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Abstract 

   Efficient numerical algorithm for stochastic differential equation has been an important 

object in the research of statistical physics and mathematics for a long time. In this paper we 

study the highly accurate numerical algorithm of the overdamped Langevin equation. In 

particular, our interest is the behaviour of the numerical schemes for solving the overdamped 

Langevin equation in the harmonic system. Three algorithms are obtained for overdamped 

Langevin equation, from the large friction limit of the schemes for underdamped Langevin 

dynamics. We derive the explicit expression of the stationary distribution of each algorithm by 

analysing the discrete time trajectory, for both one-dimensional and multi-dimensional cases. 

The accuracy of the stationary distribution of each algorithm is illustrated by comparing to the 

exact Boltzmann distribution. Our results demonstrate that, the “BAOA-limit” algorithm 

generates the exact distribution for the harmonic system in the canonical ensemble, within the 

stable regime of the time interval. The other algorithms do not produce the exact distribution 

of the harmonic system. 
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1.  Introduction 

As the first published stochastic differential equation, Langevin equation1, 2 plays an 

important role in statistical mechanics and mathematical physics. It offers a heuristic 

mathematical description of the Brownian motion3-5, and becomes a widely used tool in the 

fields of natural science, mathematics and social science6. Specifically, the Boltzmann 

distribution in the canonical ensemble can be obtained from the stationary state distribution of 

Langevin equation7. Hence, Langevin equation is an efficient approach to the problem of 

canonical sampling in statistical mechanics. 

In this paper, we focus on a certain type of Langevin equation, called overdamped Langevin 

equation. It can be seen as the overdamped limit of the usual underdamped Langevin equation8. 

For the system with potential energy U  and mass matrix M , the overdamped Langevin 

equation takes the form 

 ( ) ( )1 1 21 2d U t
dt γ βγ

− −= − ∇ +
x M x M η  . (1) 

Here γ  is the friction coefficient, 1 Bk Tβ =  with the Boltzmann constant Bk  and the 

temperature T, and ( )tη  is the white noise random vector associated with the Wiener process 

satisfying  

 ( ) ( ) ( ) ( )0,  i i j ijt t t t tη η η δ δ′ ′= = −   (2) 

or equivalently 

 ( ) ( ) ( ) ( )0,  Tt t t t tδ′ ′= = −η η η 1  . (3) 

1  denotes the identity matrix hereinafter. Consider the probability density function of the 

system ( ), tρ x , associated with Eq. (1). The time-dependent probability density ( ), tρ x  of the 

system evolves according to the well-known Fokker-Planck equation 6, 7, 9-12 



 ( ) ( ) ( )1 1 ,1 1, ,
tUt t

t
ρ

ρ ρ
γ βγ

− − ∂ ∂ ∂ ∂
= ⋅ + ∂ ∂ ∂ ∂ 

x
x M x M

x x x
 . (4) 

The relevant time evolution operator is then  

 ( ) ( ) ( )1 11 1U
γ βγ

− − ∂ ∂ ∂
= ⋅ + ∂ ∂ ∂ 

M M
x x x



 L  . (5) 

( ), tρ x  evolves from an initial distribution (e.g., ( ) ( )0,0ρ δ= −x x x ) to a stationary state 

( ),ρ ∞x , which satisfies ( ), 0ρ ∞ =xL . The stationary distribution is usually called the 

invariant distribution in the mathematical literatures13, 14. We denote the stationary distribution 

as ( )stρ x  in this paper. In our case, ( )stρ x  is simply the Boltzmann distribution 

 ( ) ( )st
1 exp U
N

ρ β= −  x x   (6) 

where N is the normalization constant. Then one can see that the term 1 22
βγ

−M  associated 

with ( )tη  in Eq. (1) fulfils the fluctuation-dissipation relation, which guarantees that the 

overdamped Langevin equation generates the Boltzmann distribution in the stationary state. 

Therefore, overdamped Langevin equation can be an effective tool to sample the equilibrium 

canonical ensemble. 

The aim of this work is to study the stationary distributions of the algorithms for numerically 

solving the overdamped Langevin equation. Various numerical algorithms for overdamped 

Langevin dynamics (also called Brownian dynamics) have been proposed in previous works 8, 

13-17. Systematic errors arise from the finite time interval t∆  of the numerical algorithms. Our 

interest is the exact solution of the stationary distribution with finite t∆ , in the harmonic system. 

In Section 2, we introduce three algorithms based on the splitting method of the integrators for 

underdamped Langevin equation. In Section 3, the exact stationary distribution of each 

algorithm in one-dimensional harmonic system is derived. We employ the stochastic analysis 



of the discrete time trajectory in the configurational space. The extension of the results to the 

multi-dimensional harmonic system is done in Section 4, by making use of the normal mode 

coordinate transformation. The accuracy of the stationary distribution generated from each 

algorithm is illustrated. Conclusions are outlined in Section 5. 

 

2.  Numerical algorithms 

First we recall the splitting method to construct the integrator of underdamped Langevin 

equation by Leimkuhler et al.13,  
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0
0

2 ( )0

d
dt

Ud t
dt

γγ
β

−
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where γ  is the friction coefficient, the random vector ( )tη  satisfies the conditions in Eq. (3) 

and “O” represents the Ornstein-Uhlenbeck 18, 19 part. Each of the three parts of underdamped 

Langevin equation can be solved “exactly”, and the integrator can be obtained from a certain 

composition of these three parts. As an example, BAOAB denotes the integrator of the order 

of composition ( )1 1 1 1B A O A B
2 2 2 2

t t t t tδ δ δ δ δ       
       
       

, where we use tδ  as the time 

interval for the underdamped Langevin dynamics. It is straightforward to verify that 

( )1 1B A B
2 2

t t tδ δ δ   
   
   

 is the famous velocity-Verlet algorithm20 for integrating the 

Hamiltonian equation. Alternative splitting methods which divide the underdamped Langevin 

equation into two parts have also been discussed21, 22. Among the integrators constructed from 

the splitting methods, BAOAB scheme has been shown to produce the most accurate stationary 

distribution in the configurational space13, 21-28. Recently, a scheme named leap-flog “middle” 

is studied29, 30. This scheme is equivalent to BAOA in the stationary state and leads to the same 

configurational distribution with that of BAOAB. The numerical algorithms of overdamped 



Langevin equation considered in this paper can be obtained from the underdamped Langevin 

integrators constructed from Eq. (7). 

The BAOA scheme of underdamped Langevin dynamics is expressed as 
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with the order ( ) ( )1 1B A O A
2 2

t t t tδ δ δ δ   
   
   

 in a time step. Here 1n+μ  is a standard normal 

random vector. The random vector in each time step is independent. Arranging Eq. (8) into a 

compact expression leads to 
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In choosing the overdamped limit γ = +∞ , the momentum turns to be a random vector from 

the Maxwell distribution, i.e., 1 2
1 1

1
n nβ+ +=p M μ . Then the update of the configurational 

variable in a time step becomes 

 ( ) ( )
2

1 1 2
1 1

1
2 2n n n n n
t tUδ δ

β
− −

+ += − ∇ + +x x M x M μ μ  . (10) 

Note that the friction coefficient and time interval of overdamped Langevin equation are γ  and 

t∆ , respectively. If we take the time interval of underdamped Langevin dynamics as 

2 ttδ
γ
∆

= , Eq. (10) converts into 



 ( ) ( )1 1 2
1 12n n n n n

t tU
γ βγ

− −
+ +

∆ ∆
= − ∇ + +x x M x M μ μ  , (11) 

which is a numerical solution of overdamped Langevin equation in a time interval t∆ . For 

convenience, we call this algorithm “BAOA-limit”. Remark that BAOA-limit is non-

Markovian owing to the correlation between the stochastic part 1n n++μ μ  in a couple of time 

steps. This algorithm was first proposed in Ref. 13 by the overdamped limit of BAOAB, and 

rederived from the postprocessed integrators in Ref. 15. It was further studied from the 

perspective of the high accuracy for the stationary distribution8, 14, 17, 23. Our analysis here 

clearly shows the equivalence of BAOA with BAOAB in the configurational space. 

Consider the Euler-Maruyama method (EM), which is the most common numerical 

algorithm for overdamped Langevin dynamics. The update of the configurational variable in a 

time step reads 

 ( )1 1 2
1

2
n n n n

t tU
γ βγ

− −
+

∆ ∆
= − ∇ +x x M x M μ  . (12) 

Using the analysis similar to that of BAOA-limit, one can verify that EM is actually OBAB-

limit, also in choosing γ = +∞  and 2 ttδ
γ
∆

= . In the same overdamped limit condition, 

OABA-limit algorithm has also been introduced in Ref. 16. OABA-limit takes the form of   

 1 1 2 1 2
1

2
2n n n n n

t t tU
γ βγ βγ

− − −
+

 ∆ ∆ ∆
= − ∇ + +  

 
x x M x M μ M μ  . (13) 

EM and OABA-limit are Markovian.  

In the rest of this paper, we compare the long-time behaviour of BAOA-limit [Eq. (11)], EM 

[Eq. (12)] and OABA-limit [Eq. (13)] in the harmonic system. The numerical stationary 

distributions of these three algorithms are explicitly derived, and the stable conditions for t∆  

are verified. 

 



3.  Numerical stationary distributions in one-dimensional harmonic system 

Exact solutions for the probability distribution of stochastic numerical algorithm are rare. 

Harmonic system is one of the exactly solvable models in statistical physics. In the one-

dimensional harmonic system ( ) 2 21
2

U x m xω=  where ω  is the frequency, the force is simply 

linear ( ) 2U x m xω−∇ = − . The overdamped Langevin equation Eq. (1) for this system is now 

 ( )
2

2 2dx x t
dt m

ω η
γ βγ

= − +  . (14) 

The Fokker-Planck equation Eq. (4) becomes 

 ( ) ( ) ( )2 ,1, ,
x t

x t x x t
t x m x

ρωρ ρ
γ βγ

∂ ∂ ∂
= ⋅ + ∂ ∂ ∂ 

 . (15) 

Both Eq. (14) and Eq. (15) can be exactly solved. We treat ( )tη  as a “function” of t, then the 

explicit expression of the solution for Eq. (14) can be obtained 

 ( )
( )

( )
22
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= + ∫  (16) 

with the initial condition 0x . The Wiener process guarantees that 
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normal random variable. Therefore, the probability distribution of ( )x t  is the Gaussian 

distribution with the mean 
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−
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∫ ∫ ∫

∫   (17) 



The time-dependent probability density is then 

 ( )
2
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2
2

2
022

1 1, exp
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12 1

t

tt

mx t m x e x

ee

ω
γ

ωω
γγ
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π
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−−

    = − − 
     −  −
 
 

 . (18) 

One can easily examine that ( ),x tρ  in Eq. (18) is the solution of the Fokker-Planck equation 

Eq. (15) with the initial condition ( ) ( )0,0x x xρ δ= − . As expected, the long-time limit t →∞  

of ( ),x tρ  leads to the Boltzmann distribution 

 ( )
2

2 2
st

1exp
2 2
mx m xβ ωρ β ω
π

 = −  
 . (19) 

Now we turn to the stationary distributions for the numerical algorithms with a finite time 

interval t∆ . The discrete time evolution of BAOA-limit algorithm in a time interval [Eq. (11)] 

is now 

 ( )
2

1 11
2n n n n

t tx x
m

ω µ µ
γ βγ+ +

 ∆ ∆
= − + + 
 

 . (20) 

The discrete time trajectory begins from the initial condition 0x , then it is straightforward to 

show 

 ( )
12 21

0 1
0

1 1
2

n n jn

n j j
j

t t tx x
m

ω ω µ µ
γ βγ γ

− −−

+
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= − + − +   
   

∑  . (21) 

Rearranging Eq. (21) produces  
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       ∆ ∆ ∆ ∆ + − + − + − +       
         

∑
 (22) 

The configurational space point nx  at every step of the trajectory is a linear combination of 

standard normal random variables jµ , thus nx  satisfies the Gaussian distribution. Denote this 



probability distribution as ( )n xρ . Since ( )n xρ  is a Gaussian distribution, it is determined 

directly by the mean nx  and the variance ( )2
n nx x− . From Eq. (22) it is easy to obtain 

the mean and the variance 

 
2

01
n

n
tx xω

γ
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 , (23) 
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 (24) 

Taking the long-time limit n →∞  we expect ( )n xρ  will approach to the stationary 

distribution of BAOA-limit. It is obvious that the stationary distribution exists when the stable 

condition 
2

1 1tω
γ
∆

− <  is satisfied, i.e.,  

 
2

2tω
γ
∆

<  . (25) 

Within this stable regime of t∆ , the long-time limit of the mean and the variance is simply 

 ( )2

2

10,  
n n

n n nx x x
mβ ω

→∞ →∞

→ − →  . (26) 

The explicit expression for the stationary distribution is then  

 ( )
2

BAOA-limit 2 2
st

1exp
2 2
mx m xβ ωρ β ω
π

 = −  
 , (27) 

which is exactly the Boltzmann distribution Eq. (19) of the system.  



Similar analysis can be applied to EM and OABA-limit. The mean and the variance of 

( )n xρ  for EM is 

 ( )
22 2

2
0 22

1 11 ,  1 1
1

2

n n

n n n
t tx x x x

tm
ω ω

ωγ β ω γ
γ

    ∆ ∆
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The stationary distribution in the long-time limit within the stable regime Eq. (25) is  
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1
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π γ

 ∆
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The result for OABA-limit is  
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m
ω ω ω
γ β ω γ γ

      ∆ ∆ ∆
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and 

 ( )
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st 22

1 1exp
2 12 1
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ωωπ
γγ

 
 
 = −

∆ ∆  −−     

 (31) 

within the stable regime Eq. (25). Obviously, for both EM [Eq. (29)] and OABA-limit [Eq. 

(31)], the infinitesimal time interval limit 0t∆ →  leads to the exact Boltzmann distribution. 

Comparison of the accuracy associated with t∆  of these three algorithms is straightforward. 

BAOA-limit algorithm generates the exact Boltzmann distribution ( )st xρ  even when t∆  is 

finite, as long as the stable condition is satisfied. EM and OABA-limit fail to do so. Numerical 

error of the stationary distribution owing to the finite t∆  is the first order for both EM and 

OABA-limit. The accuracy analysis can be summarized as 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

BAOA-limit
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EM
st st
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st st

,
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1 .

x x

x x t
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=

= × + ∆  
= × + ∆  





  (32) 



We should remark that, Ref. 22 employed a trajectory-based approach to derive the 

numerical stationary distribution in the phase space, of the underdamped Langevin integrator 

in the harmonic system. The analysis of the discrete time overdamped Langevin trajectory in 

this paper can be seen as the extension of the trajectory-based approach for underdamped 

Langevin dynamics.  

 

4.  Results in multi-dimensional harmonic system 

We turn to the general k-dimensional harmonic system ( ) 1
2

TU =x x Hx , where H  is the 

symmetric positive definite Hessian matrix. The discrete time evolution in t∆  of BAOA-limit 

is now 

 ( )1 1 2
1 12n n n n n

t t
γ βγ

− −
+ +

∆ ∆
= − + +x x M Hx M μ μ  . (33) 

One can obtain the configurational space point nx , similar to the expressions in Eqs. (21) and 

(22) for one-dimensional case. Here we employ an alternative approach by using the normal 

mode coordinate transformation. The characteristic frequencies of the normal modes can be 

obtained from the eigenvalues of the matrix 1 2 1 2− −M HM , i.e.,  

 1 2 1 2 2− −  =  M HM T T ω  . (34) 

Here T  is an orthogonal matrix consisting of the eigenvectors of 1 2 1 2− −M HM , and  

 

2
1

2

2
k

ω

ω

 
   =   
  

ω    (35) 

is a diagonal matrix consisting of the eigenvalues with the characteristic frequency iω  for each 

normal mode. Then the normal mode coordinate transformation is  

 1 2T=q T M x  (36) 



and the Hessian matrix H  satisfies 

 1 2 2 1 2T =  H M T ω T M  . (37) 

Rewrite the discrete time evolution Eq. (33) in the normal mode configurational space 

 ( )2
1 12

T
n n n n n

t t
γ βγ+ +

∆ ∆ = − + + q q ω q T μ μ  . (38) 

Denote T
n n=μ T μ  and we find nμ  is still a standard normal random vector. It is easy to verify 

that, the evolution of each degree of normal mode coordinate is independent in Eq. (38). For 

the degree i, the evolution reads  

 ( )
2

, 1 , , , 11
2

i
i n i n i n i n

t tq qω µ µ
γ βγ+ +

 ∆ ∆
= − + + 
 

   , (39) 

which takes the same form of Eq. (20) with a unit mass for the one-dimensional case. Then we 

can directly employ Eq. (27) to give the stationary distribution of iq  

 ( )
2

BAOA-limit 2 2
st

1exp
2 2

i
i i iq qβωρ β ω

π
 = −  

 (40) 

with the stable regime 

 
2

2i tω
γ
∆

<  . (41) 

Since the distribution of each degree of normal mode coordinate is independent, the stationary 

distribution in the normal mode configurational space is then 

 ( ) ( )
2

1 2BAOA-limit 2 2
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1det exp
2 2

k
Tβρ β

π
      = −         

q ω q ω q  . (42) 

By the inverse coordinate transformation 1 2−=x M Tq , we obtain 
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The result demonstrates that BAOA-limit generates the exact Boltzmann distribution in the 

stationary state, when the stable condition of t∆  Eq. (41) is satisfied for each characteristic 

frequency iω .  

The stationary distributions of EM and OABA-limit can be derived using the similar 

technique 

 ( )
1 22

EM 1 1
st

1det exp
2 2 2 2

k
Tt tβρ β

π γ γ
− −       ∆ ∆ = − − −                   

x 1 HM Η x 1 HM Ηx  , (44) 

( )
1 21 12

OABA-limit 1 1
st

1det exp
2 2 2 2

k
Tt tβρ β

π γ γ

− −
− −

       ∆ ∆    = − − −                     
x 1 HM Η x 1 HM Hx . (45) 

For both algorithms, the stable condition is Eq. (41) for each characteristic frequency iω , and 

the infinitesimal time interval limit 0t∆ →  leads to the exact Boltzmann distribution. It is 

trivial to find that the results proposed here for all the algorithms are consistent with that of the 

one-dimensional case when k reduces to 1. The advantage in the long-time behaviour of 

BAOA-limit algorithm is shown clearly. For both EM and OABA-limit, numerical error in the 

stationary distribution is the first order of t∆  in comparison to the exact Boltzmann distribution. 

Therefore, the accuracy of these algorithms is consistent with that of the one-dimensional case 

as shown in Eq. (32). 

 

5.  Conclusions 

The high accuracy of BAOA-limit (or BAOAB-limit) algorithm in the equilibrium 

configurational sampling has been confirmed in previous studies. In this paper, we present the 

evidence for this statement in an exactly solvable system. Within the stable regime of t∆ , the 

numerical stationary distribution generated by BAOA-limit algorithm of the harmonic system 

is exactly the Boltzmann distribution, both for one-dimensional and multi-dimensional cases. 

EM (OBAB-limit) and OABA-limit, the other two algorithms considered here for comparison, 



both lead to the stationary distribution with the first order error of t∆ . To derive the explicit 

expression of the numerical stationary distribution, we employ the stochastic analysis of the 

discrete time trajectory. This method may be extended to other numerical solutions of 

stochastic differential equation. 

Besides in sampling the equilibrium canonical ensemble, overdamped Langevin equation 

can also be employed in the nonstationary process. For example, a conditional overdamped 

Langevin equation for generating transition paths from an initial state to a given final state is 

proposed31-35. Nonstationary distribution of overdamped Langevin equation deserves further 

study. The performance of BAOA-limit algorithm in sampling the transition path ensemble is 

of interest in future works. 
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