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Birkhoff normal form in low regularity for the

nonlinear quantum harmonic oscillator

Charbella Abou Khalil∗

Abstract

Given small initial solutions of the nonlinear quantum harmonic oscillator on R, we
are interested in their long time behavior in the energy space which is an adapted Sobolev
space. We perturbate the linear part by V taken as multiplicative potentials, in a way
that the linear frequencies satisfy a non-resonance condition. More precisely, we prove
that for almost all potentials V, the low modes of the solution are almost preserved for
very long times.
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1 Introduction

Over the past half century, the theory of partial differential equations has been an active
research field and has mainly focused on studying the local or global existence of solutions
within well-chosen functional spaces. Nevertheless, as the theory has advanced, researchers
began exploring additional questions, particularly regarding the qualitative behavior of so-
lutions once their existence is established. More precisely, given a small initial datum and a
non-resonant1 dispersive Hamiltonian partial differential equation on a bounded domain,

i∂tu = ∂ūH(u),

∗Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
Email: Charbella.AbouKhalil@univ-nantes.fr

1The eigenvalues (Λj)j≥1 of the linearized vector field enjoy a Diophantine condition which implies rational

independency. For the precise definition refer to Definition 1.1 .
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with H denoting a smooth Hamiltonian having 0 as an elliptic equilibrium, we seek to
understand the properties of the solution in a Sobolev space Hs over long periods of time.

In this article, we succeed in removing the smoothness assumption from [19] and in proving
the almost global preservation of the low modes of small solutions of the quantum harmonic
oscillator with a perturbation taken as multiplicative potentials. This is the first time such a
result is obtained for this equation (nonlinear Schrödinger equation on R with confinement),
considered with multiplicative potentials and in the low regularity framework, presenting a
new significant perspective. The author in [24] considers a similar equation and uses Chelkak–
Kargaev–Korotyaev’s results about the inverse spectral problem of harmonic oscillator to
prove some non-resonance condition on the spectrum. Consequently, the considered solution
could be at most Ĥ1 (refer to ( 5 )). Thus, he was not able to apply the standard methods, and
no stability result was deduced. However, here, we work with non trivial spectral estimates
to establish a strong non-resonance condition (see Theorem 1.3 ) allowing us to apply a non-
classical version of the Birkhoff normal form procedure (details are found in Theorem 4.1 ),
which results in stability.

1.1 The model

Our main focus is to study the long time behavior of small solutions of the perturbed quantum
harmonic oscillator in one dimension in the adapted Sobolev spaces Ĥs (see ( 5 )) with low
regularity (s small). This system is of great importance in quantum physics (refer for instance
to [23]) and is defined by the following Schrödinger equation

{
i∂tu(t, x) = −∂xxu(t, x) + x2u(t, x) + V (x)u(t, x) ± |u(t, x)|2p u(t, x)
u|t=0 = u(0) ∈ Ĥ1(R),

(NLS)

where (t, x) ∈ R × R, p ≥ 1 and V (x) is a real-valued potential. Moreover, ± added to the
nonlinearity term refers to the focusing and defocusing cases. For V = 0, the linear part of the
equation simply describes a quantum harmonic oscillator on R, denoted by T := −∂xx + x2.
Notice that ( NLS ) can be seen as a perturbation of the linear equation

i∂tu(t, x) = Tu(t, x). (1)

It is well known that the spectrum of this operator is an increasing sequence (λj)j≥1 given
by λj = 2j − 1. More precisely, we have Thj = (2j − 1)hj with (hj)j≥1 being the Hermite
functions and forming an orthonormal basis of L2(R) (we refer the reader to Chapter 6
in [14]). Moreover, these eigenvalues are completely resonant: since they are integers, they
are not rationally independent. Now, notice that ( 1 ) can be written as a Hamiltonian system
with a quadratic Hamiltonian

H0(u) =
1
2

(
‖∂xu‖2

L2 + ‖xu‖2
L2

)
≃ ‖u‖2

Ĥ1 .

On the other hand, the frequencies (λj)j≥1 appear in H0, and thus we also have for V = 0,

H0(u) =
1
2

∑

j≥1

λj |uj|2 ≃ ‖u‖2
h1/2 with uj(t) =

∫

R

u(t, x)hj(x) dx.

We identify u ∈ Ĥ1 and its Hermite sequence (uj)j≥1 ∈ h1/2 (see 1.4 ). Our goal will
be to adapt a suitable Birkhoff normal form theorem for the nonlinear quantum harmonic
oscillator and establish its dynamical consequence, in order to reach the main result presented
in the next section. To do so, we require a non-resonance condition on the spectrum of
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operator T +V . To get rid of resonances, we move the eigenvalues (λj)j≥1 to obtain rational
independency. More precisely, we draw smooth potentials V to guarantee that, almost surely,
the spectrum is strongly non-resonant (see Theorem 1.3 ) in the following sense2:

Definition 1.1. (Strong N, r non-resonance) Consider frequencies w ∈ R
N∗

, r ≥ 1 and
N ≥ 1. We say that w are strongly N, r non-resonant if there exists βr,N > 0, such that
for all 1 ≤ r∗ ≤ r, σ ∈ (Z∗)r∗

and all j ∈ (N∗)r∗

with j1 < · · · < jr∗ , j1 ≤ N and
|σ1| + · · · + |σr∗ | ≤ r, we have

∣∣σ1wj1 + · · · + σr∗wjr∗

∣∣ ≥ βr,N .

One of the challenges resulting from the new approach we present in our work is verifying this
non-resonance condition associated with spectral analysis, where non-trivial estimates are
established in 2.5 , 2.13 , 2.14 and 2.15 . They require attention to detail especially when
proving that the eigenfunctions and eigenvalues of the operator T + V , which we denote
by (Λj)j≥1 and (ψj)j≥1 respectively, remain close to those of T . The spectral analysis and
properties of the eigenvalues and eigenfunctions will be explained rigorously in Section 2 .

1.2 Main results and comments

We are interested in the actions for the nonlinear quantum harmonic oscillator describing
the dynamics or the amplitudes of the modes of the solution and given for V 6= 0 as

Ij(u) = |uj(t)|2 with uj(t) =
∫

R

u(t, x)ψj(x) dx

where we recall that (ψj)j≥1 are the eigenfunctions of the operator T + V. Notice that the
actions Ij are preserved by the linear part of the Schrödinger equation (refer to ( NLS )).
Nevertheless, once we turn on the nonlinear perturbation, we can expect some exchange of
energy (see for example [16]), and the question of preservation of the actions then arises.

To state the main result, it is crucial to mention that equation ( NLS ) is globally well-posed
for small solutions in Ĥ1 (see Section 5 ). In the following theorem, we consider multiplicative
potentials, and we specify the dynamics of the solution over very long times in low regularity.

Theorem 1.2. Let N ≥ 1, r ≥ p+ 1 arbitrarily large, ν > 0 and let V ∈ Ĥ1 ∩ C 2 such that
the spectrum of T + V is strongly N, r non-resonant (refer to Definition 1.1 ). Then, there
exist ε0 > 0 depending on ‖V ‖

Ĥ1 and a constant C > 0 depending on (N, r, V, ν) such that

if we set ε := ‖u(0)‖
Ĥ1 ≤ ε0, the global solution of ( NLS ) satisfies

|t| < ε−2r and 1 ≤ j ≤ N =⇒
∣∣∣|uj(t)|2 − |uj(0)|2

∣∣∣ ≤ Cε2p+2−ν (2)

with 2p + 2 being the order of the Hamiltonian non-linearity and uj(t) =
∫
R
u(t, x)ψj(x) dx.

We emphasize that in the above result, the set of potentials V is not empty. More precisely,
for almost all V , the non-resonant assumption is satisfied. To see this, we present another
result as the following theorem:

Theorem 1.3. Let V be defined randomly on R as

V (x) =
∑

k≥1

gkhk(x
√

2)Pk (3)

2This definition does not deal with multiplicities (we are in the case of distinct frequencies).
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where gk ∼ N (0, 1) are some independent Gaussian variables and P ∈ Ĥ3 is a given weight
such that Pk ∈ R

∗
+. Then, for all r ≥ 1 and N ≥ 1, almost surely V ∈ Ĥ1 ∩C 2 and, provided

that ‖V ‖
Ĥ1 .r N

−1/6, the frequencies of the operator T+V are strongly N, r non-resonant
in the sense of Definition 1.1 .

As a consequence, Theorem 1.2 applies. Notice that Theorem 1.3 makes sense because we
prove that P(‖V ‖

Ĥ1 < λ) > 0 for all λ > 0 in Lemma A.1 of the Appendix.

Comments regarding the main results.

– Estimate ( 2 ) means that we prove the almost global preservation of the low actions over
very long times |t| < ε−2r with r arbitrarily large. Note that this is trivial for time scales
|t| ≤ ε−2p indicating that the dynamics of ( NLS ) remain close to the dynamics of the lin-
earized equation, even in the case of a vanishing potential. However, the conservation of the
actions is not trivial on longer scales (for r arbitrarily large), which is the case here.
–Fortunately and without the additional smoothness constraint, we obtained a result of the
same kind as in [19]. Here, in order to avoid the resonances, we perturbate the eigenvalues
by adding multiplicative potentials instead of Hermite multipliers, resulting in a much more
complicated spectral aspect.
–The transition to low regularity results in the loss of information concerning the high modes
of the solution. The Birkhoff normal form theorem, developed by [8], concerns only the behav-
ior of the first N modes, similarly to our result. Furthermore, the strong N, r non-resonance
condition stated in Theorem 1.3 clearly provides a relation between the potential V and N
as well as indicates that the larger the number of modes N we wish to control, the smaller
the potential V has to be. Unlike Theorem 1.10 in [8], the number of modes we control does
not depend only on the size of the initial datum.
– In the classical Birkhoff normal form theorem, a standard non-resonant argument is re-
quired (for instance, refer to [6]) in order to avoid3 the exchange of energy between modes
and deduce the stability. However, since we are working with a non-smooth solution, we will
use a stronger condition (Theorem 1.3 ) allowing us to remove much more terms from the
original Hamiltonian.
–It seems interesting to mention that the term ε−ν in the estimate of Theorem 1.2 is due
to truncation and logarithmic loss. It could be removed with a little technicality and only
serves to simplify the proofs.
–Due to multiplicities, the generalization of our result to dimensions d ≥ 2 is not clear since
the spectral theory in higher dimensions becomes much more complicated. Therefore, it
would certainly be necessary to work with Hermite multipliers.

Literature and related results.

Stability results over long periods have been established in both high and low regularity
regime. A typical stability result has been proved in [19], where the authors replaced the
potential V in equation (NLS) by a Hermite multiplier M allowing them to deal with the
frequencies 2j − 1 +mj whose standard non-resonance condition was done4 in [19], and this
helped simplify the spectral analysis. More precisely, they considered the equation

i∂tu = (T +M)u+ |u|2pu, (ÑLS)

and proved the following: Let r ≫ 1. For almost all M , there exists s0(r) ≫ 1 such that for
all s ≥ s0(r), there exists ε0 > 0, if ||u(0)||

Ĥs = ε < ε0, the unique solution of (ÑLS) satisfies

3On the contrary, for references regarding the exchange of energy in NLS see [21] and [22].
4It turns out that most of the time the strong non-resonance condition introduced in Section 2.2 holds

when the standard one is satisfied.
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|t| < ε−r =⇒




‖u(t)‖
Ĥs . ‖u(0)‖

Ĥs∑
j∈Z

〈j〉2s
∣∣|uj(t)|2 − |uj(0)|2

∣∣ . ε3.

Hence, thanks to the smoothness of the solutions, they were able to control and obtain
stability for all modes and not only finitely many. The paper [24] generalises this result and
proves a similar theorem for the operator T+V (x)+M where V belongs to the Schwartz class.
Furthermore, [2] and [6] have proven stability results for Klein-Gordon and NLS equations
on tori: given r ≫ 1 arbitrarily large, there exists s0(r) ≫ 1 such that for sufficiently
small initial data ‖u(0)‖Hs := ε with s > s0(r), no significant exchange of energy occurs
before very long times |t| ≤ ε−r, and the modulus of the Fourier modes is nearly conserved,
i.e., |un(t)|2 ≃ |un(0)|2. The main limitation of all these results lies in the requirement
s ≥ s0(r), which appears essential in their proofs (especially in addressing issues related to
small divisors) and in similar results for dispersive Hamiltonian partial differential equations
found in works such as [3–5,7,10,11,17–19,27]. However, some numerical experiments suggest
that this smoothness assumption is irrelevant and can be avoided and that s0(r) does not
have to be very large (see for instance [15]). To this matter, the paper [8], recently done by
Bernier and Grébert, generates effective methods in order to lower the regularity and still
obtain the stability result. They proved the almost global preservation of the low harmonic
energies over very long times for Klein-Gordon equation and NLS with both Dirichlet and
periodic boundary conditions in the energy space. The crucial key point was developing a
Birkhoff Normal Form Theorem in low regularity which is weaker than the classical version
of the theorem, since it only concerns the low modes of the solution. In [9] and along
with Rivière, they extended this method to the sphere and worked with the Klein-Gordon
equation. The authors in [20] worked with a similar nonlinear Schrödinger equation as NLS ,
and constructed a class of potentials with the help of the dual basis of the finite family of
Hermite polynomials (h2

j )
1≤j≤n

. However, the new developed method we work with is simpler
and applies to a larger class of potentials and initial data.

1.3 Sketch of the proofs

We will formally explain the strategies of the proofs. Concerning Theorem 1.2 , the method
of the proof requires the Birkhoff normal form process introduced in [8]. Roughly speaking,
the idea is to design or construct a symplectic5 and close to the identity map τ which
helps simplify the Hamiltonian system. More precisely, composing with τ , we push the non-
normalized part of H to higher orders and thus killing the terms that influence the dynamics
of the low modes. For the sake of simplicity, we do the case p = 1. We denote by φt

χ(u) the
flow generated by χ, a polynomial of degree 4, solving the equation −i∂tφ

t
χ = (∇χ)◦φt

χ. We
write ( NLS ) as a Hamiltonian system6 with

H = Z2 + P + O(‖u‖6)

given explicitly in Section 5 , where Z2 is a quadratic Hamiltonian associated with the linear
part of the equation and depends only on the actions (Ij)j≥1. Also, P is a perturbation of
order 4 belonging to a Hamiltonian class (refer to 3 ) and written as

P (u) =
∑

j,ℓ∈(N∗)2

Pj,ℓuj1uj2uℓ1uℓ2 .

5The symplectic transformations preserve the Hamiltonian structure.
6We give here a sketch of the proof. Actually, in Section 5 , we truncate the frequencies up to some level

M in order to consider the finite dimensional framework.
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As previously mentioned, we construct a symplectic close to the identity map τ such that,
in the new variables, the Hamiltonian H is a function of the actions up to a remainder R of
arbitrarily high order (we say that H is written in a Birkhoff normal form). More precisely,
as a first step we compose by φ1

χ and use Taylor expansion in order to get

H ◦ φ1
χ = Z2 + {χ,Z2} + P + O(‖u‖6)

where {·, ·} denotes the Poisson brackets (refer to 1.4 ). For the sake of normalisation and
in order to eliminate the monomials uj1uj2uℓ1uℓ2 that do not depend on the actions, we aim
to solve the cohomological equation

{χ,Z2} + P = Q with {Q, Ij} = 0 for j ≤ N.

However, during the process of solving this equation, small divisors in the form of

wj1 + wj2 − wℓ1 − wℓ2

might appear in the denominator, with w denoting the family of frequencies of the operator
T +V . As a result, we consider the strong non-resonance condition characterised by control-
ling these small divisors from below. The next step, would be to iterate this construction,
and compose with a new symplectic map. At the end, we obtain a transformation pushing
the non-normalized part of H to order 6, followed by a transformation pushing it to order 8
and so on. Consequently, we get

H ◦ τ = Z2 +Q+R

where Q commutes with the low actions Ij(u) for j ≤ N and R satisfies the estimate

||∇R(u)||h−1/2 .N ||u||2r+2
h1/2 . (4)

As a corollary of this result, introducing a new variable v = τ−1(u), we notice that v is the
solution of the equation

i∂tv = ∇H̃(v) with H̃(v) = H ◦ τ(v) = Z2(v) +Q(v) +R(v).

Furthermore, we work with ∂tIj(v(t)) to get

∂tIj(v) = (∇Ij(v), ∂tv)ℓ2 = (i∇Ij(v),∇(Z2 +Q+R)(v))ℓ2 = {Ij , R}(v).

Finally, we conclude the long time estimate ( 2 ) by duality estimates, the Mean Value In-
equality, the estimate ( 4 ) and the control of the Ĥ1-norm of u(t) with ‖u(0)‖

Ĥ1 = ε.

Now, we turn to the proof of Theorem 1.3 . As explained above, when simplifying the
Hamiltonian system, we face a problem of small divisors that can be solved by an effective
control of the frequencies of operator T + V . To do this, we follow the ideas of [8]. We
seek a control of the first derivative of the small divisors in the simple case where V = 0 as
detailed in Lemma 2.13 . In order to proceed, it seemed necessary to control the norm of V
by N−1/6. Thus, the relation between V and N appears and consequently, we estimate the
first derivative with respect to V of the small divisors for V 6= 0. Finally, using probability
arguments, we deduce a control of the small divisors by the smallest index involved. Further
tools of spectral analysis are needed to obtain the main non-resonant condition (for details
see Section 2.2 ).

Organization of the article. In section 2, we work with spectral theory, where we pro-
vide a set of technical and non trivial tools to establish the non-resonance condition for the
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corresponding spectrum. Section 3 introduces a well-chosen class of Hamiltonian functions
suitable for the nonlinear quantum harmonic oscillator and satisfying nice properties. Moti-
vated by the work of [8], section 4 is devoted to developing a normal form procedure in low
regularity which plays an essential role in the work. In the last section, we present our main
result, that demonstrates the almost global preservation of the low actions over very long
times obtained as a a remarkable dynamical corollary of the Birkhoff normal form theorem.

1.4 Notations

We always consider the following set of notations:

• We define for s ≥ 0 the Sobolev spaces

Ĥs := {u ∈ Hs(R), 〈x〉su ∈ L2(R)} with ‖u‖2
Ĥs := ‖u‖2

Hs + ‖〈x〉su‖2
L2 . (5)

• 2∂z := ∂ℜ z + i∂ℑ z and 2∂z := ∂ℜ z − i∂ℑ z.

• For all M ∈ (1,∞], we define J1,MK := {1, 2, · · · ,M − 1,M}

• w ∈ R
J1,MK denotes w ≡ (wn)n∈J1,MK.

• For simplicity of notations, we write x .p y if there exists a constant C depending on
p fixed such that x ≤ Cy for (x, y) ∈ R

2.

• Sr denotes the symmetric group of degree r.

• For k ∈ Z, the Japanese bracket is denoted by 〈k〉 := (1 + |k|2)1/2.

• For s ∈ R and M > 1, the discrete Sobolev space is written as

hs(J1,MK) =



u ∈ C

J1,MK, ‖u‖2
hs :=

∑

k∈J1,MK

〈k〉2s |uk|2 < ∞


 .

• For p ≥ 1 and M > 1, the Lebesgue space is written as

ℓp(J1,MK) =



u ∈ C

J1,MK, ‖u‖p
ℓp :=

∑

k∈J1,MK

|uk|p < ∞


 .

2 Non-resonance condition

In this section, we describe first the spectrum of the operator T + V for V ∈ C 2 ∩ Ĥ1 in
order to deduce that, almost surely, this spectrum is strongly non-resonant according to the
definition given in 2.2 . For spectral aspects, we start by considering the potential V written
in terms of the L2-basis (hk(·

√
2)21/4)k≥1 as

V (x) =
∑

k≥1

vkhk(x
√

2)21/4. (6)

At some point in Section 2.2 , we will need to compute the integral
∫
R

21/4h2k−1(x
√

2)h2
j (x) dx

where 21/4h2k−1(x
√

2) appears from the decomposition of V . Since (h2
j )

j≥1
can be expressed

in terms of the basis (h2k−1(·
√

2)21/4)k≥1 (refer to Lemma 2.10 ), then this integral can be
easily computed by using the orthogonality property of the Hermite functions.
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2.1 Preliminaries on spectral analysis

In this part, we are interested in estimations on the Lebesgue norms of the eigenfunctions
(ψj)j≥1 of the operator T +V . For V ∈ L∞(R), we have that T +V is a self-adjoint operator

of domain Ĥ2 (refer to Chapter 2 in [14]) and has a real, discrete spectrum (refer to [26]),
consisting of simple eigenvalues (Λj)j≥1 and satisfying

Λj = 2j − 1 + O(1), j → ∞.

As a consequence, similar to (hj)j≥1, the eigenfunctions (ψj)j≥1 of the operator T + V

form an orthonormal basis of L2(R). In other words, the following are satisfied: The
L2−normalisation property (‖ψj‖L2 = 1) and the orthogonality property ((ψj , ψℓ)L2 = δj,ℓ),
and thus we are able to ensure the spectral decomposition. We end up by estimating the
corresponding eigenvalues (Λj)j≥1 of the operator T + V . Using an important result of
Koch–Tataru [25], we obtain the following lemma which is the key to our estimations:

Lemma 2.1. For all j ≥ 1 and V ∈ C 2 ∩ Ĥ1, there exists C > 0 such that

‖ψj‖L4 ≤ Cj−1/12.

Proof. Applying Hölder’s inequality, we have the estimation

‖ψj‖L4 ≤ ‖ψj‖3/4
L6 ‖ψj‖1/4

L2 . (7)

Applying Corollary 3.2 from [25] for W (x) = x2 + V (x) and p = 6, we obtain 7

‖ψj‖L6 . j−1/9‖ψj‖L2.

Thus replacing in ( 7 ) and using that (ψj)j≥1 is an orthonormal basis, we get

‖ψj‖L4 .
(
j−1/9‖ψj‖L2

)3/4
‖ψj‖1/4

L2 . j−1/12.

Remark 2.2. Note that for the case W (x) = x2 (i.e. V = 0), the norm ‖hj‖L4 can be
easily estimated by using Lemma 2.10 and Parseval–Bessel’s equality.

Notations. In the following three results, we denote by Λj,V (resp. ψj,V ) the eigenvalues
(resp. eigenfunctions) of the operator T + V . We adapt the proofs done in [20].

In this lemma, we can see that the eigenvalues are close to integer values.

Lemma 2.3. For all j ≥ 1 and V ∈ Ĥ1 small enough with respect to the norm ‖ · ‖
Ĥ1 , we

have
|Λj,V − (2j − 1)| . ‖V ‖

Ĥ1j
−1/2.

Proof. We refer the reader to Lemma 2.1 and Lemma 2.3 in [13].

The next lemma serves as a useful tool for Proposition 2.5 .

Lemma 2.4. For V1, V2 ∈ Ĥ1 ∩ C 2 small enough with respect to the norm ‖ · ‖
Ĥ1 , there

exists C > 0 such that for all j ≥ 1

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖
L2 ≤ Cj−1/12‖V1 − V2‖

Ĥ1.

7A personal communication by Herbert Koch regarding Theorem 4 in [25]: The proof can be modified in
order to deal with W ∈ C

2
.
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Proof. Since (ψk)k≥1 is a Hilbertian basis of L2(R), then it is natural to decompose

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 =

∑

k≥1

∣∣∣
(
ψj,V2 − (ψj,V1 , ψj,V2)L2ψj,V1, ψk,V1

)
L2

∣∣∣
2

=
∑

k≥1

∣∣(ψj,V2, ψk,V1)L2 − (ψj,V1 , ψj,V2)L2(ψj,V1 , ψk,V1)L2

∣∣2

=
∑

k≥1
k 6=j

∣∣(ψj,V2, ψk,V1)L2

∣∣2 (8)

because (ψj,V1 , ψk,V1)L2 = δk,j. Similarly, since T + V1 − Λj,V2 is self-adjoint we write

‖(T + V1 − Λj,V2)ψj,V2‖2
L2 =

∑

k≥1

∣∣((T + V1 − Λj,V2)ψj,V2 , ψk,V1)L2

∣∣2

=
∑

k≥1

∣∣((T + V1 − Λj,V2)ψk,V1 , ψj,V2)L2

∣∣2

=
∑

k≥1

∣∣((Λk,V1 − Λj,V2)ψk,V1 , ψj,V2)L2

∣∣2

=
∑

k≥1

|Λk,V1 − Λj,V2|2
∣∣(ψk,V1 , ψj,V2)L2

∣∣2 .

Now from Lemma 2.3 , we have that

|Λk,V1 − Λj,V2| & 1 (9)

for k 6= j uniformly in V1, V2 small enough with respect to ‖ · ‖
Ĥ1 . Indeed, assume that k > j

(the case k < j is treated similarly), then we write

Λk,V1 − Λj,V2 = 2(k − j) + O(‖V1‖
Ĥ1k

−1/2) − O(‖V2‖
Ĥ1j

−1/2)

≥ 2(k − j) − C1‖V1‖
Ĥ1k

−1/2 − C2‖V2‖
Ĥ1j

−1/2

≥ 2(k − j) − C3 min(‖V1‖
Ĥ1 , ‖V2‖

Ĥ1)(k−1/2 + j−1/2)

≥ 2(k − j) − 2C3 min(‖V1‖
Ĥ1 , ‖V2‖

Ĥ1)

implying the result provided that ‖V1‖
Ĥ1 and ‖V2‖

Ĥ1 are small enough. Thus, ( 9 ) gives

‖(T + V1 − Λj,V2)ψj,V2‖2
L2 &

∑

k≥1
k 6=j

∣∣(ψk,V1 , ψj,V2)L2

∣∣2 . (10)

After this, applying ( 8 ) and ( 10 ) we deduce that

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 =

∑

k≥1
k 6=j

∣∣(ψk,V1, ψj,V2)L2

∣∣2 . ‖(T + V1 − Λj,V2)ψj,V2‖2
L2.

Notice that we can write

(T + V1)ψj,V2(x) = (−∂xx + x2 + V1)ψj,V2(x) + (V1 − V2)ψj,V2(x)

= (−∂xx + x2 + V2)ψj,V2(x) + (V1 − V2)ψj,V2(x)

= Λj,V2ψj,V2(x) + (V1 − V2)ψj,V2(x),

and Hölder’s inequality implies that

‖(T + V1 − Λj,V2)ψj,V2‖L2 = ‖(V1 − V2)ψj,V2‖L2 ≤ ‖V1 − V2‖L4‖ψj,V2‖L4.
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Next, using the Sobolev embedding H1 →֒ L4, the continuous inclusion Ĥ1 ⊂ H1 as well as
Lemma 2.1 , we get

‖(T + V1 − Λj,V2)ψj,V2‖L2 ≤ ‖V1 − V2‖H1‖ψj,V2‖L4

≤ ‖V1 − V2‖
Ĥ1‖ψj,V2‖L4

≤ C‖V1 − V2‖
Ĥ1j

−1/12.

We prove now that the eigenfunctions (ψj)j≥1 are close to the Hermite functions.

Proposition 2.5. For all j ≥ 1 and V ∈ Ĥ1 ∩ C 2 small enough with respect to the norm
‖ · ‖

Ĥ1, there exists C > 0 such that

‖ψj,V − hj‖L2 ≤ Cj−1/12‖V ‖
Ĥ1.

Proof. Taking the scalar product of ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1 with ψj,V2, we get
∣∣∣
(
ψj,V2, ψj,V2 − (ψj,V1 , ψj,V2)L2ψj,V1

)
L2

∣∣∣ =
∣∣∣1 − (ψj,V1, ψj,V2)2

L2

∣∣∣ .

Therefore, applying Cauchy–Schwarz inequality and Lemma 2.4 we have
∣∣∣1 − (ψj,V1 , ψj,V2)2

L2

∣∣∣ ≤ ‖ψj,V2‖L2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖
L2 . j−1/12‖V1 − V2‖

Ĥ1 . (11)

Finally, note that adding the terms ±(ψj,V1, ψj,V2)L2ψj,V1 gives

‖ψj,V1 − ψj,V2‖2
L2 ≤ 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2

L2 + 2‖ψj,V1

(
1 − (ψj,V1, ψj,V2)L2

) ‖2
L2

= 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 + 2

∣∣1 − (ψj,V1, ψj,V2)L2

∣∣2 ‖ψj,V1‖2
L2︸ ︷︷ ︸

=1

.

Hence, using Lemma 2.4 and ( 11 ), we obtain

‖ψj,V1 − ψj,V2‖2
L2 ≤ 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2

L2 + 2
∣∣∣1 − (ψj,V1, ψj,V2)2

L2

∣∣∣
2

. 2(j−1/12‖V1 − V2‖
Ĥ1)2 + 2(j−1/12‖V1 − V2‖

Ĥ1)2

. (j−1/12‖V1 − V2‖
Ĥ1)2.

In particular, for V2 = 0 we have ψj,V2(x) = hj(x) and thus the needed result.

Finally, using the expression of V and the expansion of h2
j , we get the following result:

Proposition 2.6. For V ∈ Ĥ1, the gradient of the eigenvalues Λj(V ) with respect to v2k−1

(recall that vk are the coefficients from the expansion of the potential V in ( 6 )) is given by

∂v2k−1
Λj(V ) =

∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx.

Remark 2.7. We switch to index 2k − 1 to bring forth the term h2k−1 needed later to
simplify the computations of the integral

∫
R

21/4h2k−1(x
√

2)h2
j (x) dx, as mentioned in the

beginning of Section 2 .
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Proof. For the proof, we refer the reader to Lemma 2.4 in [13]. In addition, we present formal
computations where we assume that each eigenvalue Λj and each eigenfunction ψj for j ≥ 1
is C 1 with respect to v2k−1. We consider the equation

(−∂xx + x2 + V (x)︸ ︷︷ ︸
T +V

)ψj(x) = Λjψj(x).

Differentiating the above with respect to v2k−1 for k ≥ 1 we obtain

(T + V )
∂ψj

∂v2k−1
+
∂(T + V )
∂v2k−1

ψj =
∂Λj

∂v2k−1
ψj + Λj

∂ψj

∂v2k−1
.

Due to the expression of V given by ( 6 ), this implies that

(T + V − Λj)
∂ψj

∂v2k−1
+ 21/4h2k−1(·

√
2)ψj =

∂Λj

∂v2k−1
ψj.

Next, taking the scalar product with ψj we get

(
(T + V − Λj)

∂ψj

∂v2k−1
, ψj

)

L2

+ 21/4(h2k−1(·
√

2)ψj , ψj)L2 =
(

∂Λj

∂v2k−1
ψj, ψj

)

L2

. (12)

Using self-adjointness of T + V and the fact that ψj ∈ ker(T + V − Λj), we deduce

(
(T + V − Λj)

∂ψj

∂v2k−1
, ψj

)

L2

=
(

∂ψj

∂v2k−1
, (T + V − Λj)ψj

)

L2

= 0.

Since ∂Λj
∂v2k−1

is independent of x and ‖ψj‖L2 = 1, then ( 12 ) gives

∂v2k−1
Λj(V ) =

∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx. (13)

2.2 Non-resonance condition

In the second part, we are interested in probabilistic aspects. For this, given a weight P ∈ Ĥ3

such that Pk ∈ R
∗
+, we draw V randomly (recall ( 3 )) as

V (x) =
∑

k≥1

gkhk(x
√

2)Pk (14)

where gk ∼ N (0, 1) are some independent Gaussian variables. It is important to emphasize
that adding such a weight ensures the following technical assumptions8 (for the proof of
( 15 ), refer to Lemma A.1 ) on V :

{
V ∈ Ĥ1 ∩ C 2 almost surely,
P(‖V ‖

Ĥ1 < λ) > 0 for all λ > 0.
(15)

We imitate the work done in [8] to prove that the frequencies of ( NLS ) (also known as the
eigenvalues Λj of the operator T+V) obtained from the quadratic Hamiltonian are strongly
N, r non-resonant in the sense of Definition 1.1 . To prove this condition we use the following
tool taken from [8]:

8These assumptions are used to prove Proposition 2.15 .
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Proposition 2.8. Let r ≥ 1, N ≥ 1 and w ∈ R
N∗

. Suppose that:

i) the frequencies are weakly non-resonant, i.e. for all 1 ≤ r∗ ≤ r, there exist αr∗ > 0 and
γr,N > 0 such that for all σ ∈ (Z∗)r∗

and all j ∈ (N∗)r∗
with j1 < · · · < jr∗, j1 ≤ N

and |σ1| + · · · + |σr∗ | ≤ r, we have

∀k ∈ Z,
∣∣k + σ1wj1 + · · · + σrwjr∗

∣∣≥ γr,Nj
−αr∗

r∗ , (16)

ii) the frequencies accumulate polynomially fast on Z, i.e. there exists C > 0 and a > 0
such that

∀j ≥ 1,∃ k ∈ Z, |wj − k| ≤ Cj−a. (17)

Then w is strongly N, r non-resonant.

Remark 2.9. It is important to mention that the first assumption is satisfied by many
interesting Hamiltonians, for instance Beam and Klein-Gordon equations. However, the
localization assumption is easier to check but seems to be more restrictive.

Proof. The proof is done by induction on r∗ and is found in Proposition 2.1 of [8].

Our goal now is to apply Proposition 2.8 and obtain the main result of this section, Proposi-
tion 2.17 . To do so, we concentrate in what follows on proving that the frequencies (Λj)j≥1
satisfy the weak non-resonance condition. We start with some useful lemmas. In the first
one, we express h2

j in terms of the Hilbertian basis (h2k−1(·
√

2)21/4)k≥1. The process was
inspired by the decomposition of the product of the Hermite functions hj(x)hl(x). In the
case where j = l, we obtain the result given as Proposition 5.5 in [24] with a small change
of indices where the sequence (h2

j )
j≥1

here corresponds to the sequence (h2
n)n≥0 in [24].

Lemma 2.10. For all j ≥ 1, we can write

h2
j (x) =

j∑

k=1

µk,jh2k−1(x
√

2)21/4

with

µk,j = (2π)−1/4√
αkαj−k+1 and αj =

(2j − 2)!
(j − 1)!24j−1

∼ 1√
πj
.

It is easy to establish bounds for this explicit form. Note that the constants in the following
two inequalities may not be the same. For the sake of simplicity, we denote them by C.

Corollary 2.11. There exists C > 0 such that for all j ≥ 1 and k ≤ j, we have

µk,j ≤ Cj−1/4.

Moreover, for j = k we also have the lower bound

µj,j ≥ C−1j−1/4.

Proof. We write for j ≥ 1 and k ≤ j, µk,j = (2π)−1/4√
αkαj−k+1 ≤ C

k1/4(j−k)1/2 .

• If k ≥ j/2, then µk,j ≤ 21/4Cj−1/4,

• If k ≤ j/2, then µk,j ≤ 21/2Cj−1/2 ≤ Cj−1/4.
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Moreover, by definition of αj, we naturally have µj,j = (2π)−1/4√
αj ∼ 1

(πj)1/4 .

We are interested now in deducing an estimation on the derivative for V 6= 0.

Lemma 2.12. For all ρ > 0, there exists C > 0 such that for all j ≥ 1, k ≥ 1 and
‖V ‖

Ĥ1 ≤ ρ, we have ∣∣∂v2k−1
Λj(V ) − µk,j

∣∣ ≤ Cj−1/12‖V ‖
Ĥ1 .

Proof. From ( 13 ) we have

∂v2k−1
Λj(V ) =

∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx

and in particular by the decomposition from Lemma 2.10

∂v2k−1
Λj(0) =

∫

R

21/4h2k−1(x
√

2)h2
j (x) dx = µk,j.

Furthermore, using Propostion 2.5 we have
∣∣∣∣
∫

R

h2k−1(ψ2
j − h2

j ) dx
∣∣∣∣ ≤ ‖h2k−1‖L∞‖ψj − hj‖L2‖ψj + hj‖L2

≤ ‖h2k−1‖
Ĥ1‖ψj − hj‖L2(‖ψj‖L2 + ‖hj‖L2)

≤ C‖ψj − hj‖L2

≤ Cj−1/12‖V ‖
Ĥ1 .

Consequently, we easily deduce the needed estimation
∣∣∣∣
∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx−

∫

R

21/4h2k−1(x
√

2)h2
j (x) dx

∣∣∣∣ ≤ Cj−1/12‖V ‖
Ĥ1 .

Notations. We denote the small divisors by Ωj,σ(V ) =
r∗∑

n=1
σnΛjn(V ).

The last part of this section is inspired by the work done for NLS defined on T in [8].

Lemma 2.13. For all 1 ≤ r∗ ≤ r, there exists γr > 0 such that for all σ ∈ (Z∗)r∗

and
j ∈ (N∗)r∗

with j1 < · · · < jr∗ and |σ1| + · · · + |σr∗ | ≤ r, there exists k .r j1 such that

∣∣∂v2k−1
Ωj,σ(0)

∣∣ =

∣∣∣∣∣

r∗∑

n=1

σnµk,jn

∣∣∣∣∣ ≥ γrj
−1/4
1 . (18)

Proof. Fix r ≥ 1. We proceed with the proof by induction on r∗.
Initial Step: If r∗ = 1, then for all j1 ∈ N

∗ we have by Corollary 2.11

∣∣∣∂v2j1−1Ωj,σ(0)
∣∣∣ = |σ1µj1,j1| & |σ1|

j
1/4
1

& j
−1/4
1 .

Induction Step: Assume that the result holds for all 1 ≤ r∗ < r, and we prove it for r∗ + 1.
Let σ ∈ (Z∗)r∗+1 and j ∈ (N∗)r∗+1 be some indices satisfying |σ1| + · · · + |σr∗+1| ≤ r and
j1 < · · · < jr∗+1 and suppose that there exists k ≤ Crj1 such that ( 18 ) holds.
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• By Corollary 2.11 , induction hypothesis and the fact that |σr∗+1| ≤ r, we have

∣∣∣∣∣

r∗+1∑

n=1

σnµk,jn

∣∣∣∣∣ =

∣∣∣∣∣

r∗∑

n=1

σnµk,jn + σr∗+1µk,jr∗+1

∣∣∣∣∣ ≥
∣∣∣∣∣

r∗∑

n=1

σnµk,jn

∣∣∣∣∣−
∣∣∣σr∗+1µk,jr∗+1

∣∣∣

≥ γrj
−1/4
1 − rCj

−1/4
r∗+1 .

Hence, if we take jr∗+1 > (2rCγ−1
r )4j1 we directly conclude that

∣∣∣∣∣

r∗+1∑

n=1

σnµk,jn

∣∣∣∣∣ ≥ γr

2
j

−1/4
1 .

• Now if jr∗+1 ≤ (2rCγ−1
r )4j1, we consider ∂v2jr∗+1−1Ωj,σ(0) = σr∗+1µjr∗+1,jr∗+1

. Conse-
quently, we obtain by Corollary 2.11 the result for k = jr∗+1 and γ̃r = γr

2r

∣∣∣∂v2jr∗+1−1Ωj,σ(0)
∣∣∣ ≥ Cj

−1/4
r∗+1 ≥ γ̃rj

−1/4
1 .

After this, we obtain a similar estimation for V 6= 0.

Corollary 2.14. For all 1 ≤ r∗ ≤ r and all σ ∈ (Z∗)r∗

, j ∈ (N∗)r∗

and V ∈ Ĥ1 satisfying

j1 < · · · < jr∗ , |σ|1 ≤ r and ‖V ‖
Ĥ1 ≤ γr

2r j
−1/6
1 where γr is given by Lemma 2.13 , there exists

k .r j1 such that ∣∣∂v2k−1
Ωj,σ(V )

∣∣ ≥ γr

2
j

−1/4
1 .

Proof. From Lemma 2.12 , we have that
∣∣∣∣∣∂v2k−1

(
r∗∑

n=1

σnΛjn(V )

)
− ∂v2k−1

(
r∗∑

n=1

σnΛjn(0)

)∣∣∣∣∣ .
‖V ‖

Ĥ1

j
1/12
1

|σ1| + · · · +
‖V ‖

Ĥ1

j
1/12
r∗

|σr∗ | .
r‖V ‖

Ĥ1

j
1/12
1

.

Thus, using Lemma 2.13 and the assumption ‖V ‖
Ĥ1 ≤ γr

2r j
−1/6
1 , we establish

∣∣∂v2k−1
Ωj,σ(V )

∣∣ ≥
∣∣∣∣∣∂v2k−1

Ωj,σ(0) −
r‖V ‖

Ĥ1

j
1/12
1

∣∣∣∣∣ ≥
∣∣∂v2k−1

Ωj,σ(0)
∣∣−
r‖V ‖

Ĥ1

j
1/12
1

≥ γr

j
1/4
1

− γr

2j1/4
1

≥ γr

2j1/4
1

.

As a result, we obtain the necessary weak non-resonance condition presented in the next
Proposition. Recall that here we are considering V as random potentials given in ( 14 ).

Proposition 2.15. For all 1 ≤ r∗ ≤ r and N ≥ 1, provided that ‖V ‖
Ĥ1 ≤ γr

2rN
−1/6 where

γr is given by Lemma 2.13 , almost surely, there exists γr,N > 0 such that for all σ ∈ (Z∗)r∗

and j ∈ (N∗)r∗
satisfying j1 < · · · < jr∗ with j1 ≤ N and |σ|1 ≤ r, we have

|Ωj,σ(V )| ≥ γr,Nj
−2r∗

r∗ .

Proof. Being given j satisfying the above assumptions, we consider the index k given by
Corollary 2.14 . We aim at estimating

P( |Ωj,σ(V )| < γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )
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for γ > 0. For this and following ( 14 ), we write V = g2k−1h2k−1(x
√

2)P2k−1 + V2k−1 with
g2k−1 and V2k−1 independent. Then, we get

P( |Ωj,σ(V )| <γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

= E
[ ∫

G2k−1∈I
1|Ωj,σ(G2k−1h2k−1(x

√
2)P2k−1+V2k−1)|<γ f(G2k−1) dG2k−1

]

where f(x) = 1√
2π
e−x2/2 denotes the probability density function and the interval

I :=
{
G2k−1 ∈ R, ‖G2k−1h2k−1(·

√
2)P2k−1 + V2k−1‖2

Ĥ1 ≤
(
γr

2r
N−1/6

)2 }
.

Next, for G2k−1 ∈ I, we apply a change of variable y2k−1 = G2k−1P2k−1 ∈ Ĩ to get

P( |Ωj,σ(V )| <γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤ P−1
2k−1√
2π

E
[ ∫

y2k−1∈Ĩ
1|Ωj,σ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ dy2k−1

]
.

which holds since 0 < f(x) ≤ 1√
2π

. Now, notice that for j1 ≤ N, Corollary 2.14 gives that

∣∣∣∂y2k−1
Ωj,σ(y2k−1h2k−1(x

√
2) + V2k−1)

∣∣∣ ≥ γr

2
j

−1/4
1 ≥ γr

2
N−1/4. (19)

So, since Ĩ is a random interval, then the map

Φ :

{
Ĩ → J

y2k−1 7→ Ωj,σ(y2k−1h2k−1(x
√

2) + V2k−1)

is a diffeomorphism from Ĩ onto its image J . Moreover, due to the fact that the function
1|Ωj,σ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ is integrable on Ĩ, we deduce by using the change of variable

theorem that the function 1|y2k−1|<γ

∣∣∣∂y2k−1
Ωj,σ(y2k−1h2k−1(x

√
2) + V2k−1)

∣∣∣
−1

is integrable
on J and we have
∫

y2k−1∈Ĩ
1|Ωj,σ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ dy2k−1

=
∫

y2k−1∈J
1|y2k−1|<γ

∣∣∣∂y2k−1
Ωj,σ(y2k−1h2k−1(x

√
2) + V2k−1)

∣∣∣
−1

dy2k−1. (20)

Thus, making use of ( 19 ) and ( 20 ), we obtain the following estimation

P( |Ωj,σ(V )| < γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤ P−1
2k−1 E

[ ∫

y2k−1∈J
1|y2k−1|<γ

∣∣∣∂y2k−1
Ωj,σ(y2k−1h2k−1(x

√
2) + V2k−1)

∣∣∣
−1

dy2k−1

]

≤ 2P−1
2k−1 E

[
γ−1

r N1/4
∫

y2k−1∈J
1|y2k−1|<γ dy2k−1

︸ ︷︷ ︸
≤2γ

]

≤ 4γ−1
r P−1

2k−1N
1/4γ.
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Using ( 15 ) and the fact that k .r N, it is possible to control P−1
2k−1 independently from j.

As a consequence, we get

P( ∃(r∗, σ, j), |Ωj,σ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤
∑

(r∗,σ,j)

P( |Ωj,σ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

.r,N 4γ−1
r


 ∑

(r∗,σ,j)

j−2r∗

r∗


 γ.

The convergence of this last sum is related to the fact that jr∗ is the largest index9. So,

P( ∃(r∗, σ, j), |Ωj,σ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 ) .r,N γ

as γ → 0−−−−−→ 0.

It is natural to conclude that since the probability vanishes, almost surely there exists γ > 0
depending on r,N and V such that for all (r∗, σ, j) satisfying the given assumptions, we have

|Ωj,σ(V )| ≥ γj−2r∗

r∗ .

Now, we have reached the proof of Theorem 1.3 which is the main result of this section.
More precisely, we obtain the strong N, r non-resonance condition of the frequencies (wj)j∈N∗

of the quantum harmonic oscillator with a perturbation.

Proof of Theorem 1.3 To start, we can directly see that the localization hypothesis ( 17 )
on the spectrum is obtained in Lemma 2.3 . So, the frequencies are close to integer values,
and we have that there exists a constant C > 0 such that

σ (T + V ) ⊂
⋃

j≥1

Zj with Zj :=
[
2j − 1 − Cj−1/2, 2j − 1 + Cj−1/2].

We just proved ( 16 ) in Proposition 2.15 where we obtained a control of the small divisors
by the smallest index involved. Finally, our result is a direct consequence of Proposition 2.8 .

Remark 2.16. The key point related to our model is that the Birkhoff normal form proce-
dure described in Section 4 involves small divisors defined by

Ωj,ℓ(V ) = wj1 + · · · + wjr − wℓ1 − · · · −wℓr (21)

where the sequence (wj)j≥1 stands for the sequence (Λj)j≥1 and denotes the frequencies
of the perturbed harmonic oscillator. Furthermore, a same term may appear both with a
positive and a negative sign. Therefore, it is sufficient to define the minimum index as:

κ(j, ℓ) = min{ si := ji, ℓi, 1 ≤ i ≤ r and
r∑

n=1

(1jn=si − 1ℓn=si) 6= 0 } ∪ {∞}. (22)

As a result, we establish a generalisation to Definition 1.1 and a suitable formalism for the
Birkhoff normal form process by providing a uniform bound for the small divisors Ωj,ℓ(V )
given in ( 21 ).

Proposition 2.17. Let V be given in ( 14 ). For all r, N ≥ 1, provided that ‖V ‖
Ĥ1 .r N

−1/6,
there exists βr,N > 0 such that for all j, ℓ ∈ (N∗)r, if κ(j, ℓ) ≤ N, we either have

|Ωj,ℓ(V )| ≥ βr,N

or the small divisor is trivial and we write, in this case, κ(j, ℓ) = ∞.

Remark 2.18. We notice that this control rather than the control of the small divisors
by the third largest index (known as the standard non-resonance condition whose explicit
definition is found for instance in [6]) will allow us to remove much more terms when solving
the cohomological equations in the Birkhoff normal form process.

9Note that the sum with respect to r
∗ and σ is finite.
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3 Hamiltonian formalism

We are going to introduce here a Hamiltonian class which plays an important role in classi-
fying the Hamiltonian polynomials arising in the proof of the Birkhoff normal form theorem.
Roughly speaking, the Hamiltonian polynomials in the normal form process are controlled
by the H -norm whereas the solutions to the cohomological equation are controlled by the
C -norm (see Definition 3.6 ).

3.1 Functional setting

We fix M > 1, and we note that we are working in finite dimension. In other words,
h1/2(J1,MK) ≡ C

J1,MK is a finite dimensional vector space.

Definition 3.1. (Natural Scalar Product) We equip ℓ2(J1,MK) with its natural real scalar
product

(u, v)ℓ2 :=
∑

k∈J1,MK

ℜukvk =
∑

k∈J1,MK

(ℜukℜvk + ℑukℑvk) ∈ R.

Definition 3.2. (Poisson Bracket) Let H,K : C
J1,MK → R be two smooth functions. Then

the Poisson bracket of H and K is defined by:

{H,K}(u) := (i∇H(u),∇K(u))ℓ2

where ∇H(u) = 2(∂ukH(u))k.

Lemma 3.3. We have the following identity

{H,K}(u) = 2i
∑

k∈J1,MK

(∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u)) .

Proof. To see this, we write using the definition

{H,K}(u) = (i∇H(u),∇K(u))ℓ2 = 4
∑

k∈J1,MK

ℜ i∂ukH(u)∂ukK(u).

By simple calculations, one can prove that

4ℜ i∂ukH(u)∂ukK(u) = 2i (∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u)) .

Definition 3.4. (Symplectic Map) Consider an open set C of CJ1,MK and a C1 map τ : C →
C

J1,MK. We say that τ is a symplectic map if

∀u ∈ C,∀v,w ∈ C
J1,MK, (iv, w)ℓ2 = (idτ(u)(v),dτ(u)(w))ℓ2.

3.2 Class of Hamiltonian functions

Definition 3.5. (Class H 2r
M ) Being given M > 1 and r ≥ 1, we denote by H 2r

M the set of
real valued homogeneous polynomials of degree 2r defined on C

J1,MK. Consequently, these
Hamiltonians are uniquely written as

H(u) =
∑

j,ℓ∈J1,MKr

Hj,ℓuj1 · · · ujruℓ1 · · · uℓr

where (Hj,ℓ)(j,ℓ)∈J1,MKr×J1,MKr is a sequence of complex numbers satisfying:
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• the reality condition
Hj,ℓ = Hℓ,j

• the symmetry condition

∀(φ,ψ) ∈ Sr × Sr, Hj1,··· ,jr,ℓ1,···ℓr = Hjφ1
,··· ,jφr ,ℓψ1

,···ℓψr .

We endow this space of polynomials with the two following norms ‖ · ‖
H

and ‖ · ‖
C
.

Definition 3.6. (Norms ‖ · ‖
H

and ‖ · ‖
C

) Let M > 1, r ≥ 1 and H,χ ∈ H 2r
M . We introduce

the norms
‖H‖

H
:= sup

j,ℓ∈J1,MKr
|Hj,ℓ|

and
‖χ‖

C
:= sup

j,ℓ∈J1,MKr
|χj,ℓ| 〈j1 + · · · + jr − ℓ1 − · · · − ℓr〉.

We will show two essential lemmas needed to establish the continuity estimates enjoyed by
the Hamiltonians. The first lemma states the following:

Lemma 3.7. For a Hamiltonian H ∈ H 2r
M and u(1), · · · , u(2r) ∈ C

J1,MK, we have

∑

j,ℓ∈J1,MKr

∣∣∣∣Hj,ℓu
(1)
j1

· · · u(r)
jr
u

(r+1)
ℓ1

· · · u(2r)
ℓr

∣∣∣∣ ≤ (logM)r‖H‖
H

2r∏

i=1

‖u(i)‖h1/2 .

Proof. Let H ∈ H 2r
M and u(1), · · · , u(2r) ∈ C

J1,MK. We then write

∑

j,ℓ∈J1,MKr

∣∣∣∣Hj,ℓu
(1)
j1

· · · u(r)
jr
u

(r+1)
ℓ1

· · · u(2r)
ℓr

∣∣∣∣ ≤
∑

j,ℓ∈J1,MKr

‖H‖
H

∣∣∣u(1)
j1

∣∣∣ · · ·
∣∣∣u(r)

jr

∣∣∣
∣∣∣∣u

(r+1)
ℓ1

∣∣∣∣ · · ·
∣∣∣∣u

(2r)
ℓr

∣∣∣∣

≤ ‖H‖
H

2r∏

i=1


 ∑

k∈J1,MK

〈k〉1/2
∣∣∣u(i)

k

∣∣∣
1

〈k〉1/2


 .

By Cauchy–Schwarz inequality and the fact that
∑

k∈J1,MK

1
〈k〉 . logM , we obtain

∑

j,ℓ∈J1,MKr

∣∣∣∣Hj,ℓu
(1)
j1

· · · u(r)
jr
u

(r+1)
ℓ1

· · · u(2r)
ℓr

∣∣∣∣ ≤ ‖H‖
H


 ∑

k∈J1,MK

1
〈k〉




r
2r∏

i=1


 ∑

k∈J1,MK

〈k〉
∣∣∣u(i)

k

∣∣∣
2




1/2

. (logM)r‖H‖
H

2r∏

i=1

||u(i)||h1/2 .

The second lemma seems a bit more complicated and writes as follows:

Lemma 3.8. For all u(1), · · · , u(2r) ∈ C
J1,MK, we have

∑

j,ℓ∈J1,MKr

1
〈j1 + · · · + jr − ℓ1 − · · · − ℓr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

ℓi

∣∣∣ .r (logM)r‖u(2r)‖h−1/2

2r−1∏

i=1

‖u(i)‖h1/2 .
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Proof. Denote vk := 〈k〉−1/2u
(2r)
k and j0 = −(j1 + · · · + jr − ℓ1 − · · · − ℓr). We can easily

notice that ‖v‖ℓ2 = ‖u(2r)‖h−1/2, and we write

∑

j,ℓ∈J1,MKr

1
〈j1 + · · · + jr − ℓ1 − · · · − ℓr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

ℓi

∣∣∣

=
∑

j,ℓ∈J1,MKr

1
〈j0〉〈ℓr〉1/2 |vℓr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣ .

Now, in order to get rid of the term 〈ℓr〉1/2, we use Jensen’s formula to obtain

〈ℓr〉1/2 = 〈j0 + · · ·+ jr −ℓ1 −· · ·−ℓr−1〉1/2 ≤ (〈j0〉+ · · ·+ 〈ℓr−1〉)1/2 ≤
r∑

n=0

〈jn〉1/2 +
r−1∑

n=1

〈ℓn〉1/2.

Consequently, we get

∑

j,ℓ∈J1,MKr

1
〈j1 + · · · + jr − ℓ1 − · · · − ℓr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

ℓi

∣∣∣

≤
∑

j,ℓ∈J1,MKr

1
〈j0〉

(
r∑

n=0

〈jn〉1/2 +
r−1∑

n=1

〈ℓn〉1/2

)
|vℓr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣

≤
∑

j,ℓ∈J1,MKr

[
1

〈j0〉1/2
+

1
〈j0〉

(
r∑

n=1

〈jn〉1/2 +
r−1∑

n=1

〈ℓn〉1/2

)]
|vℓr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣ .

Notice that

(
r∑

n=1

〈jn〉1/2

)
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣ =




r∑

n=1

〈jn〉1/2
∣∣∣u(n)

jn

∣∣∣
r∏

i=1
i6=n

∣∣∣u(i)
ji

∣∣∣




r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣

and similarly that

(
r−1∑

n=1

〈ℓn〉1/2

)
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣ =




r−1∑

n=1

〈ℓn〉1/2
∣∣∣u(r+n)

ℓn

∣∣∣
r−1∏

i=1
i6=n

∣∣∣u(r+i)
ℓi

∣∣∣




r∏

i=1

∣∣∣u(i)
ji

∣∣∣ .

Thus, we obtain

∑

j,ℓ∈J1,MKr

1
〈j1 + · · · + jr − ℓ1 − · · · − ℓr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

ℓi

∣∣∣

≤
∑

j,ℓ∈J1,MKr

1
〈j0〉1/2

|vℓr |
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣

+
∑

j,ℓ∈J1,MKr

|vℓr |
1

〈j0〉




r∑

n=1

〈jn〉1/2
∣∣∣u(n)

jn

∣∣∣
r∏

i=1
i6=n

∣∣∣u(i)
ji

∣∣∣




r−1∏

i=1

∣∣∣u(r+i)
ℓi

∣∣∣ (23)

+
∑

j,ℓ∈J1,MKr

|vℓr |
1

〈j0〉




r−1∑

n=1

〈ℓn〉1/2
∣∣∣u(r+n)

ℓn

∣∣∣
r−1∏

i=1
i6=n

∣∣∣u(r+i)
ℓi

∣∣∣




r∏

i=1

∣∣∣u(i)
ji

∣∣∣ .
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It turns out that the sum we aim at estimating writes as a convolution product, and the
needed result is just a consequence of Young’s convolution inequality

ℓ2 ∗ ℓ2 ∗ ℓ1 ∗ · · · ∗ ℓ1 →֒ ℓ∞.

Therefore ( 23 ) can be expressed as
[
|v| ∗ 〈·〉−1/2 ∗

∣∣∣u(1)
∣∣∣ ∗ · · · ∗

∣∣∣u(2r−1)
∣∣∣
]

0

+




r∑

n=1

|v| ∗ 〈·〉1/2
∣∣∣u(n)

∣∣∣ ∗ 〈·〉−1 ∗
(

r∗
i=1
i6=n

∣∣∣u(i)
ji

∣∣∣
)

∗
(

r−1∗
i=1

∣∣∣u(r+i)
ℓi

∣∣∣
)


0

+




r−1∑

n=1

|v| ∗ 〈·〉1/2
∣∣∣u(r+n)

∣∣∣ ∗ 〈·〉−1 ∗
(

r−1∗
i=1
i6=n

∣∣∣u(r+i)
ℓi

∣∣∣
)

∗
(

r∗
i=1

∣∣∣u(i)
ji

∣∣∣
)


0

≤ ‖v‖ℓ2‖〈·〉−1/2‖ℓ2

2r−1∏

i=1

‖u(i)‖ℓ1 +
r∑

n=1

‖v‖ℓ2‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2

r∏

i=1
i6=n

‖u(i)‖ℓ1

r−1∏

i=1

‖u(r+i)‖ℓ1

+
r−1∑

n=1

‖v‖ℓ2‖〈·〉1/2u(r+n) ∗ 〈·〉−1‖ℓ2

r−1∏

i=1
i6=n

‖u(r+i)‖ℓ1

r∏

i=1

‖u(i)‖ℓ1.

We are left with proving the following estimates for the ℓ1-norm and the ℓ2-norm.
Estimate of ‖u(i)‖ℓ1 : Using Cauchy–Schwarz inequality, we get

‖u(i)‖ℓ1 =
∥∥∥∥u

(i) 〈·〉1/2

〈·〉1/2

∥∥∥∥
ℓ1

≤ ‖u(i)‖h1/2‖〈·〉−1/2‖ℓ2 ≤ (logM)1/2‖u(i)‖h1/2 .

Estimate of ‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2 : Apply Young’s convolution inequality ℓ2 ∗ ℓ1 →֒ ℓ2 to get

‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2 ≤ ‖〈·〉1/2u(n)‖ℓ2‖〈·〉−1‖ℓ1 ≤ (logM)‖u(n)‖h1/2 .

Now we turn to the estimate on the gradient provided by the H -norm and an even better
estimate provided by the C -norm.

Proposition 3.9. Let M ≥ 2, r ≥ 1. For all H ∈ H 2r
M , the gradient of H is a smooth

function enjoying the bound

∀u ∈ C
J1,MK, ‖∇H(u)‖h−1/2 .r (logM)r‖H‖

H
‖u‖2r−1

h1/2 .

Proof. The proof is obtained by duality. We fix v ∈ C
J1,MK, and we write

‖∇H(u)‖h−1/2 = sup
‖v‖

h1/2 ≤1
|(∇H(u), v)ℓ2| .

Notice that since

(∇H(u), v)ℓ2 = 2r
∑

j,ℓ∈J1,MKr

ℜ [Hj,ℓuj1 · · · ujruℓ1 · · · vlr ] ,

then the needed result is a direct corollary of Lemma 3.7 .
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Proposition 3.10. Let M ≥ 2, r ≥ 1. For all χ ∈ H 2r
M and all u ∈ C

J1,MK, the gradient of
χ enjoys the bounds

‖∇χ(u)‖h1/2 .r (logM)r‖χ‖
C

‖u‖2r−1
h1/2

and
‖d∇χ(u)‖L(h1/2) .r (logM)r‖χ‖

C
‖u‖2r−2

h1/2 .

Proof. It is similar to the proof of Proposition 3.9 , except that we use Lemma 3.8 instead
of Lemma 3.7 .

As a consequence, the second estimate of Proposition 3.10 can be written in the negative
Sobolev space h−1/2 as follows:

Corollary 3.11. Let M ≥ 2, r ≥ 1. For all χ ∈ H 2r
M and all u ∈ C

J1,MK, we have

‖d∇χ(u)‖L(h−1/2) .r (logM)r‖χ‖
C

‖u‖2r−2
h1/2 .

Proof. The proof uses a standard duality argument and is found in [9] Corollary 4.7.

Now, we introduce the flow generated by a Hamiltonian belonging to H 2r
M .

Lemma 3.12. Let M ≥ 2, r ≥ 2 and χ ∈ H 2r
M . Then there exists

ε1 =
(
K(logM)(2r−1)/2‖χ‖

C

)−1/(2r−2)

where K depends on r, and there exists a smooth map

φχ :

{
[−1, 1] ×B

CJ1,MK(0, ε1) → C
J1,MK

(t, u) 7→ φt
χ(u)

solving the equation −i∂tφχ = (∇χ) ◦ φχ and satisfying for all t ∈ [−1, 1] the following:

1. close to the identity: ∀u ∈ B
CJ1,MK(0, ε1), ‖φt

χ(u) − u‖
h1/2 ≤

(
‖u‖

h1/2

ε1

)2r−2

‖u‖h1/2 ,

2. invertible: ‖φ−t
χ (u)‖

h1/2 < ε1 =⇒ φt
χ ◦ φ−t

χ (u) = u,

3. symplectic: recall Definition 3.4 .

Moreover, its differential is a continuous map and enjoys the bound:

∀u ∈ B
CJ1,MK(0, ε1),∀σ ∈ {−1, 1}, ‖dφt

χ(u)‖
L (hσ/2)

≤ 2.

Proof. We refer the reader to the proof of Proposition 4.8 in [9].

We shall prove after this that the Hamiltonians are stable by the Poisson brackets.

Proposition 3.13. Let H ∈ H 2r
M and χ ∈ H 2r′

M with r, r′ ≥ 1. Then, there exists a

Hamiltonian N ∈ H
2r+2r′−2

M such that

∀u ∈ C
J1,MK, {H,χ}(u) = N(u)

and
‖{H,χ}‖

H
.r,r′ logM‖H‖

H
‖χ‖

C
.
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Proof. Let u ∈ C
J1,MK. We express the Hamiltonians as

H(u) =
∑

j,ℓ∈J1,MKr

Hj,ℓuj1 · · · ujruℓ1 · · · uℓr and χ(u) =
∑

j′,ℓ′∈J1,MKr
′

χj′,ℓ′uj′
1

· · · uj′
r′
uℓ′

1
· · · uℓ′

r′
.

By Lemma 3.3 , we have

{H,χ}(u) = 2i
∑

k∈J1,MK

∂ukH(u)∂ukχ(u) − ∂ukH(u)∂ukχ(u).

Using the symmetry condition satisfied by the coefficients of H and χ, we get

∂ukH(u)∂ukχ(u) = rr′ ∑

j∈J1,MKr

ℓ∈J1,MKr−1

j′∈J1,MKr
′−1

ℓ′∈J1,MKr
′

Hj,ℓ,kuj1 · · · ujruℓ1 · · · uℓr−1χj′,k,ℓ′uj′
1

· · · uj′
r′−1

uℓ′
1

· · · uℓ′
r′
.

Now, we set j′′ := (j, j′), ℓ′′ := (ℓ, ℓ′) and r′′ := r + r′ − 1. After reindexing, we can see that

{H,χ}(u) = 2i
∑

k∈J1,MK

[
rr′ ∑

j∈J1,MKr

ℓ∈J1,MKr−1

j′∈J1,MKr
′−1

ℓ′∈J1,MKr
′

Hj,ℓ,kuj1 · · · ujruℓ1 · · · uℓr−1χj′,k,ℓ′uj′
1

· · · uj′
r′−1

uℓ′
1

· · · uℓ′
r′

− rr′ ∑

j∈J1,MKr−1

ℓ∈J1,MKr

j′∈J1,MKr
′

ℓ′∈J1,MKr
′−1

Hj,k,ℓuj1 · · · ujr−1uℓ1 · · · uℓrχj′,ℓ′,kuj′
1

· · · uj′
r′
uℓ′

1
· · · uℓ′

r′−1

]

=
∑

j′′,ℓ′′∈J1,MKr
′′


2irr′ ∑

k∈J1,MK

Hj,ℓ,kχj′,k,ℓ′ −Hj,k,ℓχj′,ℓ′,k




︸ ︷︷ ︸
Nj′′,ℓ′′

uj′′
1

· · · uj′′
r′′
uℓ′′

1
· · · uℓ′′

r′′

︸ ︷︷ ︸
N(u)

.

Note that we can interchange the order of summation since we are dealing with finite sums.
Moreover, we can obviously see that N(u) defines a homogeneous polynomial of degree 2r′′

(i.e. N ∈ H 2r′′

M where both the symmetry and reality conditions of Nj′′,ℓ′′ are a direct
consequence of those satisfied by Hj,ℓ and χj′,ℓ′). On the other hand, we need to verify the
upper bound on the H −norm. For this, we write

∑

k∈J1,MK

∣∣Hj,k,ℓχj′,ℓ′,k

∣∣ ≤
∑

k∈J1,MK

‖H‖
H

‖χ‖
C

1
〈j′

1 + · · · + j′
r′ − ℓ′1 − · · · − k〉 .

By direct calculations, we have the estimation

∑

k∈J1,MK

1
〈j′

1 + · · · + j′
r′ − ℓ′1 − · · · − k〉 ≤

∑

k∈J1,MK

1
〈k〉 . logM.

As a result, taking the norm of the Poisson bracket we obtain

‖{H,χ}‖
H

= sup
j′′,ℓ′′∈J1,MKr′′

∣∣Nj′′,ℓ′′

∣∣ .r,r′ logM‖H‖
H

‖χ‖
C
.
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4 Birkhoff normal form theorem

Now, we present Birkhoff normal form theorem in low regularity developed by Bernier and
Grébert in [8] and provide a rigorous proof following the techniques from [9]. It plays an
essential role to help us prove our main result. To start, consider a polynomial Hamiltonian

H : CJ1,MK → R with H = Z2 + P

where Z2 is a quadratic Hamiltonian of the form Z2 : CJ1,MK → R written as

Z2(u) =
1
2

∑

j∈J1,MK

wj |uj |2

with wj = Λj,V being the frequencies of ( NLS ) (the eigenvalues of operator T+V which we
saw in Proposition 2.3 remain close to those of T ) satisfying the non-resonant condition (in
the sense of Proposition 2.17 ). Moreover, P is a polynomial Hamiltonian of degree 2p+2 ≥ 4
satisfying

P ∈ H
2p+2

M and ‖P‖
H

≤ C0

for some C0 > 0. Then the theorem writes:

Theorem 4.1. Let r ≥ 1 and N ≥ 1. There exist two positive constants C depending on
(C0, r, βr,N ) where βr,N is the constant given in Proposition 2.17 and b depending on r, such
that for every M ≥ 2 and every polynomial Hamiltonian H described above, we can find
ε0 ≥ 1/(C(logM)b) and two smooth symplectic maps τ (0) and τ (1) defined on B

CJ1,MK(0, ε0)
and B

CJ1,MK(0, 2ε0) respectively, satisfying the "close to the identity property"

∀σ ∈ {0, 1}, ‖u‖h1/2 < 2σε0 =⇒ ‖τ (σ)(u) − u‖h1/2 ≤
(‖u‖h1/2

2σε0

)2p

‖u‖h1/2 (24)

and making the following diagram to commute

B
CJ1,MK(0, ε0) B

CJ1,MK(0, 2ε0) C
J1,MKτ (0)

id
CJ1,MK

τ (1)

such that (Z2 + P ) ◦ τ (1) admits on B
CJ1,MK(0, 2ε0) the following decomposition

(Z2 + P ) ◦ τ (1) = Z2 +Q(2p+2) + · · · +Q(2r+2p)

︸ ︷︷ ︸
:=Q

+R (25)

where Q is a polynomial of degree 2(r+ p) commuting with the low actions given by Iq(u) =
|uq|2 with q ≤ N . In other words, we have the property

∀q ≥ 1, q ≤ N =⇒ {Iq, Q} = 0.

Besides, the remainder term R is a smooth function on B
CJ1,MK(0, 2ε0) satisfying

‖∇R(u)‖h−1/2 ≤ C(logM)b‖u‖2r+2p
h1/2 .

Moreover, for σ ∈ {0, 1} and u ∈ B
CJ1,MK(0, 2σε0), dτ (σ)(u) satisfies the bounds

‖dτ (σ)(u)‖
L (h1/2) ≤ 4r and ‖dτ (σ)(u)‖

L (h−1/2) ≤ 4r. (26)

23



Proof. We proceed with the proof by induction on r∗ ∈ Jp + 1, r + p + 1K. We assume that
there exists two positive constants C and b, such that for every M ≥ 2 and every polynomial
Hamiltonian H, we can find ε0 ≥ 1/(C(logM)b) and two smooth, symplectic and close to
the identity maps τ (0) and τ (1) making the above diagram commute such that (Z2 +P )◦τ (1)

admits on B
CJ1,MK(0, 2ε0) the following decomposition

(Z2 + P ) ◦ τ (1) = Z2 +Q(2p+2) + · · · +Q(2r+2p) +R

where every Q(n) ∈ H n
M is a polynomial Hamiltonian of degree n satisfying ‖Q(n)‖

H
≤

C(logM)b and commuting with the low actions, i.e.

∀n < 2r∗,∀q ≥ 1, q ≤ N =⇒ {Iq, Q
(n)} = 0.

Besides, the remainder term R is a smooth function on B
CJ1,MK(0, 2ε0) satisfying

‖∇R(u)‖h−1/2 ≤ C(logM)b‖u‖2r+2p
h1/2 .

Moreover, for σ ∈ {0, 1} and u ∈ B
CJ1,MK(0, 2σε0), dτ (σ)(u) satisfies the bounds

‖dτ (σ)(u)‖
L (h1/2) ≤ 4r∗−p−1 and ‖dτ (σ)(u)‖

L (h−1/2) ≤ 4r∗−p−1.

Notice that for r∗ = p+ 1, we have nothing to do and the proof is direct. Indeed, we can set

τ (0) = τ (1) = id
CJ1,MK , R = 0, b = 0, Q(2p+2) = P and Q(n) = 0 for n > 2p + 2.

We turn to the induction step. Note that in order to avoid confusion, we will distinguish
between the terms associated to r∗ and the ones associated to r∗ + 1 by a symbol ♯. Now,
we begin with the work.

• Step 1: we will start by decomposing Q(2r∗). Our goal is to write Q(2r∗) as L+ U where
L,U ∈ H

2r∗

M and U commutes with the low actions. For this, we recall ( 22 ) and define

Lj,ℓ =

{
Q

(2r∗)
j,ℓ if κ(j, ℓ) ≤ N,

0 otherwise
and Uj,ℓ =

{
0 if κ(j, ℓ) ≤ N,

Q
(2r∗)
j,ℓ otherwise,

and we check that U commutes with Iq. Using direct calculations, we get

{Iq, U} = 2i
∑

j,ℓ∈J1,MKr∗

r∗∑

n=1

(1jn=q − 1ℓn=q)Uj,ℓuj1 · · · ujr∗
uℓ1 · · · uℓr∗

.

By definition of Uj,ℓ and κ(j, ℓ) (see ( 22 )), it is obvious that for q ≤ N < κ(j, ℓ) we have

r∗∑

n=1

(1jn=q − 1ℓn=q) = 0.

• Step 2: we choose a Hamiltonian χ in such a way that L, the remaining terms of Q(2r∗),
vanish by solving the following cohomological equation:

{χ,Z2} + L = 0. (27)

To seek in, we recall Ωj,ℓ(V ) := wj1 + · · · + wjr∗
−wℓ1 − · · · −wℓr∗

and let χ ∈ H
2r∗

M be the
Hamiltonian defined by

χj,ℓ =





Lj,ℓ
iΩj,ℓ(V ) if κ(j, ℓ) ≤ N,

0 otherwise.
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Using direct computations, we can verify that χ satisfies ( 27 ). Moreover, we have a good
control of its C -norm. Indeed, since the frequencies are non-resonant (recall Proposition
2.17 ), there exists βr∗,N ∈ (0, 1) and such that

κ(j, ℓ) ≤ N =⇒ Ωj,ℓ(V ) ≥ βr∗,N =: δ.

Consequently, using Lemma A.2 we get

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉
|Ωj,ℓ(V )| ≤ (r∗ + 1)C ′

|Ωj,ℓ(V )| + 1 ≤ (r∗ + 1)C ′δ−1 + 1.

Thus, dividing by 〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 and using the fact that δ < 1 we get

1
|Ωj,ℓ(V )| ≤ (r∗ + 1)C ′δ−1

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 +
δ−1

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉

≤ (r∗ + 2)C ′δ−1

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 .

Therefore, we obtain

|χj,ℓ| =

∣∣∣∣∣
Lj,ℓ

Ωj,ℓ(V )

∣∣∣∣∣ .
|Lj,ℓ| (r∗ + 2)δ−1

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 .

By construction, we know that L satisfies the same norm estimate as Q(2r∗). So, taking the
sup and using the induction hypothesis on ‖Q(2r∗)‖

H
we establish that

‖χ‖
C

= sup
j,ℓ∈J1,MKr∗

|χj,ℓ| 〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 .r∗ δ
−1 sup

j,ℓ∈J1,MKr∗

|Lj,ℓ|
︸ ︷︷ ︸

‖L‖
H

.r∗ δ
−1C(logM)b.

• Step 3: we define the new variables by composing τ (0) and τ (1) with the flow of the
Hamiltonian χ. Applying Lemma 3.12 , we get

ε′
1 =

(
K ′

1(logM)(2r∗−1)/2‖χ‖
C

)−1/(2r∗−2)

where K ′
1 > 0 depends on r∗ and a smooth symplectic invertible close to the identity map

φχ :

{
[−1, 1] ×B

CJ1,MK(0, ε′
1) → C

J1,MK

(t, u) 7→ φt
χ(u)

solving the equation −i∂tφχ = (∇χ) ◦ φχ. Next, since ‖χ‖
C
.r∗ δ

−1C(logM)b, we have

ε′
1 ≥

(
K ′

2C(logM)(2r∗−1)/2+b
)−1/(2r∗−2)

≥ 6(C♯(logM)b♯)−1 =: 6ε♯
0 (28)

where we set C♯ ≥ 6 max
(
(K ′

2C)1/(2r∗−2), C
)

and b♯ ≥ max
(
b, 1

2r∗−2

(
2r∗−1

2 + b
))
. As a

consequence, it makes sense to define the maps as mentioned above by

τ
(1)
♯ := τ (1) ◦ φ1

χ on B
CJ1,MK(0, 2ε♯

0) and τ
(0)
♯ := φ−1

χ ◦ τ (0) on B
CJ1,MK(0, ε♯

0)

where the choice of ε♯
0 is dependent on the domains of definition of τ (0)

♯ and τ
(1)
♯ . It is easy

to see that the two maps are smooth and symplectic. To check that they are close to the
identity, consider u ∈ B

CJ1,MK(0, 2ε♯
0). Then, we have

‖τ (1)
♯ u− u‖

h1/2
= ‖τ (1) ◦ φ1

χ(u) − u‖
h1/2

= ‖τ (1) ◦ φ1
χ(u) − φ1

χ(u) + φ1
χ(u) − u‖

h1/2

≤ ‖τ (1) ◦ φ1
χ(u) − φ1

χ(u)‖
h1/2︸ ︷︷ ︸

=:A1

+ ‖φ1
χ(u) − u‖

h1/2︸ ︷︷ ︸
=:A2

.
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Moreover, ( 28 ) implies that ‖u‖h1/2 ≤ 2ε♯
0 < 6ε♯

0 ≤ ε′
1. We pass now to estimate A1 and A2.

Estimate of A1: Since φ1
χ is close to the identity, we get

‖φt
χ(u) − u‖

h1/2 ≤
(‖u‖h1/2

ε′
1

)2r∗−2

‖u‖h1/2 ≤ ‖u‖h1/2 .

Also, using the definitions of ε0 and ε♯
0 we obtain that 3ε♯

0 ≤ ε0, and we establish

‖φt
χ(u)‖

h1/2 ≤ 2‖u‖h1/2 ≤ 4ε♯
0 < 6ε♯

0 ≤ 2ε0.

By induction hypothesis, we know that τ (1) is close to the identity (see ( 24 )), thus

‖τ (1) ◦ φ1
χ(u) − φ1

χ(u)‖
h1/2 ≤

(‖φ1
χ(u)‖

h1/2

2ε0

)2p

‖φ1
χ(u)‖

h1/2 ≤ 2

(
‖u‖h1/2

6ε♯
0

)2p

‖u‖h1/2

≤ 2
3

(
‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2 . (29)

Estimate of A2: We write

‖φt
χ(u) − u‖

h1/2 ≤
(‖u‖h1/2

ε′
1

)2r∗−2

‖u‖h1/2 ≤
(

‖u‖h1/2

6ε♯
0

)2r∗−2

‖u‖h1/2

≤ 1
3

(
‖u‖h1/2

2ε♯
0

)2r∗−2

‖u‖h1/2 . (30)

Finally, replacing ( 29 ) and ( 30 ) back and noting that 2r∗ − 2 > 2p, we obtain

‖τ (1)
♯ u− u‖

h1/2
≤
(

2
3

+
1
3

)(‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2 ≤
(

‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2.

Same arguments and estimations can be used to prove this result for the map τ
(0)
♯ . It

remains to prove that these two maps make the diagram commutative. For this, take
u ∈ B

CJ1,MK(0, ε♯
0). Since τ (0)

♯ is close to the identity, then we have

φ−1
χ ◦ τ (0)(u) = τ

(0)
♯ (u) ∈ B

CJ1,MK(0, 2ε♯
0) ⊂ B

CJ1,MK(0, ε′
1).

Thus, since φ1
χ is invertible, we obtain

τ
(1)
♯ ◦ τ (0)

♯ (u) = τ (1) ◦ φ1
χ ◦ φ−1

χ ◦ τ (0)(u) = τ (1) ◦ τ (0)(u) = id
CJ1,MK .

• Step 4: our goal now is to decompose (Z2 + P ) ◦ τ (1)
♯ on B

CJ1,MK(0, 2ε♯
0). Notice that by

definition of τ (1)
♯ and using induction hypothesis, we have

(Z2 + P ) ◦ τ (1)
♯ = (Z2 + P ) ◦ τ (1) ◦ φ1

χ = Z2 ◦ φ1
χ +

2r+2p∑

n=2p+2

Q(n) ◦ φ1
χ +R ◦ φ1

χ.

Now since φt
χ is a smooth function, applying Taylor expansion between 0 and 1 gives

(Z2 + P ) ◦ τ (1)
♯

= Z2 + {χ,Z2} +
mr∗ +1∑

k=2

1
k!

adk
χZ2 +

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +2

χ Z2 ◦ φt
χ dt

+
2r+2p∑

n=2p+2

[
Q(n) +

mn∑

k=1

1
k!

adk
χQ

(n) +
∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt

]
+R ◦ φ1

χ
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with mn the largest integer such that n+mn(2r∗ − 2) < 2r + 2p + 2. From ( 27 ) we have

adk+1
χ Z2 = {χ, {χ, · · · , {χ,Z2} · · · }}︸ ︷︷ ︸

k+1 times

= − {χ, {χ, · · · , {χ,L} · · · }}︸ ︷︷ ︸
k times

= −adk
χL.

So, we write

(Z2 + P ) ◦ τ (1)
♯

= Z2 + {χ,Z2} −
mr∗∑

k=1

1
(k + 1)!

adk
χL−

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ dt

+
2r+2p∑

n=2p+2

[
Q(n) +

mn∑

k=1

1
k!

adk
χQ

(n) +
∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt

]
+R ◦ φ1

χ

= Z2 +
2r∗∑

n=2p+2

Q(n) + {χ,Z2} +
2r+2p∑

n=2r∗+1

Q(n) +
2r+2p∑

n=2p+2

mn∑

k=1

1
k!

adk
χQ

(n) −
mr∗∑

k=1

1
(k + 1)!

adk
χL

+R ◦ φ1
χ −

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ dt+

2r+2p∑

n=2p+2

∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt.

Using the induction hypothesis and Proposition 3.13 , it is easy to see that Q(n) is of order
n, {χ,Z2} is of order 2r∗, adk

χQ
(n) is of order n + 2k(r∗ − 1) > 2r∗ and adk

χL is of order
2r∗ + 2k(r∗ − 1) > 2r∗. As a result, after reordering it makes sense to set:

for n < 2r∗, Q
(n)
♯ = Q(n),

for n = 2r∗, Q
(n)
♯ = Q(n) + {χ,Z2},

for n > 2r∗, Q
(n)
♯ =

∑

n∗,k
n∗+2k(r∗−1)=n

1
k!

adk
χQ

(n∗) −
∑

k
2r∗+2k(r∗−1)=n

1
(k + 1)!

adk
χL,

and

R♯ = R ◦ φ1
χ −

∫ 1

0


(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ −

2r+2p∑

n=2p+2

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ


 dt.

(31)

Notice that Q(2r∗)
♯ = Q(2r∗) +{χ,Z2} = Q(2r∗) −L = U which commutes with the low actions

by construction (we already checked this property in the beginning of the proof). Hence, for
n ≤ 2r∗, Q(n)

♯ ∈ H n
M commutes with the low actions and we have

n < 2(r∗ + 1) and q ≤ N =⇒ {Iq, Q
(n)
♯ } = 0.

Moreover, we have the bound

‖Q(n)
♯ ‖

H
≤ ‖Q(n)‖

H
≤ C(logM)b.

For n > 2r∗, we use Proposition 3.13 and the estimate on ‖χ‖
C

to obtain that

‖adk
χQ

(n∗)‖
H

.r (logM)k‖χ‖k
C

‖Q(n∗)‖
H

.r β
−k
r∗,NC

k+1(logM)k+b(k+1).

Since adk
χL and adk

χQ
(n∗) enjoy the same estimate when 2r∗ + 2k(r∗ − 1) = n and since k ≤

2r+2p+2, we deduce that for C♯ &r β
−2r−2p−2
r∗,N C2r+2p+3 and b♯ ≥ (2r+2p+2)+b(2r+2p+3)

‖Q(n)
♯ ‖

H
≤ C♯(logM)b♯ .
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• Step 5: we still have to control the remainder term. For this we fix u ∈ B
CJ1,MK(0, 2ε♯

0)
and start by checking that ∇(R ◦ φ1

χ) ∈ h−1/2. By composition, we have

∇(R ◦ φ1
χ)(u) = (dφ1

χ(u))∗(∇R) ◦ φ1
χ(u).

We know from Lemma 3.12 that ‖(dφ1
χ(u))∗‖

L (h−1/2)
= ‖dφ1

χ(u)‖
L (h1/2)

≤ 2. Also, since

(∇R) ◦ φ1
χ ∈ h−1/2 , then (dφ1

χ)∗(∇R) ◦ φ1
χ ∈ h−1/2. Now we turn to controlling this term in

h−1/2. Using the induction hypothesis and ‖φ1
χ(u)‖

h1/2 ≤ 2‖u‖h1/2 , we get

‖∇(R ◦ φ1
χ)(u)‖

h−1/2 = ‖(dφ1
χ(u))∗(∇R) ◦ φ1

χ(u)‖
h−1/2

≤ ‖(dφ1
χ(u))∗‖

L (h−1/2)
‖(∇R) ◦ φ1

χ(u)‖
h−1/2

≤ 2C(logM)b‖φ1
χ(u)‖2r+2p

h1/2

≤ 4r+pC(logM)b‖u‖2r+2p
h1/2 .

Next, we estimate the terms of R♯ inside the integral. We denote rn := n+(mn +1)(2r∗ −2),
and we notice that admn+1

χ Q(n) is a smooth function belonging to H rn . Thus, arguing as
above and using Proposition 3.9 and Proposition 3.13 , we notice that we have for 2p+ 2 ≤
n ≤ 2r + 2p and t ∈ [0, 1] we establish

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2

≤ 2‖∇(admn+1
χ Q(n)) ◦ φt

χ(u)‖
h−1/2

.r (logM)rn/2‖admn+1
χ Q(n))‖

H
‖φt

χ(u)‖rn−1

h1/2

.r (logM)rn/2(logM)mn+1‖Q(n)‖
H

‖χ‖mn+1
C

‖φt
χ(u)‖rn−1

h1/2

.r (logM)rn/2(δ−1 logM)mn+1(C(logM)b)mn+2‖φt
χ(u)‖rn−1

h1/2

.r (βr∗,N)−mn−1Cmn+2(logM)mn+1(logM)rn/2(logM)b(mn+2)‖φt
χ(u)‖rn−1

h1/2 .

Recall that mn is the largest integer such that n + mn(2r∗ − 2) < 2r + 2p + 2. Now, using
the fact that mn ≤ 2r + 2p+ 2, rn ∈ J2(r + p+ 1), 4r + 4p+ 2)K and ‖u‖h1/2 ≤ 2, we have

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2 .r C♯(logM)b♯‖u‖2r+2p

h1/2

where C♯ &r (βr∗,N )−2r−2p−3C2r+2p+4 and b♯ ≥ 4(r + p + 1) + 2b(r + p + 2). We can also
check using similar calculations that ‖∇(admr∗ +1

χ L ◦ φt
χ)(u)‖

h−1/2 enjoys the same bound as
‖∇(admn+1

χ Q(n) ◦ φt
χ)(u)‖

h−1/2 . Hence, putting the results together with 31 , we obtain

‖∇R♯(u)‖h−1/2 ≤ ‖∇(R ◦ φ1
χ)(u)‖

h−1/2 +
∫ 1

0

( 1
(mr∗ + 1)!

‖∇(admr∗ +1
χ L ◦ φt

χ)(u)‖
h−1/2

+
2r+2p∑

n=2p+2

1
mn!

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2

)
dt.

Taking furthermore C♯ &r C and b♯ ≥ b we get that

‖∇R♯(u)‖h−1/2 .r C♯(logM)b♯‖u‖2r+2p
h1/2 .

In order to end the proof, we choose the most optimal constants and thus we set

C♯ ≃r max
(
(K ′

2C)1/(2r∗−2), (βr∗,N )−2r−2p−3C2r+2p+4) and b♯ = 4(r+ p+ 1) + 2b(r+ p+ 2).
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5 Proof of the main result

The last part of this paper is dedicated to proving the main result known to be a dynamical
corollary of Theorem 4.1 . Before seeking into the details, we will briefly discuss the global
well-posedness of our model (in the same spirit, see [12]) which is ensured thanks to the
conservation of the Hamiltonian and the mass.

Lemma 5.1. For all ρ > 0, there exist ερ > 0 and Cρ > 0 such that provided ‖V ‖L∞ ≤ ρ,

we have for u ∈ Ĥ1 satisfying ‖u‖
Ĥ1 ≤ Cρερ

Cρ
−1‖u‖2

Ĥ1 ≤ H(u) + ρ‖u‖2
L2 ≤ Cρ‖u‖2

Ĥ1 .

Lemma 5.2. If u ∈ C 0((−T, T ), Ĥ1) solves ( NLS ), then its energy and mass are preserved

∀t ∈ (−T, T ), H(u(t)) = H(u(0)) and ‖u(t)‖2
L2 = ‖u(0)‖2

L2 .

The proofs of the above results use Sobolev embeddings and the fact that Ĥ1 is an algebra10.

Consequently, we obtain the global well-posedness of our Schrödinger equation:

Theorem 5.3. (Global Well-posedness) Let ρ > 0 and ερ > 0 be given by Lemma 5.1 .
Provided that ε := ‖u(0)‖

Ĥ1 ≤ ερ and ‖V ‖
Ĥ1 ≤ ρ, there exists a unique global solution

u ∈ C 0
b (R, Ĥ1) ∩ C 1(R, Ĥ−1) to ( NLS ).

Proof. The idea of the global well-posedness is quite standard: the local well-posedness is
acheived by a fixed point argument. From this, we deduce Theorem 5.3 by extension using
the boundedness of ‖u(t)‖

Ĥ1 .

Note that Lemma 5.2 can now be extended for all t ∈ R. As a corollary of Lemma 5.1 and
the Hamiltonian and mass conservation, the norm of the solution is bounded for all t ∈ R

‖u(t)‖2
Ĥ1 ≤ Cρ

(
H(u(t)) + ρ‖u(t)‖2

L2

)
= Cρ

(
H(u(0)) + ρ‖u(0)‖2

L2

)
≤ C2

ρ‖u(0)‖2

Ĥ1 ≤ C2
ρε

2.

Proof of Theorem 1.2 To start, recall that we have ‖u(t)‖
Ĥs ≃ ‖u(t)‖hs/2. Now, we

consider ‖u(0)‖
Ĥ1 ≤ ερ where ερ is given in Lemma 5.1 . We focus on the variations of the

low modes. We fix j∗ = N , and we aim at estimating |uj∗(t)|2 . To apply the Birkhoff Normal
Form Theorem (see Theorem 4.1 ), we need to make a truncation up to a level M in order
to restrict our work to the finite dimensional situation of the theorem. To this matter, we
let

M = ε−4r+2.

Furthermore, we consider the eigenspaces of T + V

Ej = ker(T + V − Λj) = Span(ψj) where L2(R) =
⊕

j≥1

Ej ,

and we introduce Π≤M the orthogonal projection on
⊕

j≤M
Ej. In other words, we denote

Π≤M :=
∑

j≤M
Πj where Πj is the orthogonal projection on Ej . We set Π>M := IdL2 − Π≤M ,

10This is due to Proposition 2.1.1 in [1] and the continuous inclusions Ĥ
1(R) ⊂ H

1(R) ⊂ L
∞(R).
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u≤M := Π≤Mu and F>M (t) := ±Π≤M

(
−
∣∣∣u≤M

∣∣∣
2p
u≤M + |u|2p u

)
. Notice that if u solves

the Schrödinger equation ( NLS ), then u≤M solves the equation

i∂tu
≤M = Π≤M (i∂tu)

= Π≤M ((T + V )u± |u|2p u)

= (T + V )u≤M ± Π≤M (|u|2p u) ± Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)
∓ Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)

= (T + V )u≤M ± Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)
+ F>M (t). (32)

Our goal is to ensure that the remainder term F>M (t) is small in this reduction to finite
dimension. Thus, we aim to prove that it is negligible provided that M is large enough (of
order ε−4r+2). For this, we write

‖F>M (t)‖L2 =
∥∥∥Π≤M

(
|u|2p u−

∣∣∣u≤M
∣∣∣
2p
u≤M

)∥∥∥
L2

≤
∥∥∥ |u|2p u−

∣∣∣u≤M
∣∣∣
2p
u≤M

∥∥∥
L2

with |u|2p u =
∣∣∣u− u≤M + u≤M

∣∣∣
2p

(u− u≤M + u≤M) =
∣∣∣u≤M + u>M

∣∣∣
2p

(u≤M + u>M ). Then,

using the Mean Value Inequality, Holder’s Inequality, the Sobolev embeddings Ĥ1 →֒ H1 →֒
L6p and the fact that H1/2 injects continuously in L6, we get

‖F>M (t)‖L2 ≤
∥∥∥
∣∣∣u≤M + u>M

∣∣∣
2p

(u≤M + u>M ) −
∣∣∣u≤M

∣∣∣
2p
u≤M

∥∥∥
L2

.
∥∥∥(u≤M + u>M − u≤M )

(∣∣∣u≤M + u>M
∣∣∣
2p

+
∣∣∣u≤M

∣∣∣
2p
)∥∥∥

L2

. ‖u>M ‖L6

(∥∥∥
∣∣∣u≤M + u>M

∣∣∣
2p ∥∥∥

L3
+
∥∥∥
∣∣∣u≤M

∣∣∣
2p ∥∥∥

L3

)

. ‖u>M ‖L6

(
‖u≤M + u>M ‖2p

L6p + ‖u≤M ‖2p
L6p

)

. ‖u>M ‖
Ĥ1/2‖u‖2p

Ĥ1
.

Since M > N, (this is obvious as N is fixed) then M > j∗ and we have |uj∗|2 =
∣∣∣u≤M

j∗

∣∣∣
2
.

Moreover, we obtain

‖u>M ‖
Ĥ1/2 .M−1/2‖u− u≤M‖h1/2 .M−1/2‖u‖

Ĥ1 .

Therefore, recalling that M = ε−4r+2, we deduce that for all t ∈ R we get

‖F>M (t)‖L2 .M−1/2‖u‖2p+1

Ĥ1
. ε2r+2p.

We are now interested in writing ( 32 ) as a Hamiltonian system. Indeed, since (ψj)j≥1 is a

basis of L2, we can identify
⊕

j≤M
Ej with R

J1,MK, and we can easily check that equation ( 32 )

can be written as

i∂tu
≤M = ∇H(u≤M ) + F>M (t) where H = Z2︸︷︷︸

linear part

+ P︸︷︷︸
perturbation

.
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In particular, if we express u in terms of the eigenfunctions as
∑

j∈J1,MK
ujψj, we obtain

H(u) =
1
2

∫

R

|∂xu|2 + x2 |u|2 + V |u|2 dx± 1
2p + 2

∫

R

|u|2p+2 dx

=
1
2

∫

R

u(T + V )udx+
1

2p+ 2

∫

R

|u|2p+2 dx

=
1
2

∫

R

( ∑

j∈J1,MK

ujψj
)
(T + V )

( ∑

j∈J1,MK

ujψj
)

dx+
1

2p+ 2

∫

R

∣∣ ∑

j∈J1,MK

ujψj

∣∣2p+2 dx

=
1
2

∑

j∈J1,MK

wjujuj

∫

R

ψ2
j dx

± 1
2p+ 2

∑

j∈J1,MK2p+2

(∫

R

ψj1 · · ·ψj2p+2 dx
)
uj1 · · · ujp+1ujp+2 · · · uj2p+2

=
1
2

∑

j∈J1,MK

wj |uj|2

︸ ︷︷ ︸
Z2(u)

± 1
2p+ 2

∑

j∈J1,MK2p+2

Pjuj1 · · · ujp+1ujp+2 · · · uj2p+2

︸ ︷︷ ︸
P (u)

.

Clearly P is a Hamiltonian polynomial of degree 2p+ 2. Moreover, using Hölder’s inequality
and the fact that ‖ψj‖Ln . 1 for all n ≥ 2, we get that11

|Pj | = ‖ψj1 · · ·ψj2p+2‖
L1 ≤ ‖ψj1‖L2p+2 · · · ‖ψj2p+2‖

L2p+2 . 1.

At this stage, we are able to apply the Birkhoff Normal Form Theorem (recall Theorem 4.1 ).
We obtain three positive constants C, b, and ε0 as well as two symplectic maps τ (0) and τ (1)

such that the theorem holds. Note that if Cρε ≥ 1/(C(logM)b), then we obtain
∣∣∣|uj∗(t)|2 − |uj∗(0)|2

∣∣∣ ≤ |uj∗(t)|2 + |uj∗(0)|2 ≤ ‖u(t)‖2
h1/2 + ‖u(0)‖2

h1/2 ≤ (C2
ρ + 1)ε2.

On the other hand, we have ε2 = ε2(CρC(logM)b)2p 1
(CρC(log M)b)2p ≤ ε2(CρC(logM)b)2pε2p,

with (logM)2bp .r,ν N
2bpε−ν for ν > 0. Thus, we conclude the result

∣∣∣|uj∗(t)|2 − |uj∗(0)|2
∣∣∣ .ρ,r,N,ν ε

2p+2−ν .

Consequently, we restrict the constants to the case Cρε < 1/(C(logM)b), and thus

∀t ∈ R, ‖u≤M (t)‖h1/2 ≤ Cρε <
1

C(logM)b
< ε0.

Therefore, it makes sense to consider the new variable given by v := τ (0) ◦ u≤M . Now, we
can see that by definition of the differential and by using Lemma A.3 we get

∂tv(t) = ∂t(τ (0) ◦ u≤M (t)) =
(
∇τ (0)(u≤M ), ∂tu

≤M
)

ℓ2

= dτ (0)(u≤M )(∂tu
≤M ) = dτ (0)(u≤M )(−i∇H(u≤M ) − iF>M (t))

= −i(dτ (1) ◦ τ (0)(u≤M ))∗ ∇H(u≤M ) − idτ (0)(u≤M )(F>M (t)).

Since the diagram commutes, τ (1) ◦ τ (0)(u≤M ) = u≤M , so we get τ (1)(v) = u≤M . Then

∂tv(t) = −i(dτ (1)(v))∗ (∇H) ◦ τ (1)(v) − idτ (0)(u≤M )(F>M (t))

= −i
(
∇(H ◦ τ (1))(v(t)) + dτ (0)(u≤M )(F>M (t))

)
.

11The idea is that we need to control Pj in order to control the interaction between the modes via the
nonlinear term.
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Consequently, using ( 25 ) we obtain

∂tv(t) = −i
(
∇(Z2 +Q+R)(v(t)) + dτ (0)(u≤M )(F>M (t))

)
. (33)

Our goal is to estimate ∂t |vj∗(t)|2 in order to apply the Mean Value Inequality. Since |vj∗ |2
is smooth on h−1/2, then by composition we have that t 7→ |vj∗(t)|2 ∈ C 1(R,R) using the
chain rule. So, we differentiate with respect to t and use ( 33 ) to get

∂t |vj∗(t)|2 =
(
i∇ |vj∗ |2 , i∂tvj∗

)
ℓ2

=
(
i∇ |vj∗ |2 ,∇(Z2 +Q+R)(v)

)
ℓ2

+
(
i∇ |vj∗ |2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2

= {|vj∗|2 , Z2(v) +Q(v)} +
(
i∇ |vj∗ |2 ,∇R(v)

)
ℓ2

+
(
i∇ |vj∗ |2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2
.

From Birkhoff Normal Form Theorem and by direct calculations, we can see that since
j∗ = N , we have {|vj∗|2 , Z2(v) +Q(v)} = 0. Thus, using Cauchy–Schwarz, we estimate
∣∣∣∂t |vj∗(t)|2

∣∣∣ ≤
∣∣∣
(
i∇ |vj∗ |2 ,∇R(v)

)
ℓ2

∣∣∣+
∣∣∣
(
i∇ |vj∗|2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2

∣∣∣

≤ ‖∇ |vj∗ |2 ‖h1/2‖∇R(v)‖h−1/2 + ‖∇ |vj∗ |2 ‖h1/2‖dτ (0)(u≤M )(F>M (t))‖h−1/2

≤ 2‖vj∗‖h1/2

(
‖∇R(v)‖h−1/2 + ‖dτ (0)(u≤M )(F>M (t))‖h−1/2

)
.

Estimate of ‖vj∗‖h1/2: Since τ (0) is close to the identity, then

‖v‖h1/2 ≤ ‖u‖h1/2 + ‖τ (0)u− u‖h1/2 ≤ ‖u‖h1/2 +

(
‖u‖h1/2

Cρε

)2p

‖u‖h1/2 ≤ 2‖u‖h1/2 ≤ 2ε0.

Estimate of ‖∇R(v)‖h−1/2: By Theorem 4.1 , we have for v ∈ B
CJ1,MK(0, 2ε0)

‖∇R(v)‖h−1/2 . (logM)b‖v‖2r+2p

h1/2 . (logM)bε2r+2p.

Estimate of ‖dτ (0)(u≤M )(F>M (t))‖h−1/2: Again, by Theorem 4.1 , we obtain

‖dτ (0)(u≤M )(F>M (t))‖h−1/2 ≤ ‖dτ (0)(u≤M )‖
L (h−1/2)‖F>M (t)‖h−1/2 . 4rε2r+2p.

As a consequence, combining all the above estimations we obtain
∣∣∣∂t |vj∗(t)|2

∣∣∣ .r ε((logM)bε2r+2p + ε2r+2p) .r (logM)bε2r+2p+1.

Now, we apply the Mean Value Inequality on [0, t]:

|t| < ε−2r+1 =⇒
∣∣∣|vj∗|2 − |vj∗(0)|2

∣∣∣ ≤ |t|
∣∣∣∂t |vj∗(t)|2

∣∣∣ .r ε
−2r+1(logM)bε2r+2p+1 .r (logM)bε2p+2.

In order to conclude, we need to obtain a similar result for |uj∗(t)|2. Notice that
∣∣∣|uj∗(t)|2 − |uj∗(0)|2

∣∣∣ ≤
∣∣∣|uj∗(t)|2 − |vj∗(t)|2

∣∣∣+
∣∣∣|vj∗(t)|2 − |vj∗(0)|2

∣∣∣ (34)

+
∣∣∣|vj∗(0)|2 − |uj∗(0)|2

∣∣∣ .

In addition to this, we know that for all t ∈ R we have
∣∣∣|uj∗(t)|2 − |vj∗(t)|2

∣∣∣ ≤ ‖u≤M (t) − v(t)‖ℓ2(‖v(t)‖ℓ2 + ‖u≤M (t)‖ℓ2)

≤ ‖u≤M (t) − v(t)‖h1/2(‖v(t)‖h1/2 + ‖u≤M (t)‖h1/2)
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with

‖u≤M (t) − v(t)‖h1/2 ≤
(

‖u≤M ‖h1/2

ε0

)2p

‖u≤M ‖h1/2 . (logM)2bpε2p+1.

Finally, replacing in ( 34 ) and using that (logM)2bp .r,ν N
2bpε−ν for ν > 0, we deduce

∣∣∣|uj∗(t)|2 − |uj∗(0)|2
∣∣∣ .r (logM)2bpε2p+2 .r,N,ν ε

2p+2−ν .

A Appendix

Here are few painless results.

Lemma A.1. For a given weight P ∈ Ĥ3 with Pk ∈ R
∗
+, the assumptions ( 15 ) are satisfied.

Proof. We start by showing that almost surely V ∈ Ĥ1 ∩ C2. Indeed,

‖V ‖2
Ĥ3 ≃

∑

j≥1

〈j〉3
(
V, hj(·

√
2)
)2

L2
=
∑

j≥1

〈j〉3


∑

k≥1

gkhk(·
√

2)Pk, hj(·
√

2)




2

L2

=
∑

k≥1

〈k〉3P 2
k g

2
k.

Setting X =
∑

k≥1
〈k〉3P 2

k g
2
k and recalling that gk ∼ N (0, 1), we notice that

E[X] = E
[∑

k≥1

〈k〉3P 2
k g

2
k

]
=
∑

k≥1

E[〈k〉3P 2
k g

2
k] =

∑

k≥1

〈k〉3P 2
k E[(gk − E[gk])2]︸ ︷︷ ︸

Var(gk)

= ‖P‖2
Ĥ3 .

Since P ∈ Ĥ3, we deduce that almost surely, X is finite and V belongs to Ĥ3 ⊂ Ĥ1.
Furthermore, using Sobolev embeddings we have Ĥ3 ⊂ H3 ⊂ C2 and thus V ∈ C2. We turn
next to proving the second assumption. For P ∈ Ĥ3, we denote by K > 0 the sum of the
convergent series

∑
k≥1

〈k〉(log(k + 1))2P 2
k . Then for a fixed λ > 0, we have

P( ‖V ‖
Ĥ1 < λ) ≥ P( ∀k ≥ 1, |gk| < K−1/2λ log(k + 1))

=
∏

k≥1

P( |gk| < K−1/2λ log(k + 1))

=
∏

k≥1

[1 − P( |gk| ≥ K−1/2λ log(k + 1))]

=
∏

k≥1

[
1 − 2√

2π

∫ +∞

K−1/2λ log(k+1)
e−g2

k
/2 dgk

]

=
∏

k≥1

[
1 − 2√

2π

∫ +∞

0
e−(gk+K−1/2λ log(k+1))2

/2 dgk

]

≥
∏

k≥1

[
1 − 2√

2π
e−λ2(log(k+1))2/2K

∫ +∞

0
e−g2

k/2 dgk

]

≥
∏

k≥1

[
1 − e−λ2(log(k+1))2/2K

]
.

Notice that since log(k2 + 1) .λ λ2(log(k + 1))2/2K for k ≥ 1, λ > 0 and K > 0, then
e−λ2(log(k+1))2/2K .λ e

− log(k2+1) = 〈k〉−2. Thus, we get
∑

k≥1

e−λ2(log(k+1))2/2K .λ

∑

k≥1

〈k〉−2
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which converges. Finally, as 0 < e−λ2(log(k+1))2/2K < 1, we directly conclude that

∏

k≥1

[
1 − 2√

2π
e−λ2(log(k+1))2/2K

]
> 0.

Lemma A.2. There exists K > 1 such that the following estimate holds

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 ≤ K(r∗ + 1) + |Ωj,ℓ(V )| .

Proof. From Lemma 2.3 , we deduce that for all j ≥ 1, there exists C > 0 such that

|wj − j| ≤ Cj−1/12 ≤ C.

Now, consider the decomposition

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉
= (wj1 + · · · + wjr∗

− wℓ1 − · · · − wℓr∗
)

+
[〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 − (j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗)

]

+
[
(j1 − wj1) + · · · + (jr∗ − wjr∗

) − (ℓ1 − wℓ1) − · · · − (ℓr∗ − wℓr∗
)
]
.

Using the fact that for all y ≥ 0, we have |〈y〉 − y| ≤ 1, we directly establish that

〈j1 + · · · + jr∗ − ℓ1 − · · · − ℓr∗〉 ≤ 1 +
r∗∑

n=1

(|wjn − jn| + |wℓn − ℓn|)
︸ ︷︷ ︸

≤cr∗

+ |Ωj,ℓ(V )|

≤ max(1, c)(r∗ + 1) + |Ωj,ℓ(V )| .

Lemma A.3. If (dτ (1) ◦ τ (0))∗ denotes the adjoint of dτ (1) ◦ τ (0), then we have

dτ (0)i = i(dτ (1) ◦ τ (0))∗.

Proof. Let u, v and w ∈ C
J1,MK. Since τ (1) is symplectic (recall Definition 3.4 ), we have

(
(dτ (1)(u))∗i(dτ (1))(u)(v), w

)
ℓ2

=
(
i(dτ (1))(u)(v), (dτ (1))(u)(w)

)
ℓ2

= (iv, w)ℓ2 .

This implies that for all u ∈ B
CJ1,MK(0, ε0), we get (dτ (1)(u))∗i(dτ (1))(u) = i. In particular

for u = τ (0). Now, since the diagram in Theorem 4.1 commutes, we obtain

((dτ (1)) ◦ τ (0))dτ (0) = d(τ (1) ◦ τ (0)) = d(id
CJ1,MK) = id

CJ1,MK . (35)

Finally, multiplying (dτ (1)(u))∗i(dτ (1))(u) = i by dτ (0) and using ( 35 ), we deduce

i(dτ (0)) = (dτ (1) ◦ τ (0))∗i((dτ (1)) ◦ τ (0))dτ (0) = (dτ (1) ◦ τ (0))∗i(id
CJ1,MK) = (dτ (1) ◦ τ (0))∗i.
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