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From subexponential distributions to black swan dominance

Alexei Vazquez1, ∗

1Nodes & Links

The shape of empirical distributions with heavy tails is a recurrent matter of debate. There are
claims of a power laws and the associated scale invariance. There are plenty of challengers as well, the
lognormal and stretched exponential among others. Here I point out that, with regard to summation
invariance, all what matters is they are subexponential distributions. I provide numerical examples
highlighting the key properties of subexponential distributions. The summation invariance and the
black swan dominance: the sum is dominated by the maximum. Finally, I illustrate the use of these
properties to tackle problems in random networks, infectious dynamics and project delays.

I. INTRODUCTION

Power law distributions have fascinated generations
of researches for decades. Cluster sizes at percolation
[1]. Avalanche sizes in self-organized criticality [2]. The
degree distribution of scale-free networks [3]. However,
when faced with empirical data, calling a power law dis-
tribution is on the eye of the beholder [4–8]. The power
law claims are challenged by other distributions. Most
commonly the lognormal and stretched exponential dis-
tributions [4, 9, 10].
The correct distribution is important if scale invariance

is all what matters. That property is unique to power law
distributions. There may be other questions where hav-
ing a heavy tail is sufficient. The distribution being power
law or lognormal a matter of degree. One such case is the
sum of independent and identically distributed random
variables Sn =

∑n
i=1

Xi. In this context we encounter
a different type of invariance, the distribution invariance
to summation.
The work on stable distributions have stablished the

types of distributions that are fully invariant to sum-
mation [11]. In that class we find the normal distribu-
tion. For several distributions, bounded or with super-
exponential tails, the distribution of Sn converges to the
normal distribution when n ≫ 1. The other members
of this class are distributions with power law tails. Ex-
amples include the Cauchy and Lévy distributions, with
probability density functions f(x) = 1/π(1 + x2) and

f(x) = (1/
√
2π exp(−1/2x)/x3/2 respectively. For all

distributions with power law tails the distribution of Sn

converges to the corresponding member in the stable dis-
tribution class when n ≫ 1.
The relaxation of summation invariance to the distri-

bution tail sets the stage for a more general class, the
subexponential distributions, with a tail heavier than any
exponential [12]. Subexponential distributions are the
focus of this work. To get there I will go over the cen-
tral limit theorem in section II. Then in section III I will
show how it fails for the sum of random variables with an
exponential distribution. In sections IV and V I review
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FIG. 1. Probability density function of the sum of 10 random
variables from a triangular distribution with left, mode and
right values 0.5, 1 and 1.5 respectively. The dashed line is the
normal distribution deduced from the central limit theorem
(CLT).

the mathematics work on subexponential distributions. I
emphasize key limit theorems and provide some numeri-
cal examples that are missing from the math literature.
In section VI I apply these limit theorems to risk analy-
sis. I introduce a relative definition of black swans and
point out why they should be the center of our attention.
In section VII I go over some applications of the limit
theorems of subexponential distributions. Including ag-
gregate connectivity, the giant component transition in
random networks, the long time behavior of infectious
dynamics and duration uncertainty in activity networks.

II. THE CENTRAL LIMIT THEOREM

The sum of random variables

Sn = X1 + · · ·+Xn, (1)

is found in many problems. The random variables Xi

may be daily changes of a stock price or activity delays
in a construction project. The standard text book pro-
cedure is to invoke the central limit theorem. If the Xi

are independent random variables from the same proba-
bility density function f(x) then the probability density

http://arxiv.org/abs/2211.14069v1
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FIG. 2. Probability density function of the sum of 10 random
variables from an exponential distribution with scale param-
eter µ = 1. The dashed line is the normal desnity deduced
from the central limit theorem (CLT). The solid line is the
exact gamma density in Eq. (3).

function of Sn, denoted by gn(x), is approximated by a
normal density

gn(x) =
1√

2πnσ2
exp

(

− (y − nµ)2

2nσ2

)

. (2)

where µ and σ2 are the expectation and variance of f(x).

For example, the triangular distribution is used to
model activity duration uncertainty in construction
projects. In turn, the sum of uncertainty along critical
activities is used to estimate the project duration uncer-
tainty. It is an intuitive choice. One provides 3 estimates
of activity duration (optimistic, expected, pessimistic)
and one gets an estimate of the project finish date uncer-
tainty. For this particular case the central limit theorem
works perfectly (Fig. 1). This is not an academic exam-
ple. It is the standard choice in risk analysis for construc-
tion projects. A mandatory requirement for modern soft-
ware in this sector, such as Oracle Primavera, Microsoft
Project, Safran and our own platform at Nodes & Links.

III. THE EXPONENTIAL DISTRIBUTION

The idyllic picture in Fig. 1 does not hold in gen-
eral. The central limit theorem is central for a reason.
For the purpose of illustration, consider the exponen-
tial distribution. It has the probability density function
f(x) = e−x/µ/µ, where µ is the scale parameter . In this
particular case we calculate gn(x) exactly, obtaining the
gamma density

gn(x) =
1

µ(n− 1)!

(

x

µ

)n−1

exp

(

−x

µ

)

. (3)

The gamma density has a maximum (the mode) at xn =
(n− 1)µ. If we perform the Taylor expansion of Eq. (3)
around the mode and take the limit n ≫ 1 we obtain the
normal density in Eq. (2). This Taylor expansion is valid
in the vicinity of x ≈ xn. More precisely for (x−nµ)2 ≪
nσ2. The case n = 10 is shown in Fig. 2. In the vicinity
of the peak there is a good agreement between the normal
density (dashed line) and the numerical estimate (solid
circles). However, there is an evident deviation for small
and large values. The central limit theorem does not
apply away from the center.
Figure 2 corroborates that the numerical estimate falls

on the gamma distribution in Eq. (3). This gamma
distribution has an exponential tail, the same as f(x).
This is taking us towards a new direction. The invariance
of the tail shape.

IV. SUBEXPONENTIAL LIMIT THEOREM

The work on subexponential distribution shifts the at-
tention from the mode to the tail. We are interested in
positive defined variables and therefore the right tail. We
define the tail distribution of f(x) and gn(x) as

F̄ (x) = Prob.{X > x} =

∫ ∞

x

f(ξ)dξ, (4)

Ḡn(x) = Prob.{Sn > x} =

∫ ∞

x

gn(ξ)dξ. (5)

The tail of Ḡ2(x) has the lower bound

Ḡ2(x) ≥ 2F̄ (x) (6)

for x → ∞ [12]. The tail of two identically independent
random variables is at least as heavy as 2F̄ (x). For exam-
ple, for an exponential distribution f(x) = exp(−x/µ)/µ,
we get x ≥ 2µ, which is certainly true for x → ∞
Subexponentials are distributions with a slow decaying

tail that cannot be bounded by any exponential. There
is no µ > 0 such that F̄ (x) < exp(−x/µ) for x → ∞. For
subexponential distributions, the lower bound in Eq. (6)
becomes an approximation [12]

Ḡ2(x) ≈ 2F̄ (x) (7)

for x → ∞. The distribution tail of two identically inde-
pendent random variables with a subexponential distri-
bution is as heavy as 2F̄ (x). The property (7) is used as
an alternative definition of subexponentiality.
Equation (7) can be extended to any Ḡn(x) with n ≥ 2.

That was proven by Chistyakov in 1964 [13]. If f(x) is a
subexponential distribution, as defined by Eq. (7), then

Ḡn(x) ≈ nF̄ (x), (8)

for x → ∞. Upon summation the tail gets heavier by a
factor of n, but the shape remains the same as that of
F̄ (x). I will call this the subexponential limit theorem.
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FIG. 3. Probability density function of the sum of 10 random variables from a subexponential distribution (circles). a)
Lognormal, µ = 0 and σ = 1. b) Lognormal, µ = 0 and σ = 2. c) power law, α = 2 and µ = 1. d) power law, α = 0.5 and
µ = 1. The dashed line is the central limit theorem. The solid line is the subexponential limit theorem. The triangles are the
numerical estimate of the probability density function of the maximum of the 10 random variables.

A. Lognormal distribution

The lognormal probability density function is

f(x) =
1

x
√
2πσ2

exp

(

− (lnx− µ)2

2σ2

)

, (9)

where µ and σ2 are the location and variance of lnx.
The tail of the lognormal density is of the order of
exp(−(lnx)2/2σ2)/x and decays slower than any expo-
nential. The larger is σ the heavier is the tail. The
sum of random variables with a lognormal is not approx-
imated by the normal density of the central limit theorem
(Fig. 3a,b, solid circles vs dashed line). In contrast, the
subexponential limit nf(x) is a good approximation for
the tail of gn(x) (Fig. 3a,b, solid circles vs solid line).
The agreement expands over a wider range the higher is
the degree of subexponentiality. Higher σ in this case.

B. Power law distributions

A Pareto or power law distribution has the probability
density function

f(x) =

{

0, if x < µ
α
µ

(

µ
x

)1+α
, otherwise

(10)

where α is the tail exponent and µ is scale parameter.
The tail of the power law density is slower than any ex-
ponential. The tail is heavier the smaller is α. The power
law distribution is scale invariant. If we apply the scale
transformation x → ax the distribution is transformed
as f(x) → f(ax)d(ax) = f(x)dx/aα. The shape of the
distribution remains invariant. Scale invariance is spe-
cific to power law densities. Since the power law dis-
tribution is subexponential the tail distribution is also
invariant to summation. Figures 3c,d show that indeed,
gn(x) ≈ nf(x) for large x. Here again the agreement ex-
tends to a wider range the higher is the degree of subex-
ponentiality. Lower α in this case.



4

V. MAXIMUM LIMIT THEOREM

The subexponential limit theorem has a follow up as-
sociated with the maximum. Let

Mn = max (X1, X2, . . . , Xn) , (11)

be the maximum of independent and identically
distributed random variables, with tail distribution
H̄n(x) = Prob.{Mn > x}. For x → ∞ we have F̄ (x) → 0
and therefore (Ref. [12], Definition 3.1)

H̄n(x) = 1− (1− F̄ (x))n ≈ nF̄ (x). (12)

Note this limit is valid for any F̄ (x), independently of
the subexponential property. Now, from Eqs. (12) and
(8) it follows that

Ḡn(x) ≈ H̄n(x). (13)

The tail distribution of the sum is approximated by the
tail distribution of the maximum. I will call this result
the maximum limit theorem.
Figure 3 shows that the tail of hn(x) is a good ap-

proximation for the tail of gn(x), the probability density
function of the sum Sn = X1 + · · ·Xn (circles vs trian-
gles).

VI. BLACK SWAN DOMINANCE

For the ancient Romans niger cycnus was quintessen-
tial rara in terris [14]. Today black swan is a common
term for rare events of extreme magnitude. Black swan
events are associated with the tail statistics. The heav-
ier the tail of the distribution the higher the chance to
observe a large event, a black swan. There is debate on
whether black swans are extreme events in the tail of the
distribution or unforeseen events happening at a higher
frequency than expected from the reference statitics [15].
I propose the maximum limit theorem as a working

definition of black swans. If Prob.{X1 + X2 > x} ≈
Prob.{max(X1, X2) > x} then the only way X1 + X2

is large is that max(X1, X2) ≫ min(X1, X2). Using
Eq. (13) we can extend that argument. The only way
∑

iXi is large is that maxiXi ≫ maxi6=k Xi, where
k = argmaxiXi is the largest event index. One event,
the black swan, dominates all. That is the definition of
black swan dominance.
The black swan is defined in relative terms. We

do not specify a threshold or scale. We demand that
maxiXi ≫ maxi6=k Xi. Therefore a black swan is context
dependent. We can have a construction project where all
activities are not delayed, except one delayed by 30 days.
Since 30 ≫ 1 days we call that a black swan. In another
construction project we can have 10 critical activities de-
layed by about 30 days, resulting in an aggregated delay
of 300 days. Since 30 ≪ 300 we don’t call any of these 30
days delays a black swan. The stress is in the dominance.
One event of magnitude much larger than the others.

VII. APPLICATIONS

A. Aggregate connectivity

Suppose we have a network N composed of N nodes
andM links between pairs of nodes. The degree of a node
is the number of links containing that node or, equiva-
lently, the number of neighbors or the number of inter-
acting partners. Let pk be the degree distribution across
nodes. We want to know the aggregate number of links
between a community C of n nodes and the complement
N \ C. The n nodes may represent a community in a
social network or a pathway in a biological network, for
example.
We can approximate the aggregate connectivity by the

sum in Eq. (1), where Xi are the nodes degrees. This ap-
proximation holds if (i) there is a small overlap between
the direct neighbors of the n nodes in N \ C and (ii)
the number of links between the n nodes is much smaller
than Sn. Most real networks, including social and bio-
logical networks are characterized by heavy tailed degree
distributions [16, 17]. If pk has a subexponential tail then
the probability density function of Sn has a tail approx-
imated by npk. Botton line, the aggregation of nodes
makes the tail heavier by a factor of n. The probability
to find extreme hubs with large aggregate connectivity
increases by a factor of n.

B. Giant component of random networks

Consider a random network with given degree distri-
bution pk and excess degree distribution qk = kpk/〈k〉.
pk characterizes the degree of a vertex selected at random
and qk the degree distribution of a vertex at the end of
link selected at random. Molloy & Read [18] demon-
strated a transition from disconnected clusters to a giant
component when

θ =
∑

k

(k − 1)qk =
〈k(k − 1)〉

〈k〉 = 1. (14)

This result can be recapitulated using the subexponential
limit theorem in Eq. (8).
The cavity method provides estimates for networks

with a tree like structure [19–21]. In a nutshell, we focus
on a node i at the end of a link selected at random. The
excess degree is the set of links emanating from node i
excluding the link we came from. Node i will have excess
degree k−1 with probability qk. At this point we want to
calculate the probability distribution Qk(s) that we can
reach s other nodes following the excess links of node
i, given that node i has degree k. If the network has
a tree like structure then how many nodes are reached
from node i can be written as the sum of k− 1 neighbors
plus how many nodes can be reached from each neighbor

Sk = k − 1 +X1 +X2 · · ·+Xk−1. (15)
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We note that Sk is a random variable extracted from
Qk(s) and Xi is a random variable extracted from
〈Q〉(s) = ∑

k qkQk(s).
If 〈Q〉(s) is a subexponential distribution then X1 +

X2 · · · + Xk−1 is approximately distributed as (k −
1)〈Q〉(s) for s → ∞. In this case

Qk(s) = (k − 1)〈Q〉(s− k + 1) (16)

Taking the expectation over qk in both sides and the limit
s → ∞ we obtain

〈Q〉(s) = θ〈Q〉(s) (17)

This identity holds for θ = 1. Therefore, 〈Q〉(s) is subex-
ponential only when θ = 1. This is the critical point first
obtained by Molloy & Reed [18] and later extended to
percolation on random networks [19, 20]. For θ < 1, the
less connected phase, Q(s) is bounded by an exponential
decay. For θ > 1, the more connected phase, the devia-
tion from subexponentiality can only be explained by the
presence of a giant component.
This example illustrates the use of the subexponen-

tial property in the context of networks with a tree-like
structure. We did note invoke scale invariance or a power
law distribution of components size. We just demanded
the subeponential property, the invariance with respect
to summation of the distribution tail.

C. Spreading dynamics

The spreading of an infectious agent (disease, com-
puter virus, rumor, etc) in static or temporal networks
can be modeled as a branching process [22]. The average
number of new infectious at time t is approximated by

n(t) = R0

D
∑

n=1

Rn−1gn(t), (18)

where R0 is the expected reproductive number of the
starting node (patient zero), R is the expected reproduc-
tive number of any other node in the transmission tree,
D is the maximum number of generations (the diameter
for static networks) and gn(t) is the distribution of the
sum of n generation times.
The generation time is the time elapsed from acquir-

ing to transmitting the disease. Let f(t) be the probabil-
ity density function of generation times. If the infection
spreads at a constant rate µ, a Poisson process, then f(t)
is an exponential distribution and gn(t) is given by the
gamma distribution in Eq. (3). Substituting Eq. (3) into
(18) we obtain

n(t) = R0 exp

(

− t

µ

)

R0

D
∑

n=1

1

(n− 1)!

(

Rt

µ

)n−1

. (19)

When t ≪ µD/R the sum approximates the Taylor ex-
pansion of the exponential and n(t) ≈ R0 exp(−(1 −

R)t/µ). An exponential decay provided R < 1. When
t ≫ µD/R the sum is dominated by the r = D term and
n(t) ∝ tD−1 exp(−t/µ) [23]. Again an exponential decay
for large t.
In contrast, if the generation time distribution is

subexponential, then according to the subexponential
limit theorem, Eq. (8), gn(t) ≈ nf(t) in the limit t → ∞.
Substituting this result in Eq. (18) we obtain

n(t) ≈ f(t)R0

D
∑

n=1

nRn−1, (20)

The long time limit of infection dynamics with a subex-
ponential distribution of generation times is character-
ized by the same subexponential tail. In particular, this
holds true when f(t) has a power law tail, as previously
reported [24].
The time between sexual intercourses follows a power

law decay [22]. Therefore, the subexponetial decay is rel-
evant for the infection dynamics of sexually transmitted
diseases. The distribution of the inter-event time be-
tween submission of two consecutive emails by an email
user has a fat tail [25]. Interestingly, whether the tail
is a power law or lognormal was subject to debate [4].
The marriage of these two distributions into the subex-
ponential class closes the debate. The subexponetial de-
cay is relevant for the infection dynamics of email worms
and other infectious agents transmited via email. Fi-
nally subexponential distributions of inter-event times
are found in many other systems [26].

D. Activity networks dynamics

Human projects are organized as activity networks,
where nodes represent activities and arcs represent log-
ical constraints: predecessor must finish before the suc-
cessor starts. In the planning phase a project schedule
is generated based on estimates of activity durations. A
critical path is stablished, containing a sequence of ac-
tivities from beginning to end that are executed without
spare time between them. For paths outside the critical
path there is some spare time (float). The total float be-
tween two activities, denoted by Tij , is the spare time
along the path of minimum spare time starting at j and
ending at i, with a negative sign (consumes delay). If
there is no path then Tij = −∞, indicating that no delay
will be transmitted from j to i.
Once the project starts there are delays in the activity

completions. If the delay at an activity exceeds the spare
time between the activity an a successor then a delay is
transmitted to the successor, initiating a delay cascade.
There are two sources of delay. Exogenous delays increas-
ing activity duration independently of what happened to
the predecessors, with magnitude z. Endogenous delays
carried from predecessors, with magnitude h. The total
delay an activity will experience is S2 = z+h. If the dis-
tribution of delays is subexponential then, invoking the
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maximum limit theorem, S2 ≈ max(z, h). In this case the
delay di in the completion of activity i is approximated
by [27]

di ≈ N
max
j=1

(hj + Tij), (21)

where N is the number of activities and hi the exogenous
delay at activity i.
Equation (21) has no reference to delay interactions at

intermediate activities in the paths from j to i. We sim-
ply aggregate the contribution of each exogenous delay
independently and then take the max. When the ex-
ogenous delay follow a subexponential distribution, their
contribution to delays at downstream activities can be
calculated independently of each other. Just take the
max at the end.

VIII. CONCLUSIONS

Researchers dealing with heavy tailed statistics should
pay attention to the mathematical literature on subexpo-
nential distributions. This class includes, among others,

power law, lognormal and stretched exponential distri-
butions. From the practical point the subexponential
distributions have two key properties: the distribution
tail is invariant to summation and for large values the
sum is approximated by the max. Here I have shown
some examples were subexponentiality is the only thing
that matters. These results are not limited to power
law distributions. Debates on whether some empirical
data is better described by a power law, lognormal or
stretched exponential distribution may be irrelevant for
certain problems.
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