛΛ∗)−1

(
ȧ− (αΛ + βΛ∗)a

)
, (S-VI.26)
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as the Jacobian is constant. By Fourier transforming the modes,

a(ω) =

∫
dt eı̊ωta(t) and a(t) =

∫
dω e−̊ıωta(ω) (S-VI.27)

with dω =dω /(2π), the Onsager-Machlup functional becomes

G[a(ω)] = − 1

2fN(α+ β)

∫
dω a†(ω)

(̊
ıω1 + αΛ + βΛ∗

)†
(ΛΛ∗)−1

(̊
ıω1 + αΛ + βΛ∗

)
a(ω) . (S-VI.28)

Because all matrices in Eq. (S-VI.28) are diagonal the following calculations are greatly simplified. For now, we will
proceed with an infinite time domain, even when the calculation of the entropy production in Section S-VI.6 will
require a finite time interval to be taken to infinity systematically.

S-VI.5 Correlator of the density’s Fourier modes a(t)

Above, it was argued that the distribution P[z] in Eq. (S-VI.25) produces correlator Eq. (S-VI.21). Correspondingly,
the distribution P[a] with functional in Eq. (S-VI.26) produces the correlation matrix

〈
a(ω)a†(ω′)

〉
= fN(α+ β)

[
(̊ıω1 + αΛ + βΛ∗)

†
(ΛΛ∗)−1 (̊ıω1 + αΛ + βΛ∗)

]−1

δ̄ (ω − ω′) . (S-VI.29)

To invert the matrix in square brackets we use that Λ is diagonal, so[
(̊ıω1 + αΛ + βΛ∗)

†
(ΛΛ∗)−1 (̊ıω1 + αΛ + βΛ∗)

]
µν

= δµ,ν(−̊ıω+αλ∗µ+βλµ)(λ∗µ)−1λ−1
µ (̊ıω+αλµ+βλ∗µ) . (S-VI.30)

Using Eq. (S-VI.15) to write λµ in terms of the poles pµ, and a∗µ(ω) = aM−µ(−ω) via Eqs. (S-VI.23) and (S-VI.27),
the correlators become

〈aµ(ω)aν(ω′)〉 =
fN(α+ β)λ∗µλµδ

M
µ+ν,0δ̄ (ω + ω′)

(−̊ıω − pµ)(̊ıω − p∗µ)
(S-VI.31)

bound to be real, as every factor is multiplied by its complex conjugate. Both brackets in the denominator are of the
form −̊ıω plus a number that has a strictly positive real part, as <(pµ) < 0, Eq. (S-VI.15).

The inverse Fourier transform of Eq. (S-VI.31) is

〈aµ(t)aν(t′)〉 =

∫
dωdω′ e−̊ı(ωt+ω

′t′) 〈aµ(ω)aν(ω′)〉

= fNδMµ+ν,0 exp

(
1

2
(α+ β)(λµ + λ∗µ)|t− t′|

)
exp

(
1

2
(α− β)(λµ − λ∗µ)(t− t′)

)
, (S-VI.32)

using λµλ
∗
µ = −(λµ + λ∗µ) with <(λi + λ∗i ) = −2(1− cos(kµ)) < 0.

To validate this result, we may calculate the equal-time correlation matrix

〈
(φφφ(t)−φφφ)(φφφ(t)−φφφ)T

〉
= M−2E

〈
a(t)a†(t)

〉
E† =

fN

M2


M − 1 −1

M − 1
. . .

−1 M − 1

 (S-VI.33)

via Eq. (S-VI.23) and the matrix on the far right being EE†, with the diagonal confirming the variance Eq. (S-VI.1)
with f = 1. Closer inspection, for example using a Doi-Peliti field theory, shows that the correlator in Eq. (S-VI.32),
is exact if f = 1. In other words, the setup Eq. (S-VI.3) captures two-point correlations exactly.
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The entropy production below draws on the symmetric equal-time derivative, which we write here simply as

〈aµ(t)ȧν(t)〉 =
1

2
lim
t′↓t

d

dt′
〈aµ(t)aν(t′)〉 +

1

2
lim
t′↑t

d

dt′
〈aµ(t)aν(t′)〉

= −1

2
fNδMµ+ν,0(α− β)(λµ − λ∗µ) . (S-VI.34)

S-VI.6 Entropy production

Using Seifert’s scheme [60], the entropy production of the M -state Markov process with path density P([φφφ];T ),
Eq. (S-VI.26), for a path of duration T is

Ṡint = lim
T→∞

1

T

〈
ln

(
P([φφφ];T )

P([φφφR];T )

)〉
= lim
T→∞

1

T

〈
G([a];T )− G([aR];T )

〉
, (S-VI.35)

where the constant Jacobian to transform φφφ to a cancels in the fraction inside the logarithm and G([a];T ) is the
Onsager-Machlup functional in Eq. (S-VI.26) with integration limits 0 and T . In Eq. (S-VI.35), aR(t) denotes the

reverse path, aR(t) = a(T − t) so that the Onsager-Machlup functional G([aR];T ) can be evaluated by replacing ȧR(t)
by −ȧ(T−t). The ensemble average in Eq. (S-VI.35) needs to be taken over all allowed, accessible field configurations,

but with φφφ being continuous and φφφ fixed this poses no restriction. In constructing the Onsager-Machlup functional,
a decision had been made implicitly or explicitly about the Itô vs. Stratonovich nature of the derivative ȧ. Avoiding
ambiguity, we use in the following the symmetrised version of the derivative, Eq. (S-VI.34), so that

Ṡint = lim
T→∞

1

T

∫ T

0

dt
1

fN(α+ β)

(〈
ȧ(t)†(ΛΛ∗)−1(αΛ + βΛ∗)a(t)

〉
+
〈(

(αΛ + βΛ∗)a(t)
)†

(ΛΛ∗)−1ȧ(t)
〉)

= lim
T→∞

1

T

∫ T

0

dt
(α− β)2

2(α+ β)

M−1∑
µ=1

(
2− λµ

λ∗µ
−
λ∗µ
λµ

)
. (S-VI.36)

The fudge-factor f has cancelled because it is the amplitude of the correlator and thus appears with its inverse in the
action functional. It is obvious that this type of cancellation will occur in any bilinear action. Gone with the fudge
factor is also the particle number N .

Otherwise, Eq. (S-VI.36) shows all the characteristics of the entropy production rate of drift-diffusion: It is quadratic
in the hopping bias, α− β, inversely proportional in the total hopping rate α+ β, which plays the rôle of a diffusion
constant, and the integrand is independent of t, as the system is in the stationary state, so that the integral simply

cancels the normalisation 1/T . With some algebraic manipulation, λµ/λ
∗
µ+λ∗µ/λµ = −2 cos kµ and

∑M−1
µ=1 cos kµ = −1

for M ≥ 2 as cos k0 = 1, Eq. (S-VI.36) becomes

Ṡint =
(α− β)2

α+ β
(M − 2) for M ≥ 2 . (S-VI.37)

This is the final result for the entropy production on the basis of the path probability from the Langevin equation
(S-VI.3) of the continuum particle number description. Taking the continuum limit M →∞ while maintaining finite
drift and diffusion results in Eq. (S-VI.37) diverging.

Comparing Eq. (S-VI.37) to the exact expression Eq. (S-VI.2), immediately reveals some problems: While the
logarithm might be recovered by making α− β small, the linearity in the particle number N of the exact expression
is replaced by a linearity in the number of states M in Eq. (S-VI.37). It generally bears all the hallmarks of M rather
than N being the number of degrees of freedom entering into this expression of the entropy production. One cannot
argue that this M is a proxy for the particle number N , as it is not multiplied by the expected particle number per
site φ. As a result Ṡint of Eq. (S-VI.37) diverges as M →∞, irrespective of whether φ is held constant or not in the
limit. In short, Eq. (S-VI.37) produces the wrong result, consistent with this expression capturing the states as the
degrees of freedom, rather than the particles.

It may not come as a surprise that an approximation scheme that changes the phase space from countable and
discrete to uncountable and continuous shows a very different entropy production. In this light, it appears to be
anything but a coarse-graining, to turn the N individual degrees of freedom of positions i ∈ {1, 2, . . . ,M}, that
evolve stochastically in time, to the vastly larger phase space of a density φi : {1, 2, . . . ,M} → R, similarly evolving
stochastically in time.
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In principle, the path probabilities and thus the entropy production in the present framework can be derived exactly
on the basis of Dean’s multiplicative noise [32]. However, this results in the Onsager-Machlup functional carrying an
inverse of the field, which generally poses a challenge, certainly a difficult one in the presence of interaction. Even when
that is overcome, the expectation in Eq. (S-VI.35) would need to be taken over the set of allowed field configurations,
which now would be sums of δ-functions.

This concludes the present derivation. Apparently, in this simple setup, the Langevin Eq. (S-VI.3) and the sub-
sequent Onsager-Machlup functional Eq. (S-VI.26) capture the fluctuations correctly, but cannot be used as the
starting point to construct the observable that determines the entropy production from the path probabilities, be-
cause they consider φφφ as continuous degrees of freedom subject to additive noise, whereas in the original process
the components of φφφ are non-negative integers, φi ∈ N0. The relationship between Langevin equation and entropy
production as exploited in [21] is in principle exact. But by assuming that the Langevin equation that approxim-
ates the dynamics can also be used to approximate the entropy production, it seems the wrong degree of freedom is
subsequently considered as the one generating entropy.
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