
Statistical analysis of the drying pattern of coffee

J. Cheraghalizadeh,1 S. Tizdast,1 N. Valizadeh,2 S. Doostdari,1 and M. N. Najafi1

1Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
2Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416, Iran

In this study, we examine the dried droplet patterns of coffee with and without sugar through
experimental means. We utilize statistical analysis to study the rough surface that forms after the
stain dries, and the amount of sugar is regulated by adjusting the mass denoted by m. Along
with observing the formation of the coffee ring, we investigate the Marangoni effect in the system
and analyze the statistics of the cracks. For sufficiently large values of m, the exponents converge
towards those of the Gaussian free field (GFF), where the loop fractal dimension is 3

2
, and the loop

and gyration radius distribution exponents are τl = 7
3

and τr = 3, respectively. Using multifractal
analysis (MA) on the mass configuration of the dried pattern, we provide numerical evidence that
the mass-fractal dimension is 1.76 ± 0.04 for the case without sugar, and this value decreases with
increasing sugar. This phenomenon can be explained by the droplet becoming more hydrophilic,
thereby producing sparser spatial patterns that are consistent with the contact angle analysis.
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I. INTRODUCTION

Fluids that exhibit a unique mechanical response to
applied stress or strain as a result of the geometrical con-
straints of phase coexistence are referred to as complex
fluids. Non-Newtonian fluids, which are a significant type
of complex fluids, are characterized by a non-linear rela-
tionship between the flow rate and shear stress. Com-
plex fluids are typically composed of mixtures contain-
ing two phases, which can include solid-liquid, solid-gas,
liquid-gas, or liquid-liquid. The solid-liquid and liquid-
liquid phases often consist of suspensions or solutions of
macromolecules. The dynamics of complex fluids, partic-
ularly with regards to drying, have long posed a challenge
in the field of fluid dynamics. One notable example is
blood, which is a complex colloidal fluid possessing non-
Newtonian rheological properties. Recently, the analysis
of drying patterns in blood has shown potential applica-
tions in various fields, including biology and nanostruc-
ture [1]. Several studies have examined the morphology
of serum and blood plasma, as well as the complete evap-
oration of human blood [2]. Drying patterns in the blood
can serve as a diagnostic tool for diseases [1]; for exam-
ple, the dried pattern of serum differs between healthy
and ill individuals. Brutin et al. [3] made an important
observation while investigating the dried pattern of blood
droplets, in which they observed various regions with dif-
ferent statistical properties of cracks. The formation of
patterns in dried blood droplets [4, 5] and blood pools
[6, 7] has been extensively studied, see [8–10]. When
a liquid evaporates around a droplet, an outward fluid
flow is required to maintain a wet surface, resulting in
particle accumulation in the contact line. According to
[11], the pinning in the contact line is caused by the
accumulation of solid components in that area, known
as self-pinning. According to [12], contact line pinning
and evaporation are adequate conditions for ring forma-
tion. Further investigations have explored the Marangoni

flow, evaporation, and wettability as underlying mecha-
nisms behind the drying pattern from various perspec-
tives [8–10, 13, 14]. Similar patterns have been observed
in nanofluids [5] and polymers [8]. The statistical analysis
of cracks in the dried pattern may aid in the diagnosis of
blood-related illnesses such as anemia [3] and thalassemia
[1]. A concentration-driven transition was reported to oc-
cur when blood is diluted [15].
Complex fluids with boundaries, like coffee, exhibit
Marangoni flow, a convection flow driven by surface ten-
sion gradient in the droplet. Several studies have fo-
cused on exploring how the evaporation of thin films
and slender droplets can be leveraged for particle self-
assembly and surface patterning, which is analogous to
the coffee ring problem. The dynamics and drying pat-
terns in complex fluids such as blood and coffee crucially
depend on the role of the pinning centers. Deegan et
al. [11, 12, 16] made a significant contribution to un-
derstanding the self-pinning phenomena of coffee stain
rings and the resulting dried pattern of complex droplets.
They attributed the formation of ring-like stains to an
outward flow that occurs during the drying dynamics of
the droplet. The outward capillary flow causes the ring
mass to increase following a power-law, which is antici-
pated to impact processes such as printing, washing, and
coating [17, 18]. Along with the roughness or heterogene-
ity of the underlying surface, which affects the pinning
properties, the Marangoni effect is also critical to the
formation properties and the pinned ring. Additionally,
it has been demonstrated that an inward flow towards
the center of the droplet can also be induced, depending
on the evaporative driving force [19]. The evaporative
mass flux is determined by the contact angle and is pre-
dicted to diverge at the contact line. In [19], the problem
was addressed by applying a lubrication approximation
to the Navier-Stokes equations, and several evaporative
flux modes were examined. In [20], an analytical model
for the outward flux and contact line formation was pro-

ar
X

iv
:2

21
1.

12
13

2v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

1 
Ju

l 2
02

3



2

posed, which was based on the coexistence of liquid and
deposit phases. The model’s outcomes were found to
be universal, meaning they were not reliant on any free
or fitting parameters. Solvent evaporation from a capil-
lary bridge produced a novel pattern of concentric rings
with a gradient, as reported in [21]. The non-uniform
evaporation process creates a temperature gradient and,
consequently, a surface tension gradient that generates a
Marangoni flow. The flow direction is determined by the
relative conductivities of the substrate and liquid [22].
Hu and Larson made a significant discovery that the for-
mation of coffee rings is not solely dependent on a pinned
contact line, but also requires the inhibition of Marangoni
flow. This flow is responsible for reversing the deposition
of coffee rings, meaning that thermal Marangoni flows
move the deposits from the edge to the center, result-
ing in the formation of a coffee ring at the center [23].
The elimination of coffee-rings which has a lot of applica-
tions in coatings in printing [17, 18, 24], and biology [25],
is possible via tuning the shape of the suspended parti-
cles [26], as well as the circulating radial Marangoni flows
(Marangoni eddy) [27].
Various patterns can form on a substrate under differ-
ent experimental conditions when the solute particles in
a solution remain attached to the solid surface due to
colloidal droplet evaporation. Several systems have been
found to exhibit similar behaviors, including CoPt3 par-
ticles with a bilayer structure [28], liquid crystal pattern
formation in drying droplets of DNA [29], the effect of
substrate conductivity [22], the minimal size of the coffee-
rings [30], the reverse coffee-ring effect by laser-induced
differential evaporation [31], spiral collide deposition [32],
and drying pattern of colloidal suspensions on the in-
clined substrates [33]. This problem is fascinating from
several viewpoints, especially considering its relevance to
printing [17, 18]. For instance, the dynamics of the pro-
cess have been investigated in studies such as [32, 34–
40]. Additionally, a phase diagram for the self-assembly
of colloidal particles in the dried pattern was proposed
in [41]. Although there is a vast body of literature on
the dried pattern of coffee, the statistics of cracks within
the bulk of the dried droplets have received little atten-
tion. In our study, we not only investigate the classical
statistics of level lines, but also the density statistics of
deposited collides in the dried coffee droplets using mul-
tifractal analysis. Sugar is an external parameter that
affects the concentration of coffee. Our research demon-
strates that this system exhibits robust scale-invariant
properties. The exponents associated with global statis-
tical measures, such as gyration radius and loop lengths,
remain unchanged despite variations in the sugar con-
centration. However, the multifractal properties of the
system are dependent on the amount of sugar present.

A. The drying pattern of colloidal complex fluids

The process of droplet drying is a complex and dy-
namic phenomenon in which solute evaporation and
Marangoni flow simultaneously play a dominant role.
Other parameters that also impact the process include
surface tension, substrate wettability, droplet contact an-
gle, and hydrodynamic interactions. The unique char-
acteristics of coffee particles in water can be attributed
to their polar properties. The coffee molecules have hy-
drophilic heads that dissolve in water and hydrophobic
tails that repel water. When added to water, the hy-
drophilic heads dissolve while the hydrophobic tails re-
main separate from the water. As a result of this dual
state, the molecules accumulate on the surface of the wa-
ter, effectively reducing the surface tension [42]. The
shape that droplets assume when placed on a surface is
a physical manifestation of surface tension and varies ac-
cording to the level of surface tension present. Droplets
may either spread out and wet the surface or remain as a
distinct droplets depending on the surface tension. This
shape is determined by minimizing the surface energy at
the three boundaries: the interface between the droplet’s
fluid and the surrounding air, between the fluid and the
solid surface, and between the air and the solid surface.
The formation of the contact angle (the angle between
the droplet’s tangential line and the substrate at the con-
tact line) is a useful criterion for differentiating between
different phases and is directly related to the surface’s
wettability. On hydrophilic surfaces, the contact angle is
smaller than π

2 , while on hydrophobic surfaces, it is larger
than π

2 . In the asymptotic limit, the contact angle ap-
proaches 0 for hydrophilic surfaces and π for hydrophobic
surfaces [42].
During the formation of a coffee ring, particle evapora-
tion is a hydrodynamic process that disperses solid par-
ticles along a horizontal line. Once the liquid evaporates,
the precipitated ring sediment remains on the substrate,
containing all the solvents. The droplets create the nec-
essary conditions for the formation of the ring, which
begins with the pinning of the contact line. The pinned
line is a fixed-line located at the boundary of the droplet,
separating the dry and wet regions, beyond which parti-
cles cannot move. The accumulation of solid particles in
the contact line, along with any irregularities they cre-
ate, results in pinning, preventing the contact line from
moving and causing a ring to form at the pinned line,
and evaporation begins from this ring. The Marangoni
effect, which is linked to the surface tension gradient in
the interface between two fluids, is a phenomenon that
directly concerns the minimization of surface energy. In
our study, the Marangoni effect plays a crucial role in the
movement of colloidal particles and involves mass trans-
fer due to the surface tension gradient at the boundary
between two fluids. The velocity of the particles can be
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expressed as follows: [43–45]

u =
(γ1 − γ2)

2
3

(µρ)1/3r1/3
, (1)

where, γ1,2 represents the surface tension of fluids 1 and
2 (assuming γ1 > γ2), while ρ and µ represent the mass
density and viscosity of fluid 1. The diameter of the grow-
ing stain is denoted by r. During the evaporation of the
liquid and the formation of a coffee ring, the Marangoni
effect occurs and causes colloidal particles to be trans-
ported to the outer edge of the droplet. The phenomenon
of self-pinning, also known as contact line pinning, was
suggested as a primary factor in the hydrodynamic mech-
anism that leads to the formation of rings. This occurs as
the collides are transported toward the contact line [12].
The reason why a droplet on a vertical surface can resist
the force of gravity is due to the contact line being an-
chored to the irregularities present on the host substrate.
There is an anticipated correlation between the statis-
tics of the contact line and self-pinning and the contact
angle. This is because both of these phenomena are asso-
ciated with the propensity of colloidal particles to stick to
the substrate. In this paper, we examine another crucial
question concerning the statistics of particles deposited
within the bulk of the droplet, which may contain ran-
domly formed cracks. Such cracks are present in other
complex dried droplets, such as blood [1, 3], emphasizing
the significance of this issue. The significance of this is-
sue lies in the potential for complex fluids to be classified
based on the statistics of such phenomena. In the case
of scaling behaviors, the critical exponents play a crucial
role in achieving this objective by mapping the problem
to a standard class in critical phenomena. As demon-
strated in the subsequent analysis, the scaling properties
are observed in the case study presented in this paper.
Thus far, all the processes we have examined have been
single-particle phenomena, meaning that pairwise inter-
actions were not taken into account. However, hydro-
dynamic interactions are another crucial factor in the
deposition of particles in complex fluids. In reality, the
motion of particles is not independent, and such interac-
tions must be considered. The motion of each colloidal
particle causes a distortion in the fluid’s flow field and
streamline, which propagates and affects other particles.
As a result, the movement of a particle generates an ef-
fective interaction with other colloidal particles, referred
to as hydrodynamic interaction [42].

II. MULTIFRACTAL ANALYSIS (MA)

This section introduces the multifractal analysis (MA)
approach for systems containing partially filled (black)
pixels. Unlike single fractal systems that can be charac-
terized by a single set of exponents, multifractal systems
require a more complex description. To address this, the
MA approach divides the system’s space into boxes of

size δ. The number of black pixels inside the ith box of
size δ, denoted by Ni(δ), is used to calculate the filling
fraction of the box. This fraction is expressed as the ratio
of the number of black pixels to the size of the box, and
the fraction is expressed by

µi(δ) =
Ni(δ)

N
, (2)

where N is the total number of pixels. A q-generalized
partition function is defined as

Zq(δ) =
∑
i

[µi(δ)]
q
. (3)

The variable q represents a moment. In scale-invariant
systems, Zq exhibits power-law scaling with respect to
δ, although the exponent may not be constant across all
scales. To obtain a unique exponent, we need to examine
the behavior at small scales. Specifically, we define the
exponent γq as follows:

γq = lim
δ→0

log2Zq(δ)

log2δ
, (4)

and the fractal dimension is defined as

Dq =
γq
q − 1

. (5)

For q → 1, we should take the limit, resulting to [46]

D1 = lim
δ→0

∑
i

µi(δ)log2µi(δ)

log2δ
. (6)

Note that the numerator of the above equation is exactly
the information entropy of the system, while Eq. 5 is
the q Renyi entropy. For q = 2, the numerator is called
the correlation dimension. For more information on the
definitions and interpretations of an infinite series of
fractal dimensions, see Appendix A.

The typical fractal dimension of the system is defined
as

Df = lim
q→0

Dq. (7)

To obtain the spectrum of the system, one uses the Leg-
endre transformation as follows

f(αq) = qαq − τq, (8)

where αq =
dγq
dq . For more details see SEC. C.

III. EXPERIMENTS ON THE DRIED COFFEE
PATTERN

To minimize the impact of irregularities in the back-
ground and their effect on the statistics of the dried pat-
terns, we used mica sheets as a smooth and homogeneous
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substrate for the coffee droplets in this study. It’s worth
noting that disorder in the substrate can cause pinning,
as previously observed [11]. The mica sheets were cleaned
with distilled water and allowed to air-dry, a process that
typically takes less than 20 minutes at room temperature.
The coffee suspension consisted of 1±10−6 grams of Turk-
ish coffee in 30± 1 grams of water, with particle size set
at 0.1± 0.01 micrometers. We used a pipette with a pre-
cision of 0.1 mL to deposit coffee droplets onto the mica
substrate. To capture images, we utilized a Canon digi-
tal camera with a full HD resolution and a 1 to 5 macro
lens. To minimize the impact of human error due to hand
tremors or slippage, we employed an adjustable stand
holder to position the camera at a variable distance from
the samples. All samples were prepared in nearly iden-
tical environmental conditions. To ensure uniform back-
ground illumination, photos were taken at a fixed time
of day, and a diffused fluorescent light source was used
in the background. The preparation of the samples was
conducted under ambient conditions with a temperature
of 23 ± 1 degrees Celsius. To ensure proper evaporation
of the solvent, it was left in the open air for one hour be-
fore the application of the droplets onto the mica sheets.
Each sample was generated by adding 0.5 ml of solvent
onto the substrate, resulting in a circular stain with an
estimated radius of approximately 2cm. To investigate
the impact of sugar, we introduced different quantities of
sugar, specifically m = 1.5, 2, and 2.5 grams, into a coffee
water solution with a ratio of 1 : 30 grams. The subse-
quent steps remained unchanged from the sugar-free ex-
periment. Sugar has been observed to alter the ratio of
adhesion energies, resulting in an increase in adhesion.
This effect is demonstrated by the darker appearance of
dried stains in samples that contain sugar, as compared
to those without sugar. In total, we generated 60 samples
for each condition. To examine the overall characteristics
of the dried pattern, we extracted image segments mea-
suring 2000 × 2000 pixels from the center of the coffee
stain. These images, which consist of rescaled red, blue,
and green matrices, were then converted into a grayscale
matrix. In order to establish a standardized metric, we
adjusted the photo intensities by rescaling them and di-
viding them by their average intensity. Next, we uti-
lized rough surface mapping to segment the photos into
”heights” based on certain threshold values. This pro-
cess transformed the photos into a collection of loops,
collectively referred to as the loop ensemble (LE), where
the iso-lines corresponded to the intensity cut values de-
termined by the thresholds. After generating the LE,
standard statistical techniques were applied to analyze
the data. For each loop, its length and radius of gyration
were measured and utilized to investigate the statisti-
cal characteristics, including the fractal dimension (if the
data exhibit scale-invariance). The radius of gyration is
defined as follows:

r2 =
1

l

l∑
i=1

|~ri − ~rcom|2 , (9)

where l the length of the loop and ~rcom the center of mass

of the loop ~rcom = 1
l

l∑
i=1

~ri. For scale-invariant systems,

the scaling relation between l and r gives the fractal di-
mension γlr, defined by

〈log(l)〉 = γlr 〈log(r)〉+ constant, (10)

where γlr is the fractal dimension of the loops, and 〈〉
means the ensemble average. Also, for scale-invariant
systems, one expects that the distribution functions show
power-law behaviors

Px(x) ∝ x−τx (11)

where x = l, r. It is important to note that this equation
is valid only within a certain spatial scale, above which
finite-size effects become significant.

The outward motion of particles, as predicted in the
theory causes the formation of coffee-ring as depicted in
Fig. 1a (side view of a completely dried droplet in which
the particles have adhered to the substrate) and 1b (top
view). Typically, the drying process of colloidal coffee
suspensions can be divided into three temporal stages.
During the first 20 minutes of the experiment, the parti-
cles are advected to the contact line where they accumu-
late around the ring, while the liquid gently evaporates.
Once the contact line of the ring has been established,
the droplet’s radius will vary depending on the amount
of solvent used. In the second stage, which lasts approx-
imately one hour, the volume of coffee inside the ring
area decreases, leaving behind a thin layer of solvent.
This process causes the stain’s color to lighten. Addi-
tionally, during this stage, the contact line advances to
the point of complete pinning, as depicted in Fig 1b. In
the third and final stage, which lasts for approximately
30 minutes, the stain is fully dried, and the inner part
of the ring begins to take shape. This process is accom-
panied by the formation of cracks, and the color of the
central portion becomes lighter than that of the halo’s
edge. Our statistical measurements are conducted dur-
ing this stage. We explore the impact of sugar on the
drying process and discover that the crack statistics are
influenced by the quantity of sugar used.

The contact angle of a small droplet has been shown
in Fig. 2, in which the contact angle was obtained us-
ing the ImageJ software [47]. Our observations indicate
that the contact angle of a sugar-free coffee droplet is
45± 3 degrees, whereas for coffee with sugar, it is 43± 3
degrees (with negligible dependence on the amount of
sugar within the limits of our experimental accuracy).
These findings indicate that the addition of sugar causes
a reduction in the contact angle, which is consistent with
the fact that sugar makes the coffee hydrophilic. A sam-
ple with cracks is shown in Fig. 3a, the intensity field of
which is shown in Fig. 3b. The LE is obtained by cut-
ting such figures from specific thresholds. The method of
preparing the figures (cropping from the central parts) is
shown in Fig. 3c.
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(a) (b)

FIG. 1: (a)Compacted solid particles in the center of the loop. (b) Compressed and sticky coffee particles on the
edge.

FIG. 2: Side view of coffee drops, and the contact angle.

An important inquiry pertains to the fractal dimen-
sion of level lines, which are transformed into loops in
the LE. If conformal invariance (which is not tested in
this study) holds, the fractal dimension γlr of the inter-
faces can be utilized as a representation of the univer-
sality class. Important examples are the fractal dimen-
sion of Fortuin-Kasteleyn clusters of the critical Ising
model (γlr = 11

8 ) [48–50], level lines of Gaussian free

fields γlr = 3
2 [51, 52], interfaces of 2D percolation the-

ory (γlr = 7
4 ) [53, 54], and the frontiers of avalanches in

sandpiles (γlr = 5
4 ) [55, 56], for a good review see [57].

Figure 4a shows the fractal dimension of the loops dried
coffee pattern (with and without sugar). In this figure,
we used the Eq. 10, i.e. we plot 〈log l〉 in terms of 〈log r〉
for different masses of added sugar, the slope of which
is the fractal dimension. We observe a cross-over be-
tween two distinct spatial regimes where the fractal di-

mension in small scales is denoted as γ
(1)
lr , which differs

from the fractal dimensions in larger scales, denoted as

γ
(2)
lr . As indicated in the inset, the fractal dimensions

exhibit negligible dependence on the quantity of sugar

used, with γ
(1)
lr = (1.05± 0.03) and γ

(2)
lr = (1.46± 0.05).

These results indicate that on small scales, the level lines
are not fractal and behave like linear objects. However,
they tend to exhibit relatively dense fractal characteris-
tics on larger scales, which is consistent with the behav-
ior of GFFs. To be more precise we have calculated the
probability distribution function of the loops, shown in
Fig. 4b, which confirms that it is power-law is according

to Eq. 11 for large l and r values (note that for small
scales these functions are constant, consistent with the
observation for the fractal dimension). The exponents
should be compared with the exponents of the GFFs, for
which with τGFF

l = 7
3 ≈ 2.33, and τGFF

r = 3 [51]. The
insets display these exponents as a function of m. Our
observations reveal that, for sufficiently large m values,
these exponents tend to converge towards those of the
GFF model.

For our multifractal analysis, we converted the photos
from grayscale to binary photos (see Fig. 5a), so that
the samples to be used in MA are 2000 × 2000 matri-
ces which are suitable for applying the methodology de-
scribed in SEC. II. Figure 5b shows log2 Zq(δ) in terms of
log2(δ) (eight δ values were considered) for various mo-
ments −10 ≤ q ≤ 10. Note that, γq is obtained by going
to δ → 0. Figures 5c and 5d show the results for Df

(Eq. 7) and Dq (Eq.5) respectively. The resulting fractal
dimension is shown in the inset. Notably, we observe a
sharp decrease in Df from 1.76 ± 0.04 to 1.6 ± 0.05 as
we shift from m = 0 to non-zero m values. This reduc-
tion corresponds to a decrease in the fractal dimension.
The decline in the fractal dimension can be attributed to
the increased hydrophilicity of the droplet, leading to the
emergence of sparser spatial patterns. This trend aligns
with the findings of the contact angle statistics. We ob-
tain the multifractal spectrum using Eq. 8, where f(α)
represents the spectrum of the fractal dimension. The
inset of Fig. 5d displays this function, which exhibits a
similar trend: as m increases, the peak point (i.e., the
average fractal dimension) shifts towards the left, indi-
cating a reduction, thus corroborating the findings dis-
cussed earlier. Note that the width of the spectrum is
not m-dependent. A same phenomena is seen for the q-
fractal dimensions Dq, i.e. they decrease as m increases
(main panel of Fig. 5d).

IV. CONCLUSION

In this paper, we statistically analyzed the drying pat-
tern of coffee droplets with and without sugar on the
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(a)
(b)

(c)

FIG. 3: The cropped part of the image of a dried coffee pattern. Form a loop of squares of the same intensity.
(b)Image of created loops

mica sheets. The amount of sugar is controlled by the
sugar mass m. We discussed various aspects of the dry-
ing dynamics, including the evaporation dynamics as well
as the Marangoni effect. It was found that the amount
of sugar present affects the resulting crack patterns. In
this study, we observed the well-known phenomenon of
coffee ring formation, where coffee particles accumulate
at the edge due to self-pinning. We analyzed the contact
angle as a function of m, and found that an increase in
sugar mass leads to a decrease in the contact angle. Our
assertion is that the presence of sugar enhances the hy-
drophilicity of coffee droplets, resulting in a more even
distribution of dried coffee particles for non-zero m val-
ues, as compared to the case where m equals zero.

By mapping the dried patterns for rough surfaces, we
constructed a loop ensemble by cutting the samples from
a threshold. By analyzing the scaling relation between
the loop length and the gyration radius of loops, we nu-
merically estimated the loop fractal dimension, as well as
the exponents of the distribution function of loop length
and the gyration radius.It was demonstrated that the

exponents are in agreement with the Gaussian free fields
(GFF) for sufficiently large m values. The hyper-scaling
relation

γlr =
τr − 1

τl − 1
(12)

is valid for all m values.
In the final section of the paper, we utilized multifrac-

tal analysis (MA) to study the mass of the system. The
methodology for this analysis is detailed in Section II.
Our findings indicate that the system exhibits multifrac-
tality, with a spectrum of fractal dimensions that is de-
pendent on the quantity of sugar present. It was found
that the average fractal dimension, represented by the
peak point of the spectrum, is dependent on m: as m
increases, the average fractal dimension decreases. The
results align with the contact angle analysis, which indi-
cates that an increase in ”m” leads to a more dispersed
dried coffee pattern. For m = 0, the mass fractal dimen-
sion Dq=0 is shown numerically to be 1.76±0.04, while it
drops to 1.60± 0.05 for non-zero m values, showing that
the effect of sugar is considerable.
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FIG. 4: (a) Mean logarithm of gyration radius in terms of the mean logarithm of loop length. (b)Distribution
function in terms of loop length. (c) Probability distribution function in terms of gyration radius.
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Appendix A: Infinite Series of Fractal Dimension

Continuous phase transition systems possess not only
local features but also global or geometric features that
have been the subject of numerous theoretical studies
(both analytical and simulation-based). Global observ-
ables can be employed to characterize systems at their
continuous transition point, revealing hidden aspects of
the models that may not be discernible through studies
solely focused on local observables. We consider here the
mass pattern and define an infinite series of fractal dimen-
sions. This section discusses the use of multifractal anal-
ysis (MA) [58] for a system that contains partially filled
(black) pixels. While a single set of exponents is sufficient
to describe single fractal systems, this approach is not

suitable for multifractal systems. In the MA approach,
the space is divided into boxes of size δ [59]. This tech-
nique has been applied in a wide range of applications,
from small-scale phenomena such as chalk patterns [60],
electronic states in Anderson localized systems [61], and
inhomogeneous potentials [62], to large-scale problems
such as mountain formation [63] and galaxy formation
[64]. The properties of MA and its multiscaling nature
[65] make it a powerful tool for analyzing complex sys-
tems.

1. Mass Pattern and Box Counting

In this analysis, we divide the system into boxes of
linear size δ and examine the distribution of the filling
fraction of these boxes. A pixel (or site in the model)
is considered black (or occupied) if the density of mass
configuration of the dried pattern at that site, denoted
by ρi, is higher than the spatial average density, denoted
by ρ̄, computed over the entire sample. The spatial aver-
age density is given by the sum of densities of all pixels
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FIG. 5: (a) Binary image of dried coffee pattern. (b) Logarithm diagram of box length in terms of partition
function. (c) diagram of the mean logarithm of the square length in terms of the logarithm of the partition function

per q = 0. (d) q moment torque diagram in terms of average fractal dimension per fixed δ.

divided by the total number of pixels in the system, i.e.,
ρ̄ ≡ N−1

pixels

∑
i ρi. The filling fraction of each box is deter-

mined by the number of black pixels (or occupied sites)
inside the box. Specifically, if the number of black pixels
in the ith box is Ni(δ), then the filling fraction is given
by [66]:

µi ≡
Ni(δ)

Npixels
. (A1)

It should be noted that the sum of the number of
black pixels (or occupied sites) in all boxes, denoted by∑Nbox

i=1 Ni = Npixels, is equal to the total number of pixels
in the system, denoted by Npixels. The total number of
boxes is denoted by Nbox. To calculate the local mass for
each box and the total mass for the cluster, we can use
the following method:

mi(δ) ≡ 1− δKNi(δ),0 , M(δ) ≡
∑
i

mi(δ) (A2)

The Kronecker delta, represented by δKm,n, is a function
that evaluates to 1 if its two arguments are equal, and 0
otherwise. It is frequently employed in mathematical and
physical equations to denote the identity matrix, define
functions, and describe the characteristics of vectors and
tensors.

The box-counting method is a method utilized to as-
certain the fractal dimension of a given system or object.
This technique involves dividing the object or system into
progressively smaller boxes of uniform size and calculat-
ing the number of boxes required to cover the object or
system. The fractal dimension is then determined by an-
alyzing the relationship between the size of the boxes and
the number of boxes needed to cover the object or sys-
tem. Therefore, the fractal dimension can be written as
follows:

Df ≡ − lim
δ→0

logMδ

log δ
. (A3)

In a multifractal system, the fractal exponent varies de-
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pending on the scale of observation or the region of the
system being considered. The multifractal analysis is a
unified theory that provides a spectrum of exponents for
multifractal systems. This theory is based on a general-
ized partition function that captures the q-th moment of
the fluctuations of the spatial average density, denoted by
ρi, in the system. The q-generalized partition function
yields not only the fractal dimension but also an infinite
series of fractal dimensions, including the information di-
mension and correlation dimension [58]. So the partition
function is given by the equation

Zq(δ) =
∑
i

[µi(δ)]
q
. (A4)

The q-generalized partition function, denoted by Zq, is
defined as a function of the moment q. For scale-invariant
systems, Zq scales with δ in a power-law form, but the ex-
ponent may not be a unique number at all scales. There-
fore, we have:

Zq(δ) ∝ δγq , so that γq = lim
δ→0

logZq(δ)

log δ
. (A5)

The generalized q-dimension is defined as follows:

Dq ≡
γq
q − 1

, (A6)

so that Df = limq→0Dq.

2. Information Dimension

It is worth noting that if µi is regarded as the proba-
bility linked to a small segment (δ) of the system, then
the generalized q-dimension Dq can be viewed as a nor-
malized q-Renyi entropy Req(δ) in the thermodynamic
limit, as δ approaches zero, defined by

Req(δ) ≡
1

1− q log
∑
i

[µi(δ)]
q
, (A7)

then

Dq = − lim
δ→0

Req(δ)
log δ

. (A8)

Hence, the mass fractal dimension of samples can be
linked to the Renyi entropy with q equal to zero, i.e.

Req=0(δ)|δ→0 = −Df log δ. (A9)

It is important to highlight that the scale-invariance hy-
pothesis presented in Eq. A5 suggests that the Renyi en-
tropy is proportional to the logarithm of δ. Conversely,
for extensive non-scale-invariant (NSI) systems, the rela-
tionship is as follows:

ZNSI
q (δ) = exp [−fqA]

→ ReNSI
q (δ) =

1

q − 1

(
fqNboxesδ

d + const
)
,

(A10)

Here, A = Nboxesδ
d represents the total volume of the

system, which is given by the product of the number of
boxes N -boxes and the volume of each box δd, where
d is equal to 2 in this case. It is noteworthy to com-
pare the volume term δd with the logarithmic term log δ
in Eq. A9. This logarithmic term is a key feature of
scale-invariant systems, in which the system is not ex-
tensive [67]. The information dimension, which is associ-
ated with the Shannon entropy, can be defined using the
following equation (note that Zq=1(δ) = 1):

D1 ≡ lim
δ→0

∑
i µi(δ) logµi(δ)

log δ
= lim
q→1

Dq (A11)

In terms of the Shannon entropy

SH(δ) ≡ −
∑
i

µi logµi, (A12)

we have

SH(δ)|δ→0 = −D1 log δ. (A13)

3. Correlation Dimension

Finally the correlation dimension is defined as

C ≡ lim
δ→0

logC(δ)

log δ
, (A14)

where

C(δ) ≡ 1

N2
pixels

∑
k 6=k′

Θ(δ − |Rk −Rk′ |), (A15)

where Rk is the position af the kth black pixel (not box),
and Θ is a step function. It is shown that

C = D2. (A16)

To see this, we note that∑
i

N2
i =

∑
i

∑
kk′

Θ(δ − |Rk −Xi|)Θ(δ − |Rk′ −Xi|)

=
∑
i

∑
k 6=k′

Θ(δ − |Rk −Rk′ |)δB(Rk),Xi

=
∑
k 6=k′

Θ(δ − |Rk −Rk′ |) = N2
pixelsC(δ)

(A17)

In the equation provided, the summation over i (or k and
k′) pertains to the boxes (or pixels), where Xi denotes
the central position of the i-th box, and B(R) represents
the position of the box that R belongs to. It should be
noted that the formal dimensions, as well as the higher-
order dimensions, are distinct examples of the generalized
dimension Dq, which is calculated in the second part of
this section.
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Appendix B: Constructing the Distribution
Function of Mass out of the Infinite Series of Fractal

Dimensions

To underscore the significance of the infinite set of frac-
tal dimensions Dq (for arbitrary values of q), we now ex-
amine their connection to the mass distribution function.
It is worth mentioning that analogous methods can be ap-
plied to obtain other distribution functions. Initially, we
focus on the monofractal system, which exhibits scale-
invariant distributions, and whose moments of Ni(δ) are
given by:

〈Nq〉 ≡ 1

M(δ)

M(δ)∑
i=1

Ni(δ)
q =

(
Npixels

M(δ)

)q
M(δ)q+1Zq(δ).

(B1)
Using Eq. A5 one finds

〈Nq〉 = AqN̄
qδζq (B2)

In the case of a monofractal system with scale-invariant
distributions, the moments of Ni(δ) are given by the

equation shown, where Aq is defined as Aq ≡ cq+1
1 c2,

N̄ ≡ Npixels

M(δ) , and where N̄ represents the average of Ni

and is equal to the total number of pixels
Npixels

M(δ) . The

quantity ζq ≡ γq − (q + 1)Df , and c1 and c2 are the
proportionality constants for the M(δ)-δ and Zq-δ rela-
tions, respectively. The scaling moment relation is used
to determine the probability distribution of ni (denoted
by pn). The probability characteristic function (denoted
by p̃k) is defined as the Fourier transform of pn:

p̃k ≡
Npixels∑
N=1

e
2iπ

Npixels
Nk
pN =

〈
e

2iπ
Npixels

Nk
〉

=

∞∑
q=0

(2πik)q

q!

〈(
N

Npixels

)q〉

= p̃0

∞∑
q=0

(2πiξk/Npixels)
q

q!
δ(q−1)Dq

(B3)

where ξ ≡ c1N̄

δDf
, and p̃0 ≡ c1c2

δDf
. Inserting Eq. B2 into the

above function gives us

pN =
1

Npixels

Npixels∑
k=1

p̃ke
− 2iπ
Npixels

Nk

=

∞∑
q=0

(iξ)q

q!
δ(q−1)DqIq(N)

(B4)

where (x ≡ 2πk
Npixels

)

Iq(N) ≡ p̃0

Npixels

Npixels∑
k=1

(
2πk

Npixels

)q
e
− 2iπ
Npixels

Nk

→ p̃0

∫ 2π

0

dx

2π
xqe−ixN

=
q̃0q!

2π(iN)q+1

(
1− Γ[q + 1, 2iπN ]

q!

)
,

(B5)

where Γ[s, x] ≡
∫∞
x
ts−1e−tdt is an incomplete Gamma

function. Using the fact that Γ(q + 1, x) =

q!e−x
∑q
k=0

xk

k! , one finds

pN = q̃0

∞∑
q=0

q∑
k=1

(iξ)qδ(q−1)Dq

k!(−2π)k(iN)q−k+1
. (B6)

Note also that when |z| → ∞,

Γ(q + 1, z)||z|→∞ → zqe−z
q∑

k=0

q!

(q − k)!
z−k (B7)

In the given expression, the variable z is a complex
number and is equal to 2iπN in this context. To the first
order of 1/zand by neglecting 1 compared to Nq/q!, we
obtain:

IN (q)|large N ≈ i
q̃0(2π)q−1

N

pN |large N =
iq̃0

2πN

∞∑
q=0

(iξ)qδ(q−1)Dq

q!
.

(B8)

The provided equation demonstrates that the behavior of
the filling fraction Ni hinges on the generalized dimen-
sion Dq. To enhance our comprehension of this equation,
we will examine a diverse spectrum of systems, where it
is hypothesized that γq can be estimated by a smooth
function with a second-order nonlinearity, expressed as:

γq = −Df + s1q + s2q
2. (B9)

When s2 is zero, then Eq. B8 gives us

pN |large N =
q̃0δ
−Df

2πN

(
ie2iπξδs1

)
,

=
c1c2δ

−2Df

2πN

(
ie2iπξδs1

) (B10)

The expression inside the parentheses in the given
equation represents a pure phase, which arises from the
approximations made in the derivation. In addition to
this phase, we observe that a power-law dependence on
δ with an exponent of 2Df . It is evident that the higher-
order expansion terms of the incomplete gamma function
require the use of higher-order dimensions Dq (as seen in
the higher-order terms of the expansion shown in Eq. B7).
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Appendix C: Multifractal Analysis

This section focuses on the comprehensive theory of
multifractal systems and the multifractal analysis (MA)
for the mass configuration of the dried pattern. Typi-
cally, multifractal systems are characterized by a range
of critical exponents or fractal dimensions, in contrast to
mono-fractal systems. As a result, multifractal systems
comprise a spectrum of exponents, which can be defined
through the following function, representing a Legendre
transformation of γq:

f(αq) = qαq − γq, (C1)

where αq ≡ dγq
dq , and the exponent γq was defined in

Eq. A5. The function f(α) contains information about
the spectrum of exponents γq. Its peak represents the
most frequently occurring exponents, and its variance in-

dicates how much the exponents are scattered around the
mean value. As an important example, let us consider
Eq. B9, using which we find that

q =
αq − α1

2α2
→ γq = −Df +

1

4α2

(
α2
q − α2

1

)
. (C2)

To illustrate the behavior of f(α), we once again consider
the smooth form given in Eq. B9, which leads to the
following expression:

f(α) = Df +
1

4α2
(α− α1)

2
, (C3)

This indicates that the function f(α) has a peak
around α1 with a width of 4α2, and the value of f at
the peak point α = α1 is equal to Df .
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