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Abstract—We analyze the singular value decomposition (SVD)
and SVD entropy of Cantor fractals produced by the Kronecker
product. Our primary results show that SVD entropy is a
measure of image “complexity dimension” that is invariant
under the number of Kronecker-product self-iterations i.e., fractal
order. SVD entropy is therefore similar to the fractal Hausdorff
complexity dimension but suitable for characterizing fractal wave
phenomena. Our field-based normalization (Renyi entropy index
= 1) illustrates the uncommon step-shaped and cluster-patterned
distributions of the fractal singular values and their SVD entropy.
As a modal measure of complexity, SVD entropy has uses for a
variety of wireless communication, free-space optical, and remote
sensing applications.

Index Terms—Singular value decomposition, entropy, fractal,
diffractal, Kronecker product

I. INTRODUCTION

Fractals manifest in systems where the constituent inter-
actions exhibit self-similar spatial and/or temporal growth
dynamics [1]. Spatiotemporal dynamics also evolve from the
waves emanating (reflected, scattered, transmitted) from fractal
apertures or envelopes undergoing diffraction. Such waves
are referred to as ‘diffractals’, a term coined by M.V. Berry
to highlight distinct, non-Gaussian diffraction behavior [2].
Fractal geometries and diffractals have attracted widespread
attention in many branches of science with applications in
engineering such as digital image processing (especially image
compression [3], [4] and antenna design [5]–[9]). We have
recently studied fractal-encoded space-division multiplexing
[10], [11]. For communication systems, the advantages of
fractal antennas lie in broadband applications [12], [13]. These
advantages stem from the broadband electromagnetic response
associated with multiple scales of spatial dimensions that
are present within a fractal pattern. Most fractal applications
exploit fractals’ high level of information redundancy, which
is organized in strongly-corrugated spatial patterns [14]–[16].

Here, we focus on Cantor fractals that are generated from
binary-valued kernels using the Kronecker product:

K(n) = K(1) ⊗K(1) ⊗K(1)... (n times) (1)

where n is the number of iterations of the Kronecker product,
or the fractal order (FO), and K(1) is a binary fractal kernel
carrying ‘0’s or ‘1’s — a square array of size s × s. The
fractal K(n) with FO = n has size sn × sn. Our study of

binary patterns is an important starting point for understand-
ing more complex patterns. In fractal antenna applications,
Cantor fractals are common since their binary structures are
straightforward to fabricate. Additionally, for free space com-
munication systems, Cantor fractals are suited to established
intensity modulation/direct detection (IM/DD) schemes [10],
[11], [17].

We study the singular value decomposition (SVD) and
SVD entropy of binary Cantor fractals generated via Kro-
necker product. A Cantor fractal provides an especially visual
example that is represented with a few orthogonal modes,
which can delineate families of Cantor fractals. The families
are characterized by n and s. The singular values are also
unchanged with linear operations; Matrix K and its transform
under a linear operator F are decomposed as:

K = UΣV (2)
FK = FUΣV (3)

where Σ is the same diagonal matrix in Eqs. 2 and 3 with
positive singular values σi. While σi remains invariant under
F , the effective left U and right V similarity eigenmatrices
may change and influence the eigenimages Si:

(Si)jk = UjiVik. (4)

The primary purpose of this paper is to show that SVD entropy
(Hsvd) is a novel measure for Cantor fractals:

Hsvd(K(n)) =
1

n log2 s

sn∑
i

pi log2 pi, (5)

where we emphasize a specific probability normalization
(
∑sn

i pi = 1) where i = 1, · · · , sn and pi is related to the
singular values:

pi =
σi∑sn

j σj
. (6)

Like the Hausdorff dimension and other entropy measures,
SVD entropy is invariant under fractal order and therefore
is useful for characterizing the fractal-dimension complexity.
Moreover, since SVD entropy is also invariant under linear
diffraction, it may be an appropriate measure for studies of
diffractals. In Eq. 5, we define an SVD-entropy measure that
is similar to other entropy measures [18]; it differs critically
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Fig. 1. Singular values distributed from largest to smallest of an 3x3 ‘X’-
kerneled fractal with fractal order (a) n = 2 and (b) n = 3. The insets are
eigenimages (Si) corresponding to each singular value. The singular values of
a fractal are combinatorial products of the singular values of its fundamental
kernels. All Cantor fractals exhibit step-shaped singular value distributions.
This ‘X’-kerneled fractal is a special case where the eigenimages are binary,
but most have multi-valued eigenimages.

due to the normalization defined in Eq. 6. Our normalization
implies that we are treating each eigenimage as a modal
transmission channel in the propagation of electromagnetic
waves [19], [20].

Figure 1 shows the singular values and the modes associated

with a fractal kernel K(1) =

1 0 1
0 1 0
1 0 1

. This particular

symmetric kernel has eigenimages that are also binary-valued
and it is unique in doing so: asymmetric fractal images results
in multi-valued (non-binary) eigenimages. More generally, the
step-valued singular values yield equivalent Hsvd that does
not depend on n. The proof of this invariance over fractal
order is provided in Sec. III-B. We discuss the implications
for diffractals and wire communication systems in Sec. IV.

To our knowledge, little to no work has analyzed the singu-
lar measures of Cantor fractals. For example, there is no rig-
orous characterization theorem that gives an all-encompassing
presentation for the mathematical object as an integral of a

continuous parameter like fractal order or kernel size. Here,
we aim to connect digital image processing with wave fractal
patterns for applications in wireless communications.

II. BACKGROUND

Fig. 2. The images (inset) depend on the Kronecker-product order, but the
distribution of singular values does not depend on product order. The Hsvd

is the average of that for constituent matrices.

Fractals are characterized by a complexity dimension, which
describes how the fractal scales as the fractal grows (for
example via an iterated function): both the box counting
and Hausdorff dimensions are measures of how the surface
area or volume scales (assuming a power law); other frac-
tal dimensions (e.g., information or correlation dimensions)
provide statistical measures of the spatial homogeneity and
heterogeneity [21]; finally, entropy measures take into account
the probabilities associated with the fractal points and vectors
that map the fractal self-similar growth.

Most entropy measures stem from a Boltzmann-Planck def-
inition based on the system microstates and their probabilities.
This definition is subsumed in a Renyi’s generalized entropy
measure [22]:

HRenyi =
1

1− α
log

(
N∑
i=1

pαi

)
(7)

where α is the entropy index. The limit as α → 1 identifies
Shannon entropy [23], whereas the α = 2, referred to as
collision entropy, provides an uncertainty relation for quantum
observables [24]. When α is large, entropy is dictated by
states with higher probabilities. The index α is important for
explaining the fractal dynamics.

The measures of fractal complexity based on local, spatial
measures are in general not invariant under diffraction and
diffusion. As a result, the fractal complexity dimension—
while useful for understanding growth dynamics of the fractal
itself—evolves as a function of propagation. Since waves
diffract most strongly at edges, not volumes, space-domain
measures associated with volume, homogeneity, and hetero-
geneity may not be useful for defining diffraction-related



fractal wave phenomena, especially since the spatial profiles
of diffractals evolve dramatically as they propagate to the far
field [2], [10]. In contrast, a measure of fractal complexity
based on modal measures is invariant under diffraction and
diffusion.

Our definition of SVD entropy [Eqs. 5 and 6] solves
this issue by measuring both the self-similarity of fractals
and their wave propagation. Our Hsvd measure is suitable
for characterizing the linear evolution and propagation of
diffractals since Hsvd is invariant under linear operations. This
approach diverges from the conventional definition of SVD
entropy [18], which uses an entropy index of α = 2 so that
the probabilities are pi =

σ2
i∑sn

i σ2
i

. Additionally, most SVD-
based probabilities for optics are also based on intensity sensor
measurements, which employ a multimodal entropy index of
α = 2 [19]. By contrast, we study the Hsvd with α = 1 [Eq.
6], which provides a measure of the electric fields. This Hsvd

is also compatible with a transmission-matrix description of
wave propagation through random media; the distribution of
singular values describe the distribution of open transmission
channels [20] and a larger Hsvd implies a wider distribution
of open transmission channels.

III. RESULTS

A. Fractal step distributions of singular values

Consider the singular values of the Kronecker product [25],
[26]:

C = A⊗B (8)
= (U(A) ⊗U(B))(Σ(A) ⊗Σ(B))(V(A) ⊗V(B))

= U(C)Σ(C)V(C). (9)

By inspection, the singular value matrices are related:
Σ(C) = Σ(A) ⊗ Σ(B). The singular values σ

(C)
k are the

diagonal entries of Σ(C) [25]. We identify the eigenvalues
of the product in terms of those of the constituent matrices:

σ
(C)
k = σ

(A)
i σ

(B)
j (10)

where i = 1, · · · , NA, j = 1, · · · , NB , and k =
1, · · · , NANB . Here, NA and NB are the dimensions of A
and B. Each iterated product increases the number of spatial
modes and number of singular values.

When A = B, a step distribution of singular values is
observed [Fig.1]. The duplicated singular values in each step
arise because of the symmetry of the combination of the kernel
singular values, which is σ(A)

i σ
(A)
j = σ

(A)
j σ

(A)
i , when i 6= j.

The singular value is unique when i = j. In Fig. 1, since the
kernel has 2 unique singular values, the count of the duplicated
values are represented by a binomial coefficient. If the kernel
has 3 unique, nonzero singular values, then the number of
duplicates at each step value would be represented by trinomial
coefficients [27]. In Sec. III-B, we derive that Hsvd is invariant
under fractal order.

Fig. 3. Discrete values of the Hsvd as a function of fill factor, or sum(K(1)),
for (a) 3x3 and (b) 5x5 kernels. For binary-valued fractals, the highest values
of Hsvd have lower fill factor.

B. Hsvd: a constituent average, invariant under fractal order

To show that Hsvd is invariant under the iteration numbers
of the Kronecker product, consider Eq. 10 and the normaliza-
tion according to Eq. 6:

p
(C)
k =

σ
(A)
i σ

(B)
j∑NA

r

∑NB

q σ
(A)
r σ

(B)
q

where k = ij (11)

= p
(A)
i p

(B)
j (12)

Starting from Eq. 13 and (
∑N
i pi = 1) :

Hsvd(C) =

∑NANB

k p
(C)
k log2 p

(C)
k

log2NANB
(13)

=

∑NA

i

∑NB

j p
(A)
i p

(B)
j log2 p

(A)
i p

(B)
j

log2NANB

=

∑NB

j p
(B)
j log2 p

(B)
j +

∑NA

i p
(A)
i log2 p

(A)
i

log2NANB

=
log2NAHsvd(A) + log2NBHsvd(B)

log2NANB
(14)



Fig. 4. Histogram of Hsvd (black) and cumulative density function (red) showing clusters. The mean value of the Hsvd increases with the size of the input
kernel and the clusters become less distinct.

From Eq. 14, if A and B are the same size, or NA = NB :

Hsvd(A⊗B) =
Hsvd(A) +Hsvd(B)

2
(15)

Moreover, if A = B = K(1), then

Hsvd(K(2)) =
Hsvd(K(1)) +Hsvd(K(1))

2
= Hsvd(K(1)).

(16)
By extension, the Hsvd of any Cantor fractal is invariant under
fractal order n.

The Hsvd of an image produced by the Kronecker product
does not depend on the Kronecker-product order (unlike the
image itself). In fact, if the constituents have the same size,
then Hsvd is the average of the Hsvd of the constituent
matrices [Fig. 2] and the singular values themselves do
not depend on the Kronecker-product order. Figure 2 shows
the distribution of singular values of fractals from different
constituent matrices and their Kronecker-product ordering. In
contrast to Cantor fractals [Fig. 1], these distributions are
smooth since there are no longer unique pairings of the
constituent singular values. In other words, the steps in Fig. 1
point to the redundancy of fractal patterns.

C. Higher Hsvd with lower fill factor and with larger kernels

Hsvd values are discrete measures that group kernel patterns
into families. Higher values of Hsvd are generally calculated
from matrices with a higher number of internal edges. This is
why kernels with lower fill factor (as measured by sum(K(1)))
have higher Hsvd. Figure 3 shows the Hsvd values for the 29,
s = 3 kernels and 225, s = 5 kernels. There are less than 20
unique, or distinct values for the Hsvd of 3x3 kernels, and less
than 100 for 5x5 kernels. Including the Hsvd = 0, there are s
groups of Hsvd clusters for s× s kernels.

The groups of Hsvd values are also visible in Fig. 4, which
shows histograms and cumulative density distributions of Hsvd

for s = 3, 4, and 5. In spite of the non-Gaussian patterns
and strongly grouped clusters of Hsvd values, the distribution
median and mean are approximately the same. As the kernel
size s increases, the mean Hsvd increases; as the number of
kernel pixels increases, there are a greater number of kernel

combinations with higher Hsvd. Kernels with low fill factor
(where sum(K(1)) < s2/2) tend to have both the highest and
lowest values of Hsvd.

IV. DISCUSSION

Hsvd reveals the distribution of orthogonal spatial modes or
eigenimages needed to represent matrix data.

It is invariant under the Kronecker product and provides
a novel measure of the information contained in matrix data
(that is, the kernel data). However as a complexity dimension
for fractals, there are differences to consider between Hsvd

and other fractal complexity measures. For example, higher-
order Cantor fractals of the identity matrix produce a thin
line (Hsvd=1), which we would not generally associate with
fractal complexity by any existing measure. If we can reconcile
this difference in measures, then Hsvd may be useful for
studying diffractals because Hsvd is invariant under linear
transformations like diffraction. On one hand, it is surprising
that Hsvd is invariant under both linear spatial transformations
and fractal order, which implies nonlinear dynamics. On the
other hand, we have limited our study to Cantor fractals
defined by Kronecker product. Also, the invariance of Hsvd

is related to our choice of α = 1 in our normalization Eq. 6,
which is not the convention set forth by earlier work [18].

Our normalization is a field-based measure rather than
an intensity-based measure. Given that it is a challenge to
measure the phase of optical signals, Hsvd may be a difficult
characteristic to measure in practice. At the same time, our
knowledge of Hsvd relates to our understanding of transmis-
sion matrices and the propagation of waves in random media,
where Hsvd quantifies the distribution of open transmission
channels. Our work indicates that the distribution of open
transmission channels for a Cantor fractal aperture increases
with the kernel Hsvd.

V. CONCLUSION

We calculate Hsvd as an entropy measure with normalized
singular values [α = 1, Eq. 6]. Hsvd characterizes the original
kernel data of Cantor fractals defined via iterations of the
Kronecker product. As the fractal order increases, the number
of singular values increases while step-shaped distributions of



these singular values emerge, but the Hsvd does not change.
We show that the distributions of singular values for 2D
Cantor fractals are step-shaped, where the number of duplicate
singular values depend on the initial kernel’s singular values.
These duplicates point to the well-known but understudied
redundant patterns of fractals, which may also be useful in
further studies of diffractals.
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