
ar
X

iv
:2

21
1.

13
07

6v
1 

 [
m

at
h.

A
P]

  2
3 

N
ov

 2
02

2

Birkhoff normal form in low regularity for the

nonlinear quantum harmonic oscillator

Charbella Abou Khalil∗

Abstract

Given small initial solutions of the nonlinear quantum harmonic oscillator on R, we
are interested in their long time behavior in the energy space which is an adapted Sobolev
space. We perturbate the linear part by V taken as multiplicative potentials, in a way
that the linear frequencies satisfy a non-resonance condition. More precisely, we prove
that for almost all potentials V, the low modes of the solution are almost preserved for
very long times.
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1 Introduction

For half a century, the theory of partial differential equations has mainly focused on the study
of the local or global existence of solutions, in well-chosen functional spaces. Nevertheless,
the advances of this theory made it possible to consider other types of questions, in particular
that of the qualitative behavior of solutions once their existence has been established. In
other words, given a small initial datum as well as a non-resonant1 Hamiltonian partial
differential equation on a bounded domain,

i∂tu = ∂ūH(u)

∗Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
Email: Charbella.AbouKhalil@univ-nantes.fr

1The eigenvalues (Λj)j≥1 of the linearized vector field enjoy a Diophantine condition, in particular rational

independency. The precise definition is given later in Section 2.2 .
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with H a smooth Hamiltonian having 0 as elliptic equilibrium, what can be said about the
solution in a Sobolev space Hs over long periods of time? Stability results of such solutions
over long periods have been proved. For instance [2] and [6] proved stability results for Klein-
Gordon and NLS on the tori: Given r ≫ 1 arbitrarily large, there exists s0(r) ≫ 1 such
that given small enough initial data ‖u(0)‖Hs := ε with s > s0(r), no significant exchange of
energy is possible before very long times |t| ≤ ε−r, and we have the modulus of the Fourrier
modes is almost preserved, i.e. |un(t)|2 ≃ |un(0)|2. The main flaw of their results lies in
the constraint s ≥ s0(r), which seemed to be essential in their proofs (mainly to deal with
problems of small divisors) and in other similar results for dispersive Hamiltonian partial
differential equations found for example in [3–5,7, 10,16–18,26].

On the other hand, some numerical experiments strongly suggest that this restriction of
smoothness condition is irrelevant and that s0(r) does not have to be very large (see for
example [14]). Consequently, it makes sense to generate effective methods in order to lower
the regularity and still obtain the stability result.

To this matter, the paper [8], recently done by Bernier and Grébert, deduced the almost
global preservation of the low harmonic energies over very long times for Klein-Gordon
equation and NLS with both Dirichlet and periodic boundary conditions in low regularity in
the energy space. The crucial key point was developing a Birkhoff Normal Form Theorem in
low regularity which is weaker than the classical version of the theorem, since it only concerns
the low modes of the solutions. The idea is to design or construct a symplectic and close to
the identity map τ which helps simplify the Hamiltonian system. More precisely, composing
with τ , they pushed the non-normalized part of H to higher orders and thus killing the terms
that influence the dynamics of the low modes. In [9] and along with Rivière, they extended
this method to the sphere and worked with the Klein-Gordon equation.

My work was inspired by the later. I used similar techniques yet changed some notations, in
order to obtain a suitable framework for the nonlinear quantum harmonic oscillator on an
unbounded domain but with confined potentials (see ( NLS ) and ( 4 )).

1.1 The model

In this paper, we study the long time behavior of small solutions of the perturbed quantum
harmonic oscillator in one dimension in the adapted Sobolev spaces Ĥs (see ( 2 )) with low
regularity (s small). This equation is of great importance in quantum physics (refer for
instance to [22]) and is defined for (t, x) ∈ R × R by the following Schrödinger equation

{
i∂tu(t, x) = −∂xxu(t, x) + x2u(t, x) + V (x)u(t, x) ± |u(t, x)|2p u(t, x)
u|t=0 = u(0) ∈ Ĥ1(R),

(NLS)

where p ≥ 1 and V (x) is a real-valued potential. Moreover, ± added to the nonlinearity
term refers to the focusing and defocusing cases. For V = 0, the linear part of the equation
simply describes a quantum harmonic oscillator on R, denoted by T := −∂xx + x2. Notice
that ( NLS ) can be seen as a perturbation of the linear equation

i∂tu(t, x) = Tu(t, x). (1)

It is well known that the spectrum of this operator is an increasing sequence (λj)j≥1 given
by λj = 2j − 1. More precisely, we have

Thj = (2j − 1)hj

with (hj)j≥1 being the Hermite functions and forming an orthonormal basis of L2(R) (we
refer the reader to Chapter 6 in [13]). Moreover, these eigenvalues are completely resonant:
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Since they are integers, they are not rationally independent. In this context, we define for
s ≥ 0 the Sobolev spaces

Ĥs := {u ∈ Hs(R), 〈x〉su ∈ L2(R)} (2)

and we endow them with the corresponding natural norms

‖u‖2
Ĥs := ‖u‖2

Hs + ‖〈x〉su‖2
L2.

Notice that ( 1 ) can be written as a Hamiltonian system with a quadratic Hamiltonian

Z2(u) =
1
2

(
‖∂xu‖2

L2 + ‖xu‖2
L2

)
≃ ‖u‖2

Ĥ1 .

On the other hand, the frequencies (λj)j≥1 appear in Z2, and thus we also have

Z2(u) =
1
2

∑

j≥1

λj |uj |2 ≃ ‖u‖2
h1/2 .

Here, we identify u ∈ Ĥ1 and its Hermite sequence (uj)j≥1 ∈ h1/2 (see 1.4 ).

Our goal will be to adapt a suitable Birkhoff normal form theorem for the nonlinear quantum
harmonic oscillator with a perturbation and establish its dynamical consequence in order to
reach the main result presented in the next section.

To do so, we require a non-resonance condition2 on the spectrum of operator T+V . We draw
smooth potentials V to guarantee that, almost surely, the spectrum is strongly non-resonant
(see Theorem 1.2 ). The spectral analysis and properties of the eigenvalues (Λj)j≥1 and their
associated eigenfunctions (ψj)j≥1 will be explained rigorously in Section 2 .

1.2 Main results and comments

We are interested in the actions for the nonlinear quantum harmonic oscillator describing
the dynamics or the amplitudes of the modes of the solution and given as

Ij(u) = |uj(t)|2 with uj(t) =
∫

R

u(t, x)ψj(x) dx

where we recall that (ψj)j≥1 are the eigenfunctions of the operator T + V. Notice that the
actions Ij are preserved by the linear part of the Schrödinger equation (refer to ( NLS )).
Nevertheless, once we turn on the nonlinear perturbation, we can expect some exchange of
energy (see for example [15]), and the question of preservation of the actions then arises.

To state the main result, it is crucial to mention that equation ( NLS ) is globally well-posed
for small solutions in Ĥ1 (see Section 5 ). In the following theorem, we consider multiplicative
potentials, and we specify the dynamics of the solution over very long times in low regularity.

Theorem 1.1. Let N ≥ 1, r ≥ p+ 1 arbitrarily large, ν > 0 and let V ∈ Ĥ1 ∩ C 2 such that
the spectrum of T + V is strongly N, r non-resonant (refer to Definition 2.7 ). Then, there
exist ǫ0 > 0 depending on ‖V ‖

Ĥ1 and a constant C > 0 depending on (N, r, V, ν) such that

if we set ε := ‖u0‖
Ĥ1 ≤ ǫ0, the global solution of ( NLS ) satisfies

|t| < ε−2r and 1 ≤ j ≤ N =⇒
∣∣∣|uj(t)|2 − |uj(0)|2

∣∣∣ ≤ Cε2p+2−ν (3)

with 2p + 2 being the order of the Hamiltonian non-linearity and uj(t) =
∫
R
u(t, x)ψj(x) dx.

2To get rid of resonances, we move the eigenvalues to obtain rational independency.
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It is important to mention that in the above result, the set of potentials V is not empty.
More precisely, for almost all V , the non-resonant assumption is satisfied. To see this, we
present another main result as the following theorem:

Theorem 1.2. Let V be defined randomly on R as

V (x) =
∑

k≥1

gkhk(x
√

2)Pk (4)

where gk ∼ N (0, 1) are some independent Gaussian variables and P ∈ Ĥ3 is a given weight
such that Pk ∈ R

∗
+. Then, for all r ≥ 1 and N ≥ 1, provided that ‖V ‖

Ĥ1 .r N
−1/6, almost

surely V ∈ Ĥ1 ∩ C 2 and the frequencies of the operator T+V are strongly N, r non-resonant
in the sense of Definition 2.7 .

As a consequence, Theorem 1.1 applies.

Comments regarding the results.

– Theorem 1.2 makes sense because we prove that P(‖V ‖
Ĥ1 < λ) > 0 for all λ > 0 in

Lemma A.1 of the Appendix.

– We prove the almost global preservation of the low actions over very long times |t| <
ε−2r with r arbitrarily large.

– It seems interesting to mention that the term ε−ν in the estimation of Theorem 1.1 is
due to truncation and logarithmic loss. It could be removed with a little technicality
and only serves to simplify the proofs.

– Note that ( NLS ) is locally well-posed in Ĥ1 (for more details refer to Theorem 5.3 ),
and the estimation ( 3 ) is trivial for time scales |t| ≤ ε−2p, even in the case of a
vanishing potential. However, the conservation of the actions is not trivial on longer
scales (for r taken arbitrarily large), which is the studied framework here.

– In the classical Birkhoff normal form theorem, a standard non-resonant argument is
used (for instance, refer to [6]) in order to avoid3 the exchange of energy between modes
and deduce the stability. However, since we are working with a non-smooth solution,
we will use a stronger condition (Theorem 1.2 ) allowing us to remove much more terms
from the original Hamiltonian.

– The passage to low regularity results in the loss of information concerning the high
modes of the solution. Mainly, as mentioned before the Birkhoff normal form theorem
developed by [8] concerns only the first N modes and so does our result. Furthermore,
the strong N non-resonance condition stated in Theorem 1.2 clearly provides a relation
between the potential V and N as well as indicates that the larger the number of modes
N we would like to control, the smaller the potential V has to be. Unlike Theorem
1.10 in [8], the number of modes we control does not depend only on the size of the
initial datum.

– Fortunately and without the additional smoothness constraint, we obtained a result of
the same kind as in [18]. However, there seem to be two major differences. On one
hand, here, in order to avoid the resonances, we perturbate the eigenvalues by adding
multiplicative potentials instead of Hermite multipliers. Formally, if we had considered
the operator T + M with M a Hermite multiplier given by Mψj = mjψj for some

3On the contrary, for references regarding the exchange of energy in NLS see [20] and [21].
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(mj)j≥1, then we will be working with the frequencies 2j − 1 + mj whose standard
non-resonance condition was done4 in [18]. Thus, the work would have been much
easier. On the other hand, in [18] thanks to the smoothness of the solutions, they were
able to control and obtain stability for all modes and not only finitely many.

– The paper [23] generalises the result of [18] and proves a similar theorem for the
operator T + V (x) + M where V belongs to the Schwartz class. A second result
in [23] uses Chelkak–Kargaev–Korotyaev’s results about the inverse spectral problem
of harmonic oscillator and states that for M = 0, there exist some potentials V such
that the spectrum of T + V (x) is non-resonant. Unfortunately, since these potentials
live only in Ĥ1, the solution can be at most Ĥ1. Thus, the standard methods could
not be applied.

– The authors in [19] worked with a similar nonlinear Schrödinger equation and con-
structed a class of potentials with the help of the dual basis of the finite family of
Hermite polynomials (hj)2

1≤j≤n. However, the new developed method we work with is
simpler and applies to a larger class of potentials and initial data.

– Due to multiplicities, the generalization of our result to dimensions d ≥ 2 is not clear
since the spectral theory in higher dimensions becomes much more complicated. There-
fore, it would certainly be necessary to work with Hermite multipliers.

1.3 Sketch of the proofs

I will formally explain the strategies of the proofs. Concerning Theorem 1.1 , the method
of the proof requires the Birkhoff normal form process introduced in [8]. For the sake of
simplicity, we do the case p = 1. Write ( NLS ) as a Hamiltonian system with

H = Z2 + P + O(‖u‖6)

given explicitly in Section 5 , where Z2 is a quadratic Hamiltonian associated with the linear
part of the equation and depends only on the actions (Ij)j≥1. Also, P is a perturbation of
order 4 belonging to a Hamiltonian class (refer to 3 ) and written as

P (u) =
∑

j,l∈(N∗)2

Pj,luj1uj2ul1ul2 .

We consider the flow φt
χ(u) generated by χ, a polynomial of degree 4, solving the equation

−i∂tφχ = (∇χ) ◦φχ. The idea is to construct a symplectic5 close to the identity map τ such
that, in the new variables, the Hamiltonian H is a function of the actions up to a remainder
R of arbitrarily high order (we say that H is written in a Birkhoff normal form). More
precisely, as a first step we compose by φ1

χ and use Taylor expansion in order to get

H ◦ φ1
χ = Z2 + {χ,Z2} + P + O(‖u‖6)

where {·, ·} denotes the Poisson brackets (refer to 1.4 ). For the sake of normalisation and in
order to eliminate the monomials uj1uj2ul1ul2 that do not depend on the actions, we would
like to solve the cohomological equation

{χ,Z2} + P = Q with {Q, Ij} = 0 for j ≤ N.

4It turns out that most of the time the strong non-resonance condition introduced in Section 2.2 holds
when the standard one is satisfied.

5The symplectic transformations preserve the Hamiltonian structure.
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However, during the process of solving this equation, small divisors in the form of

wj1 + wj2 − wl1 − wl2

might appear in the denominator. As a result, we consider the strong non-resonance condition
characterised by controlling these small divisors from below. The next step, would be to
iterate this construction, and compose with a new symplectic map. At the end, we obtain a
transformation pushing the non-normalized part ofH to order 6, followed by a transformation
pushing it to order 8 and so on. Consequently, we get

H ◦ τ = Z2 +Q+R

where Q commutes with the low actions Ij(u) for j ≤ N and R satisfies the estimate

||∇R(u)||h−1/2 .N ||u||2r+2
h1/2 .

As a corollary of this result, introducing a new variable v = τ−1(u), we notice that v is the
solution of the equation

i∂tv = ∇H̃(v) with H̃(v) = H ◦ τ(v) = Z2(v) +Q(v) +R(v).

Furthermore, we work with ∂tIj(v(t)) to get

∂tIj(v) = (∇Ij(v), ∂tv)ℓ2 = (i∇Jn(v),∇(Z2 +Q+R)(v))ℓ2 = {Jn, R}(v).

Finally, we conclude by applying Cauchy–Schwarz and the Mean Value Inequality.

Now, we turn to the proof of Theorem 1.2 . As explained above, in order to simplify the
Hamiltonian system, we require a control of the frequencies of operator T + V. i.e. We face
a problem of small divisors. To solve this, we follow the ideas of [8]. We seek a control of
the first derivative of the small divisors in the simple case where V = 0 (refer to Lemma
2.13 ). In order to proceed, it seemed necessary to control the norm of V by N−1/6. Thus,
the relation between V and N appears and consequently, we estimate the first derivative
with respect to V of the small divisors for V 6= 0. Finally, using probability arguments, we
deduce a control of the small divisors by the smallest index involved. Further tools of spectral
analysis are needed to obtain the main non-resonant condition (for details see Section 2.2 ).

Organization of the article. In section 2, we work with some spectral theory aspects and
introduce the non-resonance condition satisfied by the corresponding spectrum. We provide
some technical tools used to achieve this condition. Section 3 is devoted to defining a class
of Hamiltonian functions suitable for the nonlinear quantum harmonic oscillator equation
and satisfying nice properties. Then, we develop a normal form process in low regularity in
Section 4 inspired by [8]. In the last section, we prove the main result which is a dynamical
corollary of the Birkhoff normal form theorem, and we deduce the almost global preservation
of the low actions over very long times.

1.4 Notations

We always consider the following set of notations:

• 2∂z := ∂ℜ z + i∂ℑ z and 2∂z := ∂ℜ z − i∂ℑ z.

• For simplicity of notations, we write x .p y if there exists a constant C depending on
p fixed such that x ≤ Cy for (x, y) ∈ R

2.
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• For k ∈ Z, the Japanese bracket is denoted by 〈k〉 := (1 + |k|2)1/2.

• For s ∈ R and M > 1, the discrete Sobolev space is written as

hs(J1,MK) =



u ∈ C

J1,MK, ‖u‖2
hs :=

∑

k∈J1,MK

〈k〉2s |uk|2 < ∞


 .

• For p ≥ 1 and M > 1, the Lebesgue space is written as

ℓp(J1,MK) =



u ∈ C

J1,MK, ‖u‖p
ℓp :=

∑

k∈J1,MK

|uk|p < ∞


 .

2 Non-resonance condition

In this section, we describe first the spectrum of the operator T + V for V ∈ C 2 ∩ Ĥ1 in
order to deduce that, almost surely, this spectrum is strongly non-resonant according to the
definition given in 2.2 . For spectral aspects, we start by considering the potential V written
in terms of the L2-basis (hk(·

√
2)21/4)k≥1 as

V (x) =
∑

k≥1

vkhk(x
√

2)21/4. (5)

2.1 Preliminaries on spectral analysis

In this part, we are interested in estimations on the Lebesgue norms of the eigenfunctions
(ψj)j≥1 of the operator T +V . For V ∈ L∞(R), we have that T +V is a self-adjoint operator

of domain Ĥ2 (refer to Chapter 2 in [13]) and has a real, discrete spectrum (refer to [25]),
consisting of simple eigenvalues (Λj)j≥1 and satisfying

Λj = 2j − 1 + O(1), j → ∞.

As a consequence, similar to (hj)j≥1, the eigenfunctions (ψj)j≥1 of the operator T + V form
an orthonormal basis6 of L2(R), and we are able to ensure the spectral decomposition. We
end up by estimating the corresponding eigenvalues (Λj)j≥1 of the operator T + V . Using
an important result of Koch–Tataru [24], we obtain the following lemma which is the key to
our estimations:

Lemma 2.1. For all j ≥ 1 and V ∈ C 2 ∩ Ĥ1, there exists C > 0 such that

‖ψj‖L4 ≤ Cj−1/12.

Proof. Applying Hölder’s inequality, we have the estimation

‖ψj‖L4 ≤ ‖ψj‖3/4
L6 ‖ψj‖1/4

L2 . (6)

Applying Corollary 3.2 from [24] for W (x) = x2 + V (x) and p = 6, we obtain 7

‖ψj‖L6 . j−1/9‖ψj‖L2.

Thus replacing in ( 6 ) and using that (ψj)j≥1 is an orthonormal basis, we get

‖ψj‖L4 .
(
j−1/9‖ψj‖L2

)3/4
‖ψj‖1/4

L2 . j−1/12.
6In other words, the following are satisfied: The L2−normalisation property (‖ψj‖L2 = 1) and the orthog-

onality property ((ψj , ψl)L2 = δj,l).
7A personal communication by Herbert Koch regarding Theorem 4 in [24]: The proof can be modified in

order to deal with W ∈ C
2.

7



Remark 2.2. Note that for the case W (x) = x2 (i.e. V = 0), the norm ‖hj‖L4 can be
easily estimated by using Lemma 2.10 and Parseval–Bessel’s equality.

Notations. In the following three results, we denote by Λj,V (resp. ψj,V ) the eigenvalues
(resp. eigenfunctions) of the operator T + V . We adapt the proofs done in [19].

In this lemma, we can see that the eigenvalues are close to integer values.

Lemma 2.3. For all j ≥ 1 and V ∈ Ĥ1 small enough with respect to the norm ‖ · ‖
Ĥ1 , we

have
|Λj,V − (2j − 1)| . ‖V ‖

Ĥ1j
−1/2.

Proof. We refer the reader to Lemma 2.1 in [12].

The next lemma serves as a useful tool for Proposition 2.5 .

Lemma 2.4. For V1, V2 ∈ Ĥ1 ∩ C 2 small enough with respect to the norm ‖ · ‖
Ĥ1 , there

exists C > 0 such that for all j ≥ 1

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖
L2 ≤ Cj−1/12‖V1 − V2‖

Ĥ1.

Proof. Since (ψk)k≥1 is a Hilbertian basis of L2(R), then it is natural to decompose

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 =

∑

k≥1

∣∣∣
(
ψj,V2 − (ψj,V1 , ψj,V2)L2ψj,V1, ψk,V1

)
L2

∣∣∣
2

=
∑

k≥1

∣∣(ψj,V2, ψk,V1)L2 − (ψj,V1 , ψj,V2)L2(ψj,V1 , ψk,V1)L2

∣∣2

=
∑

k≥1
k 6=j

∣∣(ψj,V2, ψk,V1)L2

∣∣2 (7)

because (ψj,V1 , ψk,V1)L2 = δk,j. Similarly, since T + V1 − Λj,V2 is self-adjoint we write

‖(T + V1 − Λj,V2)ψj,V2‖2
L2 =

∑

k≥1

∣∣((T + V1 − Λj,V2)ψj,V2 , ψk,V1)L2

∣∣2

=
∑

k≥1

∣∣((T + V1 − Λj,V2)ψk,V1 , ψj,V2)L2

∣∣2

=
∑

k≥1

∣∣((Λk,V1 − Λj,V2)ψk,V1 , ψj,V2)L2

∣∣2

=
∑

k≥1

|Λk,V1 − Λj,V2|2
∣∣(ψk,V1 , ψj,V2)L2

∣∣2 .

Now from Lemma 2.3 , we have that

|Λk,V1 − Λj,V2| & 1

for k 6= j uniformly in V1, V2 small enough with respect to ‖ · ‖
Ĥ1 . This implies that

‖(T + V1 − Λj,V2)ψj,V2‖2
L2 &

∑

k≥1
k 6=j

∣∣(ψk,V1 , ψj,V2)L2

∣∣2 . (8)

After this, applying ( 7 ) and ( 8 ) we deduce that

‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 =

∑

k≥1
k 6=j

∣∣(ψk,V1, ψj,V2)L2

∣∣2 . ‖(T + V1 − Λj,V2)ψj,V2‖2
L2.
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Notice that we can write

(T + V1)ψj,V2(x) = (−∂xx + x2 + V1)ψj,V2(x) + (V1 − V2)ψj,V2(x)

= (−∂xx + x2 + V2)ψj,V2(x) + (V1 − V2)ψj,V2(x)

= Λj,V2ψj,V2(x) + (V1 − V2)ψj,V2(x),

and Hölder’s inequality implies that

‖(T + V1 − Λj,V2)ψj,V2‖L2 = ‖(V1 − V2)ψj,V2‖L2 ≤ ‖V1 − V2‖L4‖ψj,V2‖L4.

Next, using the Sobolev embedding H1 →֒ L4, the continuous inclusion Ĥ1 ⊂ H1 as well as
Lemma 2.1 , we get

‖(T + V1 − Λj,V2)ψj,V2‖L2 ≤ ‖V1 − V2‖H1‖ψj,V2‖L4

≤ ‖V1 − V2‖
Ĥ1‖ψj,V2‖L4

≤ C‖V1 − V2‖
Ĥ1j

−1/12.

We prove now that the eigenfunctions (ψj)j≥1 are close to the Hermite functions.

Proposition 2.5. For all j ≥ 1 and V ∈ Ĥ1 ∩ C 2 small enough with respect to the norm
‖ · ‖

Ĥ1, there exists C > 0 such that

‖ψj − hj‖L2 ≤ Cj−1/12‖V ‖
Ĥ1 .

Proof. Taking the scalar product of ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1 with ψj,V2, we get
∣∣∣
(
ψj,V2, ψj,V2 − (ψj,V1 , ψj,V2)L2ψj,V1

)
L2

∣∣∣ =
∣∣∣1 − (ψj,V1, ψj,V2)2

L2

∣∣∣ .

Therefore, applying Cauchy–Schwarz inequality and Lemma 2.4 we have
∣∣∣1 − (ψj,V1, ψj,V2)2

L2

∣∣∣ ≤ ‖ψj,V2‖L2‖ψj,V2 − (ψj,V1 , ψj,V2)L2ψj,V1‖
L2 . j−1/12‖V1 − V2‖

Ĥ1. (9)

Finally, note that adding the terms ±(ψj,V1, ψj,V2)L2ψj,V1 gives

‖ψj,V1 − ψj,V2‖2
L2 ≤ 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2

L2 + 2‖ψj,V1

(
1 − (ψj,V1, ψj,V2)L2

) ‖2
L2

= 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2
L2 + 2

∣∣1 − (ψj,V1, ψj,V2)L2

∣∣2 ‖ψj,V1‖2
L2︸ ︷︷ ︸

=1

.

Hence, using Lemma 2.4 and ( 9 ), we obtain

‖ψj,V1 − ψj,V2‖2
L2 ≤ 2‖ψj,V2 − (ψj,V1, ψj,V2)L2ψj,V1‖2

L2 + 2
∣∣∣1 − (ψj,V1, ψj,V2)2

L2

∣∣∣
2

. 2(j−1/12‖V1 − V2‖
Ĥ1)2 + 2(j−1/12‖V1 − V2‖

Ĥ1)2

. (j−1/12‖V1 − V2‖
Ĥ1)2.

In particular, for V2 = 0 we have ψj,V2(x) = hj(x) and thus the needed result.

Finally, using the expression of V and the expansion of h2
j , we get the following result:
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Proposition 2.6. For V ∈ Ĥ1, the gradient of the eigenvalues Λj(V ) with respect to v2k−1

(recall that vk are the coefficients from the expansion of the potential V in ( 5 )) is given by

∂Λj(V )
∂v2k−1

=
∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx.

Proof. Note first that for all j ≥ 1, each eigenvalue Λj and each eigenfunction ψj is C 1 with
respect to v2k−1 (we refer the reader to Lemma 2.4 in [12]). Now, we consider the equation

(−∂xx + x2 + V (x)︸ ︷︷ ︸
T +V

)ψj(x) = Λjψj(x).

Differentiating the above with respect to v2k−1 for k ≥ 1 we obtain

(T + V )
∂ψj

∂v2k−1
+
∂(T + V )
∂v2k−1

ψj =
∂Λj

∂v2k−1
ψj + Λj

∂ψj

∂v2k−1
.

Due to the expression of V given by ( 5 ), this implies that

(T + V − Λj)
∂ψj

∂v2k−1
+ 21/4h2k−1(·

√
2)ψj =

∂Λj

∂v2k−1
ψj.

Next, taking the scalar product with ψj we get
(
T + V − Λj)

∂ψj

∂v2k−1
, ψj

)

L2

+ 21/4(h2k−1(·
√

2)ψj , ψj)L2 =
(

∂Λj

∂v2k−1
ψj, ψj

)

L2

. (10)

Using self-adjointness of T + V and the fact that ψj ∈ ker(T + V − Λj), we deduce
(

(T + V − Λj)
∂ψj

∂v2k−1
, ψj

)

L2

=
(

∂ψj

∂v2k−1
, (T + V − Λj)ψj

)

L2

= 0.

Since ∂Λj
∂v2k−1

is independent of x and ‖ψj‖L2 = 1, then ( 10 ) gives

∂Λj(V )
∂v2k−1

=
∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx. (11)

2.2 Non-resonance condition

In the second part, we are interested in probabilistic aspects. For this, given a weight P ∈ Ĥ3

such that Pk ∈ R
∗
+, we draw V randomly (recall ( 4 )) as

V (x) =
∑

k≥1

gkhk(x
√

2)Pk (12)

where gk ∼ N (0, 1) are some independent Gaussian variables. It is important to emphasize
that adding such a weight ensures the following technical assumptions8 (for the proof of
( 13 ), refer to Lemma A.1 ) on V :

{
V ∈ Ĥ1 ∩ C 2 almost surely,
P(‖V ‖

Ĥ1 < λ) > 0 for all λ > 0.
(13)

Roughly speaking, thanks to the parameters gk, we will be able to perturbate each eigenvalue
independently in order to obtain non-resonancy. This part will be dedicated to explaining this
idea rigorously. We imitate the work done in [8] to prove that the frequencies of ( NLS ) (also
known as the eigenvalues Λj of the operator T+V) obtained from the quadratic Hamiltonian
are strongly N, r non-resonant in the following sense:

8These assumptions are used to prove Proposition 2.15 .
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Definition 2.7. (Strong N, r non-resonance) Consider frequencies w ∈ R
N∗

, r ≥ 1 and
N ≥ 1. We say that w are strongly N, r non-resonant if there exists βr,N > 0, such that
for all 1 ≤ r∗ ≤ r, ℓ ∈ (Z∗)r∗

and all j ∈ (N∗)r∗
with j1 < · · · < jr∗ , j1 ≤ N and

|ℓ1| + · · · + |ℓr∗ | ≤ r, we have
∣∣ℓ1wj1 + · · · + ℓr∗wjr∗

∣∣ ≥ βr,N .

It is important to note that this definition does not deal with multiplicities (we are in the
case of distinct frequencies). To prove this condition we use the following tool taken from [8]:

Proposition 2.8. Let r ≥ 1, N ≥ 1 and w ∈ R
N∗

. Suppose that:

i) the frequencies are weakly non-resonant, i.e. there exist αr∗ > 0 and γr,N > 0 such
that for all 1 ≤ r∗ ≤ r, ℓ ∈ (Z∗)r∗

and all j ∈ (N∗)r∗

with j1 < · · · < jr∗, j1 ≤ N and
|ℓ1| + · · · + |ℓr∗| ≤ r, we have

∀k ∈ Z,
∣∣k + ℓ1wj1 + · · · + ℓrwjr∗

∣∣≥ γr,Nj
−αr∗

r∗ , (14)

ii) the frequencies accumulate polynomially fast on Z, i.e. there exists C > 0 and ν > 0
such that

∀j ≥ 1,∃ k ∈ Z, |wj − k| ≤ Cj−ν . (15)

Then w is strongly N, r non-resonant.

Remark 2.9. I would like to mention that the first assumption is satisfied by many interest-
ing Hamiltonians, for instance Beam and Klein-Gordon equations. However, the localization
assumption is easier to check but seems to be more restrictive.

Proof. The proof is done by induction on r∗ and is found in Proposition 2.1 of [8].

Our goal now will be to apply Proposition 2.8 and obtain the main result of this section,
Proposition 2.17 . To do so, we are going to concentrate in what follows on proving that
the frequencies (Λj)j≥1 satisfy the weak non-resonance condition. We start with some useful

lemmas. In the first one, we express h2
j in terms of the Hilbertian basis (h2k−1(·

√
2)21/4)k≥1.

The process was inspired by the decomposition of the product of the Hermite functions
hj(x)hl(x). In the case where j = l, we obtain the result given as Proposition 5.5 in [23]:

Lemma 2.10. For all j ≥ 1, we can write

h2
j (x) =

j∑

k=1

µk,jh2k−1(x
√

2)21/4

with

µk,j = (2π)−1/4√
αkαj−k+1 and αj =

(2j − 2)!
(j − 1)!24j−1

∼ 1√
πj
.

It is easy to establish bounds for this explicit form.

Corollary 2.11. There exists C > 0 such that for all j ≥ 1 and k ≤ j, we have

µk,j ≤ Cj−1/4.

Moreover, for j = k we also have the lower bound

µj,j ≥ C−1j−1/4.
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Proof. We write for j ≥ 1 and k ≤ j, µk,j = (2π)−1/4√
αkαj−k+1 ≤ C

k1/4(j−k)1/2 .

• If k ≥ j/2, then µk,j ≤ 21/4Cj−1/4,

• If k ≤ j/2, then µk,j ≤ 21/2Cj−1/2 ≤ Cj−1/4.

Moreover, by definition of αj, we naturally have µj,j = (2π)−1/4√
αj ∼ 1

(πj)1/4 .

We are interested now in deducing an estimation on the derivative for V 6= 0.

Lemma 2.12. For all ρ > 0, there exists C > 0 such that for all j ≥ 1, k ≥ 1 and
‖V ‖

Ĥ1 ≤ ρ, we have ∣∣∣∣
∂Λj(V )
∂v2k−1

− µk,j

∣∣∣∣ ≤ Cj−1/12‖V ‖
Ĥ1 .

Proof. From ( 11 ) we have

∂Λj(V )
∂v2k−1

=
∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx

and in particular by the decomposition from Lemma 2.10

∂Λj(0)
∂v2k−1

=
∫

R

21/4h2k−1(x
√

2)h2
j (x) dx = µk,j.

Furthermore, using Propostion 2.5 we have
∣∣∣∣
∫

R

h2k−1(ψ2
j − h2

j ) dx
∣∣∣∣ ≤ ‖h2k−1‖L∞‖ψj − hj‖L2‖ψj + hj‖L2

≤ ‖h2k−1‖
Ĥ1‖ψj − hj‖L2(‖ψj‖L2 + ‖hj‖L2)

≤ C‖ψj − hj‖L2

≤ Cj−1/12‖V ‖
Ĥ1 .

Consequently, we easily deduce the needed estimation
∣∣∣∣
∫

R

21/4h2k−1(x
√

2)ψ2
j (x) dx−

∫

R

21/4h2k−1(x
√

2)h2
j (x) dx

∣∣∣∣ ≤ Cj−1/12‖V ‖
Ĥ1 .

Notations. We denote the small divisors by Ωj,ℓ(V ) =
r∗∑

n=1
ℓnΛjn .

The last part of this section is inspired by the work done for NLS defined on T in [8].

Lemma 2.13. For all 1 ≤ r∗ ≤ r, there exists γr > 0 such that for all ℓ ∈ (Z∗)r∗

and
j ∈ (N∗)r∗

with j1 < · · · < jr∗ and |ℓ1| + · · · + |ℓr∗| ≤ r, there exists k .r j1 such that

∣∣∣∣
∂Ωj,ℓ(0)
∂v2k−1

∣∣∣∣ =

∣∣∣∣∣

r∗∑

n=1

ℓnµk,jn

∣∣∣∣∣ ≥ γrj
−1/4
1 . (16)

Proof. Fix r ≥ 1. We proceed with the proof by induction on r∗.
Initial Step: If r∗ = 1, then for all j1 ∈ N

∗ we have by Corollary 2.11
∣∣∣∣∣
∂Ωj,ℓ(0)
∂v2j1−1

∣∣∣∣∣ = |ℓ1µj1,j1| & |ℓ1|
j

1/4
1

& j
−1/4
1 .

Induction Step: Assume that the result holds for all 1 ≤ r∗ ≤ r, and we prove it for r∗ + 1.
Let ℓ ∈ (Z∗)r∗+1 and j ∈ (N∗)r∗+1 be some indices satisfying |ℓ1| + · · · + |ℓr∗+1| ≤ r and
j1 < · · · < jr∗ and suppose that there exists k ≤ Crj1 such that ( 16 ) holds.
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• By Corollary 2.11 , induction hypothesis and the fact that |ℓr∗+1| ≤ r, we have

∣∣∣∣∣

r∗+1∑

n=1

ℓnµk,jn

∣∣∣∣∣ =

∣∣∣∣∣

r∗∑

n=1

ℓnµk,jn + ℓr∗+1µk,jr∗+1

∣∣∣∣∣ ≥
∣∣∣∣∣

r∗∑

n=1

ℓnµk,jn

∣∣∣∣∣−
∣∣∣ℓr∗+1µk,jr∗+1

∣∣∣

≥ γrj
−1/4
1 − rCj

−1/4
r∗+1 .

Hence, if we take jr∗+1 > (2rCγ−1
r )4j1 we directly conclude that

∣∣∣∣∣

r∗+1∑

n=1

ℓnµk,jn

∣∣∣∣∣ ≥ γr

2
j

−1/4
1 .

• Now if jr∗+1 ≤ (2rCγ−1
r )4j1, we consider ∂Ωj,ℓ(0)

∂v2jr∗+1−1
= ℓr∗+1µjr∗+1,jr∗+1

. Consequently,

we obtain by Corollary 2.11 the result for k = jr∗+1 and γ̃r = γr
2r

∣∣∣∣∣
∂Ωj,ℓ(0)
∂v2jr∗+1−1

∣∣∣∣∣ ≥ Cj
−1/4
r∗+1 ≥ γ̃rj

−1/4
1 .

After this, we obtain a similar estimation for V 6= 0.

Corollary 2.14. For all 1 ≤ r∗ ≤ r and all ℓ ∈ (Z∗)r∗

, j ∈ (N∗)r∗

and V ∈ Ĥ1 satisfying

j1 < · · · < jr∗ , |ℓ|1 ≤ r and ‖V ‖
Ĥ1 ≤ γr

2r j
−1/6
1 where γr is given by Lemma 2.13 , there exists

k .r j1 such that ∣∣∣∣
∂Ωj,ℓ(V )
∂v2k−1

∣∣∣∣ ≥ γr

2
j

−1/4
1 .

Proof. From Lemma 2.12 , we have that
∣∣∣∣∣∣∣∣∣

∂
r∗∑

n=1
ℓnΛjn(V )

∂v2k−1
−
∂

r∗∑
n=1

ℓnΛjn(0)

∂v2k−1

∣∣∣∣∣∣∣∣∣
.

‖V ‖
Ĥ1

j
1/12
1

|ℓ1| + · · · +
‖V ‖

Ĥ1

j
1/12
r∗

|ℓr∗ | .
r‖V ‖

Ĥ1

j
1/12
1

.

Thus, using Lemma 2.13 and the assumption ‖V ‖
Ĥ1 ≤ γr

2r j
−1/6
1 , we establish

∣∣∣∣
∂Ωj,ℓ(V )
∂v2k−1

∣∣∣∣ ≥
∣∣∣∣∣
∂Ωj,ℓ(0)
∂v2k−1

−
r‖V ‖

Ĥ1

j
1/12
1

∣∣∣∣∣ ≥
∣∣∣∣
∂Ωj,ℓ(0)
∂v2k−1

∣∣∣∣−
r‖V ‖

Ĥ1

j
1/12
1

≥ γr

j
1/4
1

− γr

2j1/4
1

≥ γr

2j1/4
1

.

As a result, we obtain the necessary weak non-resonance condition presented in the next
Proposition. Recall that here we are considering V as random potentials given in ( 12 ).

Proposition 2.15. For all 1 ≤ r∗ ≤ r and N ≥ 1, provided that ‖V ‖
Ĥ1 ≤ γr

2rN
−1/6 where

γr is given by Lemma 2.13 , almost surely, there exists γr,N > 0 such that for all ℓ ∈ (Z∗)r∗

and j ∈ (N∗)r∗
satisfying j1 < · · · < jr∗ with j1 ≤ N and |ℓ|1 ≤ r, we have

|Ωj,ℓ(V )| ≥ γr,Nj
−2r∗

r∗ .

Proof. Being given j satisfying the above assumptions, we consider the index k given by
Corollary 2.14 . We aim at estimating

P( |Ωj,ℓ(V )| < γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )
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for γ > 0. For this and following ( 12 ), we write V = g2k−1h2k−1(x
√

2)P2k−1 + V2k−1 with
g2k−1 and V2k−1 independent. Then, we get

P( |Ωj,ℓ(V )| <γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

= E
[ ∫

G2k−1∈I
1|Ωj,ℓ(G2k−1h2k−1(x

√
2)P2k−1+V2k−1)|<γ f(G2k−1) dG2k−1

]

where f(x) = 1√
2π
e−x2/2 denotes the probability density function and the interval

I :=
{
G2k−1 ∈ R, ‖G2k−1h2k−1(·

√
2)P2k−1 + V2k−1‖2

Ĥ1 ≤
(
γr

2r
N−1/6

)2 }
.

Next, for G2k−1 ∈ I, we apply a change of variable y2k−1 = G2k−1P2k−1 ∈ Ĩ to get

P( |Ωj,ℓ(V )| <γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤ P−1
2k−1√
2π

E
[ ∫

y2k−1∈Ĩ
1|Ωj,ℓ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ dy2k−1

]
.

Now, notice that for j1 ≤ N, Corollary 2.14 gives that
∣∣∣∣∣
∂Ωj,ℓ(y2k−1h2k−1(x

√
2) + V2k−1)

∂y2k−1

∣∣∣∣∣ ≥ γr

2
j

−1/4
1 ≥ γr

2
N−1/4. (17)

So, since Ĩ is a random interval, then the map

Φ :

{
Ĩ → J

y2k−1 7→ Ωj,ℓ(y2k−1h2k−1(x
√

2) + V2k−1)

is a diffeomorphism from Ĩ onto its image J . Moreover, due to the fact that the function
1|Ωj,ℓ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ is integrable on Ĩ, we deduce by using the change of variable

theorem that the function 1|y2k−1|<γ

∣∣∣∣
∂Ωj,ℓ(y2k−1h2k−1(x

√
2)+V2k−1)

∂y2k−1

∣∣∣∣
−1

is integrable on J and

we have
∫

y2k−1∈Ĩ
1|Ωj,ℓ(y2k−1h2k−1(x

√
2)+V2k−1)|<γ dy2k−1

=
∫

y2k−1∈J
1|y2k−1|<γ

∣∣∣∣∣
∂Ωj,ℓ(y2k−1h2k−1(x

√
2) + V2k−1)

∂y2k−1

∣∣∣∣∣

−1

dy2k−1. (18)

Thus, making use of ( 17 ) and ( 18 ), we obtain the following estimation

P( |Ωj,ℓ(V )| < γ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤ P−1
2k−1 E

[ ∫

y2k−1∈J
1|y2k−1|<γ

∣∣∣∣∣
∂Ωj,ℓ(y2k−1h2k−1(x

√
2) + V2k−1)

∂y2k−1

∣∣∣∣∣

−1

dy2k−1

]

≤ 2P−1
2k−1 E

[
γ−1

r N1/4
∫

y2k−1∈J
1|y2k−1|<γ dy2k−1

︸ ︷︷ ︸
≤2γ

]

≤ 4γ−1
r P−1

2k−1N
1/4γ.
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Using ( 13 ) and the fact that k .r N, it is possible to control P−1
2k−1 independently from j.

As a consequence, we get

P( ∃(r∗, ℓ, j), |Ωj,ℓ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

≤
∑

(r∗,ℓ,j)

P( |Ωj,ℓ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 )

.r,N 4γ−1
r


 ∑

(r∗,ℓ,j)

j−2r∗

r∗


 γ.

The convergence of this last sum is related to the fact that jr∗ is the largest index9. So,

P( ∃(r∗, ℓ, j), |Ωj,ℓ(V )| < γj−2r∗

r∗ and ‖V ‖
Ĥ1 ≤ γr

2r
N−1/6 ) .r,N γ

as γ → 0−−−−−→ 0.

It is natural to conclude that since the probability vanishes, almost surely there exists γ > 0
depending on r,N and V such that for all (r∗, ℓ, j) satisfying the given assumptions, we have

|Ωj,ℓ(V )| ≥ γj−2r∗

r∗ .

Now, we have reached the proof of Theorem 1.2 which is the main result of this section.
More precisely, we obtain the strong N, r non-resonance condition of the frequencies (wj)j∈N∗

of the quantum harmonic oscillator with a perturbation.

Proof of Theorem 1.2 To start, we can directly see that the localization hypothesis ( 15 )
on the spectrum is obtained in Lemma 2.3 . So, the frequencies are close to integer values,
and we have that there exists a constant C > 0 such that

σ (T + V ) ⊂
⋃

j≥1

Zj with Zj :=
[
2j − 1 − Cj−1/2, 2j − 1 + Cj−1/2].

We just proved ( 14 ) in Proposition 2.15 where we obtained a control of the small divisors
by the smallest index involved. Finally, our result is a direct consequence of Proposition 2.8 .

Remark 2.16. The key point related to our model is that the Birkhoff normal form proce-
dure described in Section 4 involves small divisors defined by

Ωj,l(V ) = wj1 + · · · + wjr − wl1 − · · · − wlr (19)

where we recall that w is the sequence of frequencies of the perturbed harmonic oscillator.
Furthermore, a same term may appear both with a positive and a negative sign. Therefore,
it would be sufficient to define the minimum index as follows:

κ(j, l) = min{ si := ji | li, 1 ≤ i ≤ r and
r∑

n=1

(1jn=si − 1ln=si) 6= 0 } ∪ {∞}. (20)

As a result, we establish a generalisation to Definition 2.7 and a suitable formalism for the
Birkhoff normal form process by providing a uniform bound for the small divisors Ωj,l(V )
given in ( 19 ).

Proposition 2.17. Let V be given in ( 12 ). For all r, N ≥ 1, provided that ‖V ‖
Ĥ1 .r N

−1/6,
there exists βr,N > 0 such that for all j, l ∈ (N∗)r, if κ(j, l) ≤ N, we either have

|Ωj,l(V )| ≥ βr,N

or the small divisor is trivial and we write, in this case, κ(j, l) = ∞.

Remark 2.18. We notice that this control rather than the control of the small divisors
by the third largest index (standard non-resonance condition) will allow us to remove much
more terms when solving the cohomological equations in the Birkhoff normal form process.

9Note that the sum with respect to r∗ and ℓ is finite.
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3 Hamiltonian formalism

We are going to introduce here a Hamiltonian class which plays an important role in classi-
fying the Hamiltonian polynomials arising in the proof of the Birkhoff normal form theorem.
Roughly speaking, the Hamiltonian polynomials in the normal form process are controlled
by the H -norm whereas the solutions to the cohomological equation are controlled by the
C -norm (see Definition 3.6 ).

3.1 Functional setting

We fix M > 1, and we note that we are working in finite dimension. In other words,
h1/2(J1,MK) ≡ C

J1,MK is a finite dimensional vector space.

Definition 3.1. (Natural Scalar Product) We equip ℓ2(J1,MK) with its natural real scalar
product

(u, v)ℓ2 :=
∑

k∈J1,MK

ℜukvk =
∑

k∈J1,MK

ℜukℜvk + ℑukℑvk ∈ R.

Definition 3.2. (Poisson Bracket) Let H,K : C
J1,MK → R be two smooth functions. Then

the Poisson bracket of H and K is defined by:

{H,K}(u) := (i∇H(u),∇K(u))ℓ2

where ∇H(u) = 2(∂ukH(u))k.

Lemma 3.3. We have the following identity

{H,K}(u) = 2i
∑

k∈J1,MK

∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u).

Proof. To see this, we write using the definition

{H,K}(u) = (i∇H(u),∇K(u))ℓ2 = 4
∑

k∈J1,MK

ℜ i∂ukH(u)∂ukK(u).

By simple calculations, one can prove that

4ℜ i∂ukH(u)∂ukK(u) = 2i[∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u)].

Definition 3.4. (Symplectic Map) Consider an open set C of CJ1,MK and a C1 map τ : C →
C

J1,MK. We say that τ is a symplectic map if

∀u ∈ C,∀v,w ∈ C
J1,MK, (iv, w)ℓ2 = (idτ(u)(v),dτ(u)(w))ℓ2.

3.2 Class of Hamiltonian functions

Definition 3.5. (Class H 2r
M ) Being given M > 1 and r ≥ 1, we denote by H 2r

M the set of
real valued homogeneous polynomials of degree 2r defined on C

J1,MK and commuting with
the norm ‖ · ‖2

ℓ2. These Hamiltonians are uniquely written as

H(u) =
∑

j,l∈J1,MKr

Hj,l uj1 · · · ujrul1 · · · ulr

where (Hj,l)(j,l)∈J1,MKr×J1,MKr is a sequence of complex numbers satisfying:
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• the reality condition
Hj,l = Hl,j

• the symmetry condition

∀(φ,ψ) ∈ Sr × Sr, Hj1,··· ,jr,l1,···lr = Hjφ1
,··· ,jφr ,lψ1

,···lψr .

We endow this space of polynomials with the two following norms ‖ · ‖
H

and ‖ · ‖
C
.

Definition 3.6. (Norms ‖ · ‖
H

and ‖ · ‖
C

) Let M > 1, r ≥ 1 and H,χ ∈ H 2r
M . We introduce

the norms
‖H‖

H
:= sup

j,l∈J1,MKr
|Hj,l|

and
‖χ‖

C
:= sup

j,l∈J1,MKr
|χj,l| 〈j1 + · · · + jr − l1 − · · · − lr〉.

We will show two essential lemmas needed to establish the continuity estimates enjoyed by
the Hamiltonians. The first lemma states the following:

Lemma 3.7. For a Hamiltonian H ∈ H 2r
M and u(1), · · · , u(2r) ∈ C

J1,MK, we have

∑

j,l∈J1,MKr

∣∣∣∣Hj,lu
(1)
j1

· · · u(r)
jr
u

(r+1)
l1

· · · u(2r)
lr

∣∣∣∣ ≤ (logM)r‖H‖
H

2r∏

i=1

‖u(i)‖h1/2 .

Proof. Let H ∈ H 2r
M and u(1), · · · , u(2r) ∈ C

J1,MK. We then write

∑

j,l∈J1,MKr

∣∣∣∣Hj,lu
(1)
j1

· · · u(r)
jr
u

(r+1)
l1

· · · u(2r)
lr

∣∣∣∣ ≤
∑

j,l∈J1,MKr

‖H‖
H

∣∣∣u(1)
j1

∣∣∣ · · ·
∣∣∣u(r)

jr

∣∣∣
∣∣∣∣u

(r+1)
l1

∣∣∣∣ · · ·
∣∣∣∣u

(2r)
lr

∣∣∣∣

≤ ‖H‖
H

2r∏

i=1


 ∑

k∈J1,MK

〈k〉1/2
∣∣∣u(i)

k

∣∣∣
1

〈k〉1/2


 .

By Cauchy–Schwarz inequality and the fact that
∑

k∈J1,MK

1
〈k〉 . logM , we obtain

∑

j,l∈J1,MKr

∣∣∣∣Hj,lu
(1)
j1

· · · u(r)
jr
u

(r+1)
l1

· · · u(2r)
lr

∣∣∣∣ ≤ ‖H‖
H




∑

k∈J1,MK

1
〈k〉




r
2r∏

i=1




∑

k∈J1,MK

〈k〉
∣∣∣u(i)

k

∣∣∣
2




1/2

. (logM)r‖H‖
H

2r∏

i=1

||u(i)||h1/2 .

The second lemma seems a bit more complicated and writes as follows:

Lemma 3.8. For all u(1), · · · , u(2r) ∈ C
J1,MK, we have

∑

j,l∈J1,MKr

1
〈j1 + · · · + jr − l1 − · · · − lr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

li

∣∣∣ .r (logM)r‖u(2r)‖h−1/2

2r−1∏

i=1

‖u(i)‖h1/2.
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Proof. Denote vk := 〈k〉−1/2u
(2r)
k and j0 = −(j1 + · · ·+ jr − l1 −· · ·− lr). We can easily notice

that ‖v‖ℓ2 = ‖u(2r)‖h−1/2 , and we write

∑

j,l∈J1,MKr

1
〈j1 + · · · + jr − l1 − · · · − lr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

li

∣∣∣

=
∑

j,l∈J1,MKr

1
〈j0〉〈lr〉1/2 |vlr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣ .

Now, in order to get rid of the term 〈lr〉1/2, we use Jensen’s formula to obtain

〈lr〉1/2 = 〈j0 + · · · + jr − l1 − · · · − lr−1〉1/2 ≤ (〈j0〉 + · · · + 〈lr−1〉)1/2 ≤
r∑

n=0

〈jn〉1/2 +
r−1∑

n=1

〈ln〉1/2.

Consequently, we get

∑

j,l∈J1,MKr

1
〈j1 + · · · + jr − l1 − · · · − lr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

li

∣∣∣

≤
∑

j,l∈J1,MKr

1
〈j0〉

(
r∑

n=0

〈jn〉1/2 +
r−1∑

n=1

〈ln〉1/2

)
|vlr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣

≤
∑

j,l∈J1,MKr

[
1

〈j0〉1/2
+

1
〈j0〉

(
r∑

n=1

〈jn〉1/2 +
r−1∑

n=1

〈ln〉1/2

)]
|vlr |

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣ .

Notice that

(
r∑

n=1

〈jn〉1/2

)
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣ =




r∑

n=1

〈jn〉1/2
∣∣∣u(n)

jn

∣∣∣
r∏

i=1
i6=n

∣∣∣u(i)
ji

∣∣∣




r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣

and similarly that

(
r−1∑

n=1

〈ln〉1/2

)
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣ =




r−1∑

n=1

〈ln〉1/2
∣∣∣u(r+n)

ln

∣∣∣
r−1∏

i=1
i6=n

∣∣∣u(r+i)
li

∣∣∣




r∏

i=1

∣∣∣u(i)
ji

∣∣∣ .

Thus, we obtain

∑

j,l∈J1,MKr

1
〈j1 + · · · + jr − l1 − · · · − lr〉

r∏

i=1

∣∣∣u(i)
ji

∣∣∣
∣∣∣u(r+i)

li

∣∣∣

≤
∑

j,l∈J1,MKr

1
〈j0〉1/2

|vlr |
r∏

i=1

∣∣∣u(i)
ji

∣∣∣
r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣

+
∑

j,l∈J1,MKr

|vlr |
1

〈j0〉




r∑

n=1

〈jn〉1/2
∣∣∣u(n)

jn

∣∣∣
r∏

i=1
i6=n

∣∣∣u(i)
ji

∣∣∣




r−1∏

i=1

∣∣∣u(r+i)
li

∣∣∣ (21)

+
∑

j,l∈J1,MKr

|vlr |
1

〈j0〉




r−1∑

n=1

〈ln〉1/2
∣∣∣u(r+n)

ln

∣∣∣
r−1∏

i=1
i6=n

∣∣∣u(r+i)
li

∣∣∣




r∏

i=1

∣∣∣u(i)
ji

∣∣∣ .
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It turns out that the sum we aim at estimating writes as a convolution product, and the
needed result is just a consequence of Young’s convolution inequality

ℓ2 ∗ ℓ2 ∗ ℓ1 ∗ · · · ∗ ℓ1 →֒ ℓ∞.

Therefore ( 21 ) can be expressed as
[
|v| ∗ 〈·〉−1/2 ∗

∣∣∣u(1)
∣∣∣ ∗ · · · ∗

∣∣∣u(2r−1)
∣∣∣
]

0

+




r∑

n=1

|v| ∗ 〈·〉1/2
∣∣∣u(n)

∣∣∣ ∗ 〈·〉−1 ∗
(

r∗
i=1
i6=n

∣∣∣u(i)
ji

∣∣∣
)

∗
(

r−1∗
i=1

∣∣∣u(r+i)
li

∣∣∣
)


0

+




r−1∑

n=1

|v| ∗ 〈·〉1/2
∣∣∣u(r+n)

∣∣∣ ∗ 〈·〉−1 ∗
(

r−1∗
i=1
i6=n

∣∣∣u(r+i)
li

∣∣∣
)

∗
(

r∗
i=1

∣∣∣u(i)
ji

∣∣∣
)


0

≤ ‖v‖ℓ2‖〈·〉−1/2‖ℓ2

2r−1∏

i=1

‖u(i)‖ℓ1 +
r∑

n=1

‖v‖ℓ2‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2

r∏

i=1
i6=n

‖u(i)‖ℓ1

r−1∏

i=1

‖u(r+i)‖ℓ1

+
r−1∑

n=1

‖v‖ℓ2‖〈·〉1/2u(r+n) ∗ 〈·〉−1‖ℓ2

r−1∏

i=1
i6=n

‖u(r+i)‖ℓ1

r∏

i=1

‖u(i)‖ℓ1.

We are left with proving the following estimates for the ℓ1-norm and the ℓ2-norm.
Estimate of ‖u(i)‖ℓ1 : Using Cauchy–Schwarz inequality, we get

‖u(i)‖ℓ1 =
∥∥∥∥u

(i) 〈·〉1/2

〈·〉1/2

∥∥∥∥
ℓ1

≤ ‖u(i)‖h1/2‖〈·〉−1/2‖ℓ2 ≤ (logM)1/2‖u(i)‖h1/2 .

Estimate of ‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2 : Apply Young’s convolution inequality ℓ2 ∗ ℓ1 →֒ ℓ2 to get

‖〈·〉1/2u(n) ∗ 〈·〉−1‖ℓ2 ≤ ‖〈·〉1/2u(n)‖ℓ2‖〈·〉−1‖ℓ1 ≤ (logM)‖u(n)‖h1/2 .

Now we turn to the estimate on the gradient provided by the H -norm and an even better
estimate provided by the C -norm.

Proposition 3.9. Let M ≥ 2, r ≥ 1. For all H ∈ H 2r
M , the gradient of H is a smooth

function enjoying the bound

∀u ∈ C
J1,MK, ‖∇H(u)‖h−1/2 .r (logM)r‖H‖

H
‖u‖2r−1

h1/2 .

Proof. The proof is obtained by duality. We fix v ∈ C
J1,MK, and we write

‖∇H(u)‖h−1/2 = sup
‖v‖

h1/2 ≤1
|(∇H(u), v)ℓ2| .

Notice that since

(∇H(u), v)ℓ2 = 2r
∑

j,l∈J1,MKr

ℜ [Hj,luj1 · · · ujrul1 · · · vlr ] ,

then the needed result is a direct corollary of Lemma 3.7 .
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Proposition 3.10. Let M ≥ 2, r ≥ 1. For all χ ∈ H 2r
M and all u ∈ C

J1,MK, the gradient of
χ enjoys the bounds

‖∇χ(u)‖h1/2 .r (logM)r‖χ‖
C

‖u‖2r−1
h1/2

and
‖d∇χ(u)‖L(h1/2) .r (logM)r‖χ‖

C
‖u‖2r−2

h1/2 .

Proof. It is similar to the proof of Proposition 3.9 , except that we use Lemma 3.8 instead
of Lemma 3.7 .

As a consequence, the second estimate of Proposition 3.10 can be written in the negative
Sobolev space h−1/2 as follows:

Corollary 3.11. Let M ≥ 2, r ≥ 1. For all χ ∈ H 2r
M and all u ∈ C

J1,MK, we have

‖d∇χ(u)‖L(h−1/2) .r (logM)r‖χ‖
C

‖u‖2r−2
h1/2 .

Proof. The proof uses a standard duality argument and is found in [9] Corollary 4.7.

Now, we introduce the flow generated by a Hamiltonian belonging to H 2r
M .

Lemma 3.12. Let M ≥ 2, r ≥ 2 and χ ∈ H 2r
M . Then there exists

ε1 =
(
K(logM)(2r−1)/2‖χ‖

C

)−1/(2r−2)

where K depends on r, and there exists a smooth map

φχ :

{
[−1, 1] ×B

CJ1,MK(0, ε1) → C
J1,MK

(t, u) 7→ φt
χ(u)

solving the equation −i∂tφχ = (∇χ) ◦ φχ and satisfying for all t ∈ [−1, 1] the following:

1. close to the identity: ∀u ∈ B
CJ1,MK(0, ε1), ‖φt

χ(u) − u‖
h1/2 ≤

(
‖u‖

h1/2

ε1

)2r−2

‖u‖h1/2 ,

2. invertible: ‖φ−t
χ (u)‖

h1/2 < ε1 =⇒ φt
χ ◦ φ−t

χ (u) = u,

3. symplectic: recall Definition 3.4 .

Moreover, its differential is a continuous map and enjoys the bound:

∀u ∈ B
CJ1,MK(0, ε1),∀σ ∈ {−1, 1}, ‖dφt

χ(u)‖
L (hσ/2)

≤ 2.

Proof. We refer the reader to the proof of Proposition 4.8 in [9].

We shall prove after this that the Hamiltonians are stable by the poisson brackets.

Proposition 3.13. Let H ∈ H 2r
M and χ ∈ H 2r′

M with r, r′ ≥ 1. Then, there exists a

Hamiltonian N ∈ H
2r+2r′−2

M such that

∀u ∈ C
J1,MK, {H,χ}(u) = N(u)

and
‖{H,χ}‖

H
.r logM‖H‖

H
‖χ‖

C
.
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Proof. Let u ∈ C
J1,MK. We express the Hamiltonians as

H(u) =
∑

j,l∈J1,MKr

Hj,luj1 · · · ujrul1 · · · ulr and χ(u) =
∑

j′,l′∈J1,MKr
′

χj′,l′uj′
1

· · · uj′
r′
ul′1

· · · ul′
r′
.

By Lemma 3.3 , we have

{H,χ}(u) = 2i
∑

k∈J1,MK

∂ukH(u)∂ukχ(u) − ∂ukH(u)∂ukχ(u).

Using the symmetry condition satisfied by the coefficients of H and χ, we get

∂ukH(u)∂ukχ(u) = rr′ ∑

j∈J1,MKr

l∈J1,MKr−1

j′∈J1,MKr
′−1

l′∈J1,MKr
′

Hj,l,kuj1 · · · ujrul1 · · · ulr−1χj′,k,l′uj′
1

· · · uj′
r′−1

ul′1
· · · ul′

r′
.

Now, we set j′′ := (j, j′), l′′ := (l, l′) and r′′ := r + r′ − 1. After reindexing, we can see that

{H,χ}(u) = 2i
∑

k∈J1,MK

[
rr′ ∑

j∈J1,MKr

l∈J1,MKr−1

j′∈J1,MKr
′−1

l′∈J1,MKr
′

Hj,l,kuj1 · · · ujrul1 · · · ulr−1χj′,k,l′uj′
1

· · · uj′
r′−1

ul′1
· · · ul′

r′

− rr′ ∑

j∈J1,MKr−1

l∈J1,MKr

j′∈J1,MKr
′

l′∈J1,MKr
′−1

Hj,k,luj1 · · · ujr−1ul1 · · · ulrχj′,l′,kuj′
1

· · · uj′
r′
ul′1

· · · ul′
r′−1

]

=
∑

j′′,l′′∈J1,MKr
′′


2irr′ ∑

k∈J1,MK

Hj,l,kχj′,k,l′ −Hj,k,lχj′,l′,k




︸ ︷︷ ︸
Nj′′,l′′

uj′′
1

· · · uj′′
r′′
ul′′1

· · · ul′′
r′′

︸ ︷︷ ︸
N(u)

.

Note that we can interchange the order of summation since we are dealing with finite sums.
Moreover, we can obviously see that N(u) defines a homogeneous polynomial of degree 2r′′

(i.e. N ∈ H 2r′′

M )10. On the other hand, we need to verify the upper bound on the H −norm.
For this, we write

∑

k∈J1,MK

∣∣Hj,k,lχj′,l′,k

∣∣ ≤
∑

k∈J1,MK

‖H‖
H

‖χ‖
C

1
〈j′

1 + · · · + j′
r′ − l′1 − · · · − k〉 .

By direct calculations, we have the estimation

∑

k∈J1,MK

1
〈j′

1 + · · · + j′
r′ − l′1 − · · · − k〉 ≤

∑

k∈J1,MK

1
〈k〉 . logM.

As a result, taking the norm of the poisson bracket we obtain

‖{H,χ}‖
H

= sup
j′′,l′′∈J1,MKr′′

∣∣Nj′′,l′′
∣∣ .r,r′ logM‖H‖

H
‖χ‖

C
.

10Both the symmetry and reality conditions of Nj′′,l′′ are a direct consequence of those satisfied by Hj,l

and χj′,l′ .
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4 Birkhoff normal form theorem

Now, we present Birkhoff normal form theorem in low regularity developed by Bernier and
Grébert in [8] and provide a rigorous proof following the techniques from [9]. It plays an
essential role to help us prove our main result. To start, consider C0 > 0 and a polynomial
Hamiltonian

H : CJ1,MK 7→ R with H = Z2 + P

where Z2 is a quadratic Hamiltonian of the form Z2 : CJ1,MK → R written as

Z2(u) =
1
2

∑

j∈J1,MK

wj |uj |2

with wj being the frequencies of ( NLS ) satisfying the non-resonant condition (in the sense of
Proposition 2.17 ). Moreover, P is a polynomial Hamiltonian of degree 2p+ 2 ≥ 4 satisfying

P ∈ H
2p+2

M and ‖P‖
H

≤ C0.

Then the theorem writes:

Theorem 4.1. Let r ≥ 1 and N ≥ 1. There exist two positive constants C and b, such
that for every M ≥ 2 and every polynomial Hamiltonian H described above, we can find
ε0 ≥ 1/(C(logM)b) and two smooth symplectic maps τ (0) and τ (1) defined on B

CJ1,MK(0, ε0)
and B

CJ1,MK(0, 2ε0) respectively, satisfying the close to the identity property

∀σ ∈ {0, 1}, ‖u‖h1/2 < 2σε0 =⇒ ‖τ (σ)(u) − u‖h1/2 ≤
(‖u‖h1/2

2σε0

)2p

‖u‖h1/2 (22)

and making the following diagram to commute

B
CJ1,MK(0, ε0) B

CJ1,MK(0, 2ε0) C
J1,MKτ (0)

id
CJ1,MK

τ (1)

such that (Z2 + P ) ◦ τ (1) admits on B
CJ1,MK(0, 2ε0) the following decomposition

(Z2 + P ) ◦ τ (1) = Z2 +Q(2p+2) + · · · +Q(2r+2p)

︸ ︷︷ ︸
:=Q

+R (23)

where Q is a polynomial of degree 2(r + p) commuting with the low actions given by Iℓ(u) =
|uℓ|2 with ℓ ≤ N . In other words, we have the property

∀ℓ ≥ 1, ℓ ≤ N =⇒ {Iℓ, Q} = 0.

Besides, the remainder term R is a smooth function on B
CJ1,MK(0, 2ε0) satisfying

‖∇R(u)‖h−1/2 ≤ C(logM)b‖u‖2r+2p
h1/2 .

Moreover, for σ ∈ {0, 1} and u ∈ B
CJ1,MK(0, 2σε0), dτ (σ)(u) satisfies the bounds

‖dτ (σ)(u)‖
L (h1/2) ≤ 4r and ‖dτ (σ)(u)‖

L (h−1/2) ≤ 4r. (24)
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Proof. We proceed with the proof by induction on r∗ ∈ Jp + 1, r + p + 1K. Notice that for
r∗ = p+ 1, we have nothing to do and the proof is direct. Indeed, we can set

τ (0) = τ (1) = id
CJ1,MK , R = 0, b = 0, Q = P.

Now, we turn to the induction step. We assume that the result is true for r∗ and prove it for
r∗ + 1. More precisely, we assume that there exists two positive constants C and b, such that
for every M ≥ 2 and every polynomial Hamiltonian H, we can find ε0 ≥ 1/(C(logM)b) and
two smooth symplectic close to the identity maps τ (0) and τ (1) making the above diagram
commute such that (Z2 + P ) ◦ τ (1) admits on B

CJ1,MK(0, 2ε0) the following decomposition

(Z2 + P ) ◦ τ (1) = Z2 +Q(2p+2) + · · · +Q(2r+2p) +R

where every Q(n) ∈ H n
M is a polynomial Hamiltonian of degree n satisfying ‖Q(n)‖

H
≤

C(logM)b and commuting with the low actions, i.e.

∀n < 2r∗,∀ℓ ≥ 1, ℓ ≤ N =⇒ {Jℓ, Q
(n)} = 0.

Besides, the remainder term R is a smooth function on B
CJ1,MK(0, 2ε0) satisfying

‖∇R(u)‖h−1/2 ≤ C(logM)b‖u‖2r+2p
h1/2 .

Moreover, for σ ∈ {0, 1} and u ∈ B
CJ1,MK(0, 2σε0), dτ (σ)(u) satisfies the bounds

‖dτ (σ)(u)‖
L (h1/2) ≤ 4r∗−p−1 and ‖dτ (σ)(u)‖

L (h−1/2) ≤ 4r∗−p−1.

Note that in order to avoid confusion, we will distinguish between the terms associated to
r∗ and the ones associated to r∗ + 1 by a symbol ♯, and we begin with the work.

• First, we will start by decomposing Q(2r∗). Our goal is to write Q(2r∗) as L + U where
L,U ∈ H

2r∗

M and U commutes with the low actions. For this, we recall ( 20 ) and define

Lj,l =

{
Q

(2r∗)
j,l if κ(j, l) ≤ N,

0 otherwise
and Uj,l =

{
0 if κ(j, l) ≤ N,

Q
(2r∗)
j,l otherwise,

and we check that U commutes with Iℓ. Using direct calculations, we get

{Iℓ, U} = 2i
∑

j,l∈J1,MKr∗

r∗∑

n=1

(1jn=ℓ − 1ln=ℓ)Uj,luj1 · · · ujr∗
ul1 · · · ulr∗

.

By definition of Uj,l and κ(j, l), it is obvious to see that for ℓ ≤ N < κ(j, l), we must have

r∗∑

n=1

(1jn=ℓ − 1ln=ℓ) = 0.

• Second, we choose a Hamiltonian χ in such a way that L, the remaining terms of Q(2r∗),
vanish by solving the following cohomological equation:

{χ,Z2} + L = 0. (25)

To seek in, we recall Ωj,l(V ) := wj1 + · · · + wjr∗
− wl1 − · · · − wlr∗

and let χ ∈ H
2r∗

M be the
Hamiltonian defined by

χj,l =





Lj,l
iΩj,l(V ) if κ(j, l) ≤ N,

0 otherwise.
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Using direct computations, we can verify that χ satisfies ( 25 ). Moreover, we have a good
control of its C -norm. Indeed, since the frequencies are non-resonant (recall Proposition
2.17 ), there exists βr∗,N ∈ (0, 1) and such that

κ(j, l) ≤ N =⇒ Ωj,l(V ) ≥ βr∗,N =: δ.

Consequently, using Lemma A.2 we get

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉
|Ωj,l(V )| ≤ C ′(r∗ + 1)

|Ωj,l(V )| + 1 ≤ C ′(r∗ + 1)δ−1 + 1.

Thus, dividing by 〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 and using the fact that δ < 1 we get

1
|Ωj,l(V )| ≤ C ′(r∗ + 1)δ−1

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 +
δ−1

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉

≤ C ′(r∗ + 2)δ−1

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 .

Therefore, we obtain

|χj,l| =

∣∣∣∣∣
Lj,l

Ωj,l(V )

∣∣∣∣∣ .
|Lj,l| (r∗ + 2)δ−1

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 .

By construction, we know that L satisfies the same norm estimate as Q(2r∗). So, taking the
sup and using the induction hypothesis on ‖Q(2r∗)‖

H
we establish that

‖χ‖
C

= sup
j,l∈J1,MKr∗

|χj,l| 〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 .r∗ δ
−1 sup

j,l∈J1,MKr∗

|Lj,l|
︸ ︷︷ ︸

‖L‖
H

.r∗ δ
−1C(logM)b.

• Third, we define the new variables by composing τ (0) and τ (1) with the flow of the Hamil-
tonian χ. Applying Lemma 3.12 , we get

ε′
1 =

(
K ′

1(logM)(2r∗−1)/2‖χ‖
C

)−1/(2r∗−2)

where K ′
1 > 0 depends on r∗ and a smooth symplectic invertible close to the identity map

φχ :

{
[−1, 1] ×B

CJ1,MK(0, ε′
1) → C

J1,MK

(t, u) 7→ φt
χ(u)

solving the equation −i∂tφχ = (∇χ) ◦ φχ. Next, since ‖χ‖
C
.r∗ δ

−1C(logM)b, we have

ε′
1 ≥

(
K ′

2C(logM)(2r∗−1)/2+b
)−1/(2r∗−2)

≥ 6(C♯(logM)b♯)−1 =: 6ε♯
0

where we set C♯ ≥ 6 max
(
(K ′

2C)1/(2r∗−2), C
)

and b♯ ≥ max
(
b, 1

2r∗−2

(
2r∗−1

2 + b
))
. As a

consequence, it would make sense to define the maps 11 as mentioned above by

τ
(1)
♯ := τ (1) ◦ φ1

χ on B
CJ1,MK(0, 2ε♯

0) and τ
(0)
♯ := φ−1

χ ◦ τ (0) on B
CJ1,MK(0, ε♯

0).

11The choice of ε♯0 is dependent on the domains of definition of τ
(0)
♯ and τ

(1)
♯ .
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It is easy to see that the two maps are smooth and symplectic. To check that they are close
to the identity, consider u ∈ B

CJ1,MK(0, 2ε♯
0). Then, we have

‖τ (1)
♯ u− u‖

h1/2
= ‖τ (1) ◦ φ1

χ(u) − u‖
h1/2

= ‖τ (1) ◦ φ1
χ(u) − φ1

χ(u) + φ1
χ(u) − u‖

h1/2

≤ ‖τ (1) ◦ φ1
χ(u) − φ1

χ(u)‖
h1/2︸ ︷︷ ︸

=:A1

+ ‖φ1
χ(u) − u‖

h1/2︸ ︷︷ ︸
=:A2

.

Estimate of A1: We have that ‖u‖h1/2 ≤ 2ε♯
0 < 6ε♯

0 ≤ ǫ′1. Then, since φ1
χ is close to the

identity, we get

‖φt
χ(u) − u‖

h1/2 ≤
(‖u‖h1/2

ε′
1

)2r∗−2

‖u‖h1/2 ≤ ‖u‖h1/2 .

Also, using the definitions of ε0 and ε♯
0 we obtain that 3ε♯

0 ≤ ε0, and we establish

‖φt
χ(u)‖

h1/2 ≤ 2‖u‖h1/2 ≤ 4ε♯
0 < 6ε♯

0 ≤ 2ε0.

By induction hypothesis, we know that τ (1) is close to the identity (see ( 22 )), thus

‖τ (1) ◦ φ1
χ(u) − φ1

χ(u)‖
h1/2 ≤

(‖φ1
χ(u)‖

h1/2

2ε0

)2p

‖φ1
χ(u)‖

h1/2 ≤ 2

(
‖u‖h1/2

6ε♯
0

)2p

‖u‖h1/2

≤ 2
3

(
‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2 . (26)

Estimate of A2: Similarly, we have ‖u‖h1/2 ≤ ǫ′1. Then, we can write

‖φt
χ(u) − u‖

h1/2 ≤
(‖u‖h1/2

ε′
1

)2r∗−2

‖u‖h1/2 ≤
(

‖u‖h1/2

6ε♯
0

)2r∗−2

‖u‖h1/2

≤ 1
3

(
‖u‖h1/2

2ε♯
0

)2r∗−2

‖u‖h1/2 . (27)

Finally, replacing ( 26 ) and ( 27 ) back and noting that 2r∗ − 2 > 2p, we obtain

‖τ (1)
♯ u− u‖

h1/2
≤
(

2
3

+
1
3

)(‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2 ≤
(

‖u‖h1/2

2ε♯
0

)2p

‖u‖h1/2.

Same arguments and estimations can be used to prove this result for the map τ
(0)
♯ . It

remains to prove that these two maps make the diagram commutative. For this, take
u ∈ B

CJ1,MK(0, ε♯
0). Since τ (0)

♯ is close to the identity, then we have

φ−1
χ ◦ τ (0)(u) = τ

(0)
♯ (u) ∈ B

CJ1,MK(0, 2ε♯
0) ⊂ B

CJ1,MK(0, ε′
1).

Thus, since φ1
χ is invertible, we obtain

τ
(1)
♯ ◦ τ (0)

♯ (u) = τ (1) ◦ φ1
χ ◦ φ−1

χ ◦ τ (0)(u) = τ (1) ◦ τ (0)(u) = id
CJ1,MK .

• Fourth, our goal now is to decompose (Z2 + P ) ◦ τ (1)
♯ on B

CJ1,MK(0, 2ε♯
0). Notice that by

definition of τ (1)
♯ and using induction hypothesis, we have

(Z2 + P ) ◦ τ (1)
♯ = (Z2 + P ) ◦ τ (1) ◦ φ1

χ = Z2 ◦ φ1
χ +

2r+2p∑

n=2p+2

Q(n) ◦ φ1
χ +R ◦ φ1

χ.
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Now since φt
χ is a smooth function, applying Taylor expansion between 0 and 1 gives

(Z2 + P ) ◦ τ (1)
♯

= Z2 + {χ,Z2} +
mr∗ +1∑

k=2

1
k!

adk
χZ2 +

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +2

χ Z2 ◦ φt
χ dt

+
2r+2p∑

n=2p+2

[
Q(n) +

mn∑

k=1

1
k!

adk
χQ

(n) +
∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt

]
+R ◦ φ1

χ

with mn the largest integer such that n+mn(2r∗ − 2) < 2r + 2p + 2. From ( 25 ) we have

adk+1
χ Z2 = {χ, {χ, · · · , {χ,Z2} · · · }}︸ ︷︷ ︸

k+1 times

= − {χ, {χ, · · · , {χ,L} · · · }}︸ ︷︷ ︸
k times

= −adk
χL.

So, we write

(Z2 + P ) ◦ τ (1)
♯

= Z2 + {χ,Z2} −
mr∗∑

k=1

1
(k + 1)!

adk
χL−

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ dt

+
2r+2p∑

n=2p+2

[
Q(n) +

mn∑

k=1

1
k!

adk
χQ

(n) +
∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt

]
+R ◦ φ1

χ

= Z2 +
2r∗∑

n=2p+2

Q(n) + {χ,Z2} +
2r+2p∑

n=2r∗+1

Q(n) +
2r+2p∑

n=2p+2

mn∑

k=1

1
k!

adk
χQ

(n) −
mr∗∑

k=1

1
(k + 1)!

adk
χL

+R ◦ φ1
χ −

∫ 1

0

(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ dt+

2r+2p∑

n=2p+2

∫ 1

0

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ dt.

Using the induction hypothesis and Proposition 3.13 , it is easy to see that Q(n) is of order
n, {χ,Z2} is of order 2r∗, adk

χQ
(n) is of order n + 2k(r∗ − 1) > 2r∗ and adk

χL is of order
2r∗ + 2k(r∗ − 1) > 2r∗. As a result, after reordering it would make sense to set:

for n < 2r∗, Q
(n)
♯ = Q(n),

for n = 2r∗, Q
(n)
♯ = Q(n) + {χ,Z2},

for n > 2r∗, Q
(n)
♯ =

∑

n∗,k
n∗+2k(r∗−1)=n

1
k!

adk
χQ

(n∗) −
∑

k
2r∗+2k(r∗−1)=n

1
(k + 1)!

adk
χL,

and

R♯ = R ◦ φ1
χ −

∫ 1

0


(1 − t)mr∗ +1

(mr∗ + 1)!
admr∗ +1

χ L ◦ φt
χ −

2r+2p∑

n=2p+2

(1 − t)mn

mn!
admn+1

χ Q(n) ◦ φt
χ


 dt.

Notice that Q(2r∗)
♯ = Q(2r∗) +{χ,Z2} = Q(2r∗) −L = U which commutes with the low actions

by construction (we already checked this property in the beginning of the proof). Hence, for
n ≤ 2r∗, Q(n)

♯ ∈ H n
M commutes with the low actions and we have

n < 2(r∗ + 1) and ℓ ≤ N =⇒ {Iℓ, Q
(n)
♯ } = 0.

Moreover, we have the bound

‖Q(n)
♯ ‖

H
≤ ‖Q(n)‖

H
≤ C(logM)b.
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For n > 2r∗, we use Proposition 3.13 and the estimate on ‖χ‖
C

to obtain that

‖adk
χQ

(n∗)‖
H

.r (logM)k‖χ‖k
C

‖Q(n∗)‖
H

.r β
−k
r∗,NC

k+1(logM)k+b(k+1).

Since adk
χL and adk

χQ
(n∗) enjoy the same estimate when 2r∗ + 2k(r∗ − 1) = n and since k ≤

2r+2p+2, we deduce that for C♯ &r β
−2r−2p−2
r∗,N C2r+2p+3 and b♯ ≥ (2r+2p+2)+b(2r+2p+3)

‖Q(n)
♯ ‖

H
≤ C♯(logM)b♯ .

• Fifth, we still have to control the remainder term. For this we fix u ∈ B
CJ1,MK(0, 2ε♯

0) and
start by checking that ∇(R ◦ φ1

χ) ∈ h−1/2. By composition, we have

∇(R ◦ φ1
χ)(u) = (dφ1

χ(u))∗(∇R) ◦ φ1
χ(u).

We know from Lemma 3.12 that ‖(dφ1
χ(u))∗‖

L (h−1/2)
= ‖dφ1

χ(u)‖
L (h1/2)

≤ 2. Also, since

(∇R) ◦ φ1
χ ∈ h−1/2 , then (dφ1

χ)∗(∇R) ◦ φ1
χ ∈ h−1/2. Now we turn to controlling this term in

h−1/2. Using the induction hypothesis and ‖φ1
χ(u)‖

h1/2 ≤ 2‖u‖h1/2 , we get

‖∇(R ◦ φ1
χ)(u)‖

h−1/2 = ‖(dφ1
χ(u))∗(∇R) ◦ φ1

χ(u)‖
h−1/2

≤ ‖(dφ1
χ(u))∗‖

L (h−1/2)
‖(∇R) ◦ φ1

χ(u)‖
h−1/2

≤ 2C(logM)b‖φ1
χ(u)‖2r+2p

h1/2

≤ 4r+pC(logM)b‖u‖2r+2p
h1/2 .

Next, we estimate the terms of R♯ inside the integral. We denote rn := n+(mn +1)(2r∗ −2),
and we notice that admn+1

χ Q(n) is a smooth function belonging to H rn . Thus, arguing as
above and using Proposition 3.9 and Proposition 3.13 , we notice that we have for 2p+ 2 ≤
n ≤ 2r + 2p and t ∈ [0, 1] we establish

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2

≤ 2‖∇(admn+1
χ Q(n)) ◦ φt

χ(u)‖
h−1/2

.r (logM)rn/2‖admn+1
χ Q(n))‖

H
‖φt

χ(u)‖rn−1

h1/2

.r (logM)rn/2(logM)mn+1‖Q(n)‖
H

‖χ‖mn+1
C

‖φt
χ(u)‖rn−1

h1/2

.r (logM)rn/2(δ−1 logM)mn+1(C(logM)b)mn+2‖φt
χ(u)‖rn−1

h1/2

.r (βr∗,N)−mn−1Cmn+2(logM)mn+1(logM)rn/2(logM)b(mn+2)‖φt
χ(u)‖rn−1

h1/2 .

Using the fact that mn ≤ 2r + 2p + 2, rn ∈ J2(r + p+ 1), 4r + 4p + 2)K 12 and ‖u‖h1/2 ≤ 2,

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2 .r C♯(logM)b♯‖u‖2r+2p

h1/2

where C♯ &r (βr∗,N )−2r−2p−3C2r+2p+4 and b♯ ≥ 4(r + p + 1) + 2b(r + p + 2). We can also
check using similar calculations that ‖∇(admr∗ +1

χ L ◦ φt
χ)(u)‖

h−1/2 enjoys the same bound as
‖∇(admn+1

χ Q(n) ◦ φt
χ)(u)‖

h−1/2 . Hence, putting the results together we conclude that

‖∇R♯(u)‖h−1/2 ≤ ‖∇(R ◦ φ1
χ)(u)‖

h−1/2 +
∫ 1

0

( 1
(mr∗ + 1)!

‖∇(admr∗ +1
χ L ◦ φt

χ)(u)‖
h−1/2

+
2r+2p∑

n=2p+2

1
mn!

‖∇(admn+1
χ Q(n) ◦ φt

χ)(u)‖
h−1/2

)
dt.

12By definition of mn
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Taking furthermore C♯ &r C and b♯ ≥ b we get that

‖∇R♯(u)‖h−1/2 .r C♯(logM)b♯‖u‖2r+2p

h1/2 .

In order to end the proof, we choose the most optimal constants and thus we set

C♯ ≃r max
(
(K ′

2C)1/(2r∗−2), (βr∗,N )−2r−2p−3C2r+2p+4) and b♯ = 4(r+ p+ 1) + 2b(r+ p+ 2).

5 Proof of the main result

The last part of this paper is dedicated to proving the main result known to be a dynamical
corollary of Theorem 4.1 . Before seeking into the details, I will briefly discuss the global
well-posedness of our model (in the same spirit, see [11]) which is ensured thanks to the
conservation of the Hamiltonian and the mass.

Lemma 5.1. For all ρ > 0, there exist ερ > 0 and Cρ > 0 such that provided ‖V ‖L∞ ≤ ρ,

we have for u ∈ Ĥ1 satisfying ‖u‖
Ĥ1 ≤ Cρερ

Cρ
−1‖u‖2

Ĥ1 ≤ H(u) + ρ‖u‖2
L2 ≤ Cρ‖u‖2

Ĥ1 .

Lemma 5.2. If u ∈ C 0((−T, T ), Ĥ1) solves ( NLS ), then its energy and mass are preserved

∀t ∈ (−T, T ), H(u(t)) = H(u(0)) and ‖u(t)‖2
L2 = ‖u(0)‖2

L2 .

The proofs of the above results use sobolev embeddings and the fact that Ĥ1 is an algebra13.

Consequently, we obtain the global well-posedness of our Schrödinger equation:

Theorem 5.3. (Global Well-posedness) Let ρ > 0 and ερ > 0 be given by Lemma 5.1 .
Provided that ε := ‖u(0)‖

Ĥ1 ≤ ερ and ‖V ‖
Ĥ1 ≤ ρ, there exists a unique global solution

u ∈ C 0
b (R, Ĥ1) ∩ C 1(R, Ĥ−1) to ( NLS ).

Proof. The idea of the global well-posedness is quite standard: the local well-posedness is
acheived by a fixed point argument. From this, we deduce Theorem 5.3 by extension using
the boundedness of ‖u(t)‖

Ĥ1 .

Note that Lemma 5.2 can now be extended for all t ∈ R. As a corollary of Lemma 5.1 and
the Hamiltonian and mass conservation, the norm of the solution is bounded for all t ∈ R

‖u(t)‖2
Ĥ1 ≤ Cρ

(
H(u(t)) + ρ‖u(t)‖2

L2

)
= Cρ

(
H(u(0)) + ρ‖u(0)‖2

L2

)
≤ C2

ρ‖u(0)‖2

Ĥ1 ≤ C2
ρε

2.

Proof of Theorem 1.1 To start, I would like to recall that we have ‖u(t)‖
Ĥs ≃ ‖u(t)‖hs/2.

Now, we consider ‖u(0)‖
Ĥ1 ≤ ερ where ερ is given in Lemma 5.1 . We focus on the variations

of the low modes. We fix j∗ ≥ 1 such that j∗ = N and we aim at estimating |uj∗(t)|2 . To
apply the Birkhoff Normal Form Theorem (see Theorem 4.1 ), we need to make a truncation
up to a level M in order to restrict our work to the finite dimensional situation of the theorem.
To this matter, we let

M = ε−4r+2.

13This is due to Proposition 2.1.1 in [1] and the continuous inclusions Ĥ1(R) ⊂ H1(R) ⊂ L∞(R).
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Furthermore, we consider the eigenspaces of T + V

Ej = ker(T + V − Λj) = Span(ψj) where L2(R) =
⊕

j≥1

Ej ,

and we introduce Π≤M the orthogonal projection on
⊕

j≤M
Ej. In other words, we denote

Π≤M :=
∑

j≤M
Πj where Πj is the orthogonal projection on Ej . We set Π>M := IdL2 − Π≤M ,

u≤M := Π≤Mu and F>M (t) := ±Π≤M

(
−
∣∣∣u≤M

∣∣∣
2p
u≤M + |u|2p u

)
. Notice that if u solves

the Schrodinger equation ( NLS ), then u≤M solves the equation

i∂tu
≤M = Π≤M (i∂tu)

= Π≤M ((T + V )u± |u|2p u)

= (T + V )u≤M ± Π≤M (|u|2p u) ± Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)
∓ Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)

= (T + V )u≤M ± Π≤M

(∣∣∣u≤M
∣∣∣
2p
u≤M

)
+ F>M (t). (28)

Our goal is to ensure that the remainder term F>M (t) is small in this reduction to finite
dimension. Thus, we aim to prove that it is negligible provided that M is large enough (of
order ε−4r+2). For this, we write

‖F>M (t)‖L2 =
∥∥∥Π≤M

(
|u|2p u−

∣∣∣u≤M
∣∣∣
2p
u≤M

)∥∥∥
L2

≤
∥∥∥ |u|2p u−

∣∣∣u≤M
∣∣∣
2p
u≤M

∥∥∥
L2

with |u|2p u =
∣∣∣u− u≤M + u≤M

∣∣∣
2p

(u− u≤M + u≤M) =
∣∣∣u≤M + u>M

∣∣∣
2p

(u≤M + u>M ). Then,

using the Mean Value Inequality, Holder’s Inequality, the Sobolev embeddings Ĥ1 →֒ H1 →֒
L6p and the fact that H1/2 injects continuously in L6, we get

‖F>M (t)‖L2 ≤
∥∥∥
∣∣∣u≤M + u>M

∣∣∣
2p

(u≤M + u>M ) −
∣∣∣u≤M

∣∣∣
2p
u≤M

∥∥∥
L2

.
∥∥∥(u≤M + u>M − u≤M )

(∣∣∣u≤M + u>M
∣∣∣
2p

+
∣∣∣u≤M

∣∣∣
2p
)∥∥∥

L2

. ‖u>M ‖L6

(∥∥∥
∣∣∣u≤M + u>M

∣∣∣
2p ∥∥∥

L3
+
∥∥∥
∣∣∣u≤M

∣∣∣
2p ∥∥∥

L3

)

. ‖u>M ‖L6

(
‖u≤M + u>M ‖2p

L6p + ‖u≤M ‖2p
L6p

)

. ‖u>M ‖
Ĥ1/2‖u‖2p

Ĥ1
.

Since M > N, then M > j∗ and we have |uj∗ |2 =
∣∣∣u≤M

j∗

∣∣∣
2
. Moreover, we obtain

‖u>M ‖
Ĥ1/2 .M−1/2‖u− u≤M‖h1/2 .M−1/2‖u‖

Ĥ1 .

Therefore, recalling that M = ε−4r+2, we deduce that for all t ∈ R we get

‖F>M (t)‖L2 .M−1/2‖u‖2p+1

Ĥ1
. ε2r+2p.

We are now interested in writing ( 28 ) as a Hamiltonian system. Indeed, since (ψj)j≥1 is a

basis of L2, we can identify
⊕

j≤M
Ej with R

J1,MK, and we can easily check that equation ( 28 )

can be written as

i∂tu
≤M = ∇H(u≤M ) + F>M (t) where H = Z2︸︷︷︸

linear part

+ P︸︷︷︸
perturbation

.
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In particular, if we express u in terms of the eigenfunctions as
∑

j∈J1,MK
ujψj, we obtain

H(u) =
1
2

∫

R

|∂xu|2 + x2 |u|2 + V |u|2 dx± 1
2p + 2

∫

R

|u|2p+2 dx

=
1
2

∫

R

u(T + V )udx+
1

2p+ 2

∫

R

|u|2p+2 dx

=
1
2

∫

R

( ∑

j∈J1,MK

ujψj
)
(T + V )

( ∑

j∈J1,MK

ujψj
)

dx+
1

2p+ 2

∫

R

∣∣ ∑

j∈J1,MK

ujψj

∣∣2p+2 dx

=
1
2

∑

j∈J1,MK

wjujuj

∫

R

ψ2
j dx

± 1
2p+ 2

∑

j∈J1,MK2p+2

(∫

R

ψj1 · · ·ψj2p+2 dx
)
uj1 · · · ujp+1ujp+2 · · · uj2p+2

=
1
2

∑

j∈J1,MK

wj |uj|2

︸ ︷︷ ︸
Z2(u)

± 1
2p+ 2

∑

j∈J1,MK2p+2

Pjuj1 · · · ujp+1ujp+2 · · · uj2p+2

︸ ︷︷ ︸
P (u)

.

Clearly P is a Hamiltonian polynomial of degree 2p+ 2. Moreover, using Hölder’s inequality
and the fact that ‖ψj‖Lq . 1 for all q ≥ 2, we get that14

|Pj | = ‖ψj1 · · ·ψj2p+2‖
L1 ≤ ‖ψj1‖L2p+2 · · · ‖ψj2p+2‖

L2p+2 . 1.

At this stage, we are able to apply the Birkhoff Normal Form Theorem (recall Theorem 4.1 ).
We obtain three positive constants C, b, and ε0 as well as two symplectic maps τ (0) and τ (1)

such that the theorem holds. Note that if Cρε ≥ 1/(C(logM)b), then we obtain
∣∣∣|uj∗(t)|2 − |uj∗(0)|2

∣∣∣ ≤ |uj∗(t)|2 + |uj∗(0)|2 ≤ ‖u(t)‖2
h1/2 + ‖u(0)‖2

h1/2 ≤ (C2
ρ + 1)ε2.

On the other hand, we have ε2 = ε2(CρC(logM)b)2p 1
(CρC(log M)b)2p ≤ ε2(CρC(logM)b)2pε2p,

with (logM)2bp .r,ν N
2bpε−ν for ν > 0. Thus, we conclude the result

∣∣∣|uj∗(t)|2 − |uj∗(0)|2
∣∣∣ .ρ,r,N,ν ε

2p+2−ν .

Consequently, we restrict the constants to the case Cρε < 1/(C(logM)b), and thus

∀t ∈ R, ‖u≤M (t)‖h1/2 ≤ Cρε <
1

C(logM)b
< ε0.

Therefore, it would make sense to consider the new variable given by v := τ (0) ◦ u≤M . Now,
we can see that by definition of the differential and by using Lemma A.3 we get

∂tv(t) =
d(τ (0) ◦ u≤M (t))

dt
=
(
∇τ (0)(u≤M ), ∂tu

≤M
)

ℓ2

= dτ (0)(u≤M )(∂tu
≤M ) = dτ (0)(u≤M )(−i∇H(u≤M ) − iF>M (t))

= −i(dτ (1) ◦ τ (0)(u≤M ))∗ ∇H(u≤M ) − idτ (0)(u≤M )(F>M (t)).

Since the diagram commutes, τ (1) ◦ τ (0)(u≤M ) = u≤M , so we get τ (1)(v) = u≤M . Then

∂tv(t) = −i(dτ (1)(v))∗ (∇H) ◦ τ (1)(v) − idτ (0)(u≤M )(F>M (t))

= −i
(
∇(H ◦ τ (1))(v(t)) + dτ (0)(u≤M )(F>M (t))

)
.

14The idea is that we need to control Pj in order to control the interaction between the modes via the
nonlinear term.
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Consequently, using ( 23 ) we obtain

∂tv(t) = −i
(
∇(Z2 +Q+R)(v(t)) + dτ (0)(u≤M )(F>M (t))

)
. (29)

Our goal is to estimate ∂t |vj∗(t)|2 in order to apply the Mean Value Inequality. Since |vj∗ |2
is smooth on h−1/2, then by composition we have that t 7→ |vj∗(t)|2 ∈ C 1(R,R) using the
chain rule. So, we differentiate with respect to t and use ( 29 ) to get

∂t |vj∗(t)|2 =
(
i∇ |vj∗ |2 , i∂tvj∗

)
ℓ2

=
(
i∇ |vj∗ |2 ,∇(Z2 +Q+R)(v)

)
ℓ2

+
(
i∇ |vj∗ |2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2

= {|vj∗|2 , Z2(v) +Q(v)} +
(
i∇ |vj∗ |2 ,∇R(v)

)
ℓ2

+
(
i∇ |vj∗ |2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2
.

From Birkhoff Normal Form Theorem and by direct calculations, we can see that since
j∗ = N , we have {|vj∗|2 , Z2(v) +Q(v)} = 0. Thus, using Cauchy–Schwarz, we estimate
∣∣∣∂t |vj∗(t)|2

∣∣∣ ≤
∣∣∣
(
i∇ |vj∗ |2 ,∇R(v)

)
ℓ2

∣∣∣+
∣∣∣
(
i∇ |vj∗|2 ,dτ (0)(u≤M )(F>M (t))

)
ℓ2

∣∣∣

≤ ‖∇ |vj∗ |2 ‖h1/2‖∇R(v)‖h−1/2 + ‖∇ |vj∗ |2 ‖h1/2‖dτ (0)(u≤M )(F>M (t))‖h−1/2

≤ 2‖vj∗‖h1/2

(
‖∇R(v)‖h−1/2 + ‖dτ (0)(u≤M )(F>M (t))‖h−1/2

)
.

Estimate of ‖vj∗‖h1/2: Since τ (0) is close to the identity, then

‖v‖h1/2 ≤ ‖u‖h1/2 + ‖τ (0)u− u‖h1/2 ≤ ‖u‖h1/2 +

(
‖u‖h1/2

Cρε

)2p

‖u‖h1/2 ≤ 2‖u‖h1/2 ≤ 2ε0.

Estimate of ‖∇R(v)‖h−1/2: By Theorem 4.1 , we have for v ∈ B
CJ1,MK(0, 2ε0)

‖∇R(v)‖h−1/2 . (logM)b‖v‖2r+2p

h1/2 . (logM)bε2r+2p.

Estimate of ‖dτ (0)(u≤M )(F>M (t))‖h−1/2: Again, by Theorem 4.1 , we obtain

‖dτ (0)(u≤M )(F>M (t))‖h−1/2 ≤ ‖dτ (0)(u≤M )‖
L (h−1/2)‖F>M (t)‖h−1/2 . 4rε2r+2p.

As a consequence, combining all the above estimations we obtain
∣∣∣∂t |vj∗(t)|2

∣∣∣ .r ε((logM)bε2r+2p + ε2r+2p) .r (logM)bε2r+2p+1.

Now, we apply the Mean Value Inequality on [0, t]:

|t| < ε−2r+1 =⇒
∣∣∣|vj∗|2 − |vj∗(0)|2

∣∣∣ ≤ |t|
∣∣∣∂t |vj∗(t)|2

∣∣∣ .r ε
−2r+1(logM)bε2r+2p+1 .r (logM)bε2p+2.

In order to conclude, we need to obtain a similar result for |uj∗(t)|2. Notice that
∣∣∣|uj∗(t)|2 − |uj∗(0)|2

∣∣∣ ≤
∣∣∣|uj∗(t)|2 − |vj∗(t)|2

∣∣∣+
∣∣∣|vj∗(t)|2 − |vj∗(0)|2

∣∣∣ (30)

+
∣∣∣|vj∗(0)|2 − |uj∗(0)|2

∣∣∣ .

In addition to this, we know that for all t ∈ R we have
∣∣∣|uj∗(t)|2 − |vj∗(t)|2

∣∣∣ ≤ ‖u≤M (t) − v(t)‖ℓ2(‖v(t)‖ℓ2 + ‖u≤M (t)‖ℓ2)

≤ ‖u≤M (t) − v(t)‖h1/2(‖v(t)‖h1/2 + ‖u≤M (t)‖h1/2)
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with

‖u≤M (t) − v(t)‖h1/2 ≤
(

‖u≤M ‖h1/2

ε0

)2p

‖u≤M ‖h1/2 . (logM)2bpε2p+1.

Finally, replacing in ( 30 ) and using that (logM)2bp .r,ν N
2bpε−ν for ν > 0, we deduce

∣∣∣|uj∗(t)|2 − |uj∗(0)|2
∣∣∣ .r (logM)2bpε2p+2 .r,N,ν ε

2p+2−ν .

A Appendix

Here are few painless results.

Lemma A.1. For a given weight P ∈ Ĥ3 with Pk ∈ R
∗
+, the assumptions ( 13 ) are satisfied.

Proof. We start by showing that almost surely V ∈ Ĥ1 ∩ C2. Indeed,

‖V ‖2
Ĥ3 ≃

∑

j≥1

〈j〉3
(
V, hj(·

√
2)
)2

L2
=
∑

j≥1

〈j〉3



∑

k≥1

gkhk(·
√

2)Pk, hj(·
√

2)




2

L2

=
∑

k≥1

〈k〉3P 2
k g

2
k.

Setting X =
∑

k≥1
〈k〉3P 2

k g
2
k and recalling that gk ∼ N (0, 1), we notice that

E[X] = E
[∑

k≥1

〈k〉3P 2
k g

2
k

]
=
∑

k≥1

E[〈k〉3P 2
k g

2
k] =

∑

k≥1

〈k〉3P 2
k E[(gk − E[gk])2]︸ ︷︷ ︸

Var(gk)

= ‖P‖2
Ĥ3 .

Since P ∈ Ĥ3, we deduce that almost surely, X is finite and V belongs to Ĥ3 ⊂ Ĥ1.
Furthermore, using Sobolev embeddings we have Ĥ3 ⊂ H3 ⊂ C2 and thus V ∈ C2. We turn
next to proving the second assumption. For P ∈ Ĥ3, we denote by K > 0 the sum of the
convergent series

∑
k≥1

〈k〉(log(k + 1))2P 2
k . Then for a fixed λ > 0, we have

P( ‖V ‖
Ĥ1 < λ) ≥ P( ∀k ≥ 1, |gk| < K−1/2λ log(k + 1))

=
∏

k≥1

P( |gk| < K−1/2λ log(k + 1))

=
∏

k≥1

[1 − P( |gk| ≥ K−1/2λ log(k + 1))]

=
∏

k≥1

[
1 − 2√

2π

∫ +∞

K−1/2λ log(k+1)
e−g2

k/2 dgk

]

=
∏

k≥1

[
1 − 2√

2π

∫ +∞

0
e−(gk+K−1/2λ log(k+1))2

/2 dgk

]

≥
∏

k≥1

[
1 − 2√

2π
e−λ2(log(k+1))2/2K

∫ +∞

0
e−g2

k
/2 dgk

]

≥
∏

k≥1

[
1 − e−λ2(log(k+1))2/2K

]

with ∑

k≥1

e−λ2(log(k+1))2/2K =
∑

k≥1

(k + 1)−λ2 log(k+1)/2K .λ

∑

k≥1

〈k〉−2

which converges. Finally, since 0 < e−λ2(log(k+1))2/2K < 1, we directly conclude that

∏

k≥1

[
1 − 2√

2π
e−λ2(log(k+1))2/2K

]
> 0.
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Lemma A.2. There exists K > 1 such that the following estimate holds

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 ≤ K(r∗ + 1) + |Ωj,l(V )| .

Proof. From Lemma 2.3 , we deduce that for all j ≥ 1, there exists C > 0 such that

|wj − j| ≤ Cj−1/12 ≤ C.

Now, consider the decomposition

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉
= (wj1 + · · · + wjr∗

− wl1 − · · · − wlr∗
)

+
[〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 − (j1 + · · · + jr∗ − l1 − · · · − lr∗)

]

+
[
(j1 − wj1) + · · · + (jr∗ −wjr∗

) − (l1 − wl1) − · · · − (lr∗ − wlr∗
)
]
.

Using the fact that for all y ≥ 0, we have |〈y〉 − y| ≤ 1, we directly establish that

〈j1 + · · · + jr∗ − l1 − · · · − lr∗〉 ≤ 1 +
r∗∑

n=1

(|wjn − jn| + |wln − ln|)
︸ ︷︷ ︸

≤cr∗

+ |Ωj,l(V )|

≤ max(1, c)(r∗ + 1) + |Ωj,l(V )| .

Lemma A.3. If (dτ (1) ◦ τ (0))∗ denotes the adjoint of dτ (1) ◦ τ (0), then we have

dτ (0)i = i(dτ (1) ◦ τ (0))∗.

Proof. Let u, v and w ∈ C
J1,MK. Since τ (1) is symplectic (recall Definition 3.4 ), we have

(
(dτ (1)(u))∗i(dτ (1))(u)(v), w

)
ℓ2

=
(
i(dτ (1))(u)(v), (dτ (1))(u)(w)

)
ℓ2

= (iv, w)ℓ2 .

This implies that for all u ∈ B
CJ1,MK(0, ε0), we get (dτ (1)(u))∗i(dτ (1))(u) = i. In particular

for u = τ (0). Now, since the diagram in Theorem 4.1 commutes, we obtain

((dτ (1)) ◦ τ (0))dτ (0) = d(τ (1) ◦ τ (0)) = d(id
CJ1,MK) = id

CJ1,MK . (31)

Finally, multiplying (dτ (1)(u))∗i(dτ (1))(u) = i by dτ (0) and using ( 31 ), we deduce

i(dτ (0)) = (dτ (1) ◦ τ (0))∗i((dτ (1)) ◦ τ (0))dτ (0) = (dτ (1) ◦ τ (0))∗i(id
CJ1,MK) = (dτ (1) ◦ τ (0))∗i.
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