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Homophily, the tendency of humans to attract each other when sharing similar features, traits,
or opinions has been identified as one of the main driving forces behind the formation of structured
societies. Here we ask to what extent homophily can explain the formation of social groups, par-
ticularly their size distribution. We propose a spin-glass-inspired framework of self-assembly, where
opinions are represented as multidimensional spins that dynamically self-assemble into groups; indi-
viduals within a group tend to share similar opinions (intra-group homophily), and opinions between
individuals belonging to different groups tend to be different (inter-group heterophily). We compute
the associated non-trivial phase diagram by solving a self-consistency equation for ’magnetization’
(combined average opinion). Below a critical temperature, there exist two stable phases: one ordered
with non-zero magnetization and large clusters, the other disordered with zero magnetization and
no clusters. The system exhibits a first-order transition to the disordered phase. We analytically
derive the group-size distribution that successfully matches empirical group-size distributions from
online communities.

Structure-forming systems form an important class of
complex systems [1]. They are ubiquitous in natural and
social systems, ranging from atoms forming molecules,
polymers, colloids and micelles to people forming struc-
tured societies. The theory of self-assembly [2] describes
the emergence of higher-order structures from elemen-
tary components. Applications include molecular self-
assembly [3], lipid bilayers and vesicles [4], microtubules
and molecular motors [5], Janus particles [6, 7], other
types of patchy particles [8], and RNA self-assembly [9].
The thermodynamics of self-assembled systems can be
described sufficiently well with the grand-canonical en-
semble for large systems. This is no longer true for small
systems consisting of dozens or hundreds of particles.
Correct results are obtained from the canonical ensemble
with an appropriate correction to the entropic functional
that correctly accounts for the statistics of structure for-
mation [10].

Social group structures emerge from interactions be-
tween individuals. While traditional approaches explore
social group formation under endogenous factors [11–13],
more recent works attempt to explain its structures as a
consequence of opinion formation [14–17]. Within this
framework, groups are considered as clusters of homoge-
neous agents whose opinions evolve under the joint effects
of structural balance – the tendency to resolve tension in
unbalanced triadic interactions [18] and homophily – the
preference of like-minded individuals to cluster [19, 20].
Both approaches can explain the fragmentation of society
into well-connected groups of uniform opinions, some-
times referred to as echo chambers [21–26]. Spin glass
Hamiltonians have been used on static social interaction
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networks to quantify the amount of social stress of the
entire society [26], or that of each individual [27]. So-
cial stress plays the role of energy and measures opinion-
similarity between individuals. Spin glass models were
extensively studied on various network topologies, in-
cluding fully-connected [28–31], Barabási-Albert [32, 33],
small-world [34], more general [35], and co-evolutionary,
dynamic networks [36–38]; see [39] for a review. A
similar idea of considering group formation as a way to
maximize payoff through local homophilic interaction has
led the author in [40] to the observation of a transition
between the ”group”- and the ”individual” phases upon
varying the ratio between individual payoff and group
payoff.

Obviously, the formation of friendship groups from in-
dividuals that randomly encounter each other cannot be
realistically described on static networks. The theory of
self-assembly offers an attractive alternative that could
explain the endogenous emergence of social groups. To
capture the interplay of opinion dynamics and group for-
mation, the assumption of a stochastic rule for estab-
lishing social ties based on the similarity of opinions is
reasonable.

To realize such a model, we assume an attractive in-
teraction between individuals based on the proximity of
their opinions [27]. Opinions are represented by Ising-
like spin vectors in G dimensions, each dimension corre-
sponding to one binary opinion on a specific topic; the
more aligned these vectors, the stronger the attractive
force and the more likely they will form a friendly social
tie. The main idea behind the model is that people tend
to form friendship groups with like-minded individuals.
They can also form hostile relations with individuals –
typically from other groups. Entertaining a friendship
relation with an individual with a drastically different
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opinion creates social stress. To reduce it, one can either
change opinions or move to another group.

To overcome the main limitation of previous models
— the pre-defined social network topology — we assume
that individuals create the social network by dynami-
cally interacting with each other and forming social links
stochastically. We assume that every individual has a
typical (average) number of positive connections within
their group. At times, with a certain probability, people
meet individuals from other groups. Links between indi-
viduals that belong to different groups are typically nega-
tive since they tend to have non-aligned opinion vectors.
We assume that the probability of establishing a new
(positive or negative) link between two individuals is pro-
portional to the number of links both individuals have.
The new link is positive if two individuals share more
than half of their opinions; the link is negative if the ma-
jority of opinions are different. In the model, the social
network emerges dynamically; only the local quantities
such as each individual’s typical degree (the number of
social interactions) are needed as an input. The resulting
equilibrium group-size distribution can then be derived
using the theory of self-assembly [10]. The distribution
depends on the “temperature”, T , represents the willing-
ness to change one’s opinion or to change the group. We
study the phase structure (location of tipping points) of
the model and compute the group-size distribution that
is compared to real data. We confirm all analytical find-
ings with straightforward Monte Carlo (MC) simulations.
The core of the model is a social stress function (Hamil-
tonian) that every individual tries to minimize by either
changing their opinion or their group membership.

Self-assembly of spin glass.— Let us consider n indi-
viduals with g binary opinions (spin vectors). We denote

the j-th opinion of individual i by sji ∈ {−1, 1}. The
spin vector of the i-th individual is si = {s1i , . . . , s

g
i }. We

define the homophily between two individuals as the nor-
malized dot-product, si · sj = 1

g

∑g
l=1 s

l
is
l
j . Individuals

can form clusters of any size, k ∈ {1, . . . , n}. We de-
note the number of groups of size k by n(k); these fulfil∑n
k=1 kn

(k) = n, where ·(k) denotes the dependence of
a quantity on a given group size, k. A group of size k
is given by G(k) = {i1, . . . , ik}. Following [27], we define
the group Hamiltonian as

H(si1 , . . . , sik) := −φ J
2

∑
ij∈G(k)

Aij si · sj

+(1− φ)
J

2

∑
i∈G(k),j /∈G(k)

Aij si · sj

−h(k)
∑
i∈G(k)

si ·w (1)

where J > 0 is the coupling constant, Aij is the (dy-
namical) adjacency matrix of the underlying interaction
network. The first term corresponds to homophilic intra-
group interactions. The second term captures the inter-
group interactions. The parameter, φ, weights the rel-

ative importance of intra-group and inter-group stress.
The last term corresponds to an external bias caused,
e.g., by the mass media, h(k) is the local external field
that encodes the strength of that bias, and w is a weight
vector, measuring sensitivity to that bias. We take
w = {1, . . . , 1}. As discussed in [27], for G = 1 the
model reduces to the spin model of Mattis type [41] (also
used in [42, 43]). This model has no frustration on ef-
fective spins τi = εisi, where εiεj = 1 for j ∈ G and
εiεj = −1 if j /∈ G. Thus, the effective Hamiltonian
in terms of τi is the usual Ising Hamiltonian with no
negative interactions. This is, however, not possible for
G > 1, and therefore we inevitably end with frustrated
interactions (at least for some opinions).

The relative number of clusters of size k is ℘(k) =
n(k)/n. The equilibrium group-size distribution can be
expressed as [10]

℘(k) = ΛkZ(k) (2)

where Z(k) = nk−1

k!

∑
si1 ,...,sik

e−βH(si1 ,...,sik ) is the par-

tition function of a group with size k, β = 1
kBT

is the

inverse temperature (using kB = 1), and Λ is the normal-
ization obtained from

∑n
k=1 k℘

(k) =
∑n
k=1 kΛkZ(k) = 1,

which is a polynomial equation in Λ of order n.
The number of groups per individual is M =∑n
k=1 n

(k)/n =
∑n
k=1 ℘

(k) and the average group size

is C =
∑n
k=1 k n

(k)/
∑n
k=1 n

(k) = 1/M . Choosing
w = (1, . . . , 1), the average opinion vector of group
Gk is defined as m(k) =

∑
i∈G(k)〈si〉. The average

weighted opinion m(k) = m(k) · w can be expressed as

m(k) = − 1
β
∂ logZ(k)

∂h(k) ; the total magnetization divided by

the number of individuals is therefore m =
∑
k ℘

(k)m(k).
Simulated annealing.— To overcome the main limi-

tation of previous models, i.e., the full specification of
the adjacency interaction matrix, we follow the approach
used in statistical physics of spin systems called simu-
lated annealing or configuration model [32]. We approx-

imate Aij ≈
q
(k)
i q

(k)
j

2C(k) , if i and j ∈ G(k). Here q
(k)
i is the

intra-group degree of node i and C(k) is the total num-
ber of intra-group links in a group of size k. Similarly,

Aij ≈
q
(k,l)
i q

(l,k)
j

2C(k,l) for i ∈ G(k) and j /∈ G(k). Here q
(k,l)
i

is the inter-group degree of node i to all other groups
of size l and C(k,l) is the total number of inter-links be-
tween groups of size k and l. The simulated annealing
approach can be understood as a dynamical friendship
network formation framework based on the individuals’
opinions and their desired number of friendship links.

Mean-field approximation.— Assuming the validity of
a mean field approach, the group Hamiltonian can be

approximated by H
(k)
MF (si1 , . . . , sik) =

∑
i∈G(k) si ·H(k)

i ,
where

H
(k)
i = −φJ

2
q
(k)
i m(k) +

(1− φ)J

2

∑
l

q(k,l)ι m(l) − h(k).

(3)
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We define H
(k)
i = H

(k)
i · w. By calculating the mean-

field partition function and taking the derivative w.r.t.
the external field, we get that the average group opinion,
m(k), can be expressed as

m(k) =
∑
i∈G(k)

tanh(β H
(k)
i (m(l))) . (4)

A detailed derivation is found in the Supplemental Ma-
terial (SM). Let us now consider that the intra-group
and inter-group degree distributions, q(k) and q(k,l), are
random variables with distributions p(q(k)) and p(q(k)),
respectively. Then we can formulate the set of self-
consistency equations

m(k) = k
∑

q(k),q(k,l)

p(q(k))p(q(k,l)) tanh(βH(k)) , (5)

where H(k) depends on q(k), q(k,l) and m(l). Thus, we
obtain a system of n coupled equations for m(k).

Self-consistency equation with no inter-group
interactions.— The set of self-consistency equations
simplifies dramatically for the case φ = 1, where no inter-
group interactions exist. The equations decouple, and
we obtain one self-consistency equation for every m(k).
We first focus on the simple case of the fully connected
inter-group network, where p(q(k)) = δ(q(k), k − 1). In
this case, the numerical value of the average magneti-
zation per person is depicted in Fig. 1. We observe the
first-order phase transition between disordered phase
and the co-existence phase, where both disordered
and ordered phase exists. These phases are separated
by the binodal temperature, TB , which describes the
point when the system, originally in the ordered phase,
starts to disorder when increasing the temperature.
Note that the spinodal temperature, TS , tends to zero.
The spinodal temperature describes the point where
the particles spontaneously start forming large groups
when starting in the disordered phase and decreasing
the temperature. All individuals are free with random
opinion in the disordered phase. In the ordered phase, all
individuals form a single cluster with the same opinion.
The existence of the first-order transition between the
ordered and a group phase has been suggested in [40].

The average cluster size rapidly decreases near the
binodal temperature while the overall magnetization re-
mains relatively stable. However, at the critical temper-
ature, the magnetization is still significantly non-zero At
the same time, the average cluster size decreases continu-
ously toward one. The dependence of the phase diagram
on the external field and minimum cluster size is shown
in SM.

Monte Carlo simulations.— We perform the Monte
Carlo simulations to confirm the phase diagram obtained
from solving the self-consistency equations for the mag-
netization numerically. We use the standard Metropo-
lis algorithm for n = 50 individuals and three opinions,
G = 3. Each MC step consists of n spin-updates (flips)

Average cluster size (C)

0 10 20 30 40 50

FIG. 1. Total magnetization, m, as a function of the temper-
ature, T , for n = 50, G = 3, and J = 1, without external
field. The heat map shows the average cluster size, C, as a
function of m and T . We observe the presence of a critical
temperature, TB , above which the self-consistency equations
yield a single solution, m = 0. Below this temperature, we
observe two stable solutions, a coexistence of a disordered
phase, characterized by the absence of large clusters (average
cluster size is 1), and an ordered phase that is characterized
by the existence of one large cluster with all particles hav-
ing the same opinion vector. By increasing the temperature
to the critical temperature, the cluster starts to disintegrate
rapidly while the magnetization remains relatively stable.

of one spin-element chosen randomly, followed by ran-
domly choosing one individual and moving them from
the current group to another group – or by creating a
new group consisting of only that individual. If the in-
dividual is already solitary, it has to attach to one of
the existing groups. The MC temperature for opinion
flips and group changes are the same, i.e., both spin
flips and group changes are accepted with probability,
min{1, exp(−β∆Htot)}, where Htot =

∑
G(k) H(G(k)) is

the sum over all group Hamiltonians. For each tempera-
ture, we perform 100 independent simulations with 5·104

MC steps. We repeat the simulation for two initial condi-
tions corresponding to the two equilibrium phases: one in
the ordered and one in the disordered phase. For ordered
initial condition, we observe that the particles stay in one
cluster below critical temperature (Fig. 2 in red). For
the initial condition in the disordered phase, the magne-
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FIG. 2. Magnetization as obtained from Monte Carlo sim-
ulations for the same parameters as in Fig. 1. For each
temperature, 100 independent runs with 5 · 104 steps were
performed. We started from two types of initial conditions
— one in the ordered phase, where all individuals are in one
large group with identical initial opinions (red), and from the
disordered phase, where all individuals form a separate group
with a random initial opinion (blue). For each temperature,
the histogram of magnetization was established. The darker
the color, the larger the frequency; see color bars). The black
curve shows the theoretical magnetization obtained from the
self-consistency equations. For the ordered phase, we observe
the perfect agreement with the theory, and the critical tem-
perature corresponds with the predicted one. For the disor-
dered phase, we see that the average temperature also corre-
sponds to the predicted value, m = 0. However, the fluctua-
tions are larger.

tization clearly fluctuates around zero (Fig. 2 in blue).
For lower temperatures, the system can get stuck in a
local minimum, seen by the fact that the magnetization
fluctuates more and we observe a “quantization” effect.
Even for very low temperatures, large groups are rare
to form and, therefore, TS is close to zero. In SM, we
investigate the dependence of the phase diagram on the
minimum group size, external field and initial conditions.

Group-size distribution of Pardus network.— Finally,
we compute the emerging group size distribution from the
presented approach and compare it with a real dataset
of an open-ended massive multiplayer online game called
Pardus [44]. Players in Pardus form friendships and en-
mity relations based on economic (in the virtual world)
and social activities. We focus on only one type of so-

cial interaction, the players’ communication. The dataset
consists of 1239 days, each day with about 1000-1600
active players (players with at least one communication
event with another player). We adopt a picture where a
communication event between players creates a link be-
tween them. Each connected component in this commu-
nication network corresponds to one group. Typically, we
observe one giant connected component with several hun-
dreds of participants and many small groups with sizes
ranging from 2 to 50. A typical communication network
on one day is shown in Fig. 3 (a). The average group-size
distribution is obtained by averaging group size distribu-
tions over all days. We compare the so-obtained group-
size distribution of the friendship network with the theo-
retical prediction from the self-assembly model in Fig. 3
(b). The intra-group degree distribution, obtained from
[14], can be well approximated with a truncated geomet-

ric distribution, p
(k)
a (q(k)) = a(1−a)q

(k)−1/(1− (1−a)k),
where q(k) ∈ {1, . . . , k−1}. with a = 0.6, as shown in SM.
For clarity, we show the frequency of observing a group
of size k, f (k) = n(k)/M = n/M · ℘(k). By fitting the
temperature, we obtain the theoretical group-size distri-
bution, which corresponds to the real group-size distribu-
tion of the Pardus dataset. Due to the varying number of
players across days, we fit the group-size distribution for
small groups in the range between 2 and 50 and aggre-
gate the probability of observing one large group of more
than 500 (giant component). Medium-size groups (51-
499 players) do not appear in the dataset. It is obvious
that the theoretical group-size distribution explains the
empirical Pardus data well. Interestingly, the Gini co-
efficient, which quantifies statistical dispersion, for both
the empirical distribution (G = 0.900) and the theoret-
ical model (G = 0.901) is close to the transition point
of G = 0.86 observed in several studies on percolation
cluster size distribution (see [45] for a recent review).

Discussion.— The presented self-assembly model for
social group formation offers a new view on co-evolving
dynamics of group- and opinion formation. The frame-
work of spin-glass self-assembly that is purely based on
local information, i.e., local social stress and the number
of contacts (degrees) of individuals. Our main result is
to show the existence of a critical temperature (binodal
temperature) above which large groups disintegrate and
that the opposite process, i.e., spontaneous group forma-
tion by lowering the temperature, is not possible when
the external field is zero. We confirm these theoretical
predictions with Monte Carlo simulations.

We are able to make a further testable prediction con-
cerning the emerging group sizes in the model society. To
compare with real data, using the social network of the
Pardus computer game, for which we have exact knowl-
edge of group formation and sizes. Using the actual de-
gree distribution of the friendship networks as inferred
from the dataset as an input to our model, we are able
to compute a group-size distribution that corresponds al-
most perfectly with the empirical group-size distribution
in the Pardus data. Compared with recent work [40], our
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FIG. 3. (a) an example of the Pardus communication network for the particular day 100. There is one giant connected
component with a group size of k = 1168 and several small components: one group of seven players, three groups of four
players, 16 groups of three players, and 41 groups of two players. (b) Semi-logarithmic frequency distribution of group-sizes
obtained from the Pardus dataset (blue, from [14]) and the prediction of the self-assembly group-formation model (red). The
group size distribution is shown for group sizes between 2 and 50. For large groups of more than 500 players, the probabilities
of observing a group with an exact particular size are very small. Thus we aggregate the probabilities for observing a group
larger than 500 into one single bin. For both small and large groups, the theoretical prediction fits the group-size distribution
of Pardus dataset well.

study was able to take into account aspects such as so-
cial network topology, local homophily effects (not only
the global average opinion), and co-evolution of opin-
ions and the friendship links. Therefore, as a result, we
obtained a complex phase diagram, including the previ-
ously observed first-order transition between individual
and group phases and other phenomena, such as bifur-
cation of the average cluster size, or dependence on the
external field.

The model has a few limitations. The most important
is that higher-order motives, such as those known from
social balance, are not recovered correctly. In many so-
cial networks, some of the higher-order motifs are over-
or underrepresented, compared to configuration model
approach. To get these statistics right, more advanced
approaches known from spin glasses, such as the Bethe
approach [46], belief propagation [47], the cavity method
[48], or other generalizations of the configuration model
could be useful. A second limitation is a correlation be-
tween different opinions and the fact that this correlation

can change over time. In reality, people define their be-
lief system where the opinions are correlated [49, 50],
and the correlations can evolve in time. Finally, the
presented framework operates on a single network where
links between individuals influence all opinions of their
friends/enemies. For more realism, one would need to
consider a multilayer network that represents different
environments (family, work, leisure time, social networks,
etc.) with links of different types where each layer can
influence only certain types of opinions.
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[30] M. Kochmański, T. Paszkiewicz, and S. Wolski, Euro-
pean Journal of Physics 34, 1555 (2013).

[31] L. Colonna-Romano, H. Gould, and W. Klein, Physical
Review E 90, 042111 (2014).

[32] G. Bianconi, Physics Letters A 303, 166 (2002).
[33] C. Merger, T. Reinartz, S. Wessel, C. Honerkamp,

A. Schuppert, and M. Helias, Phys. Rev. Research 3,
033272 (2021).
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SUPPLEMENTAL MATERIAL

Detailed derivation of Eq. (4) in the main text

In order to derive the self-consistency equation (4), we use the relation from the main text

m(k) = − 1

β

∂ logZ(k)

∂h(k)
(6)

To be able to calculate the partial partition function Z(k), let’s take the mean-field Hamiltonian HMF (si1 , . . . , sik) =∑
i∈G(k) si ·H(k)

i , where

H
(k)
i = −φJ

2
q
(k)
i m(k) +

(1− φ)J

2

∑
l

q(k,l)ι m(l) − h(k). (7)

Thus, the partial partition function can be calculated as

Z(k) =
nk−1

k!

∑
si1 ,...,sik

e−βH
(k)
MF (si1 ,...,sik ) =

nk−1

k!

∑
si1 ,...,sik

e
−β

∑
j∈G(k) sj ·H(k)

j =
nk−1

k!

k∏
j=1

∑
sj

e−βsjH
(k)
j

=
nk−1

k!

k∏
j=1

g∏
l=1

∑
slj=±1

e−βs
l
jH

l
j =

nk−1

k!

k∏
j=1

g∏
l=1

(
2 cosh(βH l

j

)
) (8)

Due to symmetry in slj , we replace H l
j by its average over all opinions, i.e., H

(k)
j = H

(k)
j · w. Thus, the logarithm of

the partition function can be expressed as

logZ(k) = ln
2kGnk−1

k!
+

k∑
j=1

ln cosh(βH
(k)
j ) (9)

. Note that H
(k)
j depends on m(l) = m(l) ·w and h(k). By taking the partial derivative w.r.t. h(k), and using the fact

that [log(cosh(x))]′ = tanh(x), we end with

m(k) ≡ ∂ logZ(k)

∂h(k)
=
∑
j∈G(k)

tanh(βH
(k)
j (m(l))) (10)

which corresponds to Eq. (4) in the main text.

Dependence of the phase diagram on the external field

Let us now consider the case when the external field h(k) ≡ h is non-zero. Again, we numerically solve the
self-consistency equation for the non-zero field. In Fig. 4 we observe that with increasing h, the phase transition
changes from the first-order transition to the second-order transition at hC and then a becomes smooth transition.
For h < hC , we observe the bi-stable phase, which disappears at TC . Thus, the external field plays the role of the
transition parameter between the first-order and second-order transition and a smooth crossover, as described in [51].
Let us also note that we adhere to calling the phases ordered and disordered, although the disordered phase still
exhibits partial order due to the presence of the magnetic field. However, the magnetization remains still smaller than
in the case of the ordered phase. One can interpret the presence of the external field as the influence of the mass
media on individuals’ opinions. By increasing the external field, one can force the system to switch to the ordered
phase.

Dependence of the phase diagram on the minimal group size.

In this case, we consider the case when the particles are not allowed to disintegrate fully, but they have to form a
cluster of some minimum size. For each minimum size, we numerically calculate the solution of the self-consistency
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FIG. 4. (a) Average magnetization m for n = 50, G = 3, J = 1 for various values of external field h. With increasing external
field strength, the first-order transition in total magnetization m changes to second-order and then to continuous transition
between disordered and ordered phase. (b) The phase transition diagram is a function of temperature T and external field h.
Below the critical temperature TC , we observe the first-order phase transition between the disordered and ordered phase and
the existence of the coexistence phase. At the critical temperature, the transition becomes second-order. Above the critical
temperature, we observe the super-critical phase, i.e., the continuous transition between two phases.

equation as shown on (a) of Fig. 5. In this case, both spinodal and binodal temperatures grow with the increasing
minimum size of the cluster. While the spinodal temperature grows linearly with the minimum cluster size, the
binodal temperature growth slows down to the point where both temperatures coincide, and the co-existence phase
disappears, see (b) of Fig. 5. They both further grow together until the case where the minimum group size is equal
to the number of particles, i.e., all particles belong to the same group. This corresponds to the original Currie-Weiss
model, and the critical temperature corresponds to Currie temperature TC = J(n− 1).
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FIG. 5. (a) solution of the self-consistency equation for different minimum cluster sizes. The curves belonging to the minimum
cluster size are depicted in different colors, corresponding to the legend. (b) Phase diagram of the temperature and minimum
cluster size. We observe the existence of disordered phase and ordered phase. The coexistence phase exists when the minimum
cluster size is smaller than the minimum size m. Above this threshold, the coexistence phase does not exist, and we observe a
direct transition between ordered and disordered phases. For the case, when the minimum cluster size is equal to the maximum
cluster size, both spinodal and bimodal temperature coincide with the Currie temperature of the Currie-Weiss model.

Dependence of the Monte Carlo simulations on the initial conditions

Let us focus on how the system relaxes with different initialization. All results are in Fig. 7 First, we initialized
the system randomly, i.e., each particle is assigned to a random group with a random spin. This corresponds to an
ensemble given by the maximum entropy distribution with no constraint on average energy. Moreover, we observe
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that in the case of random spin initialization, the particles can get stuck in a local minimum for a low temperature,
not having enough energy to move to the next minimum. This is caused by the rough energy landscape (similarly to
[21]) caused by large energy differences when changing a group. Thus, the system can relax to the global minimum
for a high enough temperature. The system disintegrates when the temperature further increases and gets into the
disordered phase. In the third case, we initialize the system into two groups, and all spin equals 1. Here we observe
the existence of the hysteresis region, where the system can relax to both ordered and disordered phases, depending
on the exact trajectory, similarly to [52]. In the last case, we initialize the system into two groups of the same size and
random spins. In this case, we observe all the aforementioned phenomena. With increasing temperature, we observe
regions where the system gets stuck in a local minimum, ordered phase, hysteresis, and disordered phase.

FIG. 6. Monte Carlo Simulations of self-assembly of Ising particles. The simulations are done for n = 50, G = 3 and J = 1.
Make 5 · 104 MC steps for each temperature and perform 100 runs. We plot the error plot of final magnetization (left), the
scatter plot of final magnetization (center), and the error plot of final energy (right). In the first row, we started with all
particles in one cluster with all spins 1. In the second row, we started with random initialization of the system. In the third
row, we started with two groups of the same size and all spins 1, and finally, in the last row, we started with the two groups
of the same size with random initial spins.
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FIG. 7. Degree distribution of the pardus dataset for group sizes n = 10, 20, 30 and the corresponding truncated geometric
distribution for a = 0.6.

Degree distribution of Pardus and fit by truncated geometric distribution

As mentioned in the main text, can be well approximated with a truncated geometric distribution, p
(k)
a (q(k)) =

a(1 − a)q
(k)−1/(1 − (1 − a)k), where q(k) ∈ {1, . . . , k − 1}. For Pardus, we obtain a = 0.6 gives the decent fit for all

group sizes. This is illustrated in Fig. 7 for the group size n = 10, 20, 30, but we obtain similar fits for all other group
sizes.
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