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In most papers, ϕ4-field theory with the vector (d-component) field ϕα is considered as a particular
case of the n-component field model for n = d and O(n) symmetry. However, in such a model the
symmetry O(d) admits an addition to the action of a term proportional to the squared divergence
of the field ∼ h(∂αϕα)2. From the point of view of renormalization group analysis, it requires a
separate consideration, because it may well change the nature of the critical behavior of the system.
Therefore, this frequently neglected term in the action requires a detailed and accurate study on
the issue of existing of new fixed points and their stability. It is known that within the lower order
of perturbation theory the only infrared stable fixed point with h = 0 exists but the corresponding
positive value of stability exponent ωh is tiny. This led us to analyze this constant in higher
orders of perturbation theory by calculating the 4-loop renormalization group contributions for ωh
in d = 4 − 2ε within Minimal Subtraction (MS) scheme, that should be enough to infer positivity
or negativity of this exponent. The value turned out to be undoubtedly positive, although still
small even in higher loops: 0.0156(3). These results cause that the corresponding term should be
neglected in the action when analyzing the critical behaviour of O(n)-symmetric model. At the
same time, the small value of ωh shows that the corresponding corrections to the critical scaling are
significant in a wide range.

I. INTRODUCTION

In recent years, the theory of critical behavior has ex-
perienced a renaissance. It is dictated by the emergence
of new theoretical approaches [1–5] and by the fact that
compared to couple decades ago a number of powerful
numerical methods used for the needs of renormaliza-
tion group (RG) approaches have appeared [6–18]. Apart
from that, the computational power of modern hardware
opens up great prospects for breaking into high orders
of perturbative critical thermodynamics by means of RG
methods for that field models where previously it was
unthinkable due to the technical features of calculations.
One of these problems is the analysis of the field model,
where the quadratic part of the action differs from the
standard one by a term ∼ h(∂αϕα)2. In the general case,
such an additive, which preserves rotational symmetry, is
not prohibited by any fundamental restrictions. To the
surprise of the authors, a proper analysis of its presence
in the action of the standard O(n)-symmetric model has
not been presented in the literature, although this could
potentially lead to a change the usual Heisenberg univer-
sality class. Moreover, the realization of such work is also
motivated by the recently published paper of the authors,
in which we analyze the action in the strong dipole-dipole
coupling regime [19], where the term mentioned above
was discarded. The neglecting of this additive was due
to the belief that it does not change the universality class,
giving as a stable fixed point one that contains the zero
value of h coordinate (h∗ = 0). Some discussion and
the lowest-order analysis regarding the stability of such
fixed point can be found in Ref. [20, 21]. However, the

smallness of the exponent requires checking for the fact
that the sign of this quantity does not change in higher
orders, as it frequently happens in the theory of critical
behavior.

The authors of this paper are sure that such omis-
sion in the general theory should be eliminated as soon
as possible. Thus in this work, we analyze the stability
of h-vector model within the MS scheme in the 4 − 2ε
dimensions. On the basis of these results, we will give
unambiguous conclusion regarding the stability of the
corresponding fixed point, or rather, the stability of the
ordinary Heisenberg point with respect to the presence
of ∼ h(∂αϕα)2 term in the action.

The paper is organized as follows. In Sec. II, the model
and renormalization scheme which we use in this work
are described. Next, in Sec. III the expansions for RG
functions and numerical results are presented. At the
end in Sec. IV, we will draw a conclusion.

II. MODEL AND RENORMALIZATION

The action we plan to study is as follows:

S0 = −
∫
ddx

[
1

2

[
(∂βϕ0α)2 +m2

0ϕ
2
0α + h0(∂αϕ0α)2

]
+

1

4!
u0T

αβγδ
S ϕ0αϕ0βϕ0γϕ0δ

]
, (1)

where ϕ0α is d-component bare field, u0 is bare coupling
constants, m2

0 is bare mass being proportional to T −
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Tc, where Tc is the mean-field critical temperature. The

tensor factor TαβγδS reads as follows:

TαβγδS =
1

3
(δαβδγδ + δαγδβδ + δαδδγβ). (2)

The corresponding propagator within the momentum
representation is

Gαβ(p) =
δαβ − p̂αp̂β
p2 +m2

0

+
p̂αp̂β

(1 + h0)p2 +m2
0

, (3)

where orientation vector defines as p̂α = pα/p. The prop-
agator denominator makes it easy to understand the re-
gion of stability, which is determined by the condition
h0 > −1. From the computational point of view, it is
convenient to resort to projectors, in terms of which the
propagator is written as:

Gαβ(p) =
P⊥αβ

p2 +m2
0

+
P
‖
αβ

(1 + h0)p2 +m2
0

, (4)

with P⊥αβ = δαβ − p̂αp̂β and P
‖
αβ = p̂αp̂β . Let us discuss

the renormalization of the action (1) within the ε ex-
pansion technique. As is well known, the only two- and
four-point one-irreducible Green functions are spoiled by
the pole singularities in ε. In the considered model, an
additional divergence compared to the O(n)-symmetric
model appears in the quadratic contribution ∼ h0pαpβ .
The counterterm necessary for the renormalization is re-
produced by the multiplicative renormalization of the
parameter h0. This preserves the general multiplicative
renormalizability of the theory. The renormalization pro-
cedure is reduced to introducing the necessary renormal-
ization constants to bare field theory (1). The renormal-
ized action has the following form:

S = −
∫
ddx

[
1

2

[
Z1(∂βϕα)2 + Z2m

2ϕ2
α + Z4h(∂αϕα)2

]
+

1

4!
Z3µ

2εuTαβγδS ϕαϕβϕγϕδ

]
. (5)

The renormalization constants Zi are calculated pertur-
batively in the form of series in renormalized coupling
constant u and for u = 0 they satisfy Zi = 1. The transi-
tion from bare action (1) to renormalized one (5) can be
interpreted as redefining of field and system parameters
from bare values to renormalized ones:

ϕ0α = ϕαZϕ, m
2
0 = m2Zm2 , h0 = hZh, u0 = µ2εuZu.

Comparing the bare (1) and renormalized (5) action, the
different renormalization constants are related to each
other as:

Z1 = Z2
ϕ, Z2 = Z2

ϕZm2 , Z3 = ZuZ
4
ϕ, Z4 = ZhZ

2
ϕ. (6)

Note that in Ref. [22], the difference between the renor-
malization constants Z1 and Z4 was interpreted as the

difference between the renormalization constants of the
transverse ϕ⊥α = P⊥αβϕβ and longitudinal ϕ

‖
α = P

‖
αβϕβ

components of the field : ϕ
‖
0α = Z

‖
ϕϕ
‖
α and ϕ⊥0α = Z⊥ϕ ϕ

⊥
α .

However, in this case it is impossible to interpret the
renormalization constant Z3 in the form Z3 = ZuZ

4
ϕ that

violates the multiplicative renormalizability of the model.
In the MS scheme, the coefficients of the series in u

of the renormalization constants Zi do not depend on
m and µ, but only on dimensionless parameter h which
plays the role of a nonperturbative charge. The renormal-
ization group equations for the Green functions can be
obtained from the condition that their bare counterparts

– G
(0)
n = 〈ϕ0α1

ϕ0α2
. . . ϕ0αn〉 – do not depend on the

parameter µ. Taking into account the relation between

bare and renormalized Green functions G
(0)
n = ZnϕG

R
n ,

we act on both sides of the equality by the operation
D̃µ = µ∂µ|u0,h0,m0

:

D̃µG
R
n + nγϕG

R
n = 0, (7)

where γϕ = D̃µ lnZϕ. Passing completely in the operator

D̃µ to the renormalized parameters:

D̃µ = Dµ + (D̃µm
2)∂m2 + (D̃µh)∂h + (D̃µu)∂u, (8)

we obtain the following equation for renormalized Green
function:[
Dµ + (D̃µm

2)∂m2 + βh∂h + βu∂u + nγϕ

]
GR
n = 0, (9)

where the β-functions are defined as:

βu = D̃µu, βh = D̃µh. (10)

Also, from the connection between bare and renormal-
ized parameters, one can extract the following necessary
relations:

D̃µm
2 = −γm2m2, βh = D̃µh = −γhh,
βu = D̃µu = −u(2ε+ γu), (11)

where anomalous dimensions read as:

γm2 = D̃µ lnZm2 , γh = D̃µ lnZh, γu = D̃µ lnZu. (12)

Taking into account all the above, we get the following
RG equation:[
µ∂µ − γm2m2∂m2 + βh∂h + βu∂u + nγϕ

]
GR
n = 0. (13)

The anomalous dimensions γϕ, γm2 , γh, and γu do not
possess poles in ε, moreover within MS scheme they de-
pend only on u and h and do not depend on ε at all:

γi = (βh∂h + βu∂u) lnZi. (14)

Thus, all RG-functions are expressed in terms of renor-
malization constants, except the trivial dependence of βu
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on ε. Taking into account the relations (14) and (11) the
beta functions can be found from the following system:

βu = −u [2ε+ (βu∂u + βh∂h)Zu] , (15)

βh = −h [(βu∂u + βh∂h)Zh] , (16)

The critical behavior of the system is determined by
the fixed point, or, equivalently, by the zeros of the β-
functions:

βu(u∗, h∗) = 0, βh(u∗, h∗) = 0. (17)

If the analyzed fixed point is infrared-stable that is de-
termined by the behavior of the β-functions then in the
critical region the Green function satisfies the following
equation:

[
µ∂µ− γ∗m2m2∂m2 +nγ∗ϕ

]
GR
n = 0, γ∗i = γi(u

∗, h∗). (18)

In the next section, we will apply these formulas to spe-
cific Feynman diagrams.

III. RG EXPANSIONS AND NUMERICAL
ESTIMATES

Since we are analyzing the stability of an O(n)-
symmetric fixed point, which, as we will show, is stable
with respect to a perturbation of the type ∼ h(∂αϕα)2,
we do not need to renormalize the mass to obtain ex-
pressions for the critical exponents ν, α, etc, they will
be the same as in case of O(n)-symmetric universality
class with n = 4 − 2ε. Moreover, to simplify the cal-
culations, one can resort to a massless computational
scheme. Let us write down the way we calculate the
renormalization constants. As was said, due to multi-
plicative renormalizability of the model it is enough to re-
move divergences in two- and four-point one-particle irre-

ducible Green functions which can be denotes as Γ
(2)
αβ and

Γ
(4)
αβγδ respectively. The counterterms eliminating the di-

vergences in these functions are polynomials in external

momenta. For Γ
(2)
αβ it is quadratic polynomial in the form

c1(ε)p2δαβ+c2(ε)pαpβ = p2(c1(ε)δαβ+c2(ε)p̂αp̂β), while

for Γ
(4)
αβγδ the polynomial is of the zero order. In addi-

tion, from the point of view of convenience, we will use
the MS scheme which is expressed by the transition to
another perturbative charge v:

u = v(4π)d/2e(2−d/2)γ , (19)

where γ is the Euler constant. Thus, we will deter-
mine the renormalization constants based on the finite-

TABLE I. Two-point Feynman diagrams up to four loops
which should be calculated in order to extract the ε expansion
for ωh. Each graph is accompanied by Nickel-index. Nickel-
index is commonly used in describing the topologies of Feyn-
man diagrams. The explanation of its modern modifications
was described in detail in Ref. [23].

e111|e| e112|22|e| e112|33|e33||

e112|23|33|e| e112|e3|333|| e123|e23|33||

ness condition for the functions ∂p2Γ
(2)
αβ and Γ

(4)
αβγδ/vµ

2ε:

∂Γ
(2)
αβ

∂p2
= δαβZ1

[
1−

(
Z3

Z2
1

)2

v2
(
µ

p

)4ε

δ
+ . . .

]

+ p̂αp̂βhZ4

[
1−

(
Z1

Z4h

)(
Z3

Z2
1

)2(
µ

p

)4ε

v2
p̂

+ . . .

]
,

(20)

−
Γ
(4)
αβγδ

vµ2ε
= T αβγδS Z3

[
1−

(
Z3

Z2
1

)
v

(
µ

p

)2ε

+ . . .

]
,

(21)

where symbols δ and p̂ denote the contributions of corre-
sponding tensor structures, the multiplier p−nε appears
when the change of integration variable from momentum
to dimensionless (in units of external momentum) one is
performed. In this case the left diagrams depend only
on ε and h. Having done all of these steps, the obtained
expressions for renormalization constants have the fol-
lowing structure:

Zi = 1 +
∑
j=1

uj
j∑
l=1

c
(i)
jl (h)ε−l. (22)

It is essential that the pole contributions, which are ob-
tained in (20) and (21) from the product of the expansion

(µ/p)
kε

= 1 + kε lnµ/p . . . and higher-order pole contri-
butions (from diagrams and renormalization constants)
cancel each other, which is a very important consequence
of the renormalizability of the theory. This leads to the
fact that the renormalization constants do not depend on
µ/p. At the same time, the interesting for us contribu-
tion in (21) does not depend on the way of momentum
passing through a diagram.

Having obtained Z1, Z3, and Z4, as functions of v, h,
and ε we can extract Zϕ, Zv, and Zh by means of the
following expressions:

Zv =
Z3

Z2
1

, Zh =
Z4

Z1
, Zϕ =

√
Z1. (23)
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Let us compose all the expressions, as a first step we
need to find the lowest order for the β-function of the
nonperturbative charge h in order to analyze a possibility
to obtain a new fixed point or to make sure that only
zero-valued h is possible. For this purpose, it is enough
to calculate the pole of the diagram e111|e|1:

αβ
= −h0(20 + 36h0 + 19h20)

432(1 + h0)3ε
p̂αp̂β (24)

− (36 + 76h0 + 63h20 + 20h30)

432(1 + h0)3ε
δαβ +O

(
ε0
)

=
p̂
p̂αp̂β +

δ
δαβ +O

(
ε0
)
,

where we have taken into account symmetry and com-
binatorial factors (n everywhere is replaced by d =
4 − 2ε). After substituting h0 = hZ4/Z1, by means of
Eqns. (20), (21) and simplified (valid only in low order)
expression for β-function of h (βh = 2εhv∂v lnZh), this
diagram allows to obtain the following result:

βh =
h
(
5h2 + 6h+ 4

)
27(h+ 1)2

v2 +O(v3). (25)

It is easy to see that for a fixed point equation here is
only one real root – h = 0. At this stage, the impor-
tant question connected with the stability of this point
appears. If it is not stable, then it is necessary to look
for other fixed points and, obviously, this can be done
only in higher orders of perturbation theory. If the point
is stable (ωh > 0), but numerical value of the exponent
is small, it is necessary to check whether the sign does
not change in higher orders. The latter is realized in our
case – as it turned out, ωh > 0 does not become negative
in higher orders. It is worth noting that there are situa-
tions in the literature when the conclusion regarding one
or another class of universality changes with the growth
of the orders of the perturbation theory [24, 25].

Taking into account the value of fixed point coordinate
v∗ = ε/2 which is the same as in case of O(n)-symmetric
theory with n = 4 − 2ε, the corrections to scaling ex-
ponent equals to ε2/27 which in case of physical value
of ε = 1/2 gives ∼ 0.009. As was said above, such a
small value of the correction to scaling exponent forces
us to make sure that in higher orders of perturbation the-
ory, the sign of this quantity does not change to negative.
Note that since we are interested in the case h = 0, it will
suffice to consider only terms linear in h in the βh func-
tion. This fact allows one to calculate only linear contri-
butions in h in all two-legs diagrams, and four-legs can
be computed initially for h = 0. In the future, only this
consideration will be enough, since the fixed point with
zero h value turns out to be stable. The corresponding
topologies of diagrams are presented in Table I.

1 Originally description of this diagram notation was presented
in the following report: http://users.physik.fu-berlin.de/

~kleinert/nickel/guelph.pdf

Thus, having calculated all necessary up to four-loops
diagrams, we obtain the following expansions for β-
functions :

βv = −2εv + 4v2 − 26

3
v3 +

(6984 + 4032ζ3)

216
v4 +O(v5),

βh =
4h

27
v2 − 4h

27
v3 +

2344h

2187
v4 +O(v5). (26)

It is interesting to note that βv differs from its O(4)-
symmetric counterpart [26] starting only from v4:

β4
v = −2εv + 4v2 − 26

3
v3 +

(7176 + 4032ζ3)

216
v4 +O(v5),

The fixed point extracted from (26) has the following
coordinates:

v∗ =
1

2
ε+

13

24
ε2 +

(47− 168ζ3)

288
ε3 +O(ε4),

h∗ = 0. (27)

Let us now calculate the ε expansion for the correction
to scaling exponent ωh = ∂hβh(h∗, v∗):

ωh =
1

27
ε2 +

5

81
ε3 +

(2605− 3024ζ3)

34992
ε4 +O(ε5), (28)

which numerically reads as follows:

ωh = 0.03704ε2 + 0.06173ε3 − 0.02944ε4 +O(ε5). (29)

In order to obtain the proper numerical estimates for
ωh the different resummation strategies should be ap-
plied [27]. Before we get into the resummation proce-
dures, let us look at the estimate that can be obtained
by a simple direct summation in case of ε = 1/2. This
gives ∼ 0.0151. Later we will see that due to the favor-
able structure of the expansion, such an estimate turns
out to be quite close to the numbers that are obtained
using various resummation techniques.

As the first method, we choose the simple Padé ap-
proximants. Let the analyzed expansion for ωh reads as
ε2
∑2
k=0 ckε

k. The standard step that should be done
in this case is to reduce the polynomial to such a form
which starts with the constant. The corresponding high-
est available approximant is P[1/1]:

P[1/1]

[
2∑
k=0

ckε
k

]
=

0.037037 + 0.0793899ε

1 + 0.476861ε
. (30)

Keeping in mind the factor ε2, for physically interesting
case (ε = 1/2) we have 0.01549. The number of digits we
have left is due to the accuracy of alternative resumma-
tion methods.

The more tricky method is the Padé-Borel-Leroy
(PBL) technique. This approach is based on the so called
Borel-transformation. The resummed value can be found
by means of the following formula:

ωPBL
h,b (ε) = ε2

∞∫
0

dt tbe−tP[1/1]

[
2∑
k=0

ck (εt)
k

Γ(k + 1 + b)

]
. (31)

http://users.physik.fu-berlin.de/~kleinert/nickel/guelph.pdf
http://users.physik.fu-berlin.de/~kleinert/nickel/guelph.pdf
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b

0.01550

0.01552

0.01554

0.01556

0.01558

0.01560
ω

PB
L

h
(ε

=
1/

2)

FIG. 1. Dependence of constructed by means of PBL tech-
nique numerical estimate of exponent ωh on the value of fit-
ting parameter b. The corresponding Padé approximant is
[1/1].

The fitting parameter b is chosen from the principle of
maximum or minimum value of dependence of analyzed
quantity on b variation. The dependence of numerical
estimate of PBL approximant on parameter b is demon-
strated in Fig. 1. As an error, we will take the variation
of the change in the PBL estimate when changing the
fitting parameter over the entire range [0,∞). Thus, our
PBL estimate for ωh equals to 0.01559(10).

A more advanced approach, called the conformal Borel
resummation technique, still uses the Borel transform,
but the analytic continuation is sought using a special
conformal mapping. The general idea can be formulated
as follows. Let the asymptotic behavior of the series co-
efficients of analyzed expansion c(ε) =

∑
ckε

k for large
order behave as

ck −−−−→
k→∞

const k!kb0(−a)k, (32)

where 1/a is the radius of convergence and b0 is fixed by
the high-order asymptotic behavior of the series. The
authors of Ref. [26] proposed to treat the parameter
b = b0 + 3/2 as a free one, to be determined variation-
ally. Once a Borel transformation, based on this modified
asymptotic form, is performed, the variable ε is confor-
mally mapped onto w as:

w(ε) =

√
1 + aε− 1√
1 + aε+ 1

, ε(w) =
4w

a(1− w)2
. (33)

Moreover, it is assumed that the expansion has the strong
asymptotic behavior c(ε) ∼ ελ, ε → ∞. The results
are then improved by a preliminary homogeneous homo-
graphic transformation,

ε(ε′)→ ε′

1 + qε′
, ε′(ε)→ ε

1− qε
, (34)

and the final approximate estimates are found by apply-
ing the steps mentioned above to the new ε′ expansion.
At the end, the optimal parameters are chosen such that
the final estimate is the least sensitive to changes in these

TABLE II. Numerical estimates of the correction to scaling
exponents ωh obtained by means of different resummation
strategies. An error is indicated in those cases where it is
implied by the resummation algorithm.

Padé Padé-Borel-Leroy Conformal Borel SSFT

0.01549 0.01559b=0(10) 0.0156(12) 0.01577

parameters in the vicinity of their optimal values. After
analyzing the numerical values of the estimates obtained
using this method, we managed to come to the following
number: 0.0156(12).

The last procedure we use is the one based on self-
similar factor transformations (SSFT) [28]. The essence
of the technique is to replace the summation with the
product, that should improve the convergence.

ωSSFT(ε) = c0ε
2

1∏
j=1

(1 +Aj)
nj , (35)

where constants Aj and nj can be found from:

2∑
k=0

(ck/c0)εk =

1∏
j=1

(1 +Aj)
nj +O

(
ε3
)
. (36)

Based on the expansion (29) we obtain A1 = 2.62039 and
n1 = 0.63604. For ε = 1/2 the value of exponent equals
to 0.01577.

Numerical results that were obtained using various re-
summation techniques were collected in Table II. It can
be seen that the fourth order of perturbation theory
makes it possible to give a good grouping of answers.
Based on the results obtained by means of different re-
summation strategies, we come to the following final es-
timate for correction to scaling exponent:

ωh = 0.0156(3). (37)

The resulting number allows us to make an affirmative
conclusion regarding the stability of the standard Heisen-
berg universality class to the appearance of the term
∼ h(∂αϕα)2.

IV. CONCLUSION

To sum up, in this paper we solved the problem, which
for a long time remained without required attention – the
stability of an O(n)-symmetric fixed point with respect to
the additional term proportional to the divergence of the
field in the action. For this purpose, we have calculated
four-loop ε expansion for correction to scaling exponent
ωh. In the lower orders, we have found that there is only
one fixed point with zero h. Analyzing higher orders,
we made sure that the correction to scaling exponent,
although small, but is unambiguously positive. Thus, we
can conclude that discarding the term ∼ h(∂αϕα)2 when
considering the critical behavior of systems described by
O(n)-symmetric theory is fully justified.
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Appendix A: Alternative implementation of the renormalization procedure: fixed value of n

If in all diagrams the combinatorial factors are considered for arbitrary n, then we obtain the following β-functions:

βv = −2εv +
(n+ 8)

3
v2 − (3n+ 14)

3
v3 +

(
2112ζ3 + 2960 + (480ζ3 + 922)n+ 33n2

)
216

v4 +O
(
v5
)
, (A1)

βh/h =

[ (
n2 − 8

)
18(n− 1)

]
v2 −

[
24(n2 − 16)

648ε(n− 1)
− (4032 + 24n− 260n2 − n3)

648(n− 1)

]
v3 +

[
− n(n2 − 16)

324ε2(n− 1)

+
(36480− 34512n− 4068n2 + 2140n3 + 107n4)

3888ε(n− 1)2
+

1

23328(n− 1)2
(1940544 + n(384π2 − 1828224)

− n2(223384 + 384π2) + n3(115098− 24π2) + n4(6303 + 24π2)− 47n5)

]
v4 +O

(
v5
)
, (A2)

The corresponding fixed point has the following coordinates:

v∗ =
6

n+ 8
ε+

36(3n+ 14)

(n+ 8)3
ε2 +

3
(
4544− 16896ζ3 + n(1760− 5952ζ3) + n2(110− 480ζ3)− 33n3

)
(n+ 8)5

ε3 +O
(
ε4
)
,

h∗ = 0. (A3)

From this step, we put n = 4− 2ε and reexpand all series. The expansion for v∗ now reads as:

v∗ =
1

2
ε+

5

8
ε2 +

(85− 168ζ3)

288
ε3 +O(ε4), (A4)

which differs from (27), but fixed point coordinate itself has no physical sense. Having obtained the coordinate of
fixed point, we can take h-derivative from (A2) and reexpand it substituting n = 4− 2ε:

ωh =
1

27
ε2 +

5

81
ε3 +

(2605− 3024ζ3)

34992
ε4 +O(ε5), (A5)

which coincides with (28). We note an interesting fact that the pseudo-poles that appeared in the β-function (A2)
are connected only with the fact that we tried to move away from the requirement that the dimensions of the field
and space should coincide. Ultimately, these poles do not affect the final answer.
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