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Abstract

Critical site percolation on the triangular lattice is described by the Yang-Baxter solvable dilute A
(2)
2

loop model with crossing parameter specialized to λ = π
3 , corresponding to the contractible loop fugacity

β = −2 cos 4λ = 1. We study the functional relations satisfied by the commuting transfer matrices of
this model and the associated Bethe ansatz equations. The single and double row transfer matrices are
respectively endowed with strip and periodic boundary conditions, and are elements of the ordinary
and periodic dilute Temperley-Lieb algebras. The standard modules for these algebras are labeled by
the number of defects d and, in the latter case, also by the twist eiγ . Nonlinear integral equation
techniques are used to analytically solve the Bethe ansatz functional equations in the scaling limit for
the central charge c = 0 and conformal weights ∆, ∆̄. For the ground states, we find ∆ = ∆1,d+1 for
strip boundary conditions and (∆, ∆̄) = (∆γ/π,d/2,∆γ/π,−d/2) for periodic boundary conditions, where

∆r,s =
1
24

(
(3r− 2s)2 − 1

)
. We give explicit conjectures for the scaling limit of the trace of the transfer

matrix in each standard module. For d 6 8, these conjectures are supported by numerical solutions of
the logarithmic form of the Bethe ansatz equations for the leading 20 or more conformal eigenenergies.
With these conjectures, we apply the Markov traces to obtain the conformal partition functions on the
cylinder and torus. These precisely coincide with our previous results for critical bond percolation on
the square lattice, described by the dense A

(1)
1 loop model with λ = π

3 . The concurrence of all this
conformal data provides compelling evidence supporting a strong form of universality between these
two stochastic models as logarithmic conformal field theories.
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1 Introduction

Percolation theory [1–4] is a central pillar within statistical physics exemplifying the underlying
principles of phase transitions and critical phenomena [5] with a myriad of applications in a diverse
range of fields including physics, biology, ecology and social sciences. In percolation, the bonds or sites
of a regular lattice are occupied independently and randomly with a probability p and a geometric
phase transition occurs with the appearance of an infinite connected cluster as p is increased beyond a
critical threshold pc.

In this paper, we are interested in percolation in two dimensions and study critical site percolation
on the triangular lattice. This work forms a companion to a previous paper [6] in which we studied
critical bond percolation on the square lattice. By a fortunate happenstance, bond percolation on
the square lattice and site percolation on the triangular lattice are both Yang-Baxter solvable [7] at
the common percolation threshold pc =

1
2 [8]. In hindsight, it turns out to be advantageous to study

the associated loop models where the domain wall boundaries surrounding the percolation clusters
constitute nonlocal degrees of freedom in the form of loop segments. Bond percolation on the square
lattice is described by the dense A

(1)
1 loop model with crossing parameter λ = π

3 and is underpinned by
the dense Temperley-Lieb algebra [9, 10]. Site percolation on the triangular lattice is described by the
dilute A

(2)
2 loop model with crossing parameter λ = π

3 and is underpinned by the dilute Temperley-Lieb
algebra [11–14].

Despite their commonalities, these percolating systems display some differences. In particular, the
loop and vertex models describing bond and site percolation have underlying sℓ(2) and sℓ(3) structures,
for bond and site percolation respectively. In practice, Yang-Baxter integrability means that both of
these models can be solved exactly in intricate detail including in the continuum scaling limit, where
the scaling behaviour is manifest and precisely described by conformal field theory (CFT) [15]. The
study of the conformal description of critical percolation in two dimensions was initiated by Saleur
and Duplantier [16–18] in the late eighties and subsequently received a significant impetus arising
from the study of crossing probabilities [19–21]. These models were later studied by analysing the
fractal dimensions [22–27] of the boundaries of various types of clusters. Notably, the rigorous proof of
conformal invariance in the continuum scaling limit was provided [28,29] for critical percolation on the
triangular lattice and its associated dilute A

(2)
2 loop model (namely the model we study in this paper),

with deep connections to SLE6 [30–32].
According to the universality hypothesis, the critical behaviour of statistical systems without

long-ranged interactions should depend only on (i) the lattice dimension and (ii) the symmetry of
the local spin/order parameter. It should moreover be insensitive to other physical details such as the
crystalline lattice structure and its sublattice symmetry. Fundamentally, in two dimensions, this asserts
that the critical exponents should only depend on the local symmetry group for the order parameter.
For the Ising model this symmetry group is Z2 and for the Q-state Potts model it is the symmetric
group SQ. The local degrees of freedom for percolation, namely the site or bond occupation numbers,
are independent and identically distributed. They exhibit a Z2 symmetry and have trivial correlations.
In contrast, seen as the Q → 1 limit of the Potts model [33], the local symmetry group of percolation
S1 is trivial.

For percolation in two dimensions, the known values of the standard critical exponents related to
(i) the number of clusters per site, (ii) the percolation probability, (iii) the truncated mean cluster size,
(iv) the cluster volume, (v) the correlation length and (vi) the decay with separation of the probability
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that two sites belong to the same cluster are respectively

α =
2∆t − 1

∆t − 1
= −2

3
, β =

∆h

1−∆t
=

5

36
, γ =

2∆h − 1

∆t − 1
=

43

18
, (1.1a)

δ =
1−∆h

∆h
=

91

5
, ν =

1

2(1 −∆t)
=

4

3
, η = 4∆h =

5

24
. (1.1b)

For example, as p → p+c , the percolation probability behaves as P (p) ∼ (p − pc)
β. Only two of these

six exponents are independent since, by scaling relations [34], they are all expressible in terms of the
thermal and magnetic conformal weights

∆t = ∆2,1 = ∆0,2 =
5

8
, ∆h = ∆ 1

2
,0 =

5

96
. (1.2)

Conventionally, the set of critical exponents is often said to determine the universality class of
critical behaviour, but this is somewhat simplistic. Nonetheless, for statistical systems described by
rational CFTs [35], a complete delineation of universality classes is possible. A CFT is rational if
it admits a finite number of irreducible representations of the conformal Virasoro chiral algebra (or
its extension) corresponding to the scaling operators of the theory and these representations close
under fusion. The Ising model, 3-state Potts model and the more general family of A-D-E minimal
models [36–40] are examples of rational CFTs. These theories are completely classified by a finite
set of Moore-Seiberg conformal data [35] which includes (i) the central charge c, (ii) the operator
content, (iii) the associated conformal weights ∆ and conformal characters χ∆(q) and (iv) the conformal
partition functions. For example, in this more precise sense, the hard square model (which appears
not to be Yang-Baxter solvable) is asserted [41] to be in the same universality class as the Ising model.
Likewise, hard hexagons is asserted [42, 43] to lie in the same universality class as the 3-state Potts
model.

Folklore dictates that, in any given lattice dimension, bond and site percolation lie in the same
universality class independent of the lattice structure. More specifically, it is expected that bond
percolation on the square lattice and site percolation on the triangular lattice lie in the same universality
class. But, as CFTs, these theories are not rational — instead they are logarithmic CFTs [44–47]. This
implies that the Virasoro algebra admits reducible yet indecomposable representations entailing non-
trivial Jordan blocks and the existence of an infinite number of scaling operators. This raises the central
question of this paper which is — to what extent can universality be demonstrated between these two
logarithmic CFTs?

To answer this question, we study the dilute A
(2)
2 loop model with crossing parameter λ = π

3 ,
focussing on the use of transfer matrix functional relations and the Bethe ansatz equations to obtain
the conformal eigenenergies and conformal partition functions. We study single and double row
transfer matrices, T̂ (u) and D̂(u), with periodic and strip boundary conditions respectively, and the
corresponding partition functions on the torus and cylinder. These geometries allow for loops with
non-trivial windings around any periods. Loops are said to be contractible if they can be deformed to
a point and non-contractible otherwise. It is then customary to assign different fugacities according
to the winding: α for non-contractible loops and β for contractible loops. For loop models associated
with percolation, the fugacity of the contractible loops is set to β = 1, whereas there is a freedom in
the choice of α.

For rational CFTs, the torus partition function is fixed by conformal invariance and modular
invariance [15]. It is a sum of terms of the form C∆,∆̄q

∆q̄∆̄, where q and q̄ are the modular nomes
and C∆,∆̄ is an integer coefficient that reveals the operator content and the degeneracy for the pair
(∆, ∆̄) of conformal weights. Similarly, the cylinder partition functions are sums of terms of the form
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C∆q
∆ with integer coefficients C∆ that reveals the field content of the boundary CFT. Things are a

bit different for loop models and their underlying logarithmic CFTs. For generic real values of the
fugacity α of the non-contractible loops, the torus and cylinder partition functions are still sums of
terms of the same form as above, however the coefficients C∆,∆̄ and C∆ are in general not integers.
For percolation, the values α = 1 and α = 2 are two exceptions. For α = 1, the classical partition
function per site/bond is trivially Z = 1 from which little can be learned. Much of our efforts will thus
be directed at the value α = 2. Nonetheless, we will also compute the partition functions for the other
values of α.

We point out that there exists an extensive literature on the three types of A
(2)
2 lattice models based

on the vertex, RSOS and loop representations of the underlying dilute Temperley-Lieb algebras. Indeed,
for general λ ∈ (0, π3 ), much is known about the A

(2)
2 lattice models for the 19-vertex Izergin-Korepin

model [48–51], dilute RSOS models [52–59] as well as the dilute A
(2)
2 loop model [60–67] including

the application of nonlinear integral equations (NLIEs) [68–70]. The case λ = π
3 of interest here is

special because the formula for the bulk free energy [69] valid generically for λ ∈ (0, π3 ) is divergent
in the limit λ → π

3 , a problem that we will circumvent by choosing different normalisations for the
face operators and transfer matrices. We will here focus on loop representations, namely the standard
modules over the ordinary and periodic dilute Temperley-Lieb algebras dTLN (β) and pdTLN (β). These
are respectively denoted as VN,d and WN,d,ω, where d is the number of defects d and ω = eiγ is a twist,
relevant only for periodic boundary conditions.

Let us summarize the main ideas and new results of this paper. First, we push further the
investigation of the integrability of the model of critical site percolation on the triangular lattice. That
the model is integrable in the bulk was previously established by Féher and Nienhuis [63], who described
the local map from configurations of site percolation to those of the dilute A

(2)
2 loop model. Here, we

establish that the model is also integrable when defined on a lattice with a boundary, namely we show
that a boundary decorated with percolation sites of a given fixed colour can be described in terms
of a solution of the boundary Yang-Baxter equation in the A

(2)
2 model, first obtained by Yung and

Batchelor [71] and later studied by Dubail, Jacobsen and Saleur [72]. We then use the Markov traces
of the dilute Temperley-Lieb algebras to express the partition functions in terms of the traces of the
commuting transfer matrices over the standard modules. We in fact consider two partition functions
Z(i)

cyl on the cylinder and four partition functions Z(h, v)

tor on the torus, with i, h, v ∈ {0, 1}. These
correspond to different boundary conditions assigned to the percolation clusters on these geometries.

Next, we study the scaling limit of the model from the large-N behaviour of the transfer matrix
eigenvalues. We compute analytically the leading finite-size correction for the ground states eigenvalues
in each standard module using the methods of functional relations and NLIEs. This allows us to extract
the conformal weights

∆ = ∆1,d+1 =
d(d− 6)

2
(1.3)

for strip boundary conditions and

∆ = ∆γ/π,d/2 =
1

24

[(3γ
π

− d
)2

− 1

]
, ∆̄ = ∆γ/π,−d/2 =

1

24

[(3γ
π

+ d
)2

− 1

]
(1.4)

for periodic boundary conditions, where ∆r,s = (3r−2s)2−1
24 is the usual Kac formula for c = 0. For

periodic boundary conditions, the groundstate conformal weights in WN,0,ω reproduce the values
previously obtained for the ground state of the Izergin-Korepin model by Warnaar, Batchelor and
Nienhuis [69], and Zhou and Batchelor [70]. Going beyond the ground states, we conjecture character
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formulas for the trace of the rescaled transfer matrix (to the power M) in each standard module:

tr
WN,d,ω

T̂ (u)M
N→∞−−−−→ 1

(q)∞(q̄∞)

∞∑

ℓ=−∞
q∆γ/π,3ℓ+d/2 q̄∆γ/π,3ℓ−d/2 , (1.5a)

tr
VN,d

D̂(u)
N→∞−−−−→ q∆1,d+1

1− qd+1

(q)∞
, (1.5b)

where ω = eiγ . This conjecture thus gives the conformal dimensions of all the scaling states arising
in each standard module. Lastly, we combine the Markov trace [73–76] with the above conjectures to
obtain the partition functions for α = 2, namely

Z(0)

cyl = κ1(q) + 3κ3(q)− κ5(q)− 6
d

dz

(
κ1(q, z) − κ3(q, z) + κ5(q, z)

)∣∣∣
z=1

, (1.6a)

Z(1)

cyl = 2κ1(q) + 4κ5(q) + 6
d

dz

(
κ1(q, z) − κ3(q, z) + κ5(q, z)

)∣∣∣
z=1

, (1.6b)

on the cylinder, and

Z(0, v)

tor =

6∑

j=0

(
(−1)vjdj|κj(q)|2

)
− 2(−1)v ,

Z(1, v)

tor =

6∑

j=0

(
(−1)v(j+1)djκj(q)κ6−j(q̄)

)
+ 2,

dj =

{
1 j = 0, 6,

2 j = 1, . . . , 5,
v ∈ {0, 1}, (1.6c)

on the torus, each one expressed in terms of affine u(1) characters. The precise concurrence with
the analytic results for critical bond percolation on the square lattice [6] reveals a strong form of
universality between the two models. Further evidence for this strong form of universality is revealed
by computing the partition functions of the two models for α ∈ C. We find that these twisted partition
functions again coincide and that they reproduce known functions obtained previously from Coulomb
gas arguments [77,78].

The outline of the paper is as follows. In Section 1.1, we recall the conformal description of critical
percolation in two dimensions. In Section 2, we define site percolation on the triangular lattice and the
mapping onto a dilute loop model with the relevant boundary conditions on the cylinder and torus.
In Section 3, we define the A

(2)
2 loop model on the cylinder and torus, and give their description in

terms of the ordinary and periodic dilute Temperley-Lieb algebras, their standard representations and
their commuting transfer matrices. We also review the result of Féher and Nienhuis [63], whereby the
model of site percolation corresponds to the A(2)

2 loop model with the crossing parameter specialized
to λ = π

3 . In Section 4, we first study the large-N expansion of the eigenvalues of the transfer matrices
in the standard modules. Based on numerics, we conjecture the formulas for the scaling limit of these
traces in each of these standard modules. With these conjectures and the Markov traces, we derive
expressions for the four conformal partition functions on the torus and the two partition functions on
the cylinder.

In Sections 5 and 6, we present an exact derivation of the groundstate finite size corrections, which
confirms the leading term of the trace conjectures (1.5). First, the functional relations and Bethe ansatz
equations for site percolation are derived in Section 5, for both periodic and strip boundary conditions.
We use the fusion hierarchy and its closure relation [66] to show that T̂ (u) satisfies a cubic functional
equation. Next we recall the form of Baxter’s functional T̂ -Q equations and the resulting Bethe ansatz
equations. We rewrite these in terms of two linear functional equations satisfied by an eigenvalue
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T̂ (u) of the single row transfer matrix, its corresponding Baxter Q(u) function and a suitably chosen
additional auxiliary function P (u). These sℓ(3) linear equations are the counterpart of the known
sℓ(2) linear equation of Fabricius and McCoy [79]. Analogs of all of these functional equations are also
presented for D̂(u). In Section 6, the methods of [80–83] are used to convert the Bethe ansatz functional
equations for T̂ (u) to nonlinear integral equations (NLIEs) and to analytically solve them for the ground
state conformal weights in (1.3). Due to the similar form of the functional equations, the same analytic
calculations yield the groundstate conformal weights in (1.4) for the eigenvalues D̂(u) of the double row
transfer matrix. The proof of the needed dilogarithm identities is presented in Appendix A. Finally,
Section 7 presents our numerical evidence supporting the trace conjectures (1.5). These numerical
calculatons were carried out using the logarithmic form of the Bethe ansatz equations, which are more
stable for iterative solutions. We solve these equations for the leading conformal eigenenergies for both
T̂ (u) and D̂(u), in the standard modules with 0 6 d 6 8. The numerical results are tabulated in
Appendix B. We make some concluding remarks in Section 8 and comment on the relation with the
Y -system of Gliozzi and Tateo in Appendix C.

1.1 Conformal description of critical percolation in two dimensions

In this section, before specializing to the case λ = π
3 relevant to percolation, we recall the basic

conformal data for the general dense A
(1)
1 and dilute A

(2)
2 loop models with crossing parameter

λ =





(p′−p)π
p′ A

(1)
1 ,

(2p′−p)π
4p′ A

(2)
2 ,

p < p′, gcd(p, p′) = 1, (1.7)

with eiλ a root of unity. We refer to the dense A
(1)
1 and dilute A

(2)
2 models, at these roots of unity, as

the LM(p, p′) and DLM(p, p′) models respectively, with regimes

A
(1)
1 : LM(p, p′) : 0 < λ < π,

A
(2)
2 : DLM(p, p′) :





0 < λ < π
2 Regime I,

2π
3 < λ < π Regime II,
π
2 < λ < 2π

3 Regime III.

(1.8)

These regimes are valid for the isotropic models, namely for the spectral parameter set to u = λ
2 for

the A
(1)
1 model and u = 3λ

2 for the A
(2)
2 model. Critical bond percolation on the square lattice coincides

with the logarithmic minimal model LM(2, 3) and critical site percolation on the triangular lattice is
the model DLM(2, 3) belonging to Regime I.

In the continuum scaling limit, these models are described by logarithmic conformal field
theories [44–47]. For the LM(p, p′) and DLM(p, p′) models, the common central charges and conformal
weights in the infinitely extended Kac tables are

cp,p
′

= 1− 6(p − p′)2

pp′
, p < p′, p, p′ = 1, 2, 3, . . . (1.9a)

∆p,p′

r,s =
(p′r − ps)2 − (p− p′)2

4pp′
, r, s = 1, 2, 3, . . . (1.9b)

Specializing to (p, p′) = (2, 3) with λ = π
3 for critical percolation gives

c = 0, ∆r,s =
(3r − 2s)2 − 1

24
. (1.10)
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Figure 1: Left: Infinitely extended Virasoro Kac table of conformal weights ∆r,s, with r, s ∈ Z>0 of
critical percolation with strip boundary conditions. The entries are given different colours depending
on whether r is a multiple of p = 2, s is a multiple of p′ = 3, or both. Right: The conformal weights
∆r,s for critical percolation with r ∈ Z>0 and s ∈ 1

2Z>0 for critical percolation with twisted periodic
boundary conditions, for ω = ±1.

The extended integer Kac table of critical percolation for strip boundary conditions is shown in Figure 1.
The extended Kac table with integer r and half-integer s ∈ 1

2Z values, relevant to the periodic boundary
conditions when the twist is set to ω = ±1, is also shown. The associated characters for the strip
boundary conditions are the Kac characters [45]

χr,s(q) = q∆r,s
1− qrs

(q)∞
, r, s = 1, 2, 3, . . . (1.11)

The relevant characters [84] for the cylinder and torus partition functions are the affine u(1) characters

κj(q) = κ
n
j (q, 1), κ

n
j (q, z) =

Θj,n(q, z)

q1/24(q)∞
=
q−1/24

(q)∞

∑

k∈Z
zkq(j+2kn)2/4n, (1.12)

with n = pp′ = 6 for percolation. These satisfy the relations

κ
n
2n+j(z, q) = z−1

κ
n
j (z, q), κ

n
2n−j(z, q) = z−1

κ
n
j (z

−1, q). (1.13)
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Figure 2: Configurations of critical site percolation with doubly-periodic boundary conditions, drawn
in the plane and on the torus.

Figure 3: Configurations of critical site percolation with a periodic boundary condition along one
direction and fixed boundary conditions along the second direction, drawn in the plane and on the
cylinder. The fixed colour is different on the left and right boundaries, and the corresponding partition
function is Z(1)

cyl(α).

2 Site percolation on the triangular lattice

2.1 Definition of the model on the torus and cylinder

We are interested in site percolation on a triangular lattice with the geometry of the cylinder and
torus. In a configuration of this model, each site is either coloured with probability p or uncoloured
with probability 1 − p. Here we focus on the critical value pc = 1

2 where the sites are coloured and
uncoloured with equal probabilities. In this presentation, the sites are at the centers of the hexagonal
cells, and the role of coloured and uncoloured cells are interchangeable. Figures 2 and 3 give examples
of configurations of site percolation on the torus and cylinder.

Configurations of this model on the cylinder or torus can be drawn in the plane. For toroidal
boundary conditions, we draw the lattice in the plane as a parallelogram with horizontal length N and
diagonal length M . For instance, these lengths are M = 24 and N = 31 in the left panel of Figure 2.
Domain walls between the purple and white hexagons trace out curves on the lattice that divide the
cells into connected clusters. These curves can be non-contractible, meaning that they wrap the torus
non-trivially, i ∈ Z times around the horizontal period and j ∈ Z>0 times around the vertical period,
with i and j coprime. We write this condition in terms of their greatest common divisor as i ∧ j = 1,
with the convention i ∧ 0 = 0 ∧ i = i. Moreover, we restrict j to be greater than or equal to zero,
whereas i can be either positive or negative. Following a curve moving upwards on the torus, we assign
it a positive value of i if it winds around the torus horizontally by moving towards the right, and a
negative integer if it winds by moving towards the left. A curve that winds around the torus i times

9



along one axis and j times around the second axis always draws the contour of a cluster that has the
same property. There are two more types of clusters on the torus. A cluster can have cross-topology,
namely, it can wrap around both periods of the torus. Finally, a cluster need not wrap around either
of the two periods. In these last two cases, the curves delimiting the boundary of the clusters are
contractible loops. We assign to each configuration σ the weight

w(σ) = αn(σ), n(σ) =
∑

i,j|i∧j=1

ni,j(σ), (2.1)

where ni,j(σ) is the number of non-contractible loops in σ that encircle the torus i times in one direction
and j times in the other. Thus the contractible loops are assigned a unit weight. The partition function
on the torus is then given by

Ztor(α) =
∑

σ

αn(σ). (2.2)

Each non-contractible coloured cluster has two non-contractible loops on its boundary. As a result,
n(σ) is always an even number and Z(α) is an even polynomial in α. Also, it is clear that

Ztor(α = 1) = 2MN . (2.3)

For cylindrical boundary conditions, we draw the lattice in the plane as a rectangle of 2M rows
that alternate between N + 1 and N + 2 hexagonal faces. The example on the left panel of Figure 3
has M = 13 and N = 28. On each of the boundaries of the cylinder, we assign a fixed colour, either
purple or white, to all the sites belonging to the first two columns of sites. As is the case on the torus,
the domain walls of purple and white hexagons trace out curves on the lattice that divide the faces into
connected clusters. These curves are either non-contractible, meaning that they encircle the cylinder,
or they are contractible, in which case they can be continuously deformed to a point. We again denote
the number of non-contractible curves by n(σ) and define the cylinder partition function as

Zcyl(α) =
∑

σ

αn(σ). (2.4)

This partition function is an even and odd polynomial in α if the two boundaries of the cylinder are
assigned identical or different colours. We denote the corresponding partition functions as Z(0)

cyl(α) and

Z(1)

cyl(α), respectively. Clearly, we have

Z(0)

cyl(α = 1) = Z(1)

cyl(α = 1) = 2M(2N−1). (2.5)

2.2 Map to dilute loop configurations on the square lattice

To study the statistical and conformal properties of critical site percolation on the triangular lattice, it
is convenient to use the idea of Féher and Nienhuis [63] and view it as a dilute loop model defined on a
square lattice. The transformation that maps percolation configurations into configurations of the loop
model is defined in two steps. The first step consists in drawing triangular tiles centered on each site of
the hexagonal lattice and whose corners lie in the centers of the three adjacent hexagonal cells. If the
three cells are either all purple or all white, we draw no loop segment inside the triangle. Otherwise,
we draw a loop segment that follows the domain wall separating the purple and white clusters. These
local rules are summarised as

(2.6)
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−→ −→

−→ −→

Figure 4: The maps from percolation configurations to loop configurations, with toroidal and cylindrical
boundary conditions.

with similar diagrams with the purple and white colours interchanged, or with the diagrams flipped
vertically. This first step thus produces a configuration of a dilute loop model living on triangular tiles.

On the torus, the second step is to apply a shear that transforms the parallelogram into a rectangle
of height M and width N . An example illustrating the map applied to a percolation configuration on
the torus is given in the upper panel of Figure 4. Combining together pairs of triangles into square
tiles, we see that the square tiles formed are given by the following eight diagrams:

, , , , , , , . (2.7)

This second step thus produces a configuration of a dilute loop model on the square lattice with these
eight admissible tiles and with periodic boundary conditions in both directions.

On the cylinder, the sheer is applied in different directions for the even and odd rows of the lattice.
This transformation is illustrated in the lower panel of Figure 4. The result is a configuration of the
dilute loop model on a square lattice with 2M ×N square tiles, M pairs of triangular tiles on the right
boundary, and a straight left boundary. The loop segments can never touch the boundary. In this case,
the square tiles of the odd rows (counted from the bottom) are given by the eight tiles (2.7), whereas
those of the even rows are given by the eight tiles

, , , , , , , . (2.8)

Only the last one is different. Moreover, the boundary triangles on the right boundary are occupied

11



(i) (ii)

(iii) (iv)

Figure 5: Configurations of site percolation on the torus assigned with boundary conditions
corresponding to (i) Z(0, 0)

tor (α), (ii) Z(0, 1)

tor (α), (iii) Z(1, 0)

tor (α), and (iv) Z(1, 1)

tor (α). The fundamental domain
is delimited by a heavy zigzag boundary.

by one of the two diagrams

, . (2.9)

This transformation produces configurations of loop segments where each loop is part of a closed
loop, namely there are no free ends. This map is not one-to-one. On the torus, loop configurations with
odd numbers of non-contractible loops are never produced by this map. Moreover, each configuration
with an even number of non-contractible loops is produced twice, as interchanging the role of purple
and white hexagonal cells leads to the same loop configuration. The map is not bijective on the
cylinder either. Indeed, the loop configurations produced by the map have only even and odd numbers
of non-contractible loops, if the boundary sites have identical or different colours, respectively. In this
case however, each loop configuration in the image has a unique pre-image. This is due to the fixed
boundary conditions, which break the invariance under the interchange of purple and white hexagons.

2.3 Antiperiodic boundary conditions on the torus

In this subsection, we describe the model of site percolation on a torus with antiperiodic boundary
conditions. On the lattice, each pair of opposite edges of the parallelogram can be assigned periodic or
antiperiodic boundary conditions. In this context, an antiperiodic boundary condition means that, as
we move through this edge of the parallelogram from one elementary domain to the next, all the coloured
sites are changed to uncoloured sites, and vice versa. There are therefore four possible toroidal boundary
conditions. Examples of configurations for these four boundary conditions are given in Figure 5. We
denote the four resulting partition functions by Z(h, v)

tor (α), with

h, v =

{
0 periodic,

1 antiperiodic,
(2.10)
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where the first and second index label the boundary condition along the horizontal and vertical axes
of the parallelogram, respectively.

Let us discuss the properties of the non-contractible clusters and curves for the four cases. First,
Z(0, 0)

tor (α) corresponds to the partition function already defined in (2.2) with purely periodic boundary
conditions. The curves that act as contours for its non-contractible clusters can have any winding (i, j)
with i∧ j = 1. There are always an even number of such curves. Second, for Z(0, 1)

tor (α), the contributing
configurations may only have clusters with windings (i, j) with i∧ j = 1, i odd and j even, as otherwise
the antiperiodicity of the boundary condition in the vertical direction is violated. Likewise for Z(1, 0)

tor (α),
the only possible windings (i, j) have i even and j odd. Finally for Z(1, 1)

tor (α), the only possible windings
have both i and j odd. For the last three cases, the number of non-contractible curves is always odd.

3 The dilute A
(2)

2 loop model

3.1 Definition of face operators

In this section, we describe the local operators of the general A
(2)
2 loop model. The elementary face

operator is defined as the linear combination of nine elementary tiles

u = ρ1(u) + ρ2(u) + ρ3(u) + ρ4(u) + ρ5(u)

+ ρ6(u) + ρ7(u) + ρ8(u) + ρ9(u) . (3.1)

The local Boltzmann weights are

ρ1(u) = s(2λ)s(3λ) + s(u)s(3λ− u), ρ6(u) = ρ7(u) = s(u)s(3λ− u), (3.2a)

ρ2(u) = ρ3(u) = s(2λ)s(3λ − u), ρ8(u) = s(2λ− u)s(3λ− u), (3.2b)

ρ4(u) = ρ5(u) = s(2λ)s(u), ρ9(u) = −s(u)s(λ− u), (3.2c)

where

s(u) =
sinu

sinλ
. (3.3)

The parameters u and λ are the spectral and crossing parameters, respectively. The weight β of
non-contractible loops is parameterised in terms of the crossing parameter as

β = −2 cos 4λ. (3.4)

The boundary face operator is

u = κ1(u) + κ2(u) . (3.5)

The weights κ1 and κ2 are chosen from one of two choices that solve the boundary Yang-Baxter
equation [71,72]:

choice 1: κ+1 (u) = sin(3λ2 − u), κ+2 (u) = sin(3λ2 + u), (3.6a)

choice 2: κ−1 (u) = cos(3λ2 − u), κ−2 (u) = cos(3λ2 + u). (3.6b)
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3.2 Partition functions on the torus and cylinder

On the torus, a configuration of the A
(2)
2 loop model is a decoration with one of the nine tiles of each

of the M × N square faces, in such a way that every loop segment is part of a closed loop, namely
there are no free ends. This lattice is drawn in the left panel of Figure 6. As stated earlier, a loop can
wind non-trivially around the torus j ∈ Z>0 times vertically and i ∈ Z times horizontally, with i and j
coprime. For instance, embedded on the 1× 1 torus, the tiles and have windings (i, j) = (1, 1)
and (−1, 1), respectively. We assign a weight αi,j to a loop that has the winding (i, j). Any given
configuration c has at most one type of non-trivial windings, but it can have more than one loop with
this winding. We denote their number in c by ni,j(c). Likewise, we denote by nβ(c) the number of
contractible loops of c. The weights of the configurations and the partition function are

w(c) = βnβ(c)
∏

i∧j=1

α
ni,j(c)
i,j

9∏

k=1

ρk(u)
nk(c), Z̃tor =

∑

c

w(c), (3.7)

where nk(c) is the number of occurences of the k-th tile in (3.1).
We also define the A

(2)
2 loop model on the cylinder with 2M × N bulk tiles, M triangular tiles

on the left boundary and M triangular tiles on the right boundary. A configuration is obtained by
replacing each square face with one of the nine tiles of (3.1), and each boundary triangle with one of
the two possible tiles in (3.30). This lattice is drawn in the right panel of Figure 6. We note that the
orientation of the faces, indicated by the quarter arc in a corner, is different on odd and even rows of
the lattice, which then modifies the counting of the numbers nk(c) accordingly. Moreover the weights
of the triangular tiles are κ1(u) and κ2(u) on the right boundary, and κ1(3λ − u) and κ2(3λ − u)
on the left boundary. On a given boundary, we make the same choice of weights, either κ+ℓ or κ−ℓ ,
for all of its boundary face operators. However, one is free to make the same or a different choice
for the left and right boundaries, leading to four possible boundary conditions for the full system.
Non-contractible loops are assigned a fugacity α, whereas contractible ones are given a fugacity β. We
denote their respective numbers in c by nα(c) and nβ(c). The weights of the configurations and the
partition function are

w(c) = αnα(c)βnβ(c)
9∏

k=1

ρk(u)
nk(c)

2∏

ℓ=1

κℓ(3λ− u)mℓ(c)κℓ(u)
m′

ℓ(c), Z̃cyl =
∑

c

w(c), (3.8)

where mℓ(c) and m
′
ℓ(c) count the number of boundary triangular tiles of type ℓ ∈ {1, 2} on the left and

right boundaries, respectively.

3.3 Dilute Temperley-Lieb algebras

Site percolation and dilute connectivities. The dilute A
(2)
2 loop model is described using

diagrammatic algebras: the dilute Temperley-Lieb algebra dTLN (β) and its periodic incarnation
pdTLN (β). The vector spaces on which these are defined are spanned by objects called connectivities
or connectivity diagrams.

For the model of site percolation, these objects arise when considering horizontal sections of the
cylinder or torus. Applied to only the hexagons overlapping the section, the map discussed in Section 2.2
produces configurations of loop segments that either close into loops or are attached to the top and
bottom segments of the studied section. For each segment, the N possible locations where the loops
may be attached are called nodes. These nodes may also be left vacant. A connectivity segment is
then obtained by straightening the loop segments that connect the top and bottom segments, and by
removing the loops. Examples are given in Figure 7.
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Figure 6: The lattices with toroidal and cylindrical boundary conditions on which the A
(2)
2 model is

defined, with (M,N) = (8, 6) and (4, 6), respectively.

Definition of the algebras. The algebra dTLN (β) was first studied in [11–13] and its representation
theory was investigated in [14]. Here we introduce pdTLN (α, β) following the conventions of [66], and
dTLN (β) as a subalgebra of pdTLN (α, β). The algebra pdTLN (α, β) is the linear span of connectivity
diagrams drawn in a rectangular box with periodic boundary conditions in the horizontal direction.
The top and bottom segments of the box each have N marked nodes labelled from left to right with
the integers 1, . . . , N . In a connectivity diagram, these are either connected pairwise by a loop segment
or are left vacant. Here are examples of connectivity diagrams for N = 6:

a1 = , a2 = , a3 = . (3.9)

Alternatively, these diagrams can be drawn in a planar representation, with the loop segments living
inside an annulus, see for instance [85].

The product a1a2 of two connectivities of pdTLN (α, β) is obtained by stacking a2 above a1. If
one or more loop segments are connected to a vacant site, the result is set to zero. Otherwise, the new
connectivity is obtained by reading the connections of the nodes on the top and bottom segments of the
new, larger box. The result of the product a1a2 is this new connectivity diagram multiplied by factors
of β and α for each closed contractible and non-contractible loop formed in the process, respectively.
This product is then linearly extended to all elements of pdTLN (α, β). Here are examples illustrating
this product for N = 6:

a1a2 = = β , (3.10a)

a1a3 = = α , (3.10b)
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−→ −→

−→ −→

Figure 7: The map from horizontal sections of percolation configurations to connectivity diagrams, with
periodic and strip boundary conditions. The resulting connectivities respectively belong to pdTL7(α, β)
and dTL6(β).

a2a3 = = 0. (3.10c)

Because loop segments can wind arbitrarily many times around the periodic boundary conditions,
pdTLN (α, β) is an infinite-dimensional algebra.

The algebra dTLN (β) is the finite-dimensional subalgebra of pdTLN (α, β), generated by
connectivity diagrams with loop segments that do not cross the vertical segment that marks the
periodic boundary conditions between the sites 1 and N . For instance, only the connectivity a1 in
(3.9) is an element of dTL6(β).

Standard modules. We denote by WN,d,ω and VN,d the standard modules over pdTLN (α, β) and
dTLN (β), respectively. Their vector spaces are spanned by link states on N nodes with d defects,
with 0 6 d 6 N . These are diagrams drawn above a segment with N marked nodes that are either
connected pairwise, occupied by a vertical segment called a defect, or left vacant. The link states of
WN,d,ω may have loop segments that cross the periodic boundary conditions, whereas the link states
of VN,d may not. For example, the link states that span the standard modules for N = 3 are

W3,3,ω : , W3,2,ω : ,

W3,1,ω : ,

W3,0,ω : ,

(3.11a)
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and

V3,3 : , V3,2 : ,

V3,1 : ,

V3,0 : .

(3.11b)

The action of a connectivity c ∈ pdTLN (α, β) on a link state w is obtained by drawing w above c
and reading the new link state. If two defects are connected or if a loop segment is connected to
a vacant site, the result is set to zero. Otherwise, for d = 0, the product cw is this new link state
multiplied by αnαβnβ where nα and nβ are the numbers of non-contractible and contractible loops
closed in the process. For d > 0, any non-contractible loop results in a zero weight, as this implies
connecting defects. Moreover, for d > 0, the action depends on a twist factor ω that couples to the
winding of the defects around the cylinder. Indeed, a defect moving from the top to the bottom that
crosses the periodic boundary conditions between the nodes 1 and N produces a factor of ω if it crosses
it while traveling to the left, and ω−1 if it crosses while travelling to the right. Then cw is equal to the
new link state formed on the bottom segment of the box, times βnβωnω , where nω is an integer that
measures the total winding of the defects. Here are examples of this action:

= αβ , = 0, (3.12a)

= ω−1 , = 0. (3.12b)

This action on the basis states is linearly extended to all linear combinations of link states. We also
note that the standard module with zero defects depends on α but not on ω, so a more natural way to
denote it would be WN,0,α. However, it is usual and useful for practical purposes to parameterize α as

α = ω + ω−1 (3.13)

and denote by WN,0,ω the corresponding module.
The same rules defining the action of the algebra apply for the standard modules VN,d over

dTLN (β). In this case however, the representations are independent of α and ω. These standard
modules have dimensions given respectively by trinomial coefficients and Motzkin numbers [86]

dimWN,d,ω =

(
N

d

)

2

, dimVN,d =

(
N

d

)

2

−
(

N

d+ 2

)

2

, (3.14)

where the trinomial coefficients are defined by

(x+ 1 + x−1)N =
N∑

k=−N

(
N

k

)

2

xk. (3.15)

These dimensions are tabulated in Table 1 for N = 1, 2, . . . , 7.
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dimWN,d,ω dimVN,d

N\d 0 1 2 3 4 5 6 7

1 1 1
2 3 2 1
3 7 6 3 1
4 19 16 10 4 1
5 51 45 30 15 5 1
6 141 126 90 50 21 6 1
7 393 357 266 161 77 28 7 1

N\d 0 1 2 3 4 5 6 7

1 1 1
2 2 2 1
3 4 5 3 1
4 9 12 9 4 1
5 21 30 25 14 5 1
6 51 76 69 44 20 6 1
7 127 196 189 133 70 27 7 1

Table 1: The dimensions of the standard modules WN,d,ω and VN,d for N = 1, 2, . . . , 7.

3.4 Markov traces

The Markov traces [73–76] for the dilute Temperley-Lieb algebras are linear maps

F : dTLN (β) → C, F : pdTLN (α, β) → C. (3.16)

Roughly speaking, their purpose is to connect the top and bottom of the connectivity diagrams, and
thus embed them in geometries with periodic boundary conditions in the vertical direction. In this
way, the connectivity diagrams in dTLN (β) and pdTLN (α, β) are embedded on a cylinder and a torus,
respectively. Then F(c) outputs the product of the weights of the loops created by this embedding:

F(c) = βnβ ×





αnα c ∈ dTLN (β),∏

i∧j=1

α
ni,j

i,j c ∈ pdTLN (α, β),
(3.17)

where nα, nβ and ni,j count the numbers of loops of each possible winding in c.
Remarkably, the Markov traces can be realised in terms of weighted sums of traces over the

standard modules. For dTLN (β), generalizing the arguments used for the usual Temperley-Lieb algebra
[74,75], we find

F(c) =

N∑

d=0

Ud(
α
2 )trVN,d

(c), (3.18)

where Un(x) is the n-th Chebyshev polynomial of the second kind: Un(cos θ) = sin
(
(n+1)θ

)
/ sin θ.

Similarly for pdTLN (β), supposing that c is an arbitrary element of the algebra, its trace over the
standard modules decomposes as

tr
WN,d,ω

(c) =

∞∑

j=−∞
ω−jCd,j , (3.19)

where the coefficients Cd,j are independent of ω. Any element of the algebra has only finitely many
non-zero coefficients Cd,j , implying that the sum in (3.19) is in fact finite. The Markov trace is then
given by

F(c) = tr
WN,0,ω

(c)
∣∣
α→α1,0

+

N∑

d=1

∞∑

j=−∞
2Td∧j(

1
2α j

d∧j
, d
d∧j

)Cd,j , (3.20)
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where Tn(x) is the n-th Chebyshev polynomial of the first kind: Tn(cos θ) = cosnθ. Such trace formulas
were previously obtained for the dense loop model with periodic boundary conditions in [87, 88], and
(3.20) extends this to the dilute case.

For both geometries, the only difference with the dense loop model is that the sums over d run
over all integers, not only those with the same parity as N . In Section 4, we will apply the Markov
traces to powers of transfer matrices to compute the partition function on the torus and cylinder. In
particular, for the torus, we will consider the Markov trace applied to the single row transfer matrix
to the power M , in which case the sums over j in (3.19) and (3.20) can be restricted to run between
−M and M .

3.5 Local relations and transfer matrices

Local relations. The face operator (3.1) is an element of the dilute Temperley-Lieb algebra dTLN (β)
and of its periodic incarnation pdTLN (α, β). It satisfies the Yang-Baxter equation and the inversion
relation

u+ v

u

v

= u+ v

u

v

,

u

−u
= ρ8(u)ρ8(−u) , (3.21)

where the dashed loop segment is the identity strand of the dilute Temperley-Lieb algebra

= + . (3.22)

Likewise, the boundary face operators (3.30) are elements of dTLN (β) and satisfy the boundary Yang-
Baxter equation

u

v

u+ v

u− v

=

v

u

u+ v

u− v

. (3.23)

Transfer matrices. The single row transfer matrix is an element of pdTLN (α, β) defined by

T (u) = u u u . . . u

N

. (3.24)

The periodic boundary condition is reflected by the identification of the left and right edges with the
dashed strand. Likewise, the double row transfer matrix is the element of dTLN (β) defined as

D(u) =
u u u . . . u

u u u . . . u
u3λ−u

N

. (3.25)
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As a result of the local relations given above, the transfer matrices obey the commutation relations

[T (u),T (v)] = 0, [D(u),D(v)] = 0. (3.26)

The diagrammatic proof of these relations is done in the planar dilute Temperley-Lieb algebra following
the usual arguments [89,45]. It can also be performed without resorting to the planar algebra, but at
the cost of writing down three independent Yang-Baxter equations [90].

3.6 Site percolation as the dilute A
(2)

2
model at λ = π

3

Local operators. In Section 2.2, we found that the configurations of site percolation could be mapped
to dilute loop configurations on the square lattice. To compute the partition function of site percolation,
one must also relate the weights of the percolation configurations with those of the A

(2)
2 loop model.

In this respect, each of the occurring eight tiles in (2.7) should be assigned a unit weight, whereas the
ninth tile should have a vanishing weight. Moreover, each contractible loop should have the fugacity
β = 1. This corresponds to the special point λ = u = π

3 of the A
(2)
2 loop model.

We stress that the face operator (3.1) is normalised differently compared to [66], wherein overall
factors of sin 2λ sin 3λ were included in the denominators of the Boltzmann weights. With these factors
removed, the limit λ→ π

3 of the face operator is well-defined. Moreover, in this limit, there is an overall
factor of s(u) in the numerator which we remove to define the suitably normalised face operator

u = lim
λ→π

3

1

s(u)
u = s(u) + + + +

+ s(u) + s(u) + s(u+ π
3 ) + s(u− π

3 ) . (3.27)

At u = π
3 , the weight of the last tile vanishes, and the weights of the remaining eight tiles are all equal

to 1. In addition, the face operator at u = λ = π
3 factorises as a product of two triangle operators:

π
3 = = + + + + + + + , (3.28)

where

= + + + . (3.29)

These are precisely the weights needed for site percolation. Likewise, the boundary face operator at
λ = π

3 simplifies to

u =





cos u


 +


 choice 1,

sinu


 −


 choice 2.

(3.30)

Hereafter, we select choice 1 with equal Boltzmann weights, for which the boundary operator is
proportional the identity strand (3.22).

20



Transfer matrices. With a suitable change of normalisation, the commuting single and double row
transfer matrices are

T̂ (u) = u u u . . . u

N

= lim
λ→π

3

1

f(u)
T (u), (3.31a)

D̂(u) =
u u u . . . u

u u u . . . u

N

= − lim
λ→π

3

1

f(u) cos2 u
D(u), (3.31b)

where

f(u) =

{
s(u)N single row,

s(u)2N double row.
(3.32)

Specializing to u = π
3 and using (3.28), we obtain

T̂ (π3 ) =
. . .

N

, D̂(π3 ) =
. . .

. . .

N

. (3.33)

As can be seen from Figure 4, the transfer matrix relevant for the torus partition function is indeed
T̂ (π3 ). However, the transfer matrix relevant for the cylinder partition function is not exactly D̂(π3 ),
since the boundary conditions are identity strands. They should instead consist of vacancies on the
left end and of triangular tiles with vacancies on the right end. To resolve this issue, we note the two
identities

=
1

2
, = . (3.34)

The correct transfer matrix for the cylinder partition function is then

D =
. . .

. . .

N

= 1
2D̂(π3 ). (3.35)

This confirms that the transfer matrices T and D needed to compute the partition functions for site
percolation are respectively elements of the commuting families T̂ (u) and D̂(u), and thus that the
model is Yang-Baxter integrable on both geometries.

Stochasticity and simple eigenvalues. The transfer matrices of critical bond percolation have
some eigenvalues that are simple. For the single row transfer matrix, this occurs for even system
sizes in the standard module with d = 0 and α = 1, and for odd system sizes for d = 1 and ω = 1.
Likewise, for the double row transfer matrix, there are simple eigenvalues in the standard modules
with d = 0 and d = 1. After suitable normalization, these transfer matrices are stochastic matrices
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and the associated quantum Hamiltonians are intensity matrices [91]. This simple eigenvalue turns out
to be the eigenvalue of largest modulus for 0 < Re(u) < π

3 . The corresponding left eigenstate is the
trivial vector with all equal entries. The right eigenvector is non-trivial and has integer entries related
to the counting of alternating sign matrices [92]. These properties are closely related to the similar
features [93,94] for the groundstate of the XXZ Hamiltonian at the combinatorial point ∆ = −1

2 .

Similar ties with combinatorics were found by Garbali and Nienhuis [64, 65] for the dilute A
(2)
2

model with strip boundary conditions at λ = π
3 . The boundary condition that they study is however

different from the ones considered here, as they focus on a solution of the boundary Yang-Baxter
equation with five boundary tiles, including some where the loops are attached to the boundary in the
context of the boundary dilute Temperley-Lieb algebra.

It turns out that the transfer matrices (3.31) also have simple eigenvalues, with special right
eigenvectors expected to be related to combinatorial problems. For dTLN (β), this occurs in the
representations VN,0 and VN,1, for all N > 1. For pdTLN (α, β), this occurs in the representations
WN,0,ω with α = ω + ω−1 = 1 and WN,1,ω=1, also for all N > 1. Our numerical experiments for small
system sizes allow us to make a claim for the inhomogeneous transfer matrices

T̂ (u, ξ) = u−ξ1 u−ξ2 u−ξ3 . . . u−ξN

N

, D̂(u, ξ) =
u−ξ1 u−ξ2 u−ξ3 . . . u−ξN

u+ξ1 u+ξ2 u+ξ3 . . . u+ξN

N

. (3.36)

We conjecture that these transfer matrices have the special eigenvalues

T̂ (u, ξ) =
4N

3N/2

[ N∏

j=1

cos
(
1
2(u− ξj +

π
3 )
)
sin

(
1
2(u− ξj − π

3 )
)
+

N∏

j=1

cos
(
1
2 (u− ξj − π

3 )
)
sin

(
1
2(u− ξj +

π
3 )
)]
,

(3.37a)

D̂(u, ξ) =
42N

3N

[ N∏

j=1

cos
(
1
2 (u− ξj +

π
3 )
)
sin

(
1
2(u− ξj − π

3 )
)
cos

(
1
2(u+ ξj +

π
3 )
)
sin

(
1
2(u+ ξj − π

3 )
)

+

N∏

j=1

cos
(
1
2 (u− ξj − π

3 )
)
sin

(
1
2(u− ξj +

π
3 )
)
cos

(
1
2(u+ ξj − π

3 )
)
sin

(
1
2(u+ ξj +

π
3 )
)]
. (3.37b)

We also find that, in the homogeneous limit ξj → 0, these are the eigenvalues of largest modulus at
the isotropic point u = 3λ

2 = π
2 , in the corresponding standard modules.

4 Continuous scaling limit and conformal partition functions

This section contains the main results of this paper. We first study the large-N behavior of the
transfer matrix eigenvalues, and in particular the leading finite-size correction of log T̂ (u) and log D̂(u),
proportional to 1

N . We conjecture formulas for the traces of the transfer matrices in the continuum
scaling limit, for both periodic and strip boundary conditions and in each standard module. These
conjectures are the result of extensive numerical work presented in subsequent sections.

In the present section, after formulating the conjectures, we combine them with the Markov traces
defined in Section 3.4 to compute the conformal partition functions of critical site percolation on the
torus and cylinder. These are expressed in terms of affine u(1) characters and Kac characters of the
Virasoro algebra. Remarkably, we find that these conformal partitions are identical to those that we
obtained previously for the model of critical bond percolation [6].
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4.1 Free energies, finite-size corrections and conjectures for the traces

For the A
(2)
2 model with 0 < λ < π

2 , the finite-size corrections for the leading eigenvalues T (u) and
D(u) of the single and double row transfer matrices take the form [95,96]

log T (u) = −Nfbulk(u)− 2π
N

(
i e−

iπu
3λ (∆− c

24 )− i e
iπu
3λ (∆̄ − c

24 )
)
+ o( 1

N )

= −Nfbulk(u)− 2π
N

(
sin πu

3λ (∆ + ∆̄− c
12) + i cos πu3λ (∆− ∆̄)

)
+ o( 1

N ), (4.1a)

logD(u) = −2Nfbulk(u)− fbdy(u)− 2π
N sin πu

3λ (∆− c
24 ) + o( 1

N ). (4.1b)

Here, fbulk(u) and fbdy(u) are the bulk and boundary free energies. There is no boundary free energy
for the single row transfer matrix, reflecting the fact that there is no boundary. The term proportional
to 1

N depends on the central charge and the conformal weights of the conformal state describing this
eigenstate in the scaling limit.

For critical site percolation corresponding to λ = π
3 , the expansions for the eigenvalues T̂ (u) and

D̂(u) of the suitably normalised transfer matrices read

log T̂ (u) = −Nfbulk(u)− 2π
N

(
i e−iu∆− i eiu∆̄

)
+ o( 1

N )

= −Nfbulk(u)− 2π
N

(
sinu (∆ + ∆̄) + i cos u (∆ − ∆̄)

)
+ o( 1

N ), (4.2a)

log D̂(u) = −2Nfbulk(u)− fbdy(u)− 2π
N sin(u)∆ + o( 1

N ), (4.2b)

where we set the central charge to its known value c = 0. The bulk and boundary energies can be
obtained directly from the homogeneous limit of the special eigenvalues (3.37):

fbulk(u) = − log
[

4√
3
sin

(
1
2 (u+ π

3 )
)
sin

(
1
2(u+ 2π

3 )
)]
, fbdy(u) = 0. (4.3)

For these special eigenvalues, the following corrections are exponentially small in N , and in particular
the 1

N correction vanishes consistently with ∆ = ∆̄ = 0. These bulk and boundary free energies can
alternatively be computed using Baxter’s inversion relation techniques [97–99]. In the present case,
this involves solving the functional equations

fbulk(u)− fbulk(u− π
3 )− fbulk(u+ π

3 ) = log s(u) = log 2√
3
sinu, (4.4a)

fbdy(u)− fbdy(u− π
3 )− fbdy(u+ π

3 ) = 0. (4.4b)

These can be solved using Fourier transforms and assuming the correct analyticity properties and
asymptotics for these functions. The above formulas (4.3) for the free energies will also be recovered
in Section 6 using the technique of nonlinear integral equations.

In [6], we studied the transfer matrices of the dense loop model for λ = π
3 corresponding to critical

bond percolation on the square lattice. For this sℓ(2) model, we were able to conjecture a complete
classification of the patterns of zeros, for both periodic single row and strip double row transfer matrices,
in each standard module with d defects. Using this data, we derived and analytically solved nonlinear
integral equations for the finite-size corrections of every eigenvalue of the fundamental transfer matrices
and obtained formulas for their traces in terms of finitized characters. In the continuum scaling limit,
we obtained the conformal partition functions on the cylinder and torus in terms of Virasoro and affine
u(1) characters. This calculation involved skew q-binomials [100,90] and a q-series identity (B.7) in [6]
for which we gave a proof but is in fact1 the q-Saalschütz identity, see formula (3.3.12) in [101].

1We thank Ole Warnaar for pointing this out to us.
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Critical site percolation is intrinsically an sℓ(3) model and the classification of the patterns of
zeros is significantly more difficult. We are unable to obtain a complete classification of the patterns
of zeros. Nevertheless, our extensive numerical results suggest the following conjectures for the scaling
limit of the trace of the transfer matrices in the standard modules.

Conjecture 1 (Traces of single row transfer matrices) The scaling limit of the traces of
T̂ (u)M over the standard modules WN,d,ω of pdTLN (α, β) are given by

lim
M,N→∞
M/N=δ

eMNfbulk(u) tr
WN,d,ω

T̂ (u)M =
1

(q)∞(q̄)∞

∞∑

ℓ=−∞
q∆γ/π−2ℓ,d/2 q̄∆γ/π−2ℓ,−d/2 (4.5)

where

ω = eiγ , q = exp
(
−2πiδ e−iu

)
, q̄ = exp

(
2πiδ eiu

)
, (q)∞ =

∞∏

k=1

(1− qk), (4.6)

and the bulk free energy fbulk(u) is given in (4.3).

It is clear that these traces are invariant under the symmetry γ → γ + 2π, as this amounts to shifting
ℓ by one in the sum.

Conjecture 2 (Traces of double row transfer matrices) The scaling limit of the traces of
D̂(u)M over the standard modules VN,d of dTLN (β) are given by

lim
M,N→∞
M/N=δ

e2MNfbulk(u)+Mfbdy(u) tr
VN,d

D̂(u) = q∆1,d+1
1− qd+1

(q)∞
, (4.7)

where fbdy(u) = 0 and
q = exp

(
−2πδ sinu

)
. (4.8)

The right side of (4.5) is a sesquilinear form in Verma characters whereas the right side of (4.7) is
precisely the Kac character χ1,d+1(q).

In the conjectures, the leading term in the power-series corresponds to the groundstate, and the
corresponding conformal weight coincides with (1.3) and (1.4). In Section 6, we give an exact derivation
for these ground-state conformal weights, in each standard representation. This derivation is obtained
using nonlinear integral equations, themselves obtained from the functional relations that we describe
in Section 5 and in fact hold more generally for all eigenvalues. We then present numerical evidence for
the above conjectures in Section 7 and Appendix B. In this case, we solve numerically the logarithmic
Bethe ansatz equations to high precision for large numbers of excited states of the transfer matrix.

4.2 Lattice partition functions

The Markov trace allows us to compute the partition function of the A
(2)
2 loop model. The repeated

applications of the single and double row transfer matrices produce stacks of face operators that
reproduce the lattices of the loop model on sections of the torus and cylinder, respectively. These
lattices are illustrated in Figure 6. Applying F then respectively closes these sections into a proper
torus and cylinder. The corresponding partition functions for the loop model with λ = π

3 , as defined
in Section 3.6, are

Z̃tor = F
(
T̂ (u)M

)
, Z̃cyl = F

(
D̂(u)M

)
. (4.9)
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Torus partition functions. For the periodic dilute Temperley-Lieb algebra, we use (3.19) and (3.20)
and write

tr
WN,d,ω

T̂ (u)M =
M∑

j=−M
ω−jCd,j, Z̃tor = tr

WN,0,ω
T̂ (u)M

∣∣
α→α1,0

+
N∑

d=1

M∑

j=−M
2Td∧j(

1
2α j

d∧j
, d
d∧j

)Cd,j.

(4.10)
As argued in Section 2.3, the torus partition function for critical site percolation, defined in (2.2), can
be written in terms of partition functions in the loop model. For the four possible boundary conditions,
the weights αi,j of the non-contractible loops must be assigned according to the parities of i and j as

Z(0, 0)

tor (α) : αi,j →





α (i, j) ≡ (1, 0) mod 2,
α (i, j) ≡ (0, 1) mod 2,
α (i, j) ≡ (1, 1) mod 2,

Z(0, 1)

tor (α) : αi,j →





α (i, j) ≡ (1, 0) mod 2,
0 (i, j) ≡ (0, 1) mod 2,
0 (i, j) ≡ (1, 1) mod 2,

Z(1, 0)

tor (α) : αi,j →





0 (i, j) ≡ (1, 0) mod 2,
α (i, j) ≡ (0, 1) mod 2,
0 (i, j) ≡ (1, 1) mod 2,

Z(1, 1)

tor (α) : αi,j →





0 (i, j) ≡ (1, 0) mod 2,
0 (i, j) ≡ (0, 1) mod 2,
α (i, j) ≡ (1, 1) mod 2.

(4.11)
Moreover, for periodic-periodic boundary conditions, the number of non-contractible loops is always
even, whereas it is odd in the three antiperiodic cases. It follows that

Z(0, 0)

tor (α) = lim
u→π

3

[
Z̃tor + Z̃tor

∣∣
αi,j→−αi,j

]∣∣∣∣
αi,j →rules (4.11)

, (4.12a)

Z(h, v)

tor (α) = lim
u→π

3

[
Z̃tor − Z̃tor

∣∣
αi,j→−αi,j

]∣∣∣∣
αi,j →rules (4.11)

, for (h, v) = (0, 1), (1, 0), (1, 1). (4.12b)

The linear combinations in (4.12a) and (4.12b) serve to keep only the configurations with even or
odd numbers of non-contractible loops, respectively. Morever, we did not divide the right sides of
(4.12) by 2, because each loop configuration must be counted twice due to their invariance under the
interchange of white and purple cells. Rewriting these expressions using (4.10), we find

Z(0, 0)

tor (α) = tr
WN,0,ω

T̂ (u)M + tr
WN,0,−ω

T̂ (u)M +
∑

16d6N
d even

∑

−M6j6M
j even

4Td∧j(
α
2 )Cd,j , (4.13a)

Z(0, 1)

tor (α) = tr
WN,0,ω

T̂ (u)M − tr
WN,0,−ω

T̂ (u)M +
∑

16d6N
d even

∑

−M6j6M
j odd

4Td∧j(
α
2 )Cd,j , (4.13b)

Z(1, 0)

tor (α) =
∑

16d6N
d odd

∑

−M6j6M
j even

4Td∧j(
α
2 )Cd,j , (4.13c)

Z(1, 1)

tor (α) =
∑

16d6N
d odd

∑

−M6j6M
j odd

4Td∧j(
α
2 )Cd,j . (4.13d)

A drastic simplification arises for the special value α = 2. In this case, the above formulas reduce nicely
to

Z(0, v)

tor (α = 2) =
∑

06d6N
d even

(2− δd,0)
(
tr

WN,d,1
T̂ (u)M + (−1)v tr

WN,d,−1
T̂ (u)M

)
, (4.14a)
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Z(1, v)

tor (α = 2) = 2
∑

06d6N
d odd

tr
WN,d,1

T̂ (u)M + (−1)v tr
WN,d,−1

T̂ (u)M . (4.14b)

Cylinder partition functions. To compute the cylinder partition function of the loop model at
λ = π

3 , we use the Markov trace (3.18) of the dilute Temperley-Lieb algebra and find

Z̃cyl = F(D̂(u)M ) =

N∑

d=0

Ud(
α
2 )trVN,d

D̂(u)M . (4.15)

For site percolation, we recall from Section 2.1 that the model with identical and different colours fixed
at the ends of the cylinder respectively maps to loop configurations with even and odd numbers of
non-contractible loops. As a result,

Z(0)

cyl(α) =
1

2

[
F(DM ) + F(DM)

∣∣
α→−α

]
=

1

2M+1
lim
u→π

3

Z̃cyl + Z̃cyl

∣∣
α→−α , (4.16a)

Z(1)

cyl(α) =
1

2

[
F(DM )−F(DM)

∣∣
α→−α

]
=

1

2M+1
lim
u→π

3

Z̃cyl − Z̃cyl

∣∣
α→−α . (4.16b)

Here the factors of 1
2 after the first equalities are included because each loop configuration has a unique

pre-image in the percolation model and must thus be counted only once. In contrast, the factor 1
2M

arises due to the relation D = 1
2D̂(π3 ), see (3.35). Using (4.15), we find

Z(0)

cyl(α) =
1

2M

∑

06d6N
d even

Ud(
α
2 )trVN,d

D̂(π3 )
M , Z(1)

cyl(α) =
1

2M

∑

06d6N
d odd

Ud(
α
2 )trVN,d

D̂(π3 )
M . (4.17)

For α = 2, this reads

Z(0)

cyl(α = 2) =
1

2M

∑

06d6N
d even

(d+1) tr
VN,d

D̂(π3 )
M , Z(1)

cyl(α = 2) =
1

2M

∑

06d6N
d odd

(d+1) tr
VN,d

D̂(π3 )
M . (4.18)

4.3 Conformal partition functions for α = 2

In this section, we consider the scaling limit of the lattice partition functions for α = 2 and use
Conjectures 1 and 2 to express them in terms of characters.

Torus partition functions. Using the symmetry ∆r,s+3ℓ = ∆r−2ℓ,s, the conjectured formula (4.5)
for the scaling limit of the trace of the transfer matrix can be rewritten as

lim
M,N→∞
M/N=δ

eMNfbulk(u) tr
WN,d,ω

T̂ (u)M =
1

(q)∞(q̄)∞

∞∑

ℓ=−∞
q∆γ/π,3ℓ+d/2 q̄∆γ/π,3ℓ−d/2 . (4.19)

Setting u = π
3 throughout, we define the conformal torus partition functions of the model of site

percolation at α = 2 as

Z(h, v)

tor = lim
M,N→∞
M/N=δ

eMNfbulk(
π
3
)Z(h, v)

tor (α = 2), h, v ∈ {0, 1}. (4.20)
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Using (4.19), these partition functions are written as infinite sesquilinear forms in Verma characters.
They can be reformulated as finite sesquilinear forms in the affine u(1) characters (1.12). Let us define

Zd,γ =
1

(q)∞(q̄)∞

∑

ℓ∈Z
q∆γ/π,3ℓ+d/2 q̄∆γ/π,3ℓ−d/2 , d ∈ Z, γ ∈ R. (4.21)

Because Zd,0 = Z−d,0 and Zd,π = Z−d,π, we can use (4.14) to write

Z(0, v)

tor =
∑

d∈2Z

[
Zd,0 + (−1)vZd,π

]
, Z(1, v)

tor =
∑

d∈2Z+1

[
Zd,0 + (−1)vZd,π

]
, (4.22)

We now group the functions Zd,γ in sums according to the value of d mod 6:

Yj,γ =
∑

d∈6Z+j
Zd,γ , j = 0, 1, . . . , 5. (4.23)

Using the simplification

(q)∞(q̄)∞ Yj,γ =
∑

k,ℓ∈Z
q∆γ/π,3ℓ+3k+j/2 q̄∆γ/π,3ℓ−3k−j/2 =

∑

k,ℓ∈Z
q∆γ/π,3ℓ+6k+j/2 q̄∆γ/π,3ℓ−j/2

=
∑

k,ℓ∈Z
q∆γ/π,6ℓ+6k+j/2 q̄∆γ/π,6ℓ−j/2 +

∑

k,ℓ∈Z
q∆γ/π,6ℓ+6k+3+j/2 q̄∆γ/π,6ℓ+3−j/2

=
∑

k∈Z
q∆γ/π,6k+j/2

∑

ℓ∈Z
q̄∆γ/π,6ℓ−j/2 +

∑

k∈Z
q∆γ/π,6k+3+j/2

∑

ℓ∈Z
q̄∆γ/π,6ℓ+3−j/2 (4.24)

=





(qq̄)−
1
24

(∑

k∈Z
q

(12k+j)2

24

∑

ℓ∈Z
q̄

(12ℓ+j)2

24 +
∑

k∈Z
q

(12k+6+j)2

24

∑

ℓ∈Z
q̄

(12ℓ+6−j)2

24

)
γ = 0,

(qq̄)−
1
24

(∑

k∈Z
q

(12k+j−3)2

24

∑

ℓ∈Z
q̄

(12ℓ+j+3)2

24 +
∑

k∈Z
q

(12k+j+3)2

24

∑

ℓ∈Z
q̄

(12ℓ+j−3)2

24

)
γ = π,

it follows that

Yj,0 = |κj(q)|2 + |κ6−j(q)|2, Yj,π = κj+3(q)κ3−j(q̄) + κ3−j(q)κj+3(q̄). (4.25)

With this result, we find

Z(0, v)

tor = |κ0(q)|2 + |κ6(q)|2 + 2|κ2(q)|2 + 2|κ4(q)|2

+ 2(−1)v |κ3(q)|2 + 2(−1)v [κ1(q)κ5(q̄) + κ5(q)κ1(q̄)], (4.26a)

Z(1, v)

tor = 2|κ1(q)|2 + 2|κ5(q)|2 + 2|κ3(q)|2

+ (−1)v [κ0(q)κ6(q̄) + κ6(q)κ0(q̄)] + 2(−1)v [κ2(q)κ4(q̄) + κ4(q)κ2(q̄)], (4.26b)

with v = 0, 1. Using the identity

κ1(q)κ5(q̄) + κ5(q)κ1(q̄) = |κ1(q)|2 + |κ5(q)|2 − 1, (4.27)

these partition functions are expressed compactly as

Z(0, v)

tor =

6∑

j=0

(
(−1)vjdj |κj(q)|2

)
− 2(−1)v ,

Z(1, v)

tor =

6∑

j=0

(
(−1)v(j+1)djκj(q)κ6−j(q̄)

)
+ 2,

dj =

{
1 j = 0, 6,

2 j = 1, . . . , 5.
(4.28)
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This is the final form of the conformal torus partition functions as sesquilinear forms in affine
u(1) characters. We now discuss properties under the action of the modular group. Under the T
transformation, the u(1) characters behave as

∣∣κj(e2πi(τ+1))
∣∣ =

∣∣κj(e2πiτ )
∣∣, κj(e

2πi(τ+1))κ6−j(e
−2πi(τ̄+1)) = (−1)j+1

κj(e
2πiτ )κ6−j(e

−2πiτ̄ ),
(4.29)

Their similar behaviour under the S transformation is given in Equation (4.107) of [6]. It then results
that the four partition functions behave under the T and S transformations as

Z(0, 0)

tor (τ + 1) = Z(0, 0)

tor (τ),

Z(0, 1)

tor (τ + 1) = Z(0, 1)

tor (τ),

Z(1, 0)

tor (τ + 1) = Z(1, 1)

tor (τ),

Z(1, 1)

tor (τ + 1) = Z(1, 0)

tor (τ),

Z(0, 0)

tor (− 1
τ ) = Z(0, 0)

tor (τ),

Z(0, 1)

tor (− 1
τ ) = Z(1, 0)

tor (τ),

Z(1, 0)

tor (− 1
τ ) = Z(0, 1)

tor (τ),

Z(1, 1)

tor (− 1
τ ) = Z(1, 1)

tor (τ).

(4.30)

Therefore Z(0, 0)

tor is a modular invariant, whereas the other three partition functions are covariant under
the modular group. We also note that these partition functions have only positive integer coefficients
for v = 0, but have also negative ones for v = 1.

Cylinder partition functions. Setting u = π
3 throughout, we define the conformal cylinder

partition functions of critical site percolation at α = 2 as

Z(i)

cyl = lim
M,N→∞
M/N=δ

eM(2N−1)fbulk(
π
3
)Z(i)

cyl(α = 2), i ∈ {0, 1}, (4.31)

where we recall that M(2N − 1) is the number of free sites for the lattice model on the cylinder.
We note that this limit is well-defined because e2MNfbulk(

π
3
) cancels with the similar factor in (4.7),

whereas e−Mfbulk(
π
3
) cancels with the factor 2−M in (4.18). After some simplification, we find that these

partition functions are expressed in terms of either sums of Kac characters or affine u(1) characters as

Z(0)

cyl =
1

(q)∞

∞∑

d=0,2,4,...

(d+ 1)q∆1,d+1(1− qd+1)

= κ1(q) + 3κ3(q)− κ5(q)− 6
d

dz

(
κ1(q, z) − κ3(q, z) + κ5(q, z)

)∣∣∣
z=1

, (4.32a)

Z(1)

cyl =
1

(q)∞

∞∑

d=1,3,5,...

(d+ 1)q∆1,d+1(1− qd+1)

= 2κ1(q) + 4κ5(q) + 6
d

dz

(
κ1(q, z) − κ3(q, z) + κ5(q, z)

)∣∣∣
z=1

. (4.32b)

Universal behavior of the partition functions. The above results are to be compared with the
conformal partition functions obtained in [6] for the dense A

(1)
1 loop model corresponding to critical

bond percolation on the torus and cylinder. Let us denote these partition functions for critical bond
percolation at α = 2 as Ẑtor and Ẑcyl. Four torus partition functions were computed corresponding to
odd and even values of M and N , and two cylinder partition functions corresponding to odd and even
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Figure 8: Configurations of the dense loop model on the torus and cylinder of odd width N , with
their two dual sets of bond percolation clusters shown in blue and red. On the torus, this corresponds
to antiperiodic-periodic boundary conditions for the underlying percolation configuration. On the
cylinder, the odd parity of N with double rows and boundary conditions made of simple arcs on the
left and right edges results in wired clusters having opposite colours on the left and right boundaries.

values of N . Remarkably, we find the equalities2

Z(0, 0)

tor = ẐM even,N even

tor , Z(0, 1)

tor = ẐM odd,N even

tor , Z(0)

cyl = ẐN even
cyl ,

Z(1, 0)

tor = ẐM even,N odd

tor , Z(1, 1)

tor = ẐM odd,N odd

tor , Z(1)

cyl = ẐN odd
cyl .

(4.34)

For the dense loop model, the loops draw the contours of the clusters of bonds. This is illustrated
in Figure 8, where the lattice for the bond percolation model is made of the black sites and is a square
lattice tilted by 45◦. Its corresponding percolation clusters are drawn in red. In this figure, we also
draw in blue the dual clusters, on the dual square lattice. On the torus, odd and even values of M
or N then correspond to periodic and antiperiodic boundary conditions for the percolation clusters,
respectively. This means that if we follow a cluster moving from one elementary domain to the next,
a red cluster becomes a blue cluster if the length along this axis is odd, but remains a red cluster
if this length is even. On the cylinder, the lattice is made of an integer number of double rows, so
the percolation clusters always have periodic boundary conditions in the vertical direction (as opposed
to antiperiodic). In this case, a boundary with simple half-arcs corresponds to having the clusters of
one colour wired and the clusters of the other colour not wired on this edge. If N is even, the two
boundaries have the same colour of wired clusters, whereas this colour is different if N is odd. Thus
the relations (4.34) reveal a strong form of universality for bond and site percolation, as it shows the
equality of the partition functions for precisely the same boundary conditions for the two models of
percolation: periodic or antiperiodic for the torus, and wired or not wired for the cylinder.

2In comparing with our previous results [6], we found two errors. First, there is a typo in (3.112) and (3.113): the

prefactor of κ3(q, z) in the parenthesis should be −1 not −3. Second, the partition function Ẑ
M odd,N odd
tor has an incorrect

overall sign. This can be traced back to incorrect signs in equation (4.93) of [6] for M odd, which should instead read

d ≡ 0 mod 3 : Zd(q, q̄) =
(−1)Md

(q)∞(q̄)∞

∑

ℓ∈Z

(
q
∆0,3ℓ−d q̄

∆0,3ℓ + (−1)Mq
∆1,3ℓ−d q̄

∆1,3ℓ

)
, (4.33a)

d ≡ 1 mod 3 : Zd(q, q̄) =
(−1)Md

(q)∞(q̄)∞

∑

ℓ∈Z

(
q
∆0,3ℓ−d+2 q̄

∆0,3ℓ+2 + (−1)Mq
∆1,3ℓ−d+2 q̄

∆1,3ℓ+2

)
, (4.33b)

d ≡ 2 mod 3 : Zd(q, q̄) =
(−1)Md

(q)∞(q̄)∞

∑

ℓ∈Z

(
q
∆0,3ℓ−d+1 q̄

∆0,3ℓ+1 + (−1)Mq
∆1,3ℓ−d+1 q̄

∆1,3ℓ+1

)
. (4.33c)
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4.4 Torus partition functions for all α

In this section, we compute the torus partition functions for all values of α. We present the computations
separately for site and bond percolation, with the latter complementing our earlier work in [6].

Partition functions for site percolation. Starting from (4.10) and (4.13), we compute the
coefficients Cd,j using an integral over γ:

Cd,j =
1

2π

∫ 2π

0
dγ eiγj tr

W
N,d,eiγ

T̂ (u)M . (4.35)

We then define the scaled coefficients and partition functions

Cd,j = lim
M,N→∞
M/N=δ

eMNfbulk(u)Cd,j , Z(h, v)

tor (α) = lim
M,N→∞
M/N=δ

eMNfbulk(u)Z(h, v)

tor (α). (4.36)

Because WN,0,ω = WN,0,ω−1 , we know that C0,j = C0,−j. Then defining C−d,j = Cd,−j, we write

Z(h, v)

tor (α) =
∑

d∈Z>0

d≡hmod 2

∑

j ∈Z

j≡ vmod 2

(4− 2δd,0)Td∧j(
α
2 ) Cd,j =

∑

d∈Z
d≡hmod 2

∑

j ∈Z

j≡ vmod 2

2Td∧j(
α
2 ) Cd,j , (4.37)

valid for h, v ∈ {0, 1}. We then find

Cd,j =
1

2π

1

(q)∞(q̄)∞

∞∑

ℓ=−∞

∫ 2π

0
dγ eiγj q∆(γ−2πℓ)/π,d/2 q̄∆(γ−2πℓ)/π,−d/2

=
1

2π

1

(q)∞(q̄)∞

∫ ∞

−∞
dγ eiγj q∆γ/π,d/2 q̄∆γ/π,−d/2 . (4.38)

Concatenating the sum of integrals into a single integral thus produces a Gaussian integral that is
easily evaluated. Indeed, setting q = exp(2πiτ) and q̄ = exp(−2πiτ̄ ) with τ = δ eiu, we find

Cd,j =
1

2π

exp
[
iπ
12(τ − τ̄)(d2 − 1)

]

(q)∞(q̄)∞

∫ ∞

−∞
dγ exp

[
iγ(j − d

2(τ + τ̄)) +
3iγ2

4π
(τ − τ̄)

]

=
( 1

6τi

)1/2 exp(πτi6 )

(q)∞(q̄)∞
exp

[
− π

6τi

(
j2 + d2(τ2r + τ2i )− 2d j τr

)]
= Zd,j(16 ) (4.39)

where

Zm,m′(g) =
( g
τi

)1/2 1

η(q)η(q̄)
exp

[
− πg

τi

∣∣mτ −m′∣∣2
]
. (4.40)

Here, τr and τi are the real and imaginary parts of τ , and the Dedekind function is η(q) = q1/24(q)∞.
The functions Zm,m′(g) were defined in [77, 78] in the context of the Coulomb gas approach, and it is
remarkable that these are reproduced here from a completely different calculation. Thus (4.37) and
(4.39) are the final form of the partition function for critical site percolation, valid for all values of α.
Because

Cd,j(τ + 1) = Cd,j−d(τ), Cd,j(− 1
τ ) = Cj,−d(τ), (4.41)

it is clear that Z(0, 0)

tor (α) is a modular invariant, whereas the three others partition functions are modular
covariant, as in (4.30).
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Following [77], we define

Z(g, f) = f
∑

m,m′∈fZ
Zm,m′(g), (4.42)

and note that, for α = 2, the partition function for periodic-periodic boundary conditions can be
rewritten as

Z(0, 0)

tor (α = 2) =
∑

d,j ∈ 2Z

2 Cd,j = Z(16 , 2) = Z(23 , 1) (4.43)

where we used the identity
Z(g, f) = Z(gf2, 1). (4.44)

The function Z(g, 1) is the Coulombic partition function defined in [77]:

ZCoul(g) = Z(g, 1) =
∑

m,m′ ∈Z

Zm,m′(g) =
1

η(q)η(q̄)

∑

d,j∈Z
q(d/

√
g+j

√
g)2/4q̄(d/

√
g−j√g)2/4. (4.45)

Partition functions for bond percolation. We now proceed with the same calculation for bond
percolation. In this case, the Markov trace gives [6]

ẐM,N

tor (α) =
∑

06d6N
d≡N mod 2

∑

−M6j6M
j≡M mod 2

(2−δd,0)Td∧j(α2 )Kd,j , tr
WN,d,ω

T (u)M =
∑

−M6j6M
j≡M mod 2

ω−jKd,j , (4.46)

where in this context, T (u) and WN,d,ω refer to the transfer matrix and standard modules of the dense
Temperley-Lieb algebra at β = 1. The trace conjecture in this case is

lim
M,N→∞
M/N=δ

eMNfbulk(u) tr
WN,d,ω

T̂ (u)M =
1

(q)∞(q̄)∞

∞∑

ℓ=−∞
(−1)Mℓq∆γ/π−ℓ,d/2 q̄∆γ/π−ℓ,−d/2 . (4.47)

One can show that this is equivalent to (4.33) for γ = 0. It is also consistent with the results given in
Equation (2.69) of [102], stated for all β and γ but only for even parities of M . Defining the scaled
coefficients Kd,j as

Kd,j = lim
M,N→∞
M/N=δ

eMNfbulk(u)Kd,j, (4.48)

we compute them with an integral over γ as before:

Kd,j =
1

2π

1

(q)∞(q̄)∞

∞∑

ℓ=−∞

∫ 2π

0
dγ eiγj

[
q∆(γ−2πℓ)/π,d/2 q̄∆(γ−2πℓ)/π,−d/2

+ (−1)M q∆(γ−2πℓ−π)/π,d/2 q̄∆(γ−2πℓ−π)/π,−d/2

]

=
1

2π

1 + (−1)M+j

(q)∞(q̄)∞

∫ ∞

−∞
dγ eiγjq∆γ/π,d/2 q̄∆γ/π,−d/2 = (1 + (−1)M+j) Cd,j . (4.49)

That Kd,j vanishes for j and M with different parities is not a surprise, as the parity of the number
of defects crossing the veritical line between the nodes N and 1 always has the same parity as M for
dense loop models. For j andM of the same parity, we instead have Kd,j = 2 Cd,j . Combining this with
(4.46), we find that the partition functions for site and bond percolation are exactly equal, for all α.
This in fact holds even more generally in the case where separate loop fugacities αi,j are assigned to
non-contractible loops depending on their windings. This thus gives even more evidence for a strong
form of universality between the two percolation models.
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5 Functional relations and auxiliary functions

In this section, we write down Bethe ansatz equations and other functional relations satisfied by the
transfer matrix and its eigenvalues. We find that the structural form of these equations are independent
of the choice of boundary conditions. We thus develop these functional equations in such a way that
the nonlinear integral equations of Section 6 are written in a unified way that covers both periodic and
strip boundary conditions.

5.1 Functional relations and Bethe ansatz equations for T̂ (u)

For the general dilute A
(2)
2 loop models, it was shown in [66] that the fundamental transfer matrix T (u)

generates a family of fused transfer matrices Tm,n(u) where m and n are integers and

T 1,0(u) = T (u), T 0,1(u) = T (u+ λ). (5.1)

With the current choice of Boltzmann weights (3.2) without factors sin 2λ sin 3λ in the denominators,
this construction of fused transfer matrices applies to all values of λ ∈ (0, π) and, of particular relevance
here, to the value λ = π

3 . The fusion hierarchy relations derived in [66] also hold for this value of λ,
but now with f(u) as in (3.32). Specializing to λ = π

3 , the derivation of the closure relations readily
extends to this case and yields

f(u+ 2π
3 )T 3,0(u) = T 1,1(u+ 2π

3 ) + (−1)Nf(u)f(u+ π
3 )f(u+ 2π

3 )J , (5.2)

where J is a central element of pdTLN (α, β) that does not depend on u. On each standard module
WN,d,ω, this element is proportional to the identity matrix, with the unique eigenvalue

J =

{
α3 − 3α d = 0,

(−1)d(ω3 + ω−3) d > 0.
(5.3)

With the convention (3.13) for α, this eigenvalue is J = (−1)d(ω3+ω−3) for all d. The closure relation
(5.2) can equivalently be rewritten as a cubic functional relation satisfied by T̂ (u):

T̂ (u)T̂ (u+ π
3 )T̂ (u+ 2π

3 ) = (−1)Nf(u)T̂ (u)2 + f(u+ π
3 )T̂ (u+ π

3 )
2 + (−1)Nf(u+ 2π

3 )T̂ (u+ 2π
3 )2

+ f(u)f(u+ π
3 )f(u+ 2π

3 )(J − 2I). (5.4)

The eigenvalues T̂ (u) of T̂ (u) in the module WN,d,ω satisfy this scalar cubic equation. We emphasize
that the sℓ(3) cubic relation differs from the sℓ(2) cubic relation, (3.10) of [103], implied by the closure
relation for critical bond percolation on the square lattice [6].

The Bethe equations for the A
(2)
2 model are well known [68–70]. For λ = π

3 , the eigenvalues T̂ (u)
are expressed in terms of the auxiliary function Q(u) as

T̂ (u)Q(u+ π
3 )Q(u+ 2π

3 ) = σνf(u)Q(u)2 +ωζf(u+ π
3 )Q(u+ π

3 )
2 +σ(ωζ)−1f(u+ 2π

3 )Q(u+ 2π
3 )2 (5.5)

where ζ is a complex parameter independent of u and ω, the function Q(u) is a centered Laurent
polynomial in eiu of degree M

Q(u) =

M∏

j=1

sin(u− uj), 0 6M 6 N − d, (5.6)
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and
σ = (−1)N , ν = (−1)d. (5.7)

This is the sℓ(3) analog of Baxter’s famous T -Q relation [104]. Indeed, substituting (5.5) into (5.4),
one verifies that the cubic equation is satisfied provided

(−1)M = σν and ζ3 = 1. (5.8)

This implies that N − d−M is an even number. The root of unity ζ is fixed by considering the braid
transfer matrices

T̂±∞ = lim
u→±i∞

T̂ (u)

f(u)
. (5.9)

They are central elements of pdTLN (α, β), each one with the unique eigenvalue

T̂±∞ = ω e∓iπd/3 + 1 + ω−1e±iπd/3 (5.10)

on WN,d,ω. By computing T̂∞ or T̂−∞ using (5.5), we find

ζ = e
iπ
3 (N−d−M), (5.11)

thus fixing ζ uniquely. From numerics, we find that the roots uj for the ground state in each standard
module WN,d,ω are pure imaginary for ω = ±1. Their number M is (N−d) for all d.

The zeros uj ∈ C of Q(u) are the Bethe roots and satisfy the Bethe ansatz equations

(
sin(ui − π

3 )

sin(ui +
π
3 )

)N
= − ν

ωζ

M∏

j=1

(
sin(ui − uj +

π
3 )

sin(ui − uj − π
3 )

)2

, i = 1, 2, . . . ,M. (5.12)

Given the eigenvalue T̂ (u) and following [79], it is extremely useful to have linear equations determining
Q(u). To achieve this, we introduce a second auxiliary function P (u) defined as

P (u) =
f(u+ π

3 )Q(u+ π
3 )

2 + σνωζf(u+ 2π
3 )Q(u+ 2π

3 )2

Q(u)
. (5.13)

From the Bethe equations, it follows that any zero of the denominator is also a zero of the numerator.
As a result, the function P (u) has no poles and can be written as a centered Laurent polynomial in
eiu of degree M + N . It is straightforward to show that the transfer matrix eigenvalue T̂ (u) and the
auxiliary functions Q(u) and P (u) satisfy the linear relations

T̂ (u)Q(u + π
3 ) = νP (u+ 2π

3 ) + σ(ωζ)−1 f(u+ 2π
3 )Q(u+ 2π

3 ), (5.14a)

T̂ (u)Q(u+ 2π
3 ) = σ(ωζ)−1P (u+ π

3 ) + ωζf(u+ π
3 )Q(u+ π

3 ). (5.14b)

The functions in these functional relations satisfy the periodicity properties

f(u+ π) = σf(u), T̂ (u+ π) = σ T̂ (u), Q(u+ π) = σν Q(u), P (u+ π) = ν P (u). (5.15)
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5.2 Functional relations and Bethe ansatz equations for D̂(u)

Analogous functional equations hold for critical site percolation with strip boundary conditions. Indeed,
the reduced double row transfer matrix D̂(u), defined in (3.31b), satisfies the cubic functional relation

D̂(u)D̂(u+ π
3 )D̂(u+ 2π

3 ) = f(u)D̂(u)2 + f(u+ π
3 )D̂(u+ π

3 )
2 + f(u+ 2π

3 )D̂(u+ 2π
3 )2

− 4f(u)f(u+ π
3 )f(u+ 2π

3 )I. (5.16)

This functional equation agrees with the functional relations derived for the dilute A(2)
2 loop models for

strip boundary conditions with more general roots of unity [67]. This relation has the same structure
as the cubic equation (5.4) satisfied by the single row transfer matrix, with N even and with the
identification J = −2I. This last identification can equivalently be written as ω3 = (−1)d+1.

The analog of Baxter’s T -Q relation for strip boundary conditions is

D̂(u)Q̂(u+ π
3 )Q̂(u+ 2π

3 ) = −f(u)Q̂(u)2 + f(u+ π
3 )Q̂(u+ π

3 )
2 + f(u+ 2π

3 )Q̂(u+ 2π
3 )2 (5.17)

where D̂(u) denotes an eigenvalue of D̂(u) and Q̂(u) = sinuQ(u) succinctly incorporates in its
definition the O(1) contributions originating from the presence of the boundary. Substituting (5.17)
into (5.16), it is easily verified that the eigenvalues D̂(u) satisfy the required cubic.

The Bethe roots uj ∈ C are the zeros of Q(u) in the complex u-plane. Due to the crossing

symmetry D(u) = D(−u), the Bethe roots come in pairs (uj ,−uj), with j = 1, 2, . . . ,M . Thus Q̂(u)
is the centered Laurent polynomial of degree 2M + 1

Q̂(u) = sinuQ(u) =

M∏

j=−M
sin(u− uj) = sinu

M∏

j=1

sin(u− uj) sin(u+ uj) (5.18)

with
u0 = 0, u−j = −uj, j = 0, 1, . . . ,M. (5.19)

From the functional relations (5.17), it follows that the Bethe roots uj satisfy the Bethe ansatz equations

(
sin(ui − π

3 )

sin(ui +
π
3 )

)2N

=
M∏

j=−M

(
sin(ui − uj +

π
3 )

sin(ui − uj − π
3 )

)2

, i = −M,−M + 1, . . . ,M. (5.20)

From numerics, we find that the roots uj for the ground state in each standard module VN,d are pure
imaginary. Their number 2M , excluding u0, is 2(N−d) for d > 1 and 2(N − 1) for d = 0. For certain
eigenstates, this number M is reduced in accord with the presence of removable 3-strings and roots at
infinity.

Given D̂(u), to obtain linear equations determining Q̂(u), we introduce a second auxiliary function
P (u) defined as

P (u) =
f(u+ π

3 ) Q̂(u+ π
3 )

2 − f(u+ 2π
3 ) Q̂(u+ 2π

3 )2

Q̂(u)
. (5.21)

From the Bethe ansatz equations, it follows that any zero of the denominator is also a zero of the
numerator. As a result, the function P (u) has no poles and can be written as a centered Laurent
polynomial in eiu, with maximal degree 2M + 2N + 1. If Q(u) contains a 3-string, then P (u) contains
the same 3-string, and its degree P (u) will be reduced accordingly. Given D̂(u), the auxiliary functions
Q(u) and P (u) satisfy the linear relations

D̂(u) Q̂(u+ π
3 ) = −P (u+ 2π

3 ) + f(u+ 2π
3 ) Q̂(u+ 2π

3 ), (5.22a)

D̂(u) Q̂(u+ 2π
3 ) = P (u+ π

3 ) + f(u+ π
3 ) Q̂(u+ π

3 ). (5.22b)
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We note that the T -Q and linear relations given here for strip boundary conditions can all be obtained
from those given in Section 5.1 for periodic boundary conditions, by setting

σ = 1, ω = 1, ζ = 1, ν = −1. (5.23)

With these values, the functions f(u), T̂ (u), Q(u) and P (u) satisfy the periodicity properties (5.15).

5.3 Auxiliary functions

To set up our nonlinear integral equations, we need to introduce further auxiliary functions built from
f(u) and Q(u). Following [82,83], we define the functions

Λ1(u) =
f(u+ π

6 )Q(u+ π
6 )

ωζ Q(u− π
6 )

, (5.24a)

Λ2(u) =
σνf(u+ π

2 )Q(u+ π
2 )

2

Q(u− π
6 )Q(u+ π

6 )
, (5.24b)

Λ3(u) =
σωζ f(u− π

6 )Q(u− π
6 )

Q(u+ π
6 )

. (5.24c)

This holds for both periodic and strip boundary conditions, with the constants σ, ω, ζ and ν set to
(5.23) in the latter case. The new auxiliary functions are related to the eigenvalues T̂ (u) and D̂(u) by

Λ1(u) + Λ2(u) + Λ3(u) =

{
T̂ (u+ π

2 ) periodic,

D̂(u+ π
2 ) strip.

(5.25)

In both cases, the six auxiliary functions that enter the nonlinear integral equations of Section 6 are
defined as

a1(z) =
Λ1(iz)

Λ2(iz) + Λ3(iz)
, (5.26a)

a2(z) =
Λ3(iz)

Λ1(iz) + Λ2(iz)
, (5.26b)

a3(z) =
Λ1(iz)Λ3(iz)

Λ2(iz)
(
Λ1(iz) + Λ2(iz) + Λ3(iz)

) , (5.26c)

A1(z) = 1 + a1(z) =
Λ1(iz) + Λ2(iz) + Λ3(iz)

Λ2(iz) + Λ3(iz)
, (5.26d)

A2(z) = 1 + a2(z) =
Λ1(iz) + Λ2(iz) + Λ3(iz)

Λ1(iz) + Λ2(iz)
, (5.26e)

A3(z) = 1 + a3(z) =

(
Λ1(iz) + Λ2(iz)

)(
Λ2(iz) + Λ3(iz)

)

Λ2(iz)
(
Λ1(iz) + Λ2(iz) + Λ3(iz)

) . (5.26f)

Setting

b1(z) =

{
T̂ (iz + π

2 ) periodic,

D̂(iz + π
2 ) strip,

b2(z) =

{
Q(iz + π

2 ) periodic,

Q̂(iz + π
2 ) strip,

b3(z) = P (iz),

Φ(z) = f(iz),
(5.27)

the six additional auxiliary functions can be expressed as

a1(z) =
Φ(z − iπ

6 )b
2(z + iπ

3 )

σνωζ b3(z − iπ
6 )

, A1(z) =
b1(z)b2(z − iπ

3 )

b3(z − iπ
6 )

, (5.28a)
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a2(z) =
νω2ζ2Φ(z + iπ

6 )b
2(z − iπ

3 )

b3(z + iπ
6 )

, A2(z) =
ωζ b1(z)b2(z + iπ

3 )

b3(z + iπ
6 )

, (5.28b)

a3(z) =
Φ(z + iπ

6 )Φ(z − iπ
6 )

Φ(z − iπ
2 )

b2(z − iπ
3 )b

2(z + iπ
3 )

b1(z)
(
b2(z)

)2 , A3(z) =
b3(z − iπ

6 )b
3(z + iπ

6 )

ωζ Φ(z − iπ
2 )b

1(z)
(
b2(z)

)2 . (5.28c)

These are identical for the two types of boundary conditions, up to the different values taken by the
constants σ, ω, ζ and µ which play no role in the derivation of the nonlinear integral equations in the
next section.

6 Nonlinear integral equations and finite-size corrections

In this section, we use the Yang-Baxter integrability of the model of critical site percolation on the
triangular lattice to obtain the leading terms in the 1

N expansions (4.1) of the eigenvalues T̂ (u) and

D̂(u). Starting with the functional equations and following [80–83], we first derive suitable NLIEs that
hold for any eigenvalue of the tranfer matrix and turn out to be identical for both types of boundary
conditions. We then analytically solve them for the groundstate in each standard module, separately
for the periodic and strip boundary conditions, and thus compute the leading finite-size eigenvalue
corrections and the corresponding conformal weight in the scaling limit.

6.1 Derivation of the nonlinear integral equations

To obtain the NLIEs, we take the second derivative of the logarithm of the relations (5.28) and take
their Fourier transforms. These Fourier transforms exist for the logarithm of an auxiliary function
in open vertical strips where the function is analytic, non-zero and has constant asymptotics (ANZC
property). The analyticity strips for the functions b2(z) and b3(z) are horizontal strips centered on
the real line. Their widths are determined by the maximal imaginary shifts of the functions in the
functional equations (5.28), and are respectively 2iπ

3 and iπ
3 . In contrast, the function b1(z) always

appears with its argument unshifted. It is therefore not necessary to define an analyticity strip for this
function.

Depending on the eigenstate considered, the eigenvalues of b2(z) and b3(z) may have zeros located
inside the analyticity strips. These can take the form of 1-strings, namely real zeros lying on the real
z axis, or short 2-strings, namely pairs of zeros lying symmetrically above and below this axis. There
can also be long 2-strings, namely symmetrical pairs of zeros that lie outside the strips, but these do
not impact the derivation of the nonlinear integral equations. Let us denote by S2 and S3 the sets of
zeros of b2(z) and b3(z) inside their corresponding analyticity strips. We define the functions

b̂
1
(z) = b1(z), b̂

2
(z) =

b2(z)∏
x2∈S2 tanh 1

2(z − x2)
, b̂

3
(z) =

b3(z)∏
x3∈S3 tanh 1

2(z − x3)
, (6.1)

whose analyticity strips are free of zeros. The second derivative of log b̂
n
(z) vanishes for z → ±∞,

allowing us to define the Fourier transforms

Bn(k) =
1

2π

∫ ∞

−∞
dz e−ikz

(
log b̂

n
(z)

)′′
, (log b̂

n
(z)

)′′
=

∫ ∞

−∞
dk eikzBn(k). (6.2)

We likewise define functions ân(z) and Â
n
(z) in such a way that the relations (5.28) hold unchanged

with bn, an,An → b̂
n
, ân, Â

n
:

â
1(z) = a1(z)

∏
x3∈S3 tanh 1

2(z − x3 − iπ
6 )∏

x2∈S2 tanh 1
2(z − x2 +

iπ
3 )
, (6.3a)
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â
2(z) = a2(z)

∏
x3∈S3 tanh 1

2(z − x3 +
iπ
6 )∏

x2∈S2 tanh 1
2(z − x2 − iπ

3 )
, (6.3b)

â
3(z) = a3(z)

∏
x2∈S2 tanh 1

2 (z − x2)
2

∏
x2∈S2 tanh 1

2(z − x2 − iπ
3 ) tanh

1
2 (z − x2 +

iπ
3 )
, (6.3c)

Â
1
(z) = A1(z)

∏
x3∈S3 tanh 1

2(z − x3 − iπ
6 )∏

x2∈S2 tanh 1
2(z − x2 − iπ

3 )
, (6.3d)

Â
2
(z) = A2(z)

∏
x3∈S3 tanh 1

2(z − x3 +
iπ
6 )∏

x2∈S2 tanh 1
2(z − x2 +

iπ
3 )
, (6.3e)

Â
3
(z) = A3(z)

∏
x2∈S2 tanh 1

2(z − x2)
2

∏
x3∈S3 tanh 1

2(z − x3 − iπ
6 ) tanh

1
2(z − x3 +

iπ
6 )
. (6.3f)

We define the Fourier transforms of their second logarithmic derivative as

Ln(k) =
1

2π

∫ ∞+iǫn

−∞+iǫn

dz e−ikz
(
log ân(z)

)′′
,

(
log ân(z + iǫn)

)′′
=

∫ ∞

−∞
dk eik(z+iǫn)Ln(k), (6.4a)

An(k) =
1

2π

∫ ∞+iǫn

−∞+iǫn

dz e−ikz
(
log Â

n
(z)

)′′
,

(
log Â

n
(z + iǫn)

)′′
=

∫ ∞

−∞
dk eik(z+iǫn)An(k). (6.4b)

Here, the paths are moved away from the real axis by certain infinitesimal shifts ǫn which are chosen
individually for each n. For reasons detailed below, we choose these parameters such that

0 < ǫ2 < ǫ3 < ǫ1. (6.5)

These shifts are chosen small enough that the function bn(z) has no zeroes in the region 0 < Im(z) < ǫn.
Applying the Fourier transforms to (5.28), we find



L1(k)
L2(k)
L3(k)


 =




0 e−
πk
3 −e

πk
6

0 e
πk
3 −e−

πk
6

−1 e
πk
3 + e−

πk
3 − 2 0






B1(k)
B2(k)
B3(k)


+

µNk

2 sinh(πk2 )




e−
πk
3

e
πk
3

e
πk
3 + e−

πk
3 − 1


 , (6.6a)



A1(k)
A2(k)
A3(k)


 =




1 e
πk
3 −e

πk
6

1 e−
πk
3 −e−

πk
6

−1 −2 e
πk
6 + e−

πk
6






B1(k)
B2(k)
B3(k)


− µNk

2 sinh(πk2 )



0
0
1


 . (6.6b)

where

µ =

{
1 periodic,

2 strip.
(6.7)

The rightmost terms in these equations arise from the Fourier transform of the logarithm of the function
Φ(z), itself obtained from the integral

1

2π

∫ ∞+iǫ

−∞+iǫ
dz e−ikz

(
log sinh z

)′′
=

k

1− e−πk
, ǫ > 0. (6.8)

We invert the matrix appearing in (6.6), and find after some simplifications



L1(k)
L2(k)
L3(k)


 = K̃(k) ·



A1(k)
A2(k)
A3(k)


+

µNk

e
πk
3 + e−

πk
3 − 1




−e−
πk
6

e
πk
6

e
πk
6 − e−

πk
6


 , (6.9)
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where the kernel matrix is

K̃(k) =
1

e
πk
3 + e−

πk
3 − 1




−2 −e
πk
3 + e−

πk
3 + 1 −e

πk
3 + e−

πk
3 − 1

e
πk
3 − e−

πk
3 + 1 −2 e

πk
3 − e−

πk
3 − 1

e
πk
3 − e−

πk
3 − 1 −e

πk
3 + e−

πk
3 − 1 e

πk
3 + e−

πk
3 − 3


 . (6.10)

This matrix satisfies the symmetry
K̃(k)⊺ = K̃(−k). (6.11)

It also has non-zero asymptotic values in the limits k → ±∞. Defining the symmetric matrix

Γ =



0 1 1
1 0 1
1 1 1


 , (6.12)

we observe that each entry of the matrix K̃(k) − Γ has at most one non-zero asymptotic value, for
k → +∞ and k → −∞. Applying the inverse Fourier transform to (6.10), we find

log ân(z+iǫn)
′′ = µN fn(z+iǫn)

′′+
3∑

m=1

Γnm log Â
m
(z+iǫn)

′′+
3∑

m=1

(
Knm ∗ (log Âm)′′

)
(z+iǫm), (6.13)

where the driving terms are

fn(z) =





log

[
tanh(z2 − iπ

12 )

tanh(z2 + iπ
4 )

]
n = 1,

log

[
tanh(z2 + iπ

12 )

tanh(z2 − iπ
4 )

]
n = 2,

log

[
tanh(z2 − iπ

12 )

tanh(z2 − 5iπ
12 )

]
n = 3.

(6.14)

The convolution of two functions is

(f ∗ g)(z) =
∫ ∞

−∞
dyf(z − y)g(y) =

∫ ∞

−∞
dyf(y)g(z − y), (6.15)

and the kernel functions are

Knm(z) =
1

2π

∫ ∞

−∞
dk eik(z+i(ǫn−ǫm))

(
K̃(k)nm − Γnm

)
, n,m = 1, 2, 3. (6.16)

The choice (6.5) ensures that the integrands in (6.16) are all finite at ±∞, thus leading to convergent
integrals. The explicit expression for the kernel matrix is

lim
ǫ1,ǫ2,ǫ3→0

K(z) = − 2
√
3

π sinh 3z




sinh 2z − sinh(2z − iπ
3 ) sinh(2z + iπ

3 )

− sinh(2z + iπ
3 ) sinh 2z sinh(2z − iπ

3 )

sinh(2z − iπ
3 ) sinh(2z + iπ

3 ) sinh 2z


 . (6.17)

For simplicity, the result is given here in the limit ǫ1, ǫ2, ǫ3 → 0. The ǫ-dependence is recovered by
simply reinstating z → z + i(ǫn − ǫm) for each matrix entry Knm(z). Moreover, we note that

K(z)⊺ = K(−z). (6.18)
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Using (6.3) and (6.13), we obtain NLIEs for the six functions an(z) and An(z) with n = 1, 2, 3.
The dependence on the zeros in the sets S2 and S3 appear in two ways: some terms appear directly as
algebraic functions of z, whereas others arise inside the convolution integrals. These integrals can be
evaluated explicitly using the residue theorem, combined with the algebraic terms and then simplified.
However, we prefer here a different presentation, whereby the integration path is deformed around
certain zeros of the functions in such a way that there are no extra algebraic terms depending on the
zeros of S2 and S3. In this setup, we find

log an(z + iǫn)− φn = µN fn(z + iǫn) +

3∑

m=1

Γnm logAm(z + iǫn)

+

3∑

m=1

∫

Cm

dy Knm(z − y) logAm(y + iǫm)
)
. (6.19)

To obtain this relation, we integrated twice with respect to z and φn are the integration constants. In
doing so, we assumed that the functions an(z) and An(z) have finite, non-zero asymptotics in the limit
z → ∞, allowing us to set to zero the linear terms in z obtained from the two integrations. The paths
Cm are paths in the complex y-plane that run from −∞ to +∞ and have non trivial trajectories above
or below the zeros and poles of the functions Am(z + iǫm). We define the sets

Sn,↑ = {x ∈ Sn
∣∣ Im(x) > 0}, Sn,↓ = {x ∈ Sn

∣∣ Im(x) 6 0}, n = 2, 3. (6.20)

The path Cm then has the following properties: (i) it passes above the points x+ iπ
3 −iǫm and y+ iπ

6 −iǫm,
with x ∈ S2,↓ and y ∈ S3,↓, (ii) it passes below the points x− iπ

3 − iǫm and y − iπ
6 − iǫm, with x ∈ S2,↑

and y ∈ S3,↑, and (iii) it passes above or below the poles of the kernel function Knm(z− y) in precisely
the same way as the straight path from −∞ to +∞ does.

Using the same technique, we obtain an integral equation for log b̂
1
(z)′′:

log b̂
1
(z + iǫ0)

′′ = −µNF(z + iǫ0) +
3∑

n=1

∫ ∞

−∞
dyKn(z − y + iǫ0 − iǫn) log Â

n
(y + iǫn)

′′, (6.21)

where the kernel functions are

K1(z) =

√
3 sinh(2z − iπ

3 )

π sinh 3z
, K2(z) =

√
3 sinh(2z + iπ

3 )

π sinh 3z
, K3(z) =

√
3 sinh 2z

π sinh 3z
, (6.22)

the shift ǫ0 is infinitesimal and chosen such that

0 < ǫ2 < ǫ0 < ǫ3 < ǫ1, (6.23)

and

F(z) = −
∫ ∞

−∞
dk

k eikz

(e
πk
3 + e−

πk
3 − 1)(e

πk
2 − e−

πk
2 )
. (6.24)

Using the definitions of b̂
1
(z) and Â

n
(z), we rewrite (6.21) in terms of b1(z) and An(z), so that the new

formulas depend on the positions of the zeros of S2 and S3. The resulting nonlinear integral equation
for b1(z) then contains extra terms that depend explicitly on the position of the zeros in the sets S2

and S3. As before, we encode this dependence entirely in the choice of integration paths, and we find
after simplification

log b1(z + iǫ0)
′′ = −µNF(z) +

3∑

n=1

∫

Cn

dyKn(z − y + iǫ0 − iǫn)
′′ logAn(y + iǫn), (6.25)
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where the paths Cn are the same as above.
To obtain the bulk free energy fbulk(u), we integrate the expression (6.24) for F(z) twice with

respect to z. After simplifications, we obtain the integral expression

fbulk(u) = − log 2 + 2

∫ ∞

−∞
dk

sinh[(π3 − u)k] sinh[(2π3 − u)k] cosh πk
3

k sinh 2πk
. (6.26)

The two integration constants that arose in deriving this formula were fixed as follows: (i) by imposing
that fbulk(u) has the correct behaviour in the braid limit, namely limu→±i∞ d

dufbulk(u) = ∓i, and
(ii) from the assumption that fbulk(u) is independent of α and is known for u = π

3 , α = 1, namely
fbulk(

π
3 ) = − log 2. This readily follows from the known value of the partition function at α = 1, see

(2.3) and (2.5). The formula (6.26) can then be simplified to (4.3) using contour integrals techniques
with the residue theorem.

6.2 Scaling limit of the nonlinear integral equations and finite-size corrections

In the nonlinear integral equations (6.19), the explicit dependence on N arises only in the driving terms
µN fn(z). For z of order ± logN with N large, these functions behave as exponentials:

fn±(z ± iǫn) = lim
N→∞

µN fn
(
±(z + logN) + iǫn

)
= −2µ

√
3 e−(z±iǫn) ×





e±
iπ
3 n = 1,

e∓
iπ
3 n = 2,

1 n = 3.

(6.27)

We study sequences of eigenstates on increasing values of N . In a given sequence, the eigenvalues of
bn(z) have finitely many zeros inside the analyticity strips, with the patterns of zeros inside the strips
remaining stable as N increases. The positions x(N) of these zeros depend on N and drift off to infinity
as either + logN or − logN . We define the sets of zeros in the scaling limit

Sn± =
{

lim
N→∞

±
(
x(N)− logN

) ∣∣x(N) ∈ Sn(N) with x(N)
N→∞−−−−→ ±∞

}
. (6.28)

We also assume the existence of the scaling functions

an±(z ± iǫn) = lim
N→∞

an
(
±(z + logN) + iǫn

)
, An±(z ± iǫn) = lim

N→∞
An

(
±(z + logN) + iǫn

)
. (6.29)

These satisfy the nonlinear integral equations

log an±(z ± iǫn)− φn± = fn±(z ± iǫn) +

3∑

m=1

Γnm logAm± (z ± iǫn)

+
3∑

m=1

∫

Cm
±

dy Knm

(
±(z − y)

)
logAm(y ± iǫm)

)
, (6.30)

where φn± are integration constants. The integration paths Cm± are defined as

Cm± = lim
N→∞

±Cm − logN. (6.31)

They are thus defined similarly to Cm, but passing over and below certain zeros of S2
± and S3

±. Indeed,

let us define Sn,↑± and Sn,↓± , similarly to (6.20), to be the subsets of zeros of Sn± in the upper and
lower half planes, with n = 2, 3. The paths Cm± then run from −∞ to +∞, passing above the points
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x + iπ
3 − iǫm and y + iπ

6 − iǫm, with x ∈ S2,↓
± and y ∈ S3,↓

± , and below the points x − iπ
3 − iǫm and

y − iπ
6 − iǫm, with x ∈ S2,↑

± and y ∈ S3,↑
± . Moreover, these paths pass above and below the poles of the

kernel functions in the same way as the straight path from −∞ to ∞ does.
The functions am± (z) and Am± (z) are analytic functions of z along the paths Cm± . In the above

equations, we understand log am± (z) and logAm± (z) to be continuous functions as well, namely functions
whose imaginary parts do not have discontinuities as their arguments have phases that exit the principal
branch (−π, π]. We choose the branches of the functions logAn±(z) such that

lim
z→−∞

Im
(
logAn±(z)

)
= 0. (6.32)

This condition is necessary for the integrals in (6.35) below to be well-defined. In contrast, for log an±(z)
there is a freedom in the choice of the logarithmic branches. The values of the constants φn± depend
on this choice, but not the final result for the leading finite-size correction. In Sections 6.3 and 6.4, we
will discuss further the choice of branches of log an±(z) for the particular cases of the groundstates of
the standard modules.

To obtain the finite-size correction to b1(z), we compute the asymptotic expansion of the integral
terms in (6.25) as

∫

Cn

dy Kn(z−y+iǫ0 − iǫn)
′′ logAn(y + iǫn) =

[ ∫

Cn
Re<0

+

∫

Cn
Re>0

]
dyKn(z−y+iǫ0 − iǫn)

′′ logAn(y + iǫn)

≃ 1

N

∫

Cn
−

dy Kn
+(z + y + iǫ0 − iǫn)

′′ logAn−(y − iǫn) (6.33)

+
1

N

∫

Cn
+

dyKn
−(−z + y − iǫ0 + iǫn)

′′ logAn+(y + iǫn),

where we define

Kn
±(z) = lim

N→∞
NKn

(
±(z + logN)

)
=

√
3 e−z

π
×





e∓
iπ
3 n = 1,

e±
iπ
3 n = 2,

1 n = 3.

(6.34)

We thus find

log b1(z + iǫ0)
′′ + µNF(z + iǫ0) ≃

√
3

πN
e−z−iǫ0

3∑

n=1

∫

Cn
−

dy e−y+iǫn
(
e−

iπ
3 , e

iπ
3 , 1

)
n
logAn−(y − iǫn)

+

√
3

πN
ez+iǫ0

3∑

n=1

∫

Cn
+

dy e−y−iǫn
(
e

iπ
3 , e−

iπ
3 , 1

)
n
logAn+(y + iǫn). (6.35)

We see from this equation that the 1
N expansion for log b1(z)′′ has no constant term, for both periodic

and strip boundary conditions. For periodic boundary conditions, there is no boundary and therefore
no boundary free energy is expected in this expansion, see (4.2b). For strip boundary conditions,
the above equation implies that the boundary free energy has the form fbdy(u) = α0 + α1u for some
constants α0 and α1. This free energy should be crossing symmetric, fbdy(u) = fbdy(π−u), from which
we deduce that α1 = 0. Thus fbdy(u) is independent of u. We obtain α0 by using the known value
(2.5) of the partition function at α = 1 on the cylinder, and its decompositions (4.17) in terms of traces
of over the standard modules VN,d. In agreement with (4.3), we then find fbdy(u) = 0.
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The right-hand side of (6.35) is re-expressed using the dilogarithm technique. We define

J± =

3∑

n=1

∫

Cn
±

dy

[(
log an±(y± iǫn)

)′
logAn±(y± iǫn)−

(
log an±(y± iǫn)−φn±

)(
logAn±(y± iǫn)

)′
]
. (6.36)

These are evaluated in two ways. For the first, we use the nonlinear integral equations (6.30). Many
simplifications occur due to the symmetry properties of the matrices K(z) and Γ. We find that only
integrals involving driving terms survive:

J± = 4µ
√
3

3∑

n=1

∫

Cn
±

dy e−(y±iǫn)
(
e±

iπ
3 , e∓

iπ
3 , 1

)
n
logAn±(y ± iǫn). (6.37)

We see that J− and J+ are equal up to prefactors to the terms appearing on the right side of (6.35):

log b1(z + iǫ0)
′′ + µNF(z + iǫ0) ≃

1

4πµN

(
e−z−iǫ0J− + ez+iǫ0J+

)
. (6.38)

Comparing this with (4.1), we find

∆ = −J+

8π2
, ∆̄ = −J−

8π2
, (6.39)

where we set the central charge of critical percolation to the known value c = 0.
The second way of computing J± is to evaluate the derivative explicitly and make a change of

variables from y to an±:

J± =
3∑

n=1

∫

Cn
±

dy
dan±(y ± iǫn)

dy

(
log

(
1 + an±(y ± iǫn)

)

an±(y ± iǫn)
− log an±(y ± iǫn)− φ±n

1 + an±(y ± iǫn)

)

=

3∑

n=1

∫

An
±

dan±

(
log

(
1 + an±

)

an±
− log an± − φn±

1 + an±

)
. (6.40)

Here, An
± is the trajectory in the complex plane visited by the function an±(y ± iǫn) as y runs over Cn±.

Thus (6.40) is a sum of regular integrals carried over a trajectory in the complex plane that may wrap
non-trivially around the poles at 0 and −1. Each eigenstate of the transfer matrix is then characterised
by the homotopies of its trajectory An

± around these two points.

6.3 Analytic solution for ground states for periodic boundary conditions

In this section, we work with periodic boundary conditions and compute the integrals J+,J− and the
corresponding conformal dimensions ∆, ∆̄ for the simplest patterns of zeros, namely those corresponding
to the ground state eigenvalues of the transfer matrix T̂ (u) in the standard modules WN,d,ω.

We set the twist parameter to ω = eiγ and focus on the interval 0 < γ < π
3 . Using our computer

implementation of the transfer matrix, we computed the functions bn(z) for various small values of N ,
for these ground states. In Figure 9, we plot the patterns of zeros of these functions for γ = 0.15,
N = 10 and d = 0, 1, . . . , 9. Our analysis reveals that, for the ground states, the function b2(z) never
has zeros inside its analyticity strip −π

3 < Im(z) < π
3 . For d > 3, the function b3(z) has a finite

number of zeros that lie on the real axis, but none for d = 0, 1, 2. For a fixed d, the number of such
zeros is unchanged as N is increased. Their number however grows with d. Moreover, for d > 2, the
function b1(z) also has zeros that are located either on the real axis or in the neighborhood of the lines
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Im(z) = ±π
6 . As discussed in the previous section, this function has an analyticity strip of width zero

and its zeros do not impact the form of the nonlinear integral equations. Our exploration on various
small values of N and d reveals that these patterns of zeros have a simple modulo 6 property. Indeed,
knowing the patterns of zeros for a given value of d inside the analyticity strips, we produce the same
patterns of zeros for d + 6 defects by adding two real zeros for the function b3(z), a positive and a
negative one.

The bulk behavior of the function an±(z), as dictated by the driving terms in its nonlinear integral
equations (6.19), vanish:

an±(−∞) = 0, n = 1, 2, 3. (6.41)

The braid limits for these functions are

an±(∞) = ψn
(
e−

iγ
2
± iπd

6
)
, n = 1, 2, 3, (6.42)

where

ψ1(s) =
s3

s+ s−1
, ψ2(s) =

s−3

s+ s−1
, ψ3(s) =

1

s2 + 1 + s−2
. (6.43)

The trajectory An
± for the function an±(z) starts at the origin for z → −∞ and ends at its braid value

for z → +∞. Computing the dilogarithm integrals (6.40) requires the knowledge of the winding of
these trajectories around the points 0 and −1. The logarithms of an±(z) and An±(z) are functions whose
imaginary part is understood to be continuous. The branch of logAn±(z) is fixed from (6.32), whereas
the choice of branch of log an±(z) is discussed below.

With our computer program, we are able to compute the functions an(z) for the ground states,
for many small values of N . This way, we obtain approximations to the trajectories An

− and An
+ at

these finite values of N , by looking at the trajectories for an(z) as z visits the portions of the paths
Cn that have a positive and a negative real part, respectively. We denote these finite-size trajectories
as An

−(N) and An
+(N). Figures 10 and 11 give examples of the trajectories An

+(N) for (N, d) = (10, 0)
and (N, d) = (10, 9), respectively.

We describe the homotopy of trajectories around the points 0 and −1 in terms of a word made
of the non-commuting letters x, y and their inverses x−1, y−1. For generic γ in (0, π3 ), all trajectories
leave the origin at an angle that is different from 0 and π. Then before reaching the braid value,
the trajectory crosses the half-lines (0,∞) and (−∞,−1) a number of times. We assign the word
xm1yn1xm2yn2 . . . , with mi, ni ∈ Z, to a trajectory that first crosses m1 times the half-line (0,∞), then
crosses n1 times the half-line (−∞,−1), then m2 times the half-line (0,∞), and so on. The integers
mi and ni are positive and negative if the half-lines are crossed in the counter-clockwise and clockwise
directions, respectively. For example, the word xm is assigned to a trajectory that winds m times
around the origin without ever passing to the left of the point −1. Clearly, if a function passes to
the right of the origin once in the clockwise direction, and subsequently once in the anti-clockwise
direction, its trajectory can be continuously deformed in such a way that it does not wind around the
origin at all, consistently with x−1x = 1. Likewise, a trajectory that winds to the left of the point −1 in
one direction and subsequently in the other direction is assigned a word that can be reduced using the
relation y−1y = 1. The resulting dilogarithm integrals are likewise unchanged by such deformations of
the trajectories.

In Figure 10, we see that, for (N, d) = (10, 0), the trajectories A1
+(10) and A2

+(10) cross the half-
line (0,∞) a number of times, in the counter-clockwise and clockwise directions explicitly, and without
ever crossing the half-line (−∞,−1). The figure does not reveal how many such windings there are.
This requires a closer zoom around the origin. Our computer program is nonetheless able to measure
this winding. It finds that both functions in this example wind around the origin five times, in opposite
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Figure 9: The zeros of the functions b1(z), b2(z) and b3(z), coloured in blue, red and green respectively,
for N = 10, d = 0, 1, . . . , 9 and γ = 0.15. The analyticity strips of b2(z) and b3(z) are respectively
coloured in lighter and darker shades of gray. The axes are in units of π.
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Figure 10: Left panel: The zeros of an(z), the zeros of An(z) and their joint poles, coloured with blue
circles, blue crosses and red circles, respectively, for (N, d) = (10, 0) and γ = 0.15. Indicated by a blue
line is the portion of the path Cn with a positive real part, shifted by iǫn. This path scales to Cn+ in
the limit N → ∞. Right panel: the corresponding trajectories An

+(10) for the functions an(z), as we
progress along this path. The functions a1(z) and a2(z) wind around the origin in the counter-clockwise
and clockwise directions, respectively, whereas the function a3(z) has no winding. The corresponding
trajectories are x5, x−5 and 1.
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Figure 11: Left panel: the zeros of an(z), the zeros of An(z) and the poles of both functions, coloured
with blue circles, blue crosses and red circles, respectively, for (N, d) = (10, 9) and γ = 0.15. The
portion of the path Cn with a positive real part consists of different portions, which are depicted using
different colours. Right panel: the corresponding trajectories An

+(10) for the functions an(z) in the
complex plane, as we move along this path. The function a2(z) has a non trivial homotopy around the
points −1 and 0. The corresponding trajectories are x3, x−1y−1x−1y−1 and x y1/2.
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directions. In contrast, the function a3(z) crosses none of the two half-lines. The resulting trajectories
are therefore A1

+(10) = x5, A2
+(10) = x−5 and A3

+(10) = 1.
Figure 11 gives a second example with (N, d) = (10, 9). In this case, the paths Cm are not straight

lines. In the figure, we see that the paths pass above the point z3 +
iπ
6 , where z3 is a real zero in S3.

We see from (5.28) that the functions a1(z) and A1(z) have a pole and A3(z) has a zero at this value
of z. There is also a zero z1 of b1(z) very close to z3 +

iπ
6 . This is also a zero of a1(z) and a2(z), and

a pole of a3(z) and A3(z). In this same figure, the resulting path is chosen to pass above z1. There
is indeed some freedom in the choice of this path. As discussed below (6.20), the integration paths
are constrained in terms of the zeros in the sets S2 and S3. We are however free to choose whether
they pass above or below the zeros of b1(z). Doing so changes the windings of the functions an(z) and
An(z) around the points 0 and −1. But one can show that this does not change the linear combination
of dilogarithm integrals (6.40). We see from the right panel of Figure 11 that the second function
crosses the half-line (−∞,−1) twice, whereas the other two functions never cross this half-line. The
experimentations made with our program reveal that, for the ground states, it is always possible to use
this freedom to choose the trajectories in such a way that only the second function crosses the half-line
(−∞,−1). All three functions will however cross the half-line (0,∞) a number of times.

We also observe from Figure 11 that a3+(z) has a braid limit that is real, negative and slightly
smaller than −1. Another important information for the computation of the dilogarithm integrals is
whether the trajectory starting at the origin and ending at this braid value travels above or below the
point −1. In general, for 0 < γ < π

3 , a
3
+(z) has a negative braid limit for d ≡ 3 mod 6 and d ≡ 4 mod 6.

Similarly, the function a3−(z) has a negative braid limit for d ≡ 2 mod 6 and d ≡ 3 mod 6. In the cases
when their endpoint is negative, we assign to the trajectories A3

±(N) the symbols y1/2 or y−1/2 to
indicate that the trajectory passes above or below the point −1, respectively. In the example of
Figure 11, the precise details of the windings again require a zoom around the origin. Our program
reveals that the trajectories are A1

+(10) = x3, A2
+(10) = x−1y−1x−1y−1 and A3

+(10) = x y1/2.
As N is increased, the trajectories An

±(N) remain essentially unchanged. Only the first windings
xm1 around the origin change for a1±(z) and a2±(z), with |m1| growing roughly as N

2 . For example, the
ground states for d = 0 have the trajectories

d = 0 : An
−(N) =

(
x⌊

N+1
2

⌋, x−⌊N+1
2

⌋, 1
)
n
, An

+(N) =
(
x−⌊N

2
⌋, x⌊

N
2
⌋, 1

)
n
. (6.44)

As N → ∞, these trajectories thus start by winding an infinite number of times around the origin.
This initial winding however plays no role in the computation of the dilogarithm integrals. Indeed, we
have ∫ εeiθ2

εeiθ1
da

(
log

(
1 + a

)

a
− log a− φ

1 + a

)
ε→0−−−→ 0. (6.45)

This holds true when the imaginary part of the function log(1 + a) goes to zero for ε → 0. With our
choice (6.32) of the branch of An(z), this condition is guaranteed to hold at the start of the trajectory.
As a result, the dilogarithm integrals (6.40) can instead be performed on truncated trajectories Ân

±,
where the initial winding xm1 around the origin is removed. With this truncation, each trajectory either
starts with yn1 for some non-zero n1, or is the trivial trajectory 1. Moreover the truncated trajectories
are independent of N , justifying our choice not to include N as an argument for Ân

±. Empirically, we
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Figure 12: Parametric plots of the functions ψ1(s), ψ2(s) and ψ3(s) for s = ei(t+iǫ) with ǫ = 0.08 and
t ∈ [0, π). The red dots are the values at t = −γ

2 + πd
3 with γ = 0.15, which converge to an+(∞) in the

limit ǫ→ 0.

find that the truncated trajectories for the ground states are given by

d = 0 : Ân
− =

(
1, 1, 1

)
n

Ân
+ =

(
1, 1, 1

)
n

d = 1 : Ân
− =

(
1, 1, 1

)
n

Ân
+ =

(
1, 1, 1

)
n

d = 2 : Ân
− =

(
1, y, y−1/2

)
n

Ân
+ =

(
1, 1, 1

)
n

d = 3 : Ân
− =

(
1, 1, y−1/2

)
n

Ân
+ =

(
1, y−1, y1/2

)
n

d = 4 : Ân
− =

(
1, y, 1

)
n

Ân
+ =

(
1, 1, y1/2

)
n

d = 5 : Ân
− =

(
1, y, 1

)
n

Ân
+ =

(
1, y−1, 1

)
n

(6.46)

and similarly for d > 6.
There is an alternative way to describe these truncated trajectories, using the functions ψn(z)

defined in (6.43), that allows us to completely characterize the truncated ground-state trajectories for
all d. These functions incorporate the braid limits an±(∞) in the different standard modules in terms of
three continuous functions. In Figure 12, we plot the functions ψ1(s), ψ2(s) and ψ3(s) in the complex
plane for s = ei(t+iǫ)/2 with t ∈ [0, 2π) and ǫ a real infinitesimal parameter larger than zero, here set to
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ǫ = 0.08. The red dots mark the values at t = −γ
2 + πd

6 with d ∈ {0, 1, . . . , 5} and γ = 0.15. In the
limit ǫ→ 0, these values approach the braid values an+(∞). Similarly, to get the positions of the braid
limits an−(∞) in WN,d,ω, one must select the red dot with label d′ = −d mod 6. Crucially, it turns out
that the trajectories followed by the functions ψn(e

i(−γ±dπ/3)t), from t = 0 to t = 1
2 , are precisely the

same as those in (6.46). These parametric curves give the correct ground-state trajectories for all d.
To continue with the calculation, we must fix the branches of the functions log an±(z). We choose

these branches to be such that its imaginary part is in the range (−π, π) after the first winding xm1

around the origin of the trajectory. Equivalently, due to (6.45), this choice implies that the dilogarithm
integrals that run over the trajectories Ân

± are computed with the imaginary part of log an±(z) taken
in (−π, π) as z → −∞. Then the imaginary part of log an±(∞) is in [(2k − 1)π, (2k + 1)π] for some
integer k, and one can compute this integer by following the corresponding curves in Figure 12.

With this information, we are able to compute log an±(∞) and log
(
1+an±(∞)

)
in the limit z → ∞,

including their imaginary parts. This allows us to compute the constants φn±. By taking the braid limit
of (6.19), we find

φn± = log an±(∞)−
3∑

m=1

K̃nm(0) log
(
1 + am± (∞)

)
, (6.47)

where K̃(k) is defined in (6.10). Using the braid limits (6.42) and the trajectories (6.46), we find that
the constants φn± are given by the simple formulas

φ±1 = −φ±2 = −(3γ ∓ dπ)i, φ±3 = 0. (6.48)

The functions J+ and J− thus read

J± =
3∑

n=1

∫

Ân
±

dan±

(
log

(
1 + an±

)

an±
− log an± − φn±

1 + an±

)
, (6.49)

and are to be evaluated with the trajectories as described above. These integrals are computed in
Appendix A. The final result reads

J± =
π2

3

[
1−

(3γ
π

∓ d
)2

]
, (6.50)

and the resulting conformal dimensions are

∆ =
1

24

[(3γ
π

− d
)2

− 1

]
= ∆γ/π,d/2 , ∆̄ =

1

24

[(3γ
π

+ d
)2

− 1

]
= ∆γ/π,−d/2 . (6.51)

6.4 Analytic solution for ground states for strip boundary conditions

In this subsection, we focus on the strip boundary conditions and compute the finite-size corrections for
the ground state eigenvalues of the standard modules VN,d. With our computer program, we computed

the transfer matrices D̂(u) in these modules, their ground state eigenvalues D̂(u), and the corresponding
functions an(z), An(z) and bn(z), for various small values of N and d. For all these ground states, we
find that the zeros of D̂(u) are symmetrically distributed between the two half-planes. Moreover, we
find that the ground state eigenvalue D̂(u) is exactly the same for d = 0 and d = 1. In the scaling
limit, they thus share the same conformal dimensions. In the following, we therefore assume d > 1.

The bulk behavior of the functions an±(z), as dictated by the driving terms in the nonlinear integral
equations (6.19), vanishes:

an±(−∞) = 0, n = 1, 2, 3. (6.52)
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The braid limits for these functions are

a1±(∞) =





∓ i√
3

d ≡ 0 mod 3,

± i√
3

d ≡ 1 mod 3,

∞ d ≡ 2 mod 3,

(6.53a)

a2±(∞) =





± i√
3

d ≡ 0 mod 3,

∓ i√
3

d ≡ 1 mod 3,

∞ d ≡ 2 mod 3,

(6.53b)

a3±(∞) =

{
1
2 d ≡ 0, 1 mod 3,

−1 d ≡ 2 mod 3.
(6.53c)

For d = 1, the functions bn(z) have no zeros in their analyticity strips. In contrast, for d > 2 and
d > 3, the functions b1(z) and b3(z) respectively have zeros on the real line, and their numbers grow
as d increases. As explained under (6.20), the paths Cn depend on the locations of the zeros of b3(z).
As we move along these paths, the functions an(z) follow trajectories that wind non trivially around
the points 0 and −1. Like in the previous section, we express the trajectories An

±, in the scaling limit,
by words of the form xm1yn1xm2yn2 . . . , with mi and ni measuring the number of times the trajectory
crosses the half-lines (0,∞) and (−∞,−1), respectively. The dilogarithm integrals are again computed
on truncated trajectories Ân

± wherein the first windings around the origin are removed. Using our
computer program, we find empirically that these truncated trajectories for d = 1, 2, 3 are

d = 1 : Ân
− =

(
1, 1, 1

)
n

Ân
+ =

(
1, 1, 1

)
n

d = 2 : Ân
− =

(
1, y, y−1/2

)
n

Ân
+ =

(
1, y−1, y1/2

)
n

d = 3 : Ân
− =

(
1, y, 1

)
n

Ân
+ =

(
1, y−1, 1

)
n

(6.54)

and so on for d > 4. With our computer implementation, we produced these trajectories for d =
0, . . . , 10 on small system sizes.

For d ≡ 2 mod 3, the braid limits a1±(∞) and a2±(∞) are not finite. In contrast, the derivation of
finite-size corrections in Section 6.2 assumed finite asymptotics of the functions in the NLIEs. The final
results of this calculation, namely the formulas (6.37) and (6.40) for J± and their relation (6.39) with
the conformal weights, hold for continuous values of the twist γ ∈ (0, π3 ). Crucially, these formulas also
have well-defined limits for γ → 0 and γ → π

3 , even in the cases where the braid limits of the functions
an±(∞) are infinite (this depends on d). From this, we infer that (6.51) in fact holds for γ ∈ [0, π3 ].
We use this to obtain the conformal weights for the strip boundary conditions, by considering limiting
cases of the same calculation for periodic boundary conditions. Indeed, for d > 1, we observe that the
braid limits and the trajectories for an+(x) are obtained from (6.42) and (6.46) by replacing d by 2d− 1
and by taking the limit γ → 0. Likewise, for an−(x), the braid limits and trajectories are obtained from
the periodic case by replacing d by 2d− 2 and γ → π

3 . This holds for all d. Thus, the functions an±(x)
for the two geometries satisfy the same NLIEs and have the same trajectories and braid limits. As
a result, the dilogarithm integral for the strip boundary conditions are directly obtained from (6.50),
and the conformal dimensions read

∆ = ∆0,d−1/2, ∆̄ = ∆1/3,−d+1. (6.55)

These can be equivalently written as

∆ = ∆̄ =
d(d− 1)

6
= ∆1,d+1. (6.56)

By the above remark, this result also holds for d = 0.
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7 Numerical confirmation of conformal partition functions

The Bethe ansatz equations (5.12) and (5.20) can be used to obtain numerical solutions for the transfer
matrix eigenvalues for critical site percolation on the triangular lattice. But they do not constitute
a solution in and of themselves. It is not easy to extract information directly from these algebraic
equations. First, any numerical solution relies on a sufficiently accurate initial guess for the Bethe roots.
Second, the form of the Bethe ansatz equations is not well suited for iterative numerical solutions. In
this section, we solve the more stable logarithmic form of the Bethe ansatz equations to obtain the
Bethe roots to high accuracy. We do this separately for the strip and periodic boundary conditions,
restricting to ω = ±1 for the latter. Initial guesses for the Bethe roots of the ground state and excited
states are provided by means of direct diagonalization for small system sizes N 6 12. Our numerical
calculations are carried out to (i) find the patterns of zeros needed to determine the analyticity as
input in our analytic calculations, (ii) confirm our analytic results for the ground states in Section 6
and (iii) confirm more generally Conjectures 1 and 2 for the scaling limit of the transfer matrix traces.
The numerics are performed using 100 digit precision in Mathematica [105] on a Mac Pro with 384GB
of memory.

7.1 Logarithmic form of the Bethe ansatz equations

For numerical stability, the nonlinear Bethe ansatz equations are better converted to their logarithmic
form. To do this, we write the Bethe roots as uj = ivj and use the identity

log
sin(iv − π

3 )

sin(iv + π
3 )

= 2 i arccot
(tanh v√

3

)
, v ∈ C, (7.1)

where there is a branch cut along the line segment from v = −πi
3 to v = πi

3 . This implies a jump
discontinuity on the real v line of 2πi at v = 0. Numerically, we find that the zeros of Q(u) occur in
strings of length 1, 2 and 3 as shown in Table 2.

Logarithmic Bethe ansatz equations for strip boundary conditions. Using the identity (7.1),
the Bethe ansatz equations on the strip (5.20) take the logarithmic form

4N arccot

(
tanh vj√

3

)
+

M∑

k=−M
4 arccot

(
tanh(vj−vk)√

3

)
= 2πIj , j = 0, 1, 2, . . . ,M, (7.2)

where the Bethe integers Ij ∈ N are due to the jump discontinuities of the logarithm, when applied to
(5.20). From (5.19), we have v−j = −vj and v0 = 0. For convenience, we count v0 = 0, related to the

boundary contribution, as a Bethe root of Q̂(u). We need only consider the logarithmic Bethe ansatz
equations for the M + 1 Bethe roots j = 0, 1, 2, . . . ,M in the fundamental domain

0 6 Re(u) 6 π
2 , 0 6 Im(u). (7.3)

The Bethe integers Ij specify the different branches of the logarithm in (7.1). Let us define the reference
integers

I0j = N+j−1. (7.4)

For the ground state in the standard module VN,d, the number of Bethe roots is M = N − d and the
Bethe integers are Ij = I0j . For the excited states, we write the Bethe integers as

Ij = I0j − Ej , j = 0, 1, 2, . . . ,M, (7.5)
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0.5 1.0 1.5 2�� ��� 3��

1-string
2-string

hole 1-string

}
3-strings





long 2-strings

Type of String Q(u) String Locations Number Order

Long 2-strings {vj , vj + πi}, vj ∈ R n2 O(N)

Hole 1-strings {ṽj}, ṽj ∈ R mh O(1)

1-strings {vj + πi
2 }, vj ∈ R m1 O(1)

2-strings {(vj + ǫ+ πi
3 , vj − ǫ+ 2πi

3 )}, vj ∈ R m2 O(1)

3-strings {(vj , vj + πi
3 , vj +

2πi
3 )}, vj ∈ C m3 O(1)

Table 2: The different 1-, 2- and 3-string types of Q(u), where the Bethe roots are written as uj = ivj
and ǫ denotes a complex number with small modulus. The apparent two zeros of the “long 2-string”
are identified under πi periodicity, so there is really only one zero. The location ṽj of the hole 1-string
marks the location on the real axis where there is a hole in the distribution of long 2-strings of Q(u).
This hole location ṽj coincides with the location vj of a 2-string in T̂ (u) or D̂(u). On the cylinder,
we distinguish strings in the upper and lower half u-planes using the notation m±

h ,m
±
1 ,m

±
2 ,m

±
3 . By

convention, strings on the real u-axis are assigned to the upper half plane. In some cases, the degree
of Q(u) is reduced by 1 or more, which we interpret as due to Bethe roots at infinity. The number of
zeros at infinity is denoted by m∞. The top panel depicts the the various Bethe roots strings in the
upper half u plane, with the horizontal axis marked in units of π3 .

where Ej are integer root excitation energies, with 0 6 Ej < ∞. Thus for the ground state, we have
Ij = I0j and Ej = 0 for all j. For convenience, we reverse the order of the Bethe roots and introduce
the quantum integer sequences

{I0j } = {I0M , I0M−1, . . . , I
0
0}={N+M+1, N+M, . . . ,N+1}, {Ej}={EM , EM−1, . . . , E0}. (7.6)

As introduced, the excitation energy of an individual Bethe root contributes a fixed amount of energy.
The labelling order of these roots is arbitrary, however the actual order is immaterial since the conformal
weights ∆ only depend on the sum

∑
j Ej which is invariant under labelling permutations. For

convenience, in the tables of excitations in Appendix B, we label the Bethe roots in an order such
that the sequence {Ej} is a non-decreasing sequence. For finite excitations, only a finite number of the
excitation energies Ej are positive as N → ∞.

Logarithmic Bethe ansatz equations for periodic boundary conditions. On the cylinder, the
patterns of zeros in the upper and lower half u-planes are independent and relate, through finite-size
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corrections, to ∆ and ∆̄ respectively. Using the identity (7.1) and setting ζ = eiP , the Bethe ansatz
equations on the cylinder (5.12) take the logarithmic form

2N arccot
( tanh vj√

3

)
+

M+−1∑

k=−M−

4 arccot
(tanh(vj−vk)√

3

)
= −γ − P + πIj , (7.7)

where the Bethe integers satisfy

Ij ∈
{

2Z+ 1 d even,

2Z d odd.
(7.8)

The Bethe roots vj are assigned the integer labels j = −M−,−M−+1, . . . ,M+−1 in such a way that
Re(vj) < 0 for j < 0 and Re(vj) > 0 for j > 0. The total number of roots is M =M− +M+.

For the ground state of the standard modules WN,d,ω with ω = ±1, we find that the number of
Bethe roots is M = N − d and the quantum integer sequences {I0j } = {I0−M−

, I0−M−+1, . . . , I
0
M+−1}, for

N even, are

{I0j } =

{
{−(M+N−3),−(M+N−5), . . . ,−(N−1), N+3, . . . ,M+N+1} d even.

{−(M+N−3),−(M+N−5), . . . ,−N,N+2, . . . ,M+N+1} d odd.
(7.9)

Similar expressions hold for odd values of N . For excited states, the excitation energies {Ej} =
{E−M−

, E−M−+1, . . . , EM+−1} are defined by

Ej =

{
I0j − Ij j > 0,

Ij − I0j j < 0.
(7.10)

For finite excitations, as N → ∞, only a finite number of the excitation energies Ej are nonzero on the
left and the right extremities of the sequence {Ej}. Reading from the left gives the energy excitations
Ej relevant to the lower half u-plane and the conformal weight ∆. Reading from the right gives the
energy excitations Ēj relevant to the upper half u-plane and the conformal weight ∆̄.

7.2 Numerics for the double row transfer matrix

The double row transfer matrices of site percolation on the triangular lattice were “numerically
diagonalized” for system sizes N 6 13 in the standard representations VN,d with d = 0, 1, . . . , 8.
Importantly, this yields the patterns of zeros for the leading eigenvalues which are used as input in the
logarithmic Bethe ansatz equations (5.20). For these eigenvalues, this allows the system size N to be
systematically increased and the conformal energies E to be obtained by extrapolation. More precisely,
the relevant quantities were calculated in the following sequence:

1. First, matrix representations D̂(u) of the double row transfer matrices are constructed using
the action of the dilute Temperley-Lieb algebra on link states in the various standard modules
VN,d. The generators of the dilute Temperley-Lieb algebra and the face transfer operators are

implemented as sparse matrices but the transfer matrices are dense. The matrix entries of D̂(u)
are centered Laurent polynomials in z = eiu of degree width 2N with numerical coefficients.
The eigenvalues of the commuting transfer matrices D̂(u) are obtained by a process of direct
“numerical diagonalization”. More specifically, the numerical eigenvectors of D̂(π3 ) form a set of

common eigenvectors of D̂(u). In practice, as N becomes larger, only a subset of the leading
eigenvectors are obtained using the Arnoldi method. Acting on these eigenvectors with D̂(u)
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produces the eigenvalues D̂(u) as Laurent polynomials in z = eiu with numerical coefficients.
Strictly speaking, referring to this process as numerical diagonalization is a misnomer since D̂(π3 )
can exhibit nontrivial Jordan blocks. In such cases, the matrix is defective, there is no complete
set of eigenvectors and the transfer matrix is not diagonalizable.

2. For each polynomial eigenvalue D̂(u), the linear system (5.22) is solved numerically for the
corresponding functions Q̂(u) and P (u) as Laurent polynomials in z = eiu with numerical
coefficients. The degrees of Q̂(u) and P (u) used in this process are 2N − 2d + 1 − 2δd,0 and
4N − 2d+ 1− 2δd,0 respectively.

3. For each eigenvalue Q̂(u), the zeros in the fundamental domain are obtained numerically and
any 3-strings among these zeros are counted and removed along with any zeros at infinity.
The 3-strings can be removed because the renormalized Q̂(u), obtained by dividing out by the
polynomial associated with the 3-string zeros, satisfies the same T -Q relation as the original
Q̂(u). Due to numerical error, the “zeros at infinity” are very large but not actually infinite. The
number of remaining zeros of Q̂(u) in the fundamental domain is

M + 1 = N − d+ 1− δd,0 −m∞ − 3m3 = n2 +m1 + 2m2. (7.11)

The M + 1 zeros of Q̂(u) so found are substituted into the logarithmic Bethe ansatz equations
to solve for the Bethe integers Ij . The difference between the known ground state Bethe integers

{I0j } = {I0M , I0M−1, . . . , I
0
0}={N+M+1, N+M, . . . ,N+1} (7.12)

and the excited Bethe integers
{Ij} = {IM , IM−1, . . . , I0} (7.13)

give the M excitation energies Ej = I0j − Ij.

4. Considering a given eigenvalue Q̂(u) and starting at a given system size N = N0, the values of
N and M in the logarithmic Bethe ansatz equations are incremented, one unit at a time, by
adding successive long 2-strings at the edges of the analyticity strip while imposing Ij = I0j −Ej
with the excitation energies Ej held fixed as N is increased. The excitation energies Ej of all
the zeros associated with the additional long 2-strings are set to zero. This process is informally
described as “filling the Fermi sea”. The logarithmic Bethe ansatz equations are solved for each
incremented value of N yielding the Bethe roots vj and the Laurent polynomial Q̂(u) through

(5.18). As N is incremented, the polynomials D̂(u) are obtained from the Bethe ansatz equations
(5.17) and the patterns of zeros are checked for each value of N . This process is typically stable
out to N = 36 or beyond. It is clear that the size of the truncated subset of eigenvalues obtained,
at system size N , is limited by the number of eigenvalues of D̂(u) kept with system size N0 at
the “direct diagonalization” stage.

5. As N is increased, starting with the patterns of zeros for N = N0, the sequences of values
D̂(u0), say for u0 =

π
6 , can be extrapolated to extract the conformal data {c,∆1,d+1, E} from the

finite-size corrections (4.2b) using Vanden Broeck [106] sequence acceleration (see Table 3):

∆N = −N
π

[
log D̂(π6 ) + 2Nfbulk(

π
6 )
] N→∞−−−−→ ∆ = ∆1,d+1 + E. (7.14)

We stress that some of the eigenvalues D̂(u0) are complex and that in this case ∆N is complex.
Indeed, the eigenvalues of D̂(u) involving 2-strings are typically complex and appear in complex-
conjugate pairs. In such cases, we find that the extrapolated value of ∆ is nonetheless real.
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Equivalently, performing the extrapolation with the real part or modulus of D̂(u0) gives the
same real conformal weight ∆. In this sense, the imaginary parts of D̂(u0) are negligibly small
and do not contribute in the continuum scaling limit. The generating functions for the leading
sequences of conformal energies E yield the truncated conformal characters

χ̃(L)
1,s (q) = q−

c
24

+∆1,s
∑

E

qE +O(qL+1), s = d+ 1, (7.15)

where the truncation level observed from the numerics is

L = N0 − d− 2δd,0 − δd,1 > 0. (7.16)

This implies that each increment in N by 1 systematically gives correctly the next term in
the q-expansion of the conformal character. In principle, N0 can be chosen to be arbitrarily
large but, in practice, it is limited by the maximum system size Nmax of the systems that can
be handled numerically. Typically, in our calculations, Nmax 6 13. As N0 is increased, only
a very small proportion of the eigenvalues ultimately contribute to the truncated conformal

characters (7.15). These truncated conformal characters χ̃
(L)
1,s (q) should not be confused with

finitized conformal characters χ
(N)
1,s (q) which, unlike the truncated conformal characters, satisfy

the property χ
(N)
1,s=d+1(1) = dimVN,d.

6. From our numerics, we conjecture that the extrapolated conformal energies are given by

E = Ebase +
∑

j

Ej (7.17)

where

Ebase =





1
2m(3m+ 1) d = 0,
1
2⌈m+2t−1

2 ⌉
(
3⌈m+2t−1

2 ⌉ − (−1)m
)
−∆1,d+1 d = 3t > 0,

1
2⌈m+2t

2 ⌉
(
3⌈m+2t

2 ⌉+ (−1)m
)
−∆1,d+1 d = 3t+ 1,

3
2(m+ t)(m+ t+ 1)− (∆1,d+1 − 1

3 ) d = 3t+ 2,

(7.18a)

m =





m3 d = 0,

m∞ + 2m3 d = 3t > 0,
1
2m∞ + 2m3 d = 3t+ 1,

m3 d = 3t+ 2,

∆1,d+1 =





1
2t(3t− 1) d = 3t > 0,
1
2t(3t+ 1) d = 3t+ 1,
3
2t(t+ 1) + 1

3 d = 3t > 0.

(7.18b)

Note that although the excitation energies Ej initially refer to a fixed finite system size N = N0,
they are held fixed as N → ∞ and consequently each Ej emerges as a quantum number in the
continuum scaling limit.

7. The string content (mh,m1,m2), quantum numbers (m∞,m3,m), conformal eigenenergies E as
well as the excitation energies Ebase and Ej for the leading eigenvalues D̂(u) of DLM(2, 3) are
tabulated for the standard modules VN,d with d = 0, 1, 2, . . . , 8 in the Tables 5–13. The string
content (mh,m1,m2) for complex eigenvalues containing 2-strings is more easily discerned by
looking at the patterns of zeros of the function

Q̃(u) =
1

2

M∑

j=−M
(cj + c̄j) e

iju where cj is defined from Q(u) =

M∑

j=−M
cje

iju (7.19)
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and c̄j is the complex conjugate of cj . In contrast to bond percolation on the square lattice [6],
we have not been able to find a complete classification of these eigenvalues by quantum numbers
and patterns of zeros for arbitrarily large system sizes N .

The Vanden Broeck-Schwartz extrapolation data for a typical eigenvalue D̂(u) is presented in Table 3
in Appendix B.1.

In summary, to high precision, our numerics are consistent with the central charge and conformal
weights

c = 0, ∆1,d+1 =
d(d− 1)

6
= 0, 0, 13 , 1, 2,

10
3 , 5, 7,

28
3 , . . . for d = 0, 1, . . . , 8, . . . (7.20)

and yield the following truncated conformal characters χ̃
(L)
1,d+1(q) for the standard representations VN,d

with d = 0, 1, 2, . . . , 8:

χ̃(11)
1,1 (q) = 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + 8q9 + 12q10 + 14q11 +O(q12), (7.21a)

χ̃(9)
1,2(q) = 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + 11q8 + 15q9 +O(q10), (7.21b)

χ̃(8)
1,3(q) = q1/3(1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + 15q8 +O(q9)), (7.21c)

χ̃(9)
1,4(q) = q(1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + 12q7 + 17q8 + 23q9 +O(q10)), (7.21d)

χ̃(8)
1,5(q) = q2(1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 10q6 + 13q7 + 19q8 +O(q9)), (7.21e)

χ̃(8)
1,6(q) = q10/3(1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + 14q7 + 20q8 +O(q9)), (7.21f)

χ̃(7)
1,7(q) = q5(1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 14q7 +O(q8)), (7.21g)

χ̃(7)
1,8(q) = q7(1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 +O(q8)), (7.21h)

χ(6)
1,9(q) = q28/3(1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 +O(q7)). (7.21i)

To the order indicated, these truncated conformal characters exactly reproduce the degeneracies of the
LM(2, 3) logarithmic characters χ1,s(q) with s = d+ 1 given in (1.11).

7.3 Numerics for the single row transfer matrix

The single row transfer matrices of site percolation on the triangular lattice were “numerically
diagonalized” for system sizes N 6 13 in the standard modules WN,d,ω with ω = ±1 and d = 0, 1, . . . , 6.
Importantly, this yields the patterns of zeros for the leading eigenvalues which are used as input in the
logarithmic Bethe ansatz equations (5.12). For these eigenvalues, this allows the system size N to be
systematically increased and the conformal energies to be obtained by extrapolation. More precisely,
similarly to our calculations for D̂(u), the relevant quantities were calculated in the following sequence:

1. First, matrix representations T̂ (u) of the single row transfer matrices are constructed using
the action of the dilute Temperley-Lieb algebra on link states in the various standard modules
with ω = 1 and ω = −1. The generators of the dilute Temperley-Lieb algebra and the face
transfer operators are implemented as sparse matrices but the transfer matrices are dense. The
matrix entries of T̂ (u) are centered Laurent polynomials in z = eiu of degree N with numerical
coefficients. The eigenvalues of the commuting transfer matrices T̂ (u) are obtained by a process
of direct “numerical diagonalization”. More specifically, the numerical eigenvectors of T̂ (π3 ) form

a set of common eigenvectors of T̂ (u). In practice, as N becomes larger, only a subset of the

56



leading eigenvectors are obtained using the Arnoldi method. Acting on these eigenvectors with
T̂ (u) produces the eigenvalues T̂ (u) as Laurent polynomials in z = eiu with numerical coefficients.
Strictly speaking, referring to this process as numerical diagonalization is a misnomer since T̂ (π3 )
can exhibit nontrivial Jordan blocks. In such cases, the matrix is defective, there is no complete
set of eigenvectors and the transfer matrix is not diagonalizable.

2. For each polynomial eigenvalue T̂ (u), the linear system (5.14) is solved numerically for the
corresponding functions Q(u) and P (u) as Laurent polynomials in z = eiu with numerical
coefficients. The degrees of Q(u) and P (u) used in this process are N−d and 2N−d respectively.

3. For each eigenvalue Q(u), the zeros in the fundamental strip 0 6 Re(u) < π are obtained
numerically and any 3-strings among these zeros are counted and removed. For ω = ±1, we
do not observe any Bethe roots at infinity. The numbers of remaining zeros of Q(u) in the
fundamental strip are

M− = mh +m1 + 2m2, M+ = mh +m1 + 2m2, (7.22a)

M =M− +M+ = N − d− 3m3 − 3m3, M± = O(12N), (7.22b)

where the patterns of zeros in the upper and lower half planes are not simply related by complex
conjugation and are treated as independent. The M zeros of Q(u) so found are substituted into
the logarithmic Bethe ansatz equations (5.12) to solve for the Bethe integers Ij . The differences
(7.10) between the known ground state Bethe integers I0j and the excited Bethe integers Ij give
the M excitation energies Ej with j = −M, −M− + 1, . . . ,M+ − 1. Reading the nonzero entries
from the left and right gives the finite excitation energies {Ej |Ēj}.

4. Considering a given eigenvalue Q(u) and starting at a given system size N = N0, the values of N
and M in the logarithmic Bethe ansatz equations are incremented, one unit at a time, by adding
successive long 2-strings at the edges of the analyticity strip while holding the finite excitation
energies {Ej |Ēj} fixed as N is increased. The M long 2-strings are divided suitably between the
upper and lower half planes. The excitation energies Ej, Ēj of all the zeros associated with the
additional long 2-strings are set to zero. This process is informally described as “filling the Fermi
sea”. The logarithmic Bethe ansatz equations are solved for each incremented value of N yielding
the Bethe roots vj and the Laurent polynomial Q(u) through (5.6). As N is incremented, the

polynomials T̂ (u) are obtained from the Bethe ansatz equations (5.5) and the patterns of zeros
are checked for each value of N . This process is typically stable out to N = 36 or beyond. It is
clear that the size of the truncated subset of eigenvalues obtained, at system size N , is limited
by the number of eigenvalues of T̂ (u) kept with system size N0 at the “direct diagonalization”
stage.

5. As N is increased, starting with the patterns of zeros for N = N0, the sequences of values T̂ (u0),
say for u0 = π

6 , can be extrapolated to extract the conformal data c,∆, ∆̄ from the finite-size
corrections (4.2a) using Vanden Broeck [106] sequence acceleration (see Table 4)

XN = ∆N + ∆̄N = −N
π

(
Re log T̂ (π6 ) +Nfbulk(

π
6 )
) N→∞−−−−→ X = ∆+ ∆̄, (7.23a)

SN = ∆N − ∆̄N = − N√
3π

(
Im log T̂ (π6 )

) N→∞−−−−→ S = ∆− ∆̄. (7.23b)

In the tables of Appendix B, we summarize the results compactly in the form

(∆, ∆̄) = (∆γ/π, d
2
+ E,∆

γ/π, ηd
2
+ Ē), E = Ebase +

∑

j

Ej , Ē = Ēbase +
∑

j

Ēj . (7.24)

where η = −1 for γ = 0 (ω = 1) and η = 1 for γ = π (ω = −1).
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6. The string content (m; m̄) = (mh,m1,m2;mh,m1,m2), (m3,m3), conformal eigenenergies (E, Ē)
as well as the excitation energies (Ebase, Ēbase) and {Ej |Ēj} for the leading eigenvalues T̂ (u) are
tabulated for the standard modules WN,d,ω=±1 with d even/odd in the range d = 0, 1, 2, . . . , 6

in Tables 14–17. We have been unable to classify the patterns of zeros of T̂ (u), Q(u) and P (u)
for arbitrarily large system sizes N . In contrast to the eigenvalues D̂(u), for T̂ (u) we have also
not been able to find explicit expressions for Ebase and Ēbase in terms of the various quantum
numbers in the lower and upper half planes.

The Vanden Broeck-Schwartz extrapolation data for a typical eigenvalue T̂ (u) is presented in Table 4
in Appendix B.1.

To illustrate, our numerics reveal that the contributions to the modular invariant partition function
Z(0, 0)

tor (q, q̄) = Z+(q, q̄) + Z−(q, q̄) from the leading 162 eigenvalues of T̂ (u) in the standard modules
with ω = 1 and ω = −1 are

Z+(q, q̄) = (qq̄)−1/24[1 + (q + q̄) + (2q2 + qq̄ + 2q̄2) + (3q3 + 2q2q̄ + 4q3/2q̄3/2 + 2qq̄2 + 3q̄3)]

+ 2(qq̄)1/8[1 + (q + q̄) + (2q2 + qq̄ + 2q̄2) + (3q3 + q5/2q̄1/2 + 2q2q̄ + 2qq̄2 + q1/2q̄5/2 + 3q̄3)]

+ 2(qq̄)5/8[1 + (q + q̄) + (2q2 + qq̄ + 2q̄2)] + · · · (7.25a)

Z−(q, q̄) = 2(qq̄)1/3[1 + (q + q̄) + (2q2 + qq̄ + 2q̄2) + (4q3 + 2q2q̄ + 2qq̄2 + 4q̄3)]

+ 2[(q + q̄) + (2q2 + 2qq̄ + 2q̄2) + (3q3 + 4q2q̄ + 4qq̄2 + 3q̄2)] + · · · (7.25b)

The modular invariant partition functions for critical site percolation are thus obtained as linear
combinations of the modular invariants of the associated A(2)

2 vertex model. In this context, the
factors of 2 for d 6= 0 appearing first in (4.14) and here in (7.25) are accounted for by the twofold
multiplicities of the equivalent magnetization sectors Sz = ±d of the vertex model.

8 Conclusion

In this paper, we studied the continuum scaling limit of critical site percolation on the triangular
lattice, working with the associated dilute A

(2)
2 loop model and its single and double row commuting

transfer matrices. We showed that the model is integrable in the presence of a boundary and expressed
the partition functions in terms of traces of the transfer matrices. We obtained various functional
relations including cubic functional equations, Baxter T -Q equations, Bethe ansatz equations and
linear functional equations satisfied by the transfer matrix eigenvalues, the auxiliary function Q(u) and
an additional auxiliary function P (u). Assuming the known central charge c = 0, we derived and solved
nonlinear integral equations for the ground state conformal weights. We found that the ground states
in the standard modules with d defects have conformal weights ∆1,d+1 for strip boundary conditions
and ∆γ/π,±d/2 for periodic boundary conditions, where ∆r,s = 1

24

(
(3r − 2s)2 − 1

)
and ω = eiγ is the

twist. For periodic boundary conditions, the ground state conformal weights we obtained analytically
for λ = π

3 in the standard module WN,0,ω coincide with the limit λ → π
3 of the known conformal

weights [68–70] for λ ∈ (0, π3 ).
Our investigations of the excited states relied on extensive numerics, which solved the logarithmic

form of the Bethe ansatz equations to large order and high precision. Indeed, in contrast with our
previous work for bond percolation on the square lattice [6], we have not managed to obtain a complete
classification of the patterns of zeros of the transfer matrix eigenvalues and auxiliary functions for
critical site percolation. Nevertheless, our numerics confirmed the analytically calculated ground-state
conformal weights, and allowed us to give conjectures for the scaling limit of the traces of the transfer
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matrix in the continuum scaling limit. These are expressed in terms of Kac characters for D̂(u) and
as sesquilinear forms of Verma characters for T̂ (u). Using these conjectures and the Markov trace of
the dilute Temperley-Lieb algebra, we obtained the two conformal cylinder partition functions and the
four modular invariant torus partition functions for α = 2. In particular,

Z(0, 0)

tor = |κ0(q)|2+ 2|κ2(q)|2+ 2|κ3(q)|2+ 2|κ4(q)|2+ 2[κ1(q)κ5(q̄)+κ5(q)κ1(q̄)] + |κ6(q)|2, (8.1)

is a modular invariant sesquilinear form in affine u(1) characters whose power-series expansion in q and
q̄ has only positive integer coefficients. We also derived expressions for the partition function at the
other values of α, for both critical site and bond percolation, and found that they involve functions
Zm,m′(g) that appeared previously in the Coulomb gas approach [77,78].

The concurrence of all this conformal data provides compelling evidence supporting a strong form
of universality between bond percolation on the square lattice and site percolation on the triangular
lattice as logarithmic CFTs. To push this investigation further, a next step would be to compare
the Jordan cells of these models to see if the observed universality also extends to the Jordan cell
structure [45,107,108] and the structure of the indecomposable yet reducible Virasoro representations.

For strip boundary conditions, the conformal weights arising in the partition functions do not
exhaust all of the conformal weights of the infinitely extended Kac tables in Figure 1. This is because
we only considered a limited set of integrable boundary conditions. It would be of interest to extend
this study further to the second boundary Yang-Baxter solution in (3.30) as well as to other types of
boundary conditions [45, 109–112]. It is expected that the missing thermal conformal weight ∆h =
∆ 1

2
,0 =

5
96 will be among the additional conformal weights to be found.

In many cases, integrable lattice models that lie in the same universality class turn out to have
transfer matrices that satisfy the same set of universal functional relations and NLIEs. This occurs
for instance if we consider the square lattice Ising model on different two-dimensional topologies. For
bond and site percolation however, the transfer matrices satisfy different cubic functional relations,
different T -Q relations, and ultimately different NLIEs. We stress that, for site percolation, we avoided
resorting to the Y -system of the A

(2)
2 model to derive the NLIEs. Indeed, the Y -system that we

obtained in [66] involves auxiliary functions that do not have the correct analyticity properties to allow
for a computation of the conformal eigenenergies. The generalised set of “snake” Y -systems, similar to
those found by Kuniba, Sakai and Suzuki for the six-vertex model [113], are not yet known for the A

(2)
2

model. After writing this paper, we realised that the auxiliary functions a1(z), a2(z) and a3(z) defined
in Section 5.3 can be understood as three of five functions satisfying a Y -system studied by Gliozzi and
Tateo [114], see Appendix C. It remains to be seen whether this approach also allows for the calculation
of the finite-size corrections to the transfer matrix eigenvalues. In the end, although the NLIEs of this
paper appear somewhat more elaborate, one advantage of the current approach is that they can be
used for arbitrary values of λ ∈ (0, π3 ], not only for roots of unity. Moreover, it applies to all values of
the twist parameter, can be applied to arbitrary excitations, and thus allows for a systematic approach
for sℓ(3) models.

It would also be desirable to extend the calculation of the finite-size spectra and of the modular
invariant partition functions to other A

(2)
2 loop models. In particular, the special value λ = 5π

16
corresponds to the model DLM(3, 4) with central charge c = 1

2 . Moreover, it would be interesting to

see if the technique of nonlinear integral equations can be applied favourably in Regime III of the A
(2)
2

loop model to understand the conformal properties of this model whose ground state energy is known
to become infinitely degenerate in the scaling limit [115].
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A Dilogarithm integrals

We want to calculate the sum of three dilogarithmic integrals

J =

3∑

n=1

∫

Ân

da

(
log

(
1 + a

)

a
− log a

1 + a

)
, (A.1)

with the truncated trajectories Ân as discussed in Section 6.3. For each state of the transfer matrix,
we have a specific set of functions satisfying the NLIEs where the indices ± refer to the contributions
of left- and right-movers (in a field-theoretic language) which are identified in the scaling limit.

For each state and in general differently for the left- and right- scaling limits (±), the functions
an±(z) are considered on paths Cn± that take z from −∞ to +∞ along the real axis with certain occasional
indentations, as described in Section 6.3. For the evaluation of the above dilogarithmic integral, we
only need to work with the trajectories Ân that are taken by the functions an±(z) evaluated on Cn±,
namely by the concatenation of an±(z) with Cn± yielding the above Ân. For all the eigenstates, the initial

point of Ân is always 0, for all n = 1, 2, 3. In contrast, the end points are given by the braid limits
(6.42) which are written for our purposes in terms of the functions defined in (6.43) as an±(∞) = ψn(s)
with s = e±iπd/6ω−1/2 and ω = eiγ .

We note the important property of the function

J(s) =

3∑

n=1

∫ ψn(s)

0
da

(
log

(
1 + a

)

a
− log a

1 + a

)
(A.2)

to be independent of s, where for the moment we assume that s takes positive real values. The
independence of s is proved by taking the derivative and using elementary identities for the standard
log-function to show that all terms cancel each other. The value of J(s) can be evaluated for instance
by inserting s = ∞, such that

J(s) = J(∞) =

∫ ∞

0
da

(
log

(
1 + a

)

a
− log a

1 + a

)
=
π2

3
. (A.3)

Moreover, because the logarithms in these integrals are understood to be continuous functions, the
function J(s) is by definition also continuous.

Next, we address the question of the value of J(s) in the case where s leaves the positive real
semi-axis. Of course, the combination of integrals that defines J(s) stays constant as long as we
move s in the complex plane along a trajectory for which all values of ψn(s) avoid the singularities
0 and −1 of the integrand (A.1) and the logarithms of the integrand are kept continuous along the
integration trajectories. The smoothness of all involved logarithm functions is naturally incorporated
in the method of nonlinear integral equations. Here, the smoothness of the logarithms allows us to
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extend the vanishing of the derivative of J(s) with respect to s for positive real values to any complex
value under the before mentioned conditions.

For the ground state in WN,0,ω=eiγ , the paths Cn± follow the real axis. The evaluation of the

functions an±(z) on these paths yields trajectories Ân that connect the initial points with the end
points in a practically direct manner, namely trajectories that stay close to the real axis and do not
wind around the singularities 0 and −1. We can find a simple replacement trajectory yielding the same
integral and allowing for a straight evaluation. For each n, we define this trajectory by two pieces, the
first from 0 to ψn(1) along the real axis, the second (usually short) piece parameterized by ψn(e

−iγt)
with real values of t starting at t = 0 (evaluating to ψn(1)) and ending at t = 1/2 (evaluating to
ψn(e

−iγ/2). The trajectory obtained by the concatenation of these two pieces and the true trajectory
An lie in the same homotopy class, namely they can be deformed continuously into each other without
crossing the points 0 and −1. Of course, they share the same initial point, namely 0, but avoid this
strictly in the later course. The integral of type (A.1) on the replacement trajectories evaluates of
course to J(1) + 0 = π2/3.

For the ground state in WN,d,ω with d > 0, the paths Cn± leave the real axis and the evaluation
of the functions an±(z) on these paths yields trajectories An that connect the initial points with the
end points in a more involved manner than in the case d = 0. This is described in Section 6.3. As
involved as these trajectories are, we may again find a simple replacement trajectory yielding the same
integral and allowing for a straight evaluation. Again, for each n, we define this trajectory by two
pieces. The first piece consists of the trajectory from 0 to ψn(1) along the real axis. The second (now
longer) piece is parameterized by ψn(e

i(−γ±dπ/3)t) with values of t starting at t = 0 (evaluating to
ψn(1)), then taking values slightly above (below) the real axis for the case + (−) and ending at t = 1/2
(evaluating to ψn(e

−iγ/2e±iπd/6)). The trajectory obtained by the concatenation of these two pieces
and the true trajectory Ân lie in the same homotopy class: they can be deformed continuously into
each other without crossing the points 0 and −1. In other words, the second piece of these trajectories
can be read off directly from Figure 12, by starting at the value for d = 0 and γ = 0 where s = 1 and
moving along the parametric curve up to e−iγ/2e±iπd/6. The integral of type (A.1) on the replacement
trajectories again evaluates to J(1) + 0 = π2/3.

We have shown that in all cases so far, the dilogarithmic integrals evaluate to the same value. The
full finite size amplitude in (6.40) contains the additional term

3∑

n=1

φ±n

∫

Ân

da

1 + a
= φ±1 log

1 + ψ1(s)

1 + ψ2(s)
= −1

3
(3γ ∓ dπ)2, (A.4)

because of φ±1 = −φ±2 = −(3γ ∓ dπ)i, φ±3 = 0 and s = e±iπd/6ω−1/2. Finally we obtain

J± = J − 1

3
(3γ ∓ dπ)2 =

π2

3

[
1−

(
3γ

π
∓ d

)2
]
, (A.5)

ending the proof of (6.50).
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B Tabulated numerical results

B.1 Typical Vanden Broeck-Schwartz extrapolations

0.5 1.0 1.5 ��	 
�� 
��

-2

-1

1

2

Conformal Weight Sequence Re∆N Extrapolation
6.06901630386251542
6.05777824560024541 6.01948611928504238
6.04909002547372132 6.01652675142341243 6.00007947399388592
6.04223168255463500 6.01419802777344113 6.00005895801027374 6.00001168315100050
6.03672140998680299 6.01233171964422558 6.00004466537468217 6.00000885458703860 6.00000005446810154
6.03222662709910136 6.01081243522604241 6.00003445838039663 6.00000683477535594 6.00000003289996419
6.02851161544488649 6.00955880659702628 6.00002701046403082 6.00000536053373507
6.02540545419116287 6.00851207971313484 6.00002147214424538
6.02278171602283199 6.00762894576065053
6.02054523061579928

Conformal Weight Sequence |∆N | Extrapolation
6.06901630386251407
6.05777824560024503 6.01948611928503589
6.04909002547372120 6.01652675142341042 6.00007947399381232
6.04223168255463496 6.01419802777344045 6.00005895801024914 6.00001168315088705
6.03672140998680297 6.01233171964422532 6.00004466537467324 6.00000885458699844 6.00000005446782494
6.03222662709910136 6.01081243522604231 6.00003445838039314 6.00000683477534060 6.00000003289986152
6.02851161544488648 6.00955880659702624 6.00002701046402938 6.00000536053372882
6.02540545419116287 6.00851207971313482 6.00002147214424474
6.02278171602283199 6.00762894576065052
6.02054523061579928

Table 3: Typical Vanden Broeck-Schwartz extrapolation [106] for D̂(u) of the real part and modulus
of the conformal weight sequence ∆N in (7.23b). The tabulated system sizes range from N = 22 to
N = 40 in increments of 2. This data relates to the eigenvalue with ∆ = 6 and labelled by k = 9 in the
standard module VN,d=0 tabulated in Table 5. The initial sequences for Re∆N and |∆N | are presented
in the first column. Sequences of extrapolated values are given in each subsequent column added to
the right. The convergence to the N → ∞ value improves with each additional column. The pattern
of zeros of the associated Q(u), after a 3-string has been removed, is shown in the upper panel for
N = 22. The string content for this eigenvalue is (mh,m1,m2) = (0, 0, 1) with m3 = 1. To the extent
that the finite-size extrapolations of the real part and modulus of log D̂(π6 ) have converged, they agree
and yield the conformal weight ∆N → ∆ = 6. In principle, the accuracy of the extrapolation could be
improved by increasing the system size further.
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0.5 1.0 1.5 2.0 ��� 3.0

-2

-1

1

2

Scaling Dimension Sequence XN Extrapolation
3.72653094565
3.71563081287 3.68344486835
3.70748825057 3.68059854046 3.66672744801
3.70123826663 3.67842751199 3.66671983518 3.66691941781
3.69633244327 3.67673220654 3.66671192580 3.66663137806 3.66665105591
3.69240870772 3.67538209874 3.66670472881 3.66666000526 3.66666675603
3.68921983840 3.67428879092 3.66669853386 3.66666622790
3.68659216854 3.67339062325 3.66669333926
3.68440069522 3.67264348526
3.68255352360

Spin Sequence SN Extrapolation
1.00057890750
1.00039082315 1.00007921152
1.00027353329 1.00005531841 1.00000007406
1.00019724705 1.00003982344 1.00000004553 1.00000000624
1.00014586174 1.00002940992 1.00000002901 1.00000000411 0.999999999392
1.00011020864 1.00002219761 1.00000001908 1.00000000272 0.999999999919
1.00008483454 1.00001707211 1.00000001290 1.00000000184
1.00006637336 1.00001334743 1.00000000894
1.00005267968 1.00001058736
1.00004234736

Table 4: Typical Vanden Broeck-Schwartz extrapolation [106] for T̂ (u) of the scaling dimension and
spin sequences XN , SN . The tabulated system sizes range from N = 20 to N = 38 in increments of 2.
This data relates to the k = 25 eigenvalue in the module WN,d=0,ω=−1 in Table 16, with (∆, ∆̄) =
(73 ,

4
3). Sequences of extrapolated values are given in each subsequent column added to the right. The

convergence to the N → ∞ value improves with each additional column. The pattern of zeros of the
associated Q(u), after a 3-string has been removed, is shown in the upper panel for N = 20. The string
content for this eigenvalue is (mh,m1,m2;mh,m1,m2) = (0, 0, 1; 0, 1, 0) with (m3,m3) = (0, 1). For this
eigenvalue, we have M = 1

2N−3, M− = 1
2N−1 andM+ = 1

2N−2. The finite-size extrapolation of the

real and imaginary parts of log T̂ (π6 ) yields the scaling dimension and spin XN → X = ∆ + ∆̄ = 11
3 ,

SN → S = ∆− ∆̄ = 1. The value of P appears in the Bethe ansatz equations and is a multiple of 2π
3 .

In this case, it is zero. In principle, the accuracy of the extrapolation could be improved by increasing
the system size further.
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B.2 Tabulated numerical results for strip boundary conditions

In the following pages, we tabulate our numerical results for strip boundary conditions, in the standard
modules VN,d with d = 0, 1, . . . , 8. The label k is the decreasing ordering of the eigenvalues in absolute
value, at u = π

6 , for the chosen system size N0 used in the numerics.

Standard module VN,d=0

Label (mh,m1,m2) m3 E Ebase
∑

j Ej {Ej}
k = 1 (0, 0, 0) 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (1, 0, 0) 1 2 2 0 {0, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (1, 0, 0) 1 3 2 1 {1, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (0, 1, 0) 1 4 2 2 {2, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (1, 0, 0) 1 4 2 2 {1, 1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (0, 1, 0) 1 5 2 3 {3, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (1, 0, 0) 1 5 2 3 {1, 1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 8 (0, 1, 0) 1 6 2 4 {4, 0, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 9, 10 (0, 0, 1) 1 6, 6 2 4 {1, 3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (1, 0, 0) 1 6 2 4 {1, 1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 12 (0, 1, 0) 1 7 2 5 {5, 0, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 13, 14 (2, 0, 0) 2 7, 7 7 0 {0, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 15 (1, 0, 0) 1 7 2 5 {1, 1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 16 (0, 1, 0) 1 8 2 6 {6, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 17 (0, 2, 0) 1 8 2 6 {2, 4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 18, 19 (0, 0, 1) 1 8, 8 2 6 {1, 2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 20, 21 (2, 0, 0) 2 8, 8 7 1 {1, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 22 (1, 0, 0) 1 8 2 6 {1, 1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 23 (0, 1, 0) 1 9 2 7 {7, 0, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 24, 25 (0, 1, 1) 1 9, 9 2 7 {2, 2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 26, 27 (2, 0, 0) 2 9, 9 7 2 {2, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 28, 29 (2, 0, 0) 2 9, 9 7 2 {1, 1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 30 (1, 0, 0) 1 9 2 7 {1, 1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 31 (0, 1, 0) 1 10 2 8 {8, 0, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 32, 33 (0, 1, 1) 1 10, 10 2 8 {2, 2, 4, 0, 0, 0, 0, 0, 0, . . .}
k = 34, 35 (1, 1, 0) 2 10, 10 7 3 {3, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 36, 37 (0, 0, 1) 1 10, 10 2 8 {1, 1, 3, 3, 0, 0, 0, 0, 0, . . .}
k = 38, 39 (2, 0, 0) 2 10, 10 7 3 {1, 2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 40, 41 (2, 0, 0) 2 10, 10 7 3 {1, 1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 53 (1, 0, 0) 1 10 2 8 {1, 1, 1, 1, 1, 1, 1, 1, 0, . . .}
k = 42 (0, 1, 0) 1 11 2 9 {9, 0, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 43, 44 (0, 1, 1) 1 11, 11 2 9 {1, 2, 2, 4, 0, 0, 0, 0, 0, . . .}
k = 45, 46 (1, 1, 0) 2 11, 11 7 4 {4, 0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 47, 48 (1, 1, 0) 2 11, 11 7 4 {1, 3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 49, 50 (2, 0, 0) 2 11, 11 7 4 {2, 2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 51, 52 (2, 0, 0) 2 11, 11 7 4 {1, 1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 55, 56 (2, 0, 0) 2 11, 11 7 4 {1, 1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 113 (1, 0, 0) 1 11 2 9 {1, 1, 1, 1, 1, 1, 1, 1, 1, . . .}

Table 5: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 56

eigenvalues D̂(u) in the standard module VN,0. The conformal energies are given by E = Ebase +
∑

j Ej where

the pentagonal numbers are Ebase = 1
2m3(3m3 + 1) = 0, 2, 7, 15, 26, . . . for m3 = 0, 1, 2, 3, 4, . . .. The associated

conformal character is χ1,1(q) = 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + 8q9 + 12q10 + 14q11 +O(q12). For a
finite system, N − 3m3 = n2 +m1 + 2m2 =M is the total number of zeros of Q(u) in the fundamental domain
that enter the Bethe ansatz equations.
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Standard module VN,d=1

Label (mh,m1,m2) m∞ m3 m E Ebase
∑

j Ej {Ej}
k = 1 (0, 0, 0) 0 0 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (1, 0, 0) 2 0 1 1 1 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (1, 0, 0) 0 1 2 2 2 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (0, 1, 0) 2 0 1 3 1 2 {2, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (1, 0, 0) 0 1 2 3 2 1 {1, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (0, 1, 0) 0 1 2 4 2 2 {2, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (0, 0, 1) 2 0 1 4 1 3 {1, 2, 0, 0, 0, 0, 0, . . .}
k = 8 (1, 0, 0) 0 1 2 4 2 2 {1, 1, 0, 0, 0, 0, 0, . . .}
k = 9 (0, 1, 0) 0 1 2 5 2 3 {3, 0, 0, 0, 0, 0, 0, . . .}

k = 10, 11 (2, 0, 0) 2 1 3 5, 5 5 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 12 (1, 0, 0) 0 1 2 5 2 3 {1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (0, 1, 0) 0 1 2 6 2 4 {4, 0, 0, 0, 0, 0, 0, . . .}

k = 14, 15 (0, 0, 1) 0 1 2 6, 6 2 4 {2, 2, 0, 0, 0, 0, 0, . . .}
k = 16, 17 (2, 0, 0) 2 1 3 6, 6 5 1 {1, 0, 0, 0, 0, 0, 0, . . .}
k = 18 (1, 0, 0) 0 1 2 6 2 4 {1, 1, 1, 1, 0, 0, 0, . . .}
k = 19 (0, 1, 0) 0 1 2 7 2 5 {5, 0, 0, 0, 0, 0, 0, . . .}

k = 20, 21 (0, 1, 1) 2 0 1 7, 7 1 6 {1, 2, 3, 0, 0, 0, 0, . . .}
k = 22, 23 (2, 0, 0) 0 2 4 7, 7 7 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 24, 25 (2, 0, 0) 2 1 3 7, 7 5 2 {1, 1, 0, 0, 0, 0, 0, . . .}
k = 26 (1, 0, 0) 0 1 2 7 2 5 {1, 1, 1, 1, 1, 0, 0, . . .}
k = 27 (0, 1, 0) 0 1 2 8 2 6 {6, 0, 0, 0, 0, 0, 0, . . .}
k = 28 (0, 2, 0) 0 1 2 8 2 6 {2, 4, 0, 0, 0, 0, 0, . . .}

k = 29, 30 (1, 1, 0) 2 1 3 8, 8 5 3 {3, 0, 0, 0, 0, 0, 0, . . .}
k = 31, 32 (0, 0, 1) 0 1 2 8, 8 2 6 {3, 3, 0, 0, 0, 0, 0, . . .}
k = 33, 34 (2, 0, 0) 0 2 4 8, 8 7 1 {1, 0, 0, 0, 0, 0, 0, . . .}
k = 35, 36 (2, 0, 0) 2 1 3 8, 8 5 3 {1, 1, 1, 0, 0, 0, 0, . . .}
k = 42 (1, 0, 0) 0 1 2 8 2 6 {1, 1, 1, 1, 1, 1, 0, . . .}
k = 37 (0, 1, 0) 0 1 2 9 2 7 {7, 0, 0, 0, 0, 0, 0, . . .}

k = 38, 39 (1, 1, 0) 0 2 4 9, 9 7 2 {2, 0, 0, 0, 0, 0, 0, . . .}
k = 40, 41 (0, 1, 1) 0 1 2 9, 9 2 7 {2, 2, 3, 0, 0, 0, 0, . . .}
k = 43 (1, 0, 2) 2 0 1 9 1 8 {1, 2, 2, 3, 0, 0, 0, . . .}

k = 44, 45 (1, 1, 0) 2 1 3 9, 9 5 4 {2, 2, 0, 0, 0, 0, 0, . . .}
k = 46, 47 (2, 0, 0) 0 2 4 9, 9 7 2 {2, 0, 0, 0, 0, 0, 0, . . .}
k = 48, 49 (2, 0, 0) 0 2 4 9, 9 7 2 {1, 1, 0, 0, 0, 0, 0, . . .}
k = 53, 54 (2, 0, 0) 2 1 3 9, 9 5 4 {1, 1, 1, 1, 0, 0, 0, . . .}
k = 87 (1, 0, 0) 0 1 2 9 2 7 {1, 1, 1, 1, 1, 1, 1, . . .}

Table 6: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 52

eigenvalues D̂(u) in the standard module VN,1. The conformal energies are given by E = Ebase +
∑

j Ej where

the generalized pentagonal numbers are Ebase = ∆1,3⌊m+2

2
⌋−(−1)m = 1

2⌈m
2 ⌉(3⌈m

2 ⌉ + (−1)m) = 0, 1, 2, 5, 7, 12, . . .

with m = 0, 1, 2, 3, 4, 5, . . .. The quantum number m is given by m = 1
2m∞+2m3 where m∞ = 0, 2 is the number

of zeros at infinity. The associated conformal character is χ1,2(q) = 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 +
11q8 +15q9 +O(q10). For a finite system, N − d+ 1−m∞ − 3m3 = n2 +m1 +2m2 =M is the total number of
zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=2

Label (mh,m1,m2) m3 E Ebase
∑

j Ej {Ej}
k = 1 (0, 0, 0) 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (0, 1, 0) 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, . . .}
k = 3, 4 (0, 0, 1) 0 2, 2 0 2 {1, 1, 0, 0, 0, 0, 0, . . .}
k = 5, 6 (1, 0, 0) 1 3, 3 3 0 {0, 0, 0, 0, 0, 0, 0, . . .}
k = 7, 8 (0, 1, 1) 0 4, 4 0 4 {1, 1, 2, 0, 0, 0, 0, . . .}
k = 9, 10 (1, 0, 0) 1 4, 4 3 1 {1, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (0, 2, 0) 0 5 0 5 {1, 1, 1, 2, 0, 0, 0, . . .}

k = 12, 13 (1, 1, 0) 1 5, 5 3 2 {2, 0, 0, 0, 0, 0, 0, . . .}
k = 14, 15 (1, 0, 0) 1 5, 5 3 2 {1, 1, 0, 0, 0, 0, 0, . . .}
k = 16, 17 (0, 1, 0) 1 6, 6 3 3 {3, 0, 0, 0, 0, 0, 0, . . .}
k = 18, 19 (0, 0, 2) 0 6, 6 0 6 {1, 1, 2, 2, 0, 0, 0, . . .}
k = 20, 21 (1, 1, 0) 1 6, 6 3 3 {1, 2, 0, 0, 0, 0, 0, . . .}
k = 22, 23 (1, 0, 0) 1 6, 6 3 3 {1, 1, 1, 0, 0, 0, 0, . . .}
k = 24, 25 (0, 1, 0) 1 7, 7 3 4 {4, 0, 0, 0, 0, 0, 0, . . .}
k = 26–29 (1, 0, 1) 1 7, 7, 7, 7 3 4 {2, 2, 0, 0, 0, 0, 0, . . .}
k = 30, 31 (1, 1, 0) 1 7, 7 3 4 {1, 1, 2, 0, 0, 0, 0, . . .}
k = 32, 33 (1, 0, 0) 1 7, 7 3 4 {1, 1, 1, 1, 0, 0, 0, . . .}
k = 34, 35 (0, 1, 0) 1 8, 8 3 5 {5, 0, 0, 0, 0, 0, 0, . . .}
k = 36 (0, 3, 0) 0 8 0 8 {1, 1, 2, 4, 0, 0, 0, . . .}

k = 37–40 (1, 0, 1) 1 8, 8, 8, 8 3 5 {2, 3, 0, 0, 0, 0, 0, . . .}
k = 41–44 (1, 0, 1) 1 8, 8, 8, 8 3 5 {1, 2, 2, 0, 0, 0, 0, . . .}
k = 45, 46 (1, 0, 1) 1 8, 8 3 5 {1, 1, 1, 2, 0, 0, 0, . . .}
k = 47, 48 (1, 0, 0) 1 8, 8 3 5 {1, 1, 1, 1, 1, 0, 0, . . .}

Table 7: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 48

eigenvalues D̂(u) in the standard module VN,2. The conformal energies are given by E = Ebase +
∑

j Ej

where the triangular matchstick numbers are Ebase = ∆1,3(m+1)− 1
3
= 3

2m3(m3 + 1) = 0, 3, 9, 18, 30, . . . with

m3 = 0, 1, 2, 3, 4, . . .. The associated conformal character is χ1,3(q) = q1/3
∑

E q
E = q1/3(1 + q + 2q2 + 2q3 +

4q4 +5q5 +8q6 +10q7 +15q8 +O(q9)). For a finite system, N − d+1− 3m3 = n2 +m1 + 2m2 =M is the total
number of zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=3

Label (mh,m1,m2) m∞ m3 m E Ebase
∑

j Ej {Ej}
k = 1 (1, 0, 0) 0 0 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (1, 0, 0) 1 0 1 1 1 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (0, 1, 0) 0 0 0 2 0 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (1, 0, 0) 1 0 1 2 1 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (0, 1, 0) 1 0 1 3 1 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (1, 0, 1) 0 0 0 3 0 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (1, 0, 0) 1 0 1 3 1 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 8 (0, 1, 0) 1 0 1 4 1 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 9, 10 (2, 0, 0) 0 1 2 4, 4 4 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (1, 0, 0) 1 0 1 4 1 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 12 (0, 1, 0) 1 0 1 5 1 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 13, 14 (1, 0, 1) 1 0 1 5, 5 1 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 15, 16 (2, 0, 0) 0 1 2 5, 5 4 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 17 (1, 0, 0) 1 0 1 5 1 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 18 (0, 1, 0) 1 0 1 6 1 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 19, 20 (0, 1, 1) 0 0 0 6, 6 0 6 {1, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 21–23 (2, 0, 0) 1 1 3 6, 6, 6 6 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 24, 25 (2, 0, 0) 0 1 2 6, 6 4 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 26 (1, 0, 0) 1 0 1 6 1 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 27 (0, 1, 0) 1 0 1 7 1 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 28 (0, 2, 0) 1 0 1 7 1 6 {2, 4, 0, 0, 0, 0, 0, 0, . . .}

k = 29, 30 (0, 1, 0) 0 1 2 7, 7 4 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 31, 32 (0, 1, 1) 1 0 1 7, 7 1 6 {1, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 33–35 (2, 0, 0) 0 1 2 7, 7, 7 4 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 36, 37 (2, 0, 0) 0 1 2 7, 7 4 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 38 (1, 0, 0) 1 0 1 7 1 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 39 (0, 1, 0) 1 0 1 8 1 7 {7, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 40, 41 (1, 1, 0) 0 1 2 8, 8 4 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 42, 43 (0, 1, 1) 1 0 1 8, 8 1 7 {2, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 44 (1, 0, 2) 0 0 0 8 0 8 {1, 2, 2, 3, 0, 0, 0, 0, . . .}

k = 45, 46 (1, 1, 0) 0 1 2 8, 8 4 4 {1, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 47–49 (2, 0, 0) 1 1 3 8, 8, 8 6 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 50–52 (2, 0, 0) 1 1 3 8, 8, 8 6 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 53, 54 (2, 0, 0) 0 1 2 8, 8 4 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 55 (0, 1, 0) 1 0 1 9 1 8 {8, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 56, 57 (1, 1, 0) 0 1 2 9, 9 4 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 58, 59 (0, 1, 1) 1 0 1 9, 9 1 8 {2, 2, 4, 0, 0, 0, 0, 0, . . .}
k = 60–62 (1, 1, 0) 1 1 3 9, 9, 9 6 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 63, 64 (2, 0, 1) 0 1 2 9, 9 4 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 65, 66 (0, 0, 1) 1 0 1 9, 9 1 8 {1, 1, 3, 3, 0, 0, 0, 0, . . .}
k = 67, 68 (1, 1, 0) 0 1 2 9, 9 4 5 {1, 1, 3, 0, 0, 0, 0, 0, . . .}
k = 69–71 (2, 0, 0) 1 1 3 9, 9, 9 6 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 72 (1, 0, 0) 1 0 1 8 1 7 {1, 1, 1, 1, 1, 1, 1, 0, . . .}

k = 73–75 (2, 0, 0) 1 1 3 9, 9, 9 6 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 93, 94 (2, 0, 0) 0 1 2 9, 9 4 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 138 (1, 0, 0) 1 0 1 9 1 8 {1, 1, 1, 1, 1, 1, 1, 1, . . .}

Table 8: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 78

eigenvalues D̂(u) in the standard module VN,3. The conformal energies are given by E = Ebase +
∑

j Ej where

the shifted generalized pentagonal numbers are Ebase =
1
2⌈m+1

2 ⌉(3⌈m+1
2 ⌉− (−1)m)−1 = 0, 1, 4, 6, 11, 14, . . . with

m = 0, 1, 2, 3, 4, 5, . . .. The quantum number m is given by m = m∞ + 2m3 where m∞ = 0, 1 is the number of
zeros at infinity. The associated conformal character is χ1,4(q) = q(1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + 12q7 +
17q8 + 23q9 +O(q10)). For a finite system, N − d+ 1−m∞ − 3m3 = n2 +m1 + 2m2 =M is the total number
of zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=4

Label (mh,m1,m2) m∞ m3 m E Ebase
∑

j Ej {Ej}
k = 1 (1, 0, 0) 0 0 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (1, 0, 0) 0 0 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (0, 1, 0) 0 0 0 2 0 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (1, 0, 0) 0 0 0 2 0 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (0, 1, 0) 0 0 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (2, 0, 0) 2 0 1 3 3 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (1, 0, 0) 0 0 0 3 0 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 8 (0, 1, 0) 0 0 0 4 0 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 9, 10 (0, 0, 1) 0 0 0 4, 4 0 2 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (2, 0, 0) 2 0 1 4 3 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 12 (1, 0, 0) 0 0 0 4 0 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (0, 1, 0) 0 0 0 5 0 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 14–16 (2, 0, 0) 0 1 2 5, 5, 5 5 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 17 (2, 0, 0) 2 0 1 5 3 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 18 (1, 0, 0) 0 0 0 5 0 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 19 (0, 1, 0) 0 0 0 6 0 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 20 (0, 2, 0) 0 0 0 6 0 6 {2, 4, 0, 0, 0, 0, 0, 0, . . .}
k = 21 (1, 1, 0) 2 0 1 6 3 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 22, 23 (0, 0, 1) 0 0 0 6, 6 0 6 {1, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 24–26 (2, 0, 0) 0 1 2 6, 6, 6 5 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 27 (2, 0, 0) 2 0 1 6 3 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 28 (1, 0, 0) 0 0 0 6 0 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 29 (0, 1, 0) 0 0 0 7 0 7 {7, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 30 (1, 1, 0) 2 0 1 7 3 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 31, 32 (0, 1, 1) 0 0 0 7, 7 0 7 {2, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 33 (1, 1, 0) 2 0 1 7 3 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}

k = 34–36 (2, 0, 0) 0 1 2 7, 7, 7 5 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 37–39 (2, 0, 0) 0 1 2 7, 7, 7 5 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 40 (2, 0, 0) 2 0 1 7 3 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 41 (0, 1, 0) 0 0 0 8 0 8 {8, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 42 (1, 1, 0) 2 0 1 8 3 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 43, 44 (0, 1, 1) 0 0 0 8, 8 0 8 {2, 2, 4, 0, 0, 0, 0, 0, . . .}
k = 45–47 (1, 1, 0) 0 1 2 8, 8, 8 5 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 48 (2, 0, 1) 2 0 1 8 3 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}

k = 49, 50 (0, 0, 1) 0 0 0 8, 8 0 8 {1, 1, 3, 3, 0, 0, 0, 0, . . .}
k = 51 (1, 1, 0) 2 0 1 8 3 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}

k = 52–54 (2, 0, 0) 0 1 2 8, 8, 8 5 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 55 (1, 0, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 1, 1, 1, 0, . . .}

k = 56–58 (2, 0, 0) 0 1 2 8, 8, 8 5 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 75 (2, 0, 0) 2 0 1 8 3 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 109 (1, 0, 0) 0 0 0 8 0 8 {1, 1, 1, 1, 1, 1, 1, 1, . . .}

Table 9: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 60

eigenvalues D̂(u) in the standard module VN,4. The conformal energies are given by E = Ebase +
∑

j Ej where

the shifted generalized pentagonal numbers are Ebase = 1
2⌈m+2

2 ⌉(3⌈m+2
2 ⌉ + (−1)m) − 2 = 0, 3, 5, 10, 13, 20, . . .

with m = 0, 1, 2, 3, 4, 5, . . .. The quantum number m is given by m = 1
2m∞+2m3 where m∞ = 0, 2 is the number

of zeros at infinity. The associated conformal character is χ1,5(q) = q2(1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 10q6 +
13q7 +19q8 +O(q9)). For a finite system, N − d+ 1−m∞ − 3m3 = n2 +m1 +2m2 =M is the total number of
zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=5

Label (mh,m1,m2) m3 E Ebase
∑

j Ej {Ej}
k = 1 (1, 0, 0) 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (1, 0, 0) 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (1, 1, 0) 0 2 0 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (1, 0, 0) 0 2 0 3 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (0, 1, 0) 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (1, 1, 0) 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (1, 0, 0) 0 3 0 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 8 (0, 1, 0) 0 4 0 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 9, 10 (0, 0, 1) 0 4, 4 0 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (0, 1, 0) 0 4 0 4 {1, 1, 2, 0, 0, 0, 0, 0, . . .}
k = 12 (1, 0, 0) 0 4 0 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (0, 1, 0) 0 5 0 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 14, 15 (0, 0, 1) 0 5, 5 0 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 16, 17 (1, 0, 1) 0 5, 5 0 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 18 (0, 1, 0) 0 5 0 5 {1, 1, 1, 2, 0, 0, 0, 0, . . .}
k = 19 (1, 0, 0) 0 5 0 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 20 (0, 1, 0) 0 6 0 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 21 (0, 2, 0) 0 6 0 6 {2, 4, 0, 0, 0, 0, 0, 0, . . .}

k = 22–25 (2, 0, 0) 1 6, 6, 6, 6 6 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 26, 27 (1, 0, 1) 0 6, 6 0 6 {1, 1, 2, 2, 0, 0, 0, 0, . . .}
k = 28 (1, 1, 0) 0 6 0 6 {1, 1, 1, 1, 2, 0, 0, 0, . . .}
k = 29 (1, 0, 0) 0 6 0 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 30 (0, 1, 0) 0 7 0 7 {7, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 31 (0, 2, 0) 0 7 0 7 {2, 5, 0, 0, 0, 0, 0, 0, . . .}

k = 32, 33 (1, 0, 1) 0 7, 7 0 7 {2, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 34, 35 (0, 0, 1) 0 7, 7 0 7 {1, 3, 3, 0, 0, 0, 0, 0, . . .}
k = 36–39 (2, 0, 0) 1 7, 7, 7, 7 6 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 40, 41 (1, 0, 1) 0 7, 7 0 7 {1, 1, 1, 2, 2, 0, 0, 0, . . .}
k = 42 (1, 1, 0) 0 7 0 7 {1, 1, 1, 1, 1, 2, 0, 0, . . .}
k = 59 (1, 0, 0) 0 7 0 7 {1, 1, 1, 1, 1, 1, 1, 0, . . .}
k = 43 (0, 1, 0) 0 8 0 8 {8, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 44 (0, 2, 0) 0 8 0 8 {2, 6, 0, 0, 0, 0, 0, 0, . . .}

k = 45, 46 (0, 1, 1) 0 8, 8 0 8 {2, 2, 4, 0, 0, 0, 0, 0, . . .}
k = 47, 48 (0, 1, 1) 0 8, 8 0 8 {2, 3, 3, 0, 0, 0, 0, 0, . . .}
k = 49, 50 (0, 1, 1) 0 8, 8 0 8 {2, 2, 2, 2, 0, 0, 0, 0, . . .}
k = 51–54 (2, 0, 0) 1 8, 8, 8, 8 6 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 55–58 (2, 0, 0) 1 8, 8, 8, 8 6 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 61, 62 (1, 0, 1) 0 8, 8 0 8 {1, 1, 1, 1, 2, 2, 0, 0, . . .}
k = 82 (1, 1, 0) 0 8 0 8 {1, 1, 1, 1, 1, 1, 2, 0, . . .}
k = 107 (1, 0, 0) 0 8 0 8 {1, 1, 1, 1, 1, 1, 1, 1, . . .}

Table 10: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 63

eigenvalues D̂(u) in the standard module VN,5. The conformal energies are given by E = Ebase +
∑

j Ej

where the shifted triangular matchstick numbers are Ebase = 3
2 (m3+1)(m3+2) − 3 = 0, 6, 15, 27, 42, . . . with

m3 = 0, 1, 2, 3, 4, . . .. The associated conformal character is χ1,6(q) = q10/3
∑

E q
E = q10/3(1 + q + 2q2 + 3q3 +

5q4 + 7q5 + 10q6 + 14q7 + 20q8 + O(q9)). For a finite system, N − d + 1 − 3m3 = n2 +m1 + 2m2 = M is the
total number of zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=6

Label (mh,m1,m2) m∞ m3 m E Ebase
∑

j Ej {Ej}
k = 1 (2, 0, 0) 0 0 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (2, 0, 0) 0 0 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (2, 0, 0) 1 0 1 2 2 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (2, 0, 0) 0 0 0 2 0 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (1, 1, 0) 0 0 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (2, 0, 0) 1 0 1 3 2 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (2, 0, 0) 0 0 0 3 0 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 8 (1, 1, 0) 0 0 0 4 0 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 9 (1, 1, 0) 0 0 0 4 0 2 {1, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 10 (2, 0, 0) 1 0 1 4 2 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (2, 0, 0) 1 0 1 4 2 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 12 (2, 0, 0) 0 0 0 4 0 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (1, 1, 0) 0 0 0 5 0 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 14 (1, 1, 0) 1 0 1 5 2 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 15 (2, 0, 1) 0 0 0 5 0 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 16 (1, 1, 0) 0 0 0 5 0 5 {1, 1, 2, 0, 0, 0, 0, 0, . . .}
k = 17 (2, 0, 0) 1 0 1 5 2 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 18 (2, 0, 0) 1 0 1 5 2 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 19 (2, 0, 0) 0 0 0 5 0 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 20 (1, 1, 0) 0 0 0 6 0 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 21 (1, 1, 0) 1 0 1 6 2 6 {4, 0, 0, 0, 0, 0, 0, 0, . . .}

k = 22, 23 (1, 0, 1) 0 0 0 6, 6 0 6 {3, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 24 (1, 1, 0) 1 0 1 6 2 4 {1, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 25 (2, 0, 1) 0 0 0 6 0 6 {1, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 26 (2, 0, 0) 1 0 1 6 2 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 27 (1, 1, 0) 0 0 0 6 0 6 {1, 1, 2, 2, 0, 0, 0, 0, . . .}
k = 28 (2, 0, 0) 1 0 1 6 2 4 {1, 1, 2, 0, 0, 0, 0, 0, . . .}
k = 29 (2, 0, 0) 1 0 1 6 2 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 30 (1, 1, 0) 0 0 0 7 0 7 {7, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 31 (1, 1, 0) 1 0 1 7 2 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 32 (1, 1, 0) 1 0 1 7 2 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}

k = 33–36 (3, 0, 0) 0 1 2 7, 7, 7, 7 7 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 37 (1, 1, 0) 1 0 1 7 2 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 38 (2, 0, 1) 0 0 0 7 0 7 {1, 1, 2, 3, 0, 0, 0, 0, . . .}
k = 39 (2, 0, 0) 1 0 1 7 2 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 40 (2, 0, 0) 0 0 0 6 0 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 41 (1, 1, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 3, 0, 0, 0, . . .}
k = 42 (2, 0, 0) 1 0 1 7 2 5 {1, 1, 1, 2, 0, 0, 0, 0, . . .}
k = 43 (2, 0, 0) 1 0 1 7 2 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 44 (2, 0, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 1, 1, 1, 0, . . .}

Table 11: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 44

eigenvalues D̂(u) in the standard module VN,6. The conformal energies are given by E = Ebase +
∑

j Ej

where the shifted generalized pentagonal numbers Ebase =
1
2⌈m+3

2 ⌉(3⌈m+3
2 ⌉−(−1)m) = 0, 2, 7, 10, 17, 21, . . . with

m = 0, 1, 2, 3, 4, 5, . . .. The quantum numberm is given bym = m∞+2m3 wherem∞ = 0, 1 is the number of zeros
at infinity. The associated conformal character is χ1,7(q) = q5(1+q+2q2+3q3+5q4+7q5+11q6+14q7+O(q8)).
For a finite system, N − d + 1 −m∞ − 3m3 = n2 +m1 + 2m2 = M is the total number of zeros of Q(u) in the
fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=7

Label (mh,m1, m2) m∞ m3 m E Ebase
∑

j Ej {Ej}
k = 1 (2, 0, 0) 0 0 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (2, 0, 0) 0 0 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (2, 0, 0) 0 0 0 2 0 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (2, 0, 0) 0 0 0 2 0 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (0, 1, 0) 0 0 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (2, 0, 0) 0 0 0 3 0 3 {2, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (2, 0, 0) 0 0 0 3 0 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 8 (0, 1, 0) 0 0 0 4 0 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 9 (1, 1, 0) 0 0 0 4 0 2 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 10 (2, 0, 0) 0 0 0 4 0 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (2, 0, 0) 0 0 0 4 0 4 {1, 1, 2, 0, 0, 0, 0, 0, . . .}
k = 12 (2, 0, 0) 0 0 0 4 0 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (0, 1, 0) 0 0 0 5 0 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 14 (0, 1, 0) 0 0 0 5 0 5 {1, 4, 0, 0, 0, 0, 0, 0, . . .}
k = 15 (3, 0, 0) 2 0 1 5 5 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 16 (1, 1, 0) 0 0 0 5 0 5 {1, 1, 3, 0, 0, 0, 0, 0, . . .}
k = 17 (2, 0, 0) 0 0 0 5 0 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 18 (2, 0, 0) 0 0 0 5 0 5 {1, 1, 1, 2, 0, 0, 0, 0, . . .}
k = 19 (2, 0, 0) 0 0 0 5 0 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 20 (0, 1, 0) 0 0 0 6 0 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 21 (0, 1, 0) 0 0 0 6 0 6 {1, 5, 0, 0, 0, 0, 0, 0, . . .}

k = 22, 23 (0, 0, 1) 0 0 0 6, 6 0 6 {3, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 24 (1, 1, 0) 0 0 0 6 0 6 {1, 1, 4, 0, 0, 0, 0, 0, . . .}
k = 25 (3, 0, 0) 2 0 1 6 5 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 26 (2, 0, 0) 0 0 0 6 0 6 {2, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 27 (1, 1, 0) 0 0 0 6 0 6 {1, 1, 1, 3, 0, 0, 0, 0, . . .}
k = 28 (2, 0, 0) 0 0 0 6 0 6 {1, 1, 2, 2, 0, 0, 0, 0, . . .}
k = 29 (2, 0, 0) 0 0 0 6 0 6 {1, 1, 1, 1, 2, 0, 0, 0, . . .}
k = 44 (2, 0, 0) 0 0 0 6 0 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}
k = 30 (1, 1, 0) 0 0 0 7 0 7 {7, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 31 (1, 1, 0) 0 0 0 7 0 7 {1, 6, 0, 0, 0, 0, 0, 0, . . .}

k = 32, 33 (1, 0, 1) 0 0 0 7, 7 0 7 {3, 4, 0, 0, 0, 0, 0, 0, . . .}
k = 34 (1, 1, 0) 0 0 0 7 0 7 {1, 1, 5, 0, 0, 0, 0, 0, . . .}

k = 35, 36 (1, 0, 1) 0 0 0 7, 7 0 7 {1, 3, 3, 0, 0, 0, 0, 0, . . .}
k = 37 (3, 0, 0) 2 0 1 7 5 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 38 (1, 1, 0) 0 0 0 7 0 7 {1, 1, 1, 4, 0, 0, 0, 0, . . .}
k = 39 (3, 0, 0) 2 0 1 7 5 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 40 (2, 0, 0) 0 0 0 7 0 7 {1, 2, 2, 2, 0, 0, 0, 0, . . .}
k = 42 (1, 1, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 3, 0, 0, 0, . . .}
k = 45 (2, 0, 0) 0 0 0 7 0 7 {1, 1, 1, 2, 2, 0, 0, 0, . . .}
k = 58 (2, 0, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 1, 2, 0, 0, . . .}
k = 73 (2, 0, 0) 0 0 0 7 0 7 {1, 1, 1, 1, 1, 1, 1, 0, . . .}

Table 12: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 45

eigenvalues D̂(u) in the standard module VN,7. The conformal energies are given by E = Ebase+
∑

j Ej where the

shifted generalized pentagonal numbers Ebase =
1
2⌈m+4

2 ⌉(3⌈m+4
2 ⌉+ (−1)m) − 7 = 0, 5, 8, 15, 19, 28 . . . with m =

0, 1, 2, 3, 4, 5, . . .. The quantum number m is given by m = 1
2m∞ +2m3 where m∞ = 0, 2 is the number of zeros

at infinity. The associated conformal character is χ1,8(q) = q7(1+q+2q2+3q3+5q4+7q5+11q6+15q7+O(q8)).
For a finite system, N − d + 1 −m∞ − 3m3 = n2 +m1 + 2m2 = M is the total number of zeros of Q(u) in the
fundamental domain that enter the Bethe ansatz equations.
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Standard module VN,d=8

Label (mh, m1,m2) m3 E Ebase
∑

j Ej {Ej}
k = 1 (2, 0, 0) 0 0 0 0 {0, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 2 (2, 0, 0) 0 1 0 1 {1, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 3 (2, 0, 0) 0 2 0 2 {2, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 4 (2, 0, 0) 0 2 0 2 {1, 1, 0, 0, 0, 0, 0, 0, . . .}
k = 5 (2, 1, 0) 0 3 0 3 {3, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 6 (2, 0, 0) 0 3 0 3 {1, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 7 (2, 0, 0) 0 3 0 3 {1, 1, 1, 0, 0, 0, 0, 0, . . .}
k = 8 (1, 1, 0) 0 4 0 4 {4, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 9 (2, 1, 0) 0 4 0 3 {1, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 10 (2, 0, 0) 0 4 0 4 {2, 2, 0, 0, 0, 0, 0, 0, . . .}
k = 11 (2, 0, 0) 0 4 0 4 {1, 1, 2, 0, 0, 0, 0, 0, . . .}
k = 12 (2, 0, 0) 0 4 0 4 {1, 1, 1, 1, 0, 0, 0, 0, . . .}
k = 13 (1, 1, 0) 0 5 0 5 {5, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 14 (1, 1, 0) 0 5 0 5 {1, 4, 0, 0, 0, 0, 0, 0, . . .}
k = 15 (2, 1, 0) 0 5 0 5 {2, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 16 (2, 1, 0) 0 5 0 5 {1, 1, 3, 0, 0, 0, 0, 0, . . .}
k = 17 (2, 0, 0) 0 5 0 5 {1, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 18 (2, 0, 0) 0 5 0 5 {1, 1, 1, 2, 0, 0, 0, 0, . . .}
k = 27 (2, 0, 0) 0 5 0 5 {1, 1, 1, 1, 1, 0, 0, 0, . . .}
k = 19 (1, 1, 0) 0 6 0 6 {6, 0, 0, 0, 0, 0, 0, 0, . . .}
k = 20 (1, 1, 0) 0 6 0 6 {1, 5, 0, 0, 0, 0, 0, 0, . . .}

k = 21, 22 (0, 0, 1) 0 6, 6 0 6 {3, 3, 0, 0, 0, 0, 0, 0, . . .}
k = 23 (1, 1, 0) 0 6 0 6 {1, 1, 4, 0, 0, 0, 0, 0, . . .}
k = 24 (2, 1, 0) 0 6 0 6 {1, 2, 3, 0, 0, 0, 0, 0, . . .}
k = 25 (2, 0, 0) 0 6 0 6 {2, 2, 2, 0, 0, 0, 0, 0, . . .}
k = 28 (2, 1, 0) 0 6 0 6 {1, 1, 1, 3, 0, 0, 0, 0, . . .}
k = 29 (2, 0, 0) 0 6 0 6 {1, 1, 2, 2, 0, 0, 0, 0, . . .}
k = 38 (2, 0, 0) 0 6 0 6 {1, 1, 1, 1, 2, 0, 0, 0, . . .}
k = 57 (2, 0, 0) 0 6 0 6 {1, 1, 1, 1, 1, 1, 0, 0, . . .}

Table 13: String content (mh,m1,m2), conformal eigenenergies and quantum integers for the leading 30

eigenvalues D̂(u) in the standard module VN,8. The conformal energies are given by E = Ebase +
∑

j Ej

where the shifted triangular matchstick numbers are Ebase = 3
2 (m3+2)(m3+3) − 9 = 0, 9, 21, 36, 54, . . . with

m3 = 0, 1, 2, 3, 4, . . .. The associated conformal character is χ1,9(q) = q28/3
∑

E q
E = q28/3(1 + q + 2q2 + 3q3 +

5q4 + 7q5 + 11q6 + O(q7)). For a finite system, N − d+ 1 − 3m3 = n2 +m1 + 2m2 = M is the total number of
zeros of Q(u) in the fundamental domain that enter the Bethe ansatz equations.

B.3 Tabulated numerical results for periodic boundary conditions

In the following pages, we separately tabulate our numerical results for periodic boundary conditions in
the standard modules WN,d,ω with ω = ±1 and d even/odd in the range d = 0, 1, . . . , 6. In the tables,
we use the term multiplicity to mean the number of times the corresponding eigenvalue is counted in
the torus partition functions, whereas we use the term degeneracy to mean the number of occurrences
of this eigenvalue in the given standard module.
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Standard modules WN,d,ω=1 with d even

Label Defect# Mult Deg (m; m̄) (m3,m3) (∆
0, d

2

,∆
0,− d

2

) (E, Ē) Ebase
∑

j(E, Ē) {Ej |Ēj}
k = 1 d = 0 1 1 (0, 0, 0; 0, 0, 0) (0, 0) (− 1

24
,− 1

24
) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 0 1 1 (0, 0, 1; 0, 0, 0) (0, 0) (− 1
24
,− 1

24
) (1, 0) (0, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 0 1 1 (0, 0, 0; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (0, 1) (0, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 4, 5 d = 0 1 2 (0, 0, 1; 0, 0, 0) (0, 0) (− 1
24
,− 1

24
) (2, 0) (0, 0) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 6, 7 d = 0 1 2 (0, 0, 0; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 8 d = 0 1 1 (0, 0, 1; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (1, 1) (0, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 9 d = 0 1 1 (0, 2, 0; 0, 0, 0) (0, 0) (− 1
24
,− 1

24
) (3, 0) (0, 0) (3, 0) {1, 3, 1,−2,..|0,0, 0, 0,..}

k = 10 d = 0 1 1 (0, 0, 0; 0, 2, 0) (0, 0) (− 1
24
,− 1

24
) (0, 3) (0, 0) (0, 3) {0, 0, 0, 0,..|1,3, 1,−2,..}

k = 11, 12 d = 0 1 2 (0, 0, 1; 0, 0, 0) (0, 0) (− 1
24
,− 1

24
) (3, 0) (0, 0) (3, 0) {1, 2, 0, 0,..|0,0, 0, 0,..}

k = 13, 14 d = 0 1 2 (0, 0, 0; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (0, 3) (0, 0) (0, 3) {0, 0, 0, 0,..|1,2, 0, 0,..}

k = 15, 16 d = 0 1 2 (0, 0, 1; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (2, 1) (0, 0) (2, 1) {1, 1, 0, 0,..|1,0, 0, 0,..}

k = 17, 18 d = 0 1 2 (0, 0, 1; 0, 0, 1) (0, 0) (− 1
24
,− 1

24
) (1, 2) (0, 0) (1, 2) {1, 0, 0, 0,..|1,1, 0, 0,..}

k = 19, 20 d = 0 1 2 (0, 0, 0; 0, 0, 0) (1, 1) (− 1
24
,− 1

24
) ( 3

2
, 3
2
) ( 3

2
, 3
2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 1, 2 d = 6 2 1 (0, 0, 0; 0, 0, 0) (1, 1) ( 35
24
, 35
24

) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 1 d = 2 2 1 (0, 0, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 2 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (1, 0) (0, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 2 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (0, 1) (0, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 4, 5 d = 2 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (2, 0) (0, 0) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 6, 7 d = 2 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 8 d = 2 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (1, 1) (0, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 9 d = 2 2 1 (0, 1, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (3, 0) (0, 0) (3, 0) {1, 0, 2, 0,..|0,0, 0, 0,..}

k = 10 d = 2 2 1 (0, 0, 0; 0, 1, 1) (0, 0) ( 1
8
, 1
8
) (0, 3) (0, 0) (0, 3) {0, 0, 0, 0,..|1,0, 2, 0,..}

k = 11, 12 d = 2 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (3, 0) (0, 0) (3, 0) {1, 2, 0, 0,..|0,0, 0, 0,..}

k = 13, 14 d = 2 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) (0, 3) (0, 0) (0, 3) {0, 0, 0, 0,..|1,2, 0, 0,..}

k = 15∗ d = 2 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 1
8
, 1
8
) ( 5

2
, 1
2
) ( 5

2
, 1
2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 16∗ d = 2 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) ( 1

2
, 5
2
) ( 1

2
, 5
2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 17, 18 d = 2 2 2 (0, 0, 1; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (2, 1) (0, 0) (2, 1) {1, 1, 0, 0,..|1,0, 0, 0,..}

k = 19, 20 d = 2 2 2 (0, 1, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) (1, 2) (0, 0) (1, 2) {1, 0, 0, 0,..|1,1, 0, 0,..}

k = 1 d = 4 2 1 (0, 0, 0; 0, 0, 0) (0, 0) ( 5
8
, 5
8
) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 4 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 5
8
, 5
8
) (1, 0) (0, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 4 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 5
8
, 5
8
) (0, 1) (0, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 4 d = 4 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 5
8
, 5
8
) (2, 0) (0, 0) (2, 0) {2, 0, 0, 0,..|0,0, 0, 0,..}

k = 5 d = 4 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 5
8
, 5
8
) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|2,0, 0, 0,..}

k = 6 d = 4 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 5
8
, 5
8
) (2, 0) (2, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 7 d = 4 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 5
8
, 5
8
) (0, 2) (0, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 8 d = 4 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 5
8
, 5
8
) (1, 1) (0, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

Table 14: String content (m; m̄) = (mh,m1,m2;mh,m1,m2), (m3,m3), reference conformal weights

(∆0,d/2,∆0,−d/2), eigenenergies (E, Ē) and degeneracies for the leading 78 eigenvalues T̂ (u) in the standard
modules WN,d,1 with d even. The multiplicities are 1 for d = 0 and 2 otherwise. Allowing for multiplicities
and degeneracies, there are 22 eigenvalues in the d = 0 mod 6 modules, 40 eigenvalues in the d = 2 mod 6
modules and 16 eigenvalues in the d = 4 mod 6 modules. The total conformal weights for each eigenvalue are
(∆, ∆̄) = (∆0, d

2
+ E,∆0,− d

2
+ Ē) where E = Ebase +

∑
j Ej , Ē = Ēbase +

∑
j Ēj , where E = Ebase +

∑
j Ej ,

Ē = Ēbase+
∑

j Ēj . In these modules, J = 2 and Q(u) = T̂ (u). In general, each 2-string of T̂ (u) is accompanied

by a 2-string of Q(u) or it is indicative of a 1-hole in Q(u). Since Q(u) = T̂ (u), it follows that there are no
1-holes and mh = mh = 0 for all eigenvalues in these modules. However, unlike in other modules, in these ω = 1
modules T̂ (u) does admit 3-strings. An asterisk in the label column indicates that, for these eigenvalues, P is
not zero.
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Standard modules WN,d,ω=1 with d odd

Label Defect# Mult Deg (m; m̄) (m3,m3) (∆
0, d

2

,∆
0,− d

2

) (E, Ē) Ebase
∑

j(E, Ē) {Ej |Ēj}
k = 1 d = 1 1 1 (0, 0, 0; 0, 0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 2∗ d = 1 1 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 3∗ d = 1 1 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 4, 5 d = 1 1 2 (1, 0, 0; 0, 0, 0) (1, 0) (0, 0) (2, 0) (2, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 6, 7 d = 1 1 2 (0, 0, 0; 1, 0, 0) (0, 1) (0, 0) (0, 2) (0, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 8 d = 1 1 1 (1, 0, 0; 1, 0, 0) (0, 0) (0, 0) (1, 1) (1, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 9∗ d = 1 1 1 (0, 0, 1; 0, 0, 0) (0, 0) (0, 0) (3, 0) (1, 0) (2, 0) {2, 0, 0, 0,..|0,0, 0, 0,..}
k = 10∗ d = 1 1 1 (0, 0, 0; 0, 0, 1) (0, 0) (0, 0) (0, 3) (0, 1) (0, 2) {0, 0, 0, 0,..|2,0, 0, 0,..}
k = 11, 12 d = 1 1 2 (1, 0, 0; 0, 0, 0) (1, 0) (0, 0) (3, 0) (0, 0) (3, 0) {3, 0, 0, 0,..|0,0, 0, 0,..}
k = 13, 14 d = 1 1 2 (0, 0, 0; 1, 0, 0) (0, 1) (0, 0) (0, 3) (0, 0) (0, 3) {0, 0, 0, 0,..|3,0, 0, 0,..}
k = 15–17∗ d = 1 1 3 (1, 0, 0; 1, 0, 0) (1, 0) (0, 0) (2, 1) (2, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 18–20∗ d = 1 1 3 (1, 0, 0; 1, 0, 0) (0, 1) (0, 0) (1, 2) (1, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 1 d = 3 2 1 (0, 0, 0; 0, 0, 0) (0, 0) ( 1
3
, 1
3
) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 3 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 1
3
, 1
3
) (1, 0) (0, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 3 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 1
3
, 1
3
) (0, 1) (0, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 4, 5 d = 3 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
3
, 1
3
) (2, 0) (0, 0) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 6, 7 d = 3 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
3
, 1
3
) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 8 d = 3 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
3
, 1
3
) (1, 1) (0, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 9–12 d = 3 2 4 (1, 0, 0; 0, 0, 0) (1, 0) ( 1
3
, 1
3
) (3, 0) (3, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 13–16 d = 3 2 4 (0, 0, 0; 1, 0, 0) (0, 1) ( 1
3
, 1
3
) (0, 3) (0, 3) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 17, 18 d = 3 2 2 (0, 0, 1; 0, 1, 0) (0, 0) ( 1
3
, 1
3
) (2, 1) (0, 0) (2, 1) {1, 1, 0, 0,..|1,0, 0, 0,..}

k = 19, 20 d = 3 2 2 (0, 1, 0; 0, 0, 1) (0, 0) ( 1
3
, 1
3
) (1, 2) (0, 0) (1, 2) {1, 0, 0, 0,..|1,1, 0, 0,..}

k = 1 d = 5 2 1 (0, 0, 0; 0, 0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 2∗ d = 5 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (1, 1) (1, 0) (1, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 3∗ d = 5 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (1, 1) (0, 1) (0, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 4 d = 5 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (1, 1) (2, 0) (0, 0) (2, 0) {2, 0, 0, 0,..|0,0, 0, 0,..}
k = 5 d = 5 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (1, 1) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|2,0, 0, 0,..}
k = 6∗ d = 5 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (1, 1) (2, 0) (1, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}
k = 7∗ d = 5 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (1, 1) (0, 2) (0, 1) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}
k = 8 d = 5 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (1, 1) (1, 1) (1, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

Table 15: String content (m; m̄) = (mh,m1,m2;mh,m1,m2), (m3,m3), reference conformal weights

(∆0,d/2,∆0,−d/2), eigenenergies (E, Ē) and degeneracies for the leading 76 eigenvalues T̂ (u) in the standard
modules WN,d,1 with d odd. The multiplicities are 1 for d = 1 and 2 otherwise. Allowing for multiplicities
and degeneracies, there are 20 eigenvalues in the d = 1 mod 6 modules, 40 eigenvalues in the d = 3 mod 6
modules and 16 eigenvalues in the d = 5 mod 6 modules. The total conformal weights for each eigenvalue are
(∆, ∆̄) = (∆0, d

2
+E,∆0,− d

2
+ Ē) where E = Ebase +

∑
j Ej , Ē = Ēbase +

∑
j Ēj . In these modules, J = −2 and

Q(u) 6= T̂ (u). An asterisk in the label column indicates that, for these eigenvalues, P is not zero.
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Standard modules WN,d,ω=−1 with d even

Label Defect# Mult Deg (m; m̄) (m3,m3) (∆
1, d

2

,∆
1, d

2

) (E, Ē) Ebase
∑

j(Ej , Ēj) {Ej |Ēj}
k = 1, 2 d = 0 1 2 (0, 0, 0; 0, 0, 0) (1, 0) ( 1

3
, 1
3
) (0, 0) (0, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 3, 4 d = 0 1 2 (0, 1, 0; 0, 0, 0) (0, 1) ( 1
3
, 1
3
) (1, 0) (0, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 5, 6 d = 0 1 2 (0, 0, 0; 0, 1, 0) (1, 0) ( 1
3
, 1
3
) (0, 1) (0, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 7–10 d = 0 1 4 (0, 0, 1; 0, 0, 0) (0, 1) ( 1
3
, 1
3
) (2, 0) (0, 0) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 11–14 d = 0 1 4 (0, 0, 0; 0, 0, 1) (1, 0) ( 1
3
, 1
3
) (0, 2) (0, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 15, 16 d = 0 1 2 (0, 0, 1; 0, 0, 1) (1, 0) ( 1
3
, 1
3
) (1, 1) (0, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 17–20 d = 0 1 4 (1, 0, 0; 0, 0, 0) (1, 1) ( 1
3
, 1
3
) (3, 0) (3, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 21–24 d = 0 1 4 (0, 0, 0; 1, 0, 0) (1, 1) ( 1
3
, 1
3
) (0, 3) (0, 3) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 25–28 d = 0 1 4 (0, 0, 1; 0, 1, 0) (0, 1) ( 1
3
, 1
3
) (2, 1) (0, 0) (2, 1) {1, 1, 0, 0,..|1,0, 0, 0,..}

k = 29–32 d = 0 1 4 (0, 1, 0; 0, 0, 1) (1, 0) ( 1
3
, 1
3
) (1, 2) (0, 0) (1, 2) {1, 0, 0, 0,..|1,1, 0, 0,..}

k = 1, 2 d = 6 2 2 (1, 0, 0; 0, 0, 0) (0, 0) ( 1
3
, 1
3
) (3, 0) (3, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 3, 4 d = 6 2 2 (0, 0, 0; 1, 0, 0) (0, 0) ( 1
3
, 1
3
) (0, 3) (0, 3) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 1∗ d = 2 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 2∗ d = 2 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 3 d = 2 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (2, 0) (2, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 4 d = 2 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 2) (0, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 5, 6 d = 2 2 2 (1, 0, 0; 1, 0, 0) (1, 0) (0, 0) (1, 1) (1, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 7∗ d = 2 2 1 (0, 1, 0; 0, 0, 0) (0, 0) (0, 0) (3, 0) (1, 0) (2, 0) {2, 0, 0, 0,..|0,0, 0, 0,..}
k = 8∗ d = 2 2 1 (0, 0, 0; 0, 1, 0) (0, 0) (0, 0) (0, 3) (0, 1) (0, 2) {0, 0, 0, 0,..|2,0, 0, 0,..}
k = 9 d = 2 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (3, 0) (2, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}
k = 10 d = 2 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 3) (0, 2) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 11–12∗ d = 2 2 2 (1, 0, 0; 1, 0, 0) (0, 1) (0, 0) (2, 1) (2, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 13–14∗ d = 2 2 2 (1, 0, 0; 1, 0, 0) (1, 0) (0, 0) (1, 2) (1, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 1 d = 4 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (2, 0) (2, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 2 d = 4 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 2) (0, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 3 d = 4 2 1 (1, 0, 0; 0, 0, 0) (0, 0) (0, 0) (3, 0) (2, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}
k = 4 d = 4 2 1 (0, 0, 0; 1, 0, 0) (0, 0) (0, 0) (0, 3) (0, 2) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}
k = 5∗ d = 4 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (0, 0) (2, 1) (2, 1) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}
k = 6∗ d = 4 2 1 (1, 0, 0; 1, 0, 0) (0, 0) (0, 0) (1, 2) (1, 2) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

Table 16: String content (mh,m1,m2;mh,m1,m2), (m3,m3), reference conformal weights (∆1,d/2,∆1,d/2)

eigenenergies (E, Ē) and degeneracies for the leading 80 eigenvalues T̂ (u) in the standard modules WN,d,−1 with
d even. The multiplicities are 1 for d = 0 and 2 otherwise. Allowing for multiplicities and degeneracies, there are
40 eigenvalues in the d = 0 mod 6 modules, 28 eigenvalues in the d = 2 mod 6 modules and 12 eigenvalues in the
d = 4 mod 6 modules. The total conformal weights for each eigenvalue are (∆, ∆̄) = (∆1, d

2
+ E,∆1, d

2
+ Ē). In

these modules, J = −2 and Q(u) 6= T̂ (u). An asterisk in the label column indicates that, for these eigenvalues,
P is not zero.
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Standard modules WN,d,ω=−1 with d odd

Label Defect# Mult Deg (m; m̄) (m3,m3) (∆
1, d

2

,∆
1, d

2

) (E, Ē) Ebase
∑

j(Ej , Ēj) {Ej |Ēj}
k = 1∗ d = 1 2 1 (0, 0, 0; 0, 0, 0) (0, 0) ( 1

8
, 1
8
) (0, 1

2
) (0, 1

2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2∗ d = 1 2 1 (0, 0, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) ( 1

2
, 0) ( 1

2
, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 3∗ d = 1 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) ( 3

2
, 0) ( 1

2
, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 4∗ d = 1 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (0, 3

2
) (0, 1

2
) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 5∗ d = 1 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (1, 1

2
) (0, 1

2
) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 6∗ d = 1 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) ( 1

2
, 1) ( 1

2
, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 7∗ d = 1 2 1 (0, 1, 0; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) ( 5

2
, 0) ( 1

2
, 0) (2, 0) {2, 0, 0, 0,..|0,0, 0, 0,..}

k = 8∗ d = 1 2 1 (0, 0, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (0, 5

2
) (0, 1

2
) (0, 2) {0, 0, 0, 0,..|2,0, 0, 0,..}

k = 9 d = 1 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 1
8
, 1
8
) ( 5

2
, 0) ( 5

2
, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 10 d = 1 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) (0, 5

2
) (0, 5

2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 11–12∗ d = 1 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (2, 1

2
) (0, 1

2
) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 13–14∗ d = 1 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) ( 1

2
, 2) ( 1

2
, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 15∗ d = 1 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) ( 3

2
, 1) ( 1

2
, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 16∗ d = 1 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (1, 3

2
) (0, 1

2
) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 17–18∗ d = 1 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) ( 7

2
, 0) ( 1

2
, 0) (3, 0) {2, 1, 0, 0,..|0,0, 0, 0,..}

k = 19–20∗ d = 1 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) (0, 7

2
) (0, 1

2
) (0, 3) {0, 0, 0, 0,..|2,1, 0, 0,..}

k = 21∗ d = 1 2 1 (0, 1, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (3, 1

2
) (0, 1

2
) (3, 0) {2, 1, 0, 0,..|0,0, 0, 0,..}

k = 22∗ d = 1 2 1 (0, 0, 0; 0, 1, 1) (0, 0) ( 1
8
, 1
8
) ( 1

2
, 3) ( 1

2
, 0) (0, 3) {0, 0, 0, 0,..|2,1, 0, 0,..}

k = 23∗ d = 1 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) ( 5

2
, 1) ( 1

2
, 0) (2, 1) {2, 0, 0, 0,..|1,0, 0, 0,..}

k = 24∗ d = 1 2 1 (0, 1, 0; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (1, 5

2
) (0, 1

2
) (1, 2) {1, 0, 0, 0,..|2,0, 0, 0,..}

k = 25–26∗ d = 1 2 2 (0, 0, 1; 0, 0, 0) (0, 0) ( 1
8
, 1
8
) (3, 1

2
) (0, 1

2
) (3, 0) {2, 1, 0, 0,..|0,0, 0, 0,..}

k = 27–28∗ d = 1 2 2 (0, 0, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) ( 1

2
, 3) ( 1

2
, 0) (0, 3) {0, 0, 0, 0,..|2,1, 0, 0,..}

k = 29 d = 1 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 1
8
, 1
8
) ( 7

2
, 0) ( 5

2
, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 30 d = 1 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) (0, 7

2
) (0, 5

2
) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 31 d = 1 2 1 (0, 1, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) ( 5

2
, 1) ( 3

2
, 1) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 32 d = 1 2 1 (0, 0, 0; 0, 1, 0) (1, 0) ( 1
8
, 1
8
) (1, 5

2
) (1, 3

2
) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 33–34∗ d = 1 2 2 (0, 0, 1; 0, 1, 0) (0, 0) ( 1
8
, 1
8
) (2, 3

2
) (0, 1

2
) (2, 1) {1, 1, 0, 0,..|1,0, 0, 0,..}

k = 35–36∗ d = 1 2 2 (0, 1, 0; 0, 0, 1) (0, 0) ( 1
8
, 1
8
) ( 3

2
, 2) ( 1

2
, 0) (1, 2) {1, 0, 0, 0,..|1,1, 0, 0,..}

k = 1 d = 3 2 1 (0, 0, 0; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 3

2
, 0) ( 3

2
, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 3 2 1 (0, 0, 0; 0, 0, 0) (0, 1) (− 1
24
,− 1

24
) (0, 3

2
) (0, 3

2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 3 2 1 (0, 0, 0; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 5

2
, 0) ( 5

2
, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 4 d = 3 2 1 (0, 0, 0; 0, 0, 0) (0, 1) (− 1
24
,− 1

24
) (0, 5

2
) (0, 5

2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 5 d = 3 2 1 (0, 0, 1; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 3

2
, 1) ( 3

2
, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 6 d = 3 2 1 (0, 0, 0; 0, 0, 1) (0, 1) (− 1
24
,− 1

24
) (1, 3

2
) (0, 3

2
) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 7 d = 3 2 1 (0, 1, 0; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 7

2
, 0) ( 5

2
, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 8 d = 3 2 1 (0, 0, 0; 0, 1, 0) (0, 1) (− 1
24
,− 1

24
) (0, 7

2
) (0, 5

2
) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 9 d = 3 2 1 (0, 0, 1; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 5

2
, 1) ( 3

2
, 0) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 10 d = 3 2 1 (0, 0, 0; 0, 0, 1) (0, 1) (− 1
24
,− 1

24
) (1, 5

2
) (0, 3

2
) (1, 1) {1, 0, 0, 0,..|1,0, 0, 0,..}

k = 11 d = 3 2 1 (0, 0, 0; 0, 0, 0) (1, 0) (− 1
24
,− 1

24
) ( 7

2
, 0) ( 3

2
, 0) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 12 d = 3 2 1 (0, 0, 0; 0, 0, 0) (0, 1) (− 1
24
,− 1

24
) (0, 7

2
) (0, 3

2
) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 13–14 d = 3 2 2 (0, 0, 1; 0, 0, 0) (0, 1) (− 1
24
,− 1

24
) (2, 3

2
) (0, 3

2
) (2, 0) {1, 1, 0, 0,..|0,0, 0, 0,..}

k = 15–16 d = 3 2 2 (0, 0, 0; 0, 0, 1) (1, 0) (− 1
24
,− 1

24
) ( 3

2
, 2) ( 3

2
, 0) (0, 2) {0, 0, 0, 0,..|1,1, 0, 0,..}

k = 1 d = 5 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) (0, 5

2
) (0, 5

2
) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 2 d = 5 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 1
8
, 1
8
) ( 5

2
, 0) ( 5

2
, 0) (0, 0) {0, 0, 0, 0,..|0,0, 0, 0,..}

k = 3 d = 5 2 1 (0, 0, 0; 0, 0, 0) (1, 0) ( 1
8
, 1
8
) ( 7

2
, 0) ( 5

2
, 0) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 4 d = 5 2 1 (0, 0, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) (0, 7

2
) (0, 5

2
) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

k = 5 d = 5 2 1 (0, 1, 0; 0, 0, 0) (0, 1) ( 1
8
, 1
8
) (1, 5

2
) (0, 5

2
) (1, 0) {1, 0, 0, 0,..|0,0, 0, 0,..}

k = 6 d = 5 2 1 (0, 0, 0; 0, 1, 0) (1, 0) ( 1
8
, 1
8
) ( 5

2
, 1) ( 5

2
, 0) (0, 1) {0, 0, 0, 0,..|1,0, 0, 0,..}

Table 17: String content (m; m̄) = (mh,m1,m2;mh,m1,m2), (m3,m3), reference conformal weights

(∆1,d/2,∆1,d/2), eigenenergies (E, Ē) and degeneracies for the leading 116 eigenvalues T̂ (u) in the standard
modules WN,d,−1 with d odd. The multiplicities are 1 for d = 0 and 2 otherwise. Allowing for multiplicities
and degeneracies, there are 72 eigenvalues in the d = 1 mod 6 modules, 32 eigenvalues in the d = 3 mod 6
modules and 12 eigenvalues in the d = 4 mod 6 modules. The total conformal weights for each eigenvalue are
(∆, ∆̄) = (∆1, d

2
+E,∆1, d

2
+ Ē). In these modules, J = 2 and Q(u) = T̂ (u) and Q(u) has no 1-holes. An asterisk

in the label column indicates that, for these eigenvalues, P is not zero.
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C The Y -system of Gliozzi and Tateo

Let us define the five functions

Y 1(z) =
Λ2(iz) + Λ3(iz)

Λ1(iz)
, Y 2(z) =

Λ2(iz)
(
Λ1(iz) + Λ2(iz) + Λ3(iz)

)

Λ1(iz)Λ3(iz)
, (C.1a)

Y 3(z) =
Λ1(iz) + Λ2(iz)

Λ3(iz)
, Y 4(z) =

Λ1(iz)

Λ2(iz)
, Y 5(z) =

Λ3(iz)

Λ2(iz)
. (C.1b)

Comparing with (5.26), we see that Y 1(z) = a1(z)−1, Y 2(z) = a3(z)−1, Y 3(z) = a2(z)−1. Remarkably,
these five functions satisfy the Y -system relations of Gliozzi and Tateo [114]

Y n−1(z)Y n+1(z) = 1 + Y n(z), n = 1, 2, . . . , 5, (C.1c)

with the periodicity condition Y n+5(z) = Y n(z). Since there are no shifts in the spectral parameter,
this Y -system relating the auxiliary functions is a set of algebraic equations rather than the usual
functional equations. It implies that only two of the five Y n(z) are independent functions.

Importantly, we may express log Y n(z) linearly in terms of log(1 + Y n(z)) for n = 1, 2, . . . , 5 with
a symmetric coefficient matrix. This Y -system also holds in the scaling limit for the corresponding
scaling functions

Y n
± (z) = lim

N→∞
Y n

(
±(z + logN)

)
. (C.2)

Due to the symmetry of the matrix, we find

5∑

n=1

L+(Y
n
± (∞))−

5∑

n=1

L+(Y
n
± (−∞)) = 0, L+(x) = L( x

1+x), (C.3)

where L(x) is the Rogers dilogarithm. From (6.43), the braid limits of the five Y -functions are

{Y 1
±(∞), Y 2

±(∞), Y 3
±(∞), Y 4

±(∞), Y 5
±(∞)} = {1+t

t2
, t+1+ 1

t , t(1+t), t,
1
t }, t = s2 = e±iπd/3ω, (C.4)

and the bulk limits at z → −∞ are simply

{Y 1
±(−∞), Y 2

±(−∞), Y 3
±(−∞), Y 4

±(−∞), Y 5
±(−∞)} = {∞,∞,∞, 0, 0}. (C.5)

Hence we obtain
5∑

n=1

L+(Y
n
± (∞)) =

5∑

n=1

L+(Y
n
± (−∞)) =

π2

2
, t ∈ C, (C.6)

which is actually a one-parameter specialization of Abel’s two-parameter, five-term identity. Now, the
three-term identity

3∑

n=1

L+(Y
n
± (∞)) =

π2

3
, t ∈ C (C.7)

follows from Euler’s two-term identity L+(x) + L+(
1
x) =

π2

6 .
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