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Abstract.

We study the behaviour of a symmetric exclusion process in the presence of non-

Markovian stochastic resetting, where the configuration of the system is reset to a step-

like profile at power-law waiting times with an exponent α. We find that the power-law

resetting leads to a rich behaviour for the currents, as well as density profile. We show

that, for any finite system, for α < 1, the density profile eventually becomes uniform

while for α > 1, an eventual non-trivial stationary profile is reached. We also find that,

in the limit of thermodynamic system size, at late times, the average diffusive current

grows ∼ tθ with θ = 1/2 for α ≤ 1/2, θ = α for 1/2 < α ≤ 1 and θ = 1 for α > 1. We

also analytically characterize the distribution of the diffusive current in the short-time

regime using a trajectory-based perturbative approach. Using numerical simulations,

we show that in the long-time regime, the diffusive current distribution follows a scaling

form with an α−dependent scaling function. We also characterise the behaviour of the

total current using renewal approach. We find that the average total current also

grows algebraically ∼ tφ where φ = 1/2 for α ≤ 1, φ = 3/2− α for 1 < α ≤ 3/2, while

for α > 3/2 the average total current reaches a stationary value, which we compute

exactly. The variance of the total current also shows an algebraic growth with an

exponent ∆ = 1 for α ≤ 1, and ∆ = 2 − α for 1 < α ≤ 2, whereas it approaches a

constant value for α > 2. The total current distribution remains non-stationary for

α < 1, while, for α > 1, it reaches a non-trivial and strongly non-Gaussian stationary

distribution, which we also compute using the renewal approach.
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1. Introduction

Stochastic Resetting refers to the process of intermittently stopping and restarting the

dynamical evolution of a system [1]. The study of stochastic resetting has gained

immense interest recently, owing to its potential applications in a wide range of fields

ranging from search problems [2, 3], population dynamics [4, 5] to computer science [6, 7]

and financial markets [8, 9, 10]. Perhaps the simplest example of resetting dynamics

is when the position of a Brownian particle is reset to a fixed point with a constant

rate [11]. Despite the apparent simplicity of the dynamics, it leads to a set of intriguing

behaviour which includes the emergence of a non-trivial stationary state, a dynamical

transition in the relaxation process as well as a finite mean first-passage time [12].

Various generalizations and extensions of this simple model have been studied over

the past decade [13, 14, 15, 16, 17, 18, 19]. Examples include resetting of a diffusing

particle in a potential [20, 21], in the presence of an absorbing target whose position

is drawn from a distribution [22], or in the presence of clusters of targets [23]. The

role of different resetting protocols has also been explored in the literature, for example

the effects of resets with a refractory period [24], and non-instantaneous resets [25, 26].

Certain protocols have also been utilised to experimentally realise stochastic resetting

[27].

A particularly interesting example is that of non-Markovian resetting protocols,

where the waiting times between consecutive resetting events do not follow an

exponential distribution. The effect of such non-Markovian resetting with power-law

waiting times on Brownian motion has been studied recently, which shows that there

exists a regime of parameters for which the position distribution of the particle does not

approach a stationary state [28]. A similar resetting protocol is also shown to lead to a

much richer dynamical behaviour for extended systems — a fluctuating surface subjected

to power-law resetting can show bounded or unbounded growth of the interface width,

depending on the choice of parameters [29]. Another example is totally asymmetric

exclusion process under power-law resetting, which can give rise to non-monotonic and

non-stationary density profiles in the long-time limit [30]. However, the effect of such

non-Markovian resetting protocols on the transport properties of extended systems has

not been studied so far.

In this paper, we study the effect of power-law resetting on the transport properties

of symmetric simple exclusion process. It has been shown recently that, the symmetric

exclusion process dynamics under Markovian resetting to a step-like configuration leads

to a drastic change in the behaviour of the particle current flowing through the system

[31, 32]. We show that the power-law resetting leads to a richer behaviour of the

current and density profiles. In particular, we show that for any finite L, when the

power-law exponent α < 1, the density profile does not approach an eventual non-trivial

stationary state and relaxes to the uniform profile. For α > 1, however, we find that the

density approaches a non-trivial stationary profile. We also show that the in the limit of

thermodynamically large system size, the average diffusive current grows algebraically
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with time with an exponent θ(α), which we compute exactly. We further develop a

perturbative approach to compute the diffusive current distribution at short times. For

longer times, we find that, the diffusive current distributions have a scaling form, with an

α–dependent scaling function which approaches Gaussian for large α. This is in contrast

with SEP without resetting as well as SEP in the presence of Markovian resetting — the

typical fluctuations of the diffusive current are always Gaussian in these scenarios. We

also find that the average total current, which, similar to the diffusive current, also shows

an algebraic growth in time with a different exponent φ(α), which we compute exactly.

For α < 1, the total current does not approach a stationary distribution, and shows

strongly non-Gaussian fluctuations. For α > 1, however, the distributions approach a

stationary distribution, which we also compute using the renewal approach.

2. Model and Results

The Symmetric Exclusion Process (SEP) is a simple model for the transport of particles

in one dimension [33, 34]. This model has been used to describe various physical

phenomena including the motion of molecular motors, the movement of ions in a porous

medium, and transport in narrow channels. In this section, we define the rules of the

evolution of SEP under a power law resetting, and present a summary of our main

results.

Let us consider a one-dimensional lattice of size L, with periodic boundary

conditions. Each site x of the lattice can contain at most one particle. The particles

can hop to their left or right nearest neighbours with a constant rate (which can be

taken to be 1 without loss of any generality). We can denote the occupancy of a site

x by a variable sx, which takes the values 1 if the site is occupied and 0 if the site

is not occupied. Then the configuration of the system is symbolically represented by

C = {sx;x = 0, 1, 2, 3....., L− 1}.
In the absence of resetting, the configuration of SEP evolves via symmetric hopping

of particles to vacant nearest neighbour sites. In the presence of a power-law resetting,

the configuration of the system evolves via two different kinds of dynamical moves:

• Hopping: A randomly chosen particle can hop to one of its nearest neighbouring

sites with a unit rate, provided that the target site is empty.

• Resetting: The system is intermittently reset to a fixed configuration C0. In the

following, we consider C0 to be a step-like configuration where all the particles are

in the left half of the system, i.e.,

C0 :=

sx = 1 for 0 ≤ x ≤ L

2
− 1,

sx = 0 otherwise.
(1)

Furthermore, we consider the case where the initial configuration of the system is also

C0. The resetting protocol we study is a specific non-Markovian one where the waiting
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Figure 1. Plot of the exponents (a) θ(α) and φ(α) characterizing the late-time growth

of the average, and (b) ζ(α) and ∆(α) characterizing the growth of the variance, of

diffusive and total currents respectively, as a function of the power-law exponent α.

time τ between two consecutive resetting events is drawn from a power-law distribution,

ψ(τ) =
α

t0

(
τ

t0

)−(1+α)

α > 0, t ∈ [t0,∞), (2)

where t0 > 0. It is to be noted that all moments of ψ(τ) are infinite for α < 1. For

α > 1 the mean waiting-time 〈τ〉 = t0α/(α − 1) becomes finite while for α > 2 the

second moment 〈τ 2〉 = t20α/(α− 2) also becomes finite.

The divergence of the mean and variance of τ in certain parameter regimes makes

the power-law resetting protocol drastically different than the constant rate resetting,

which corresponds to an exponential waiting-time distribution, with a finite mean and

variance. Even a single diffusing particle under power-law resetting shows a spectrum of

rich long-time behaviour including a non-diffusive spreading for α < 1 and a nontrivial

stationary state for α > 1 [28].

In the absence of resetting, the time evolution of SEP starting from the step-like

configuration C0 has been studied in Ref. [35] where it was shown that the average time-

integrated diffusive particle current across the central bond increases as ∼
√
t with time

t. The behaviour of SEP, in the presence of Markovian resetting, has been investigated

in [31] where the configuration resets to C0 at a constant rate. In this case, the average

diffusive current was found to grow much faster, namely, ∼ t. Moreover, the presence

of the resetting gives rise to another current, namely the total current, which accounts

for the net flow of particles across the central bond arising from both the hopping and

resetting dynamics. The total current approaches a stationary distribution with strong

non-Gaussian fluctuations.

In this work, we explore SEP under non-Markovian stochastic resetting, with the

waiting times drawn from a power-law distribution with an exponent α. We focus on

the behaviour of the density profile, diffusive current, and total current. Before going

into the details of the computations, a brief summary of the main results is presented

below.
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• Density Profile: First, we consider the time-evolution of the average density

profile ρ(x, t) = 〈sx(t)〉. Using a renewal approach, we show that for α > 1, the

density eventually reaches an inhomogeneous stationary profile, which we compute

exactly (19). For α ≤ 1, for any finite L, the stationary density profile becomes

uniform with ρ(x) = 1/2 at all sites.

• Diffusive current: The non-Markovian resetting drastically affects the behaviour

of the particle current flowing through the system. We first focus on the diffusive

current Jd(t), which measures the number of particles crossing the central bond

during the time interval [0, t] due to the hopping dynamics. Using the analytical

expression for the time-dependent density profile, we compute the average diffusive

current 〈Jd(t)〉. We find that, in the limit of thermodynamically large system size

L → ∞, and at late-times (t � t0), the diffusive current grows algebraically, with

an α dependent exponent (see Fig. 1)

〈Jd(t)〉 ∼ tθ(α) with θ(α) =


1

2
for α ≤ 1

2

α for
1

2
< α ≤ 1

1 for α > 1

(3)

To characterise the fluctuations of Jd(t), we measure its variance σ2
d(t) = 〈Jd(t)2〉−

〈Jd(t)〉2 using numerical simulations. We find that, at late times, the variance

also shows an algebraic growth σ2
d(t) ∼ tζ(α). The exponent ζ(α) is estimated

numerically, as shown in Fig. 1.

• The unusual nature of the fluctuations of the diffusive current becomes clearer

from the behaviour of the distribution P (Jd, t). In the short-time regime

(t ∼ t0) we compute P (Jd, t) analytically, using a trajectory-based perturbative

approach, which shows strongly non-Gaussian features. Using extensive numerical

simulations, we also show that, in the long-time regime, the diffusive current

distribution admits a scaling form,

P (Jd, t) =
1

σd(t)
Qα
(
Jd − 〈Jd(t)〉

σd(t)

)
(4)

where the shape of the scaling function Qα(z) strongly depends on α for α < 2,

whereas for α > 2, the scaling function approaches a Gaussian in the large-time

regime.

• Total Current: Apart from the diffusing current, the particle motion due to the

resetting gives rise to an additional current [31]. We study the behaviour of the

total current J(t), which measures the net transport of particles (through hopping

and resetting) across the central bond during the interval [0, t]. We find that, in

the thermodynamic limit, the average total current 〈J(t)〉 eventually approaches a

stationary value for α > 3/2, which we compute exactly (57). On the other hand,
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for α ≤ 3/2, 〈J(t)〉 shows an algebraic growth at late-times,

〈J(t)〉 ∼ tφ(α) with φ(α) =


1

2
for α ≤ 1

3

2
− α for 1 < α ≤ 3

2

(5)

• We also characterise the fluctuations of the total current through the renewal

approach. We find that the variance of the total current σ2(t) too grows

algebraically,

σ2(t) ∼ t∆(α) with ∆(α) =

{
1 for α ≤ 1

2− α for 1 < α < 2
(6)

• For α < 1, we obtain the time-dependent distributions using the renewal equation

approach, which can be evaluated numerically. The distributions are strongly non-

Gaussian and show some interesting behaviour near J = 0. For α > 1 the total

current approaches a stationary distribution which shows typical non-Gaussian

fluctuations.

The rest of the paper is organised as follows. In Section 3 we briefly introduce the

renewal equation and the trajectory-based approaches to non-Markovian resetting. In

Sections 4,5 and 6 we discuss the behaviours of the density profile, the diffusive current,

and the total current, respectively. We conclude with some open questions in Section

7.

3. Non-markovian resetting: Renewal equation and trajectory based

approach

The general approach towards understanding systems under stochastic resetting is to

consider resets as a renewal process, with the waiting times drawn from a distribution

ψ(τ). The renewal equation corresponding to such a process has been derived in [1]. In

the following, we re-derive the renewal equation in the context of resetting of SEP using

a trajectory-based approach.

Let us consider a trajectory of the system with n resetting events during the

interval [0, t]. Let τi denote the interval between (i− 1)-th and i-th resetting events and

τn+1 denote the interval between the last resetting event and the final time t; clearly,∑n+1
i=1 τi = t. The probability density for such a trajectory is given by,

Pn({τi}; t) =
n∏
i=1

ψ(τi)f(τn+1)δ

(
t−

n+1∑
i=1

τi

)
, (7)

where the survival function f(τn+1) =
∫∞
τn+1

dτ ψ(τ) denotes the probability that no

resetting has occurred during the interval τn+1. The probability that, starting from C0

at t = 0, the system is in the configuration C at time t can be obtained by considering
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the contributions from all possible trajectories,

P(C, t|C0) = f(t)P0(C, t|C0) +
∞∑
n=1

∫ n∏
i=1

dτi dτn+1 ψ(τi)f(τn+1)P0(C, τn+1|C0)δ(t−
n+1∑
i=1

τi).

(8)

Here P0(C, t|C0) denotes the probability that, in the absence of resetting, the system

reaches the configuration C at time t, starting from the configuration C0. The first term

on the right-hand side of (8) denotes the contribution from the trajectories which do not

undergo resetting, while the second term denotes the contributions from the trajectories

with at least one resetting.

To proceed further, it is convenient to take the Laplace transform of (8) with respect

to time t,

P̃(C, s|C0) =

∫ ∞
0

dt e−stP(C, t|C0)

=

∫ ∞
0

dt e−stf(t)P0(C, t|C0) +
∞∑
n=1

ψ̃(s)n
∫ ∞

0

dτ e−sτf(τ)P0(C, τ |C0)

=

(
1 +

ψ̃(s)

1− ψ̃(s)

)∫ ∞
0

dτ e−sτf(τ)P0(C, τ |C0) (9)

where ψ̃(s) =
∫∞

0
dτ e−sτψ(τ) denotes the Laplace transform of the waiting-time

distribution. Note that, for later convenience we have kept the contributions from

n = 0 and n > 0 terms separate.

The last renewal equation for arbitrary resetting protocols is obtained by taking

the inverse Laplace transform of (9),

P(C, t|C0) = f(t)P0(C, t|C0) +

∫ t

0

dτ γ(t− τ)f(τ)P0(C, τ |C0) (10)

where γ(t) is the inverse Laplace transform of ψ̃(s)

1−ψ̃(s)
with respect to s. Physically γ(t−τ)

denotes the probability that the last reset (irrespective of previous ones) has occurred

at time t− τ , although it is often hard to write an explicit expression for it [1].

It is particularly interesting to see whether the non-Markovian resetting eventually

leads to a stationary state where configuration probabilities do not evolve with time

anymore. In fact, it has been shown that a stationary state exists only when∫∞
0
f(τ)dτ = 〈τ〉 is finite, and the stationary state weight Pst(C) is most conveniently

obtained from Eq. (9) by computing the coefficient of 1/s in the s→ 0 limit [1],

Pst(C) =
1

〈τ〉

∫ ∞
0

dτf(τ)P0(C, τ |C0). (11)

For the power-law waiting time distribution given by Eq. (2), we have the survival

function,

f(τ) =

∫ ∞
τ

dτ ′ψ(τ ′) =


1 for τ ≤ t0(

τ

t0

)−α
for τ > t0.

(12)
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In this case, 〈τ〉 converges for α > 1 only. Consequently, we expect that the SEP under

power-law resetting will reach a stationary state only for α > 1. On the other hand,

for α < 1, the system remains in a transient state. To understand the behaviour of the

system for α < 1, it is convenient to recast the renewal equation (10) as,

P(C, t) =

∫ t

0

dτF (τ, t− τ)P0(C, τ),where F (τ, t− τ) = [δ(t− τ) + γ(t− τ)]f(τ). (13)

For α < 1, an explicit form for F (τ, t − τ) in the limit t � t0 has been calculated

previously [28, 36],

F (τ, t− τ) =
sin (πα)

πτ

(
t

τ
− 1

)α−1

. (14)

In the following sections, we use Eq. (13) to analyse the transient time-dependent

behaviour of the system in the regime α < 1 and Eq. (11) for the behaviour of observables

in the stationary state for α > 1. To get the time-dependent behaviour of certain

quantities, we found that it was easier to work in the Laplace domain, hence in those

cases, we use the trajectory-based approach of Eq. (9).

4. Density profile

The density profile ρ(x, t) measures the average number of particles at site x at time t,

ρ(x, t) = 〈sx(t)〉 =
∑
C

sxP(C, t). (15)

From the above equation, it is clear that the density profile must also satisfy the renewal

equation (10),

ρ(x, t) = f(t)ρ0(x, t) +

∫ t

0

dτ γ(t− τ)f(τ)ρ0(x, τ). (16)

Here ρ0(x, t) is the time-dependent density profile in the absence of resetting, starting

from the step-like profile corresponding to C0. The explicit form of ρ0(x, t) can be

calculated in a straightforward manner and is given by [31],

ρ0(x, t) =
1

2
+

1

L

L−1∑
n=1,3,5...

e−i
2πnx
L

(
1 + i cot

πn

L

)
e−λnt, (17)

with λn = 2(1− cos 2πn
L

).

In the following, we consider the large time behaviour of the density profile following

Eq. (17) for the two cases α < 1 and α > 1 separately.

4.1. Density profile for α < 1

For α < 1, we use renewal equation Eq. (13) for the density profile which leads to

ρ(x, t) =

∫ t

0

dτF (τ, t− τ)ρ0(x, τ) (18)

=
1

2
+

1

L

L−1∑
n=1,3,5...

e−i
2πnx
L (1 + i cot

πn

L
)Lα−1(−λnt).
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(a)

x

ρ(x,t)

t=10
t=50
t=200
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1

0 20 40

Figure 2. Density profile for SEP under power-law resetting: (a) shows the time

evolution of ρ(x, t) for α = 0.5 and t0 = 0.1, and (b) shows the stationary profile ρ(x)

for a set of different values of α > 1 and t0 = 1. The solid lines indicate the analytical

predictions from Eqs. (18) and (19), and the symbols indicate the data obtained from

numerical simulations performed on a lattice of size L = 40.

where Ln(z) is the Laguerre polynomial (see Sec. 18.3 of [37]). At large times Lα−1(−λnt)
decays to zero for all values of n. So the only contribution to the density profile

comes from the first term. Hence, for all finite values of L the density approaches

the trivial uniform profile ρ(x) = 1
2
. This result is compared with numerical simulations

in Fig. 2(a), which shows an excellent agreement.

4.2. Density profile ρ(x, t) for α > 1

For α > 1, ρ(x, t) approaches a non-trivial stationary profile, which can be exactly

evaluated using Eq. (11), and is given by

ρ(x) =

∫∞
0

dτ f(τ)ρ0(x, τ)∫∞
0

dτ f(τ)
(19)

=
1

2
+

1

L

L−1∑
n=1,3,

e−2πinx
L

(
1 + i cot

πn

L

)
G(λn),

with

G(λn) =
α− 1

αt0

(
1− e−λnt0

λn
+ t0Eα(λnt0)

)
. (20)

Here Eν(z) is the exponential integral function (see Sec. 18.19 of [37]). Figure 2(b) shows

a comparison of the theoretical predictions from Eq. (19) and data from numerical

simulations. A perfect match between these curves confirms our prediction of the

stationary density profile.

Qualitatively, the stationary profile for the α > 1 case is similar to the Markovian

resetting scenario, however, quantitatively these are different. Moreover, for the power-

law resetting with α < 1 the stationary profile becomes uniform, which is absent for the

Markovian resetting.
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5. Diffusive current

The diffusive current refers to the flow of particles due to the hopping dynamics. We

focus on the time-integrated diffusive current across the central bond Jd(t), which

denotes the net number of particles crossing the central bond (L
2
− 1, L

2
) from left to

right due to hopping, during the time-interval [0, t]. Let us denote the corresponding

diffusing current for SEP in absence of resetting by J0(t). In the limit of large system

size, and t � 1, the typical fluctuations of J0(t) are known to be Gaussian with mean

and variance growing algebraically in time [35],

P0(J0, t) '
1

2πσ2
0(t)

exp

[
−(J0 − 〈J0(t)〉)2

2σ2
0(t)

]
(21)

where,

〈J0(t)〉 = e−2tt
[
I0(2t) + I1(2t)

]
'
√
t

π
, for t� 1,

and, σ2
0(t) ≡ 〈J2

0 (t)〉 − 〈J0(t)〉2 '
(

1− 1√
2

)√
t

π
. (22)

In the presence of Markovian resetting the average diffusive current shows a linear

growth with time [31, 32]. As we show below, the non-Markovian power-law resetting

protocol leads to a more complex and rich behaviour of the diffusive current.

5.1. Average diffusive current

First, we focus on the average diffusive current flowing across the central bond. To this

end, it is convenient to look at the time-integrated current from a different perspective.

The time-integrated current Jd can be expressed as an integral of the instantaneous

current,

Jd(t) =

∫ t

0

ds jd(s), (23)

where jd(s)ds denotes the number of particles crossing the central bond during the

interval [s, s+ ds]. The average instantaneous current is related to the density gradient

across the central bond,

〈jd(t)〉 =
〈
sL

2
−1(1− sL

2
)
〉
−
〈

(1− sL
2
−1)sL

2

〉
= ρ

(
L

2
− 1, t

)
− ρ

(
L

2
, t

)
. (24)

Clearly, the behaviour of average instantaneous current and, in turn, the average time-

integrated diffusive current 〈Jd(t)〉 would be very different for α ≤ 1 and α > 1, owing

to the different behaviours of ρ(x, t) in these two regimes.
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5.1.1. Average diffusive current for α < 1: For α < 1, the average instantaneous

diffusive current in the limit t� t0 can be computed using (24), along with Eq. (18),

〈jd(t)〉 =
2

L

L−1∑
n=1,3,5...

Lα−1(−λnt). (25)

The average time-integrated diffusive current, in turn, is given by,

〈Jd(t)〉 =

∫ t

0

ds 〈jd(s)〉 =
2

L

L−1∑
n=1,3,5...

1

λn
[Lα(−λnt)− Lα−1(−λnt)]. (26)

For any finite system size L, the long-time behaviour of the diffusive current can be

obtained by looking at the asymptotic behaviour of Lβ(z) [37]. For large z and β > −1,

Lβ(−z) =
zβ

Γ(1 + β)
+O(zβ−1). (27)

Substituting the above in Eq. (26), we get the leading order behaviour of the diffusive

current in the large time regime,

〈Jd(t)〉 ' 2

L

L−1∑
n=1,3,5...

λα−1
n

tα

Γ(1 + α)
. (28)

For all finite values of L, the sum in the above equation converges and hence, the average

current grows as ∼ tα at large times for all α < 1. In the limit of thermodynamically

large system L → ∞, the sum over n in Eq. (28) can be converted to an integral over

q = 2πn/L, yielding,

〈Jd(t)〉 '
∫ 2π

0

dq

2π
λα−1
q

tα

Γ(1 + α)
, (29)

where λq = 2(1−cos q). This integral converges for α > 1
2
, leading to the same algebraic

large-time growth of the average current as finite systems,

〈Jd(t)〉 '
22α−1

√
π Γ(α− 1

2
)

Γ(α)Γ(1 + α)
tα, for α >

1

2
. (30)

For α < 1
2
, however, the integral in Eq. (29) does not converge and we need to

use a different approach. In this case, we go back to the ordinary SEP dynamics and

take the L → ∞ limit before using the renewal Eq. (18). For ordinary SEP on a

thermodynamically large system, the average instantaneous current across the central

bond is given by [31],

〈j0(t)〉 = e−2tI0(2t). (31)

Following Eq. (18), we then have, for t� t0,

〈jd(t)〉 =

∫ t

0

dτF (τ, t− τ)〈j0(τ)〉 =

∫ t

0

dτ
sin(πα)

πτ

(
t

τ
− 1

)α−1

e−2τI0(2τ). (32)

For large t the dominant contribution to the above integral comes from the large

τ � 1 regime, which leads to,

〈jd(t)〉 ' 2

π2
√
t

Γ

(
1

2
− α

)
Γ(α) sin(πα). (33)
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Figure 3. Behaviour of the mean and variance of the diffusive current Jd(t) for

α < 1: (a) Plot of 〈Jd(t)〉 vs t for different values of α, measured from numerical

simulations. The upper red dashed line indicates the tα growth, expected for α > 1/2

[see Eq. (30)], for the curve corresponding to α = 0.8. The lower red dashed curve

indicates the
√
t growth expected for α < 1/2 [see Eq. (34)]. (b) Plot of the variance

σ2
d(t) corresponding to the same values of α as in (a), showing the late-time algebraic

growth. The corresponding exponents measured from these data are shown in Fig. 1.

We have used L = 1000 and t0 = 0.01 for the numerical simulations.

Using the above equation in (23) we get, for α < 1
2
,

〈Jd(t)〉 ' 4
√
t

π2
Γ

(
1

2
− α

)
Γ(α) sin(πα). (34)

Note that, the integral in Eq. (32) converges only in the regime α < 1/2, so this result

does not contradict the tα behaviour predicted for α > 1
2

in Eq. (30).

Combining Eqs. (30) and (34) we get the complete behaviour of the average diffusive

current for α < 1 which is quoted in Eq. (3). Figure 3(a) shows the behaviour of 〈Jd(t)〉
for different values of α < 1, measured from numerical simulations which validates our

analytical prediction.

5.1.2. Average diffusive current for α > 1: For α > 1, the average diffusive current can

again be obtained using the definition Eq. (23) where the average instantaneous current

〈jd(t)〉 is computed from the density profile. In the late-time regime, the density profile

reaches a non-trivial stationary profile, and the average instantaneous current reaches a

stationary value as well [see Eq (24)],

〈jd〉 =
2

L

L−1∑
n=1,3,5...

G(λn). (35)

Consequently, in the long-time regime, we expect that the average diffusive current

will grow linearly with time t. In fact, from Eqs. (19)and (24), we expect, in the

thermodynamic limit,

〈Jd(t)〉 ' (α− 1)t

αt0

∫ 2π

0

dq

2π

(
1− e−λqt0

λq
+ t0Eα(λqt0)

)
. (36)

where, as before, λq = 2(1− cos q) and Eα(z) denotes the exponential integral function.

The q-integral is hard to evaluate analytically for arbitrary t0. However, it is easy



Symmetric Exclusion Process under Stochastic Power-law Resetting 13

t

(a)

t

〈Jd(t)〉

α=1.4
α=2.0
α=2.6

100

102

104

100 103 105

σ2d(t)

t

(b)

α=1.4
α=2.0
α=2.6

100

102

105

100 103 105

Figure 4. Behaviour of the mean and variance of the diffusive current Jd(t) for α > 1:

(a) Plot of 〈Jd(t)〉 vs t for different values of α > 1; the red dashed line indicates the

expected linear growth [see Eq. (36)]. (b) Plot of the variance σ2
d(t) of the same of

data. The simulations are performed on a lattice of size L = 1000 with t0 = 0.1.

to see that the integrand is well behaved and hence, it converges for all t0, implying

〈Jd(t)〉 ∝ t for α > 1. Figure 4(a) shows a plot of 〈Jd(t)〉 for different values of α > 1

which illustrates this linear growth. In fact, for small t0 we can find the leading order

contribution by expanding the Eα(z) for small z which leads to,

〈Jd(t)〉 ' t

[
1− (4t0)α−1 Γ(2− α)Γ(α− 1

2
)

√
π Γ(1 + α)

]
. (37)

To summarize, in the presence of the non-Markovian resetting, the average diffusive

current for SEP shows non-trivial algebraic growth 〈Jd(t)〉 ∼ tθ(α) at late times t� t0.

The dependence of the growth exponent θ(α) on α is quoted in Eq. (3).

5.2. Variance of the diffusive current

It is also interesting to investigate the behaviour of the variance of the diffusive current

σ2
d(t) ≡ 〈J2

d(t)〉 − 〈Jd(t)〉2 (38)

in the presence of the non-Markovian resetting protocol. We use numerical simulations

to measure σ2
d(t) for different values of α. Figures 3(b) and 4(b) show plots of σ2

d(t)

as a function of time t for α < 1 and α > 1, respectively, which indicate an algebraic

growth σ2
d(t) ∼ tζ(α) for the variance as well. Although we do not have any analytical

predictions for this, the numerically estimated exponent ζ(α) is plotted in Fig 1 as a

function of α which seems to show a non-trivial behaviour.

5.3. Probability distribution of the diffusive current

To further characterise the fluctuations of the diffusive current, we next look at the

probability distribution P (Jd, t), which denotes the probability that the time-integrated

diffusive current is Jd after a time interval t. The renewal method used to compute
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the average diffusive current is not directly applicable here, and instead, we use the

trajectory-based approach introduced in Sec. 3.

Once again, we consider a trajectory of the system over a time-interval [0, t], with

n resetting events. The time-integrated diffusive current for such a trajectory can be

expressed as

Jd =
n∑
i=1

Ji(τi), (39)

where Ji(τi) denotes the time-integrated diffusive current during τi, which denotes

the interval between the i-th and (i − 1)-th resetting events. As before, we must

have t =
∑n

i=1 τi. Let us recall that, between two consecutive resetting events the

configuration of the system independently evolves following ordinary SEP dynamics.

Then the probability density pn(Jd, t) of the diffusive current being Jd, given exactly

n resetting events take place within time t, can then be expressed as,

pn(Jd, t) =



f(t)P0(Jd, t), for n = 0∫ n∏
i=1

dτi dτn+1ψ(τi)f(τn+1)P0(Ji, τi)P0(Jn+1, τn+1)

× δ

(
Jd −

n+1∑
i=1

Ji

)
δ

(
t−

n+1∑
i=1

τi

)
, for n > 0

(40)

where P0(J, τ) denotes the probability of the diffusive current being J in an interval τ , in

the absence of resetting. The complete probability distribution of Jd, in the presence of

resetting, then can be formally expressed by combining the contribution of all possible

trajectories,

P (Jd, t) =
∞∑
n=0

pn(Jd, t). (41)

Of course, it is rather hard to evaluate P (Jd, t) exactly for all times from the above

infinite sum. However, at short times when the typical number of resetting events is

expected to be small, considering the first few terms in the expansion should suffice.

Thus, in this regime, one can use Eq. (41) as a perturbative series in n to compute

P (Jd, t) at short times.

In the following we show the explicit computations for pn(Jd, t) up to the n = 2

term, which provides a good approximation for the distribution in the t & t0 regime [see

Fig 5]. Of course, for n = 0, i.e., when no resetting occurs, the system evolves following

ordinary SEP dynamics, and the diffusive current distribution is given by [see Eq. (21)],

p0(Jd, t) = f(t)P0(Jd, t) (42)

where f(t) [see Eq. (12)] denotes the probability that no resetting has occurred until

time t. The contribution for n = 1, i.e., trajectories with one resetting event can also

be written following Eq. (40), and is given by,

p1(Jd, t) =

∫ t

0

dt1 ψ(t1)f(t− t1)

∫
dj1 P0(j1, t1)P0(Jd − j1, t− t1) (43)
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Figure 5. Short-time distribution of diffusive current for t0 = 100 and different small

values of t(& t0) for α = 0.5 (a), α = 1.5 (b) and α = 2.5 (c). The symbols show

the data obtained from numerical simulations and the solid lines show the analytical

predictions from the perturbative approach Eq. (41), computed up to n = 2. The

simulations are done on a lattice of size L = 1000.

which can be evaluated numerically using the Gaussian form of P0(J0, t) given in

Eq. (21). Similarly, the contribution from n = 2 trajectories,

p2(Jd, t) =

∫ t

0

dt1

∫ t−t1

0

dt2 ψ(t1)ψ(t2)f(t− t1 − t2)× (44)∫
dj1

∫
dj2 P0(j1, t1)P0(j2, t2)P0(Jd − j1 − j2, t− t1 − t2) (45)

can also be evaluated numerically.

Figure 5 compares the diffusive current distribution, obtained from numerical

simulations with different values of α, with the analytical prediction given in Eqs. (40)-

(41), evaluated up to n = 2. For each value of α, we measure the distribution P (Jd, t)

for three different values of t: (i) t < 2t0, where there is at most one resetting event, and

hence (41), evaluated up to n = 1 terms gives the exact distribution, (ii) 2t0 < t < 3t0
where there can be at most two resetting events, and summing up to n = 2 gives P (Jd, t)

exactly, and (iii) t > 3t0 where finite contributions from n > 2 are expected. As shown

in Fig. 5, the analytical predictions work quite well even for t > 3t0, validating our

perturbative procedure. For all values of α, the distribution has a single peak which

shifts towards larger Jd value as t increases. However, the shape of the distribution

changes with α — while positively skewed for smaller α, the distribution turns negatively

skewed as α is increased.

At long-times t� t0, however, the perturbative procedure is not expected to work

since the typical number of resetting events is large in this regime. We take recourse

to numerical simulations in this regime and find that the diffusive current distribution

in the long-time regime has α−dependent shapes. In fact, based on the numerical

simulations, we propose the following scaling form for the diffusive current distribution

in the long-time regime,

P (Jd, t) =
1

σd(t)
Qα
(
Jd − 〈Jd(t)〉

σd(t)

)
(46)
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Figure 6. The scaling collapses of the diffusive current distribution P (Jd, t), following

Eq. (46) for α = 1
2 (a), α = 3

2 (b), and α = 5
2 (c). In each case, the distribution of

the scaled variable z = (Jd − 〈Jd(t)〉)/σd(t), obtained from numerical simulations, is

plotted for different (large) values of t, which collapse onto a single curve. The three

panels show the qualitatively different shapes of the scaling function Qα(z). For α > 2

(c), the scaling function approaches the standard normal distribution, which is shown

as a dashed line. The simulations are done on a lattice of size L = 1000 and using

t0 = 0.01.

where 〈Jd(t)〉 and σd(t) denote the mean and variance of Jd, respectively [see Figs. 3-4].

Figure 6 shows the scaling collapse of the measured distribution according to (46) for

three values of α, which validates our conjecture. Interestingly once again, the shape

of the scaling function is positively skewed for smaller α, turns negatively skewed as

α is increased, before becoming symmetric for even larger α. In fact, for α > 2, the

scaling function approaches a Gaussian form [see Fig. 6(c)] which can be heuristically

understood from a central-limit like arguments.

6. Total current

The total current J(t), as defined previously, measures the total number of particles

crossing the central bond towards the right. Clearly, each resetting event also resets the

total current to zero, since all the particles are put back to the left half of the lattice at

each resetting. Consequently, the distribution of the total current P(J, t) must satisfy

the renewal equation similar to the configuration probability [see Eq. (13)]

P(J, t) =

∫ t

0

dτ F (τ, t− τ)P0(J, τ), (47)

where P0(J, t) denotes the diffusive current distribution in the absence of the resetting.

It is also useful to write the renewal equation in the Laplace space [see Eq. (9)],

P̃(J, s) ≡
∫ ∞

0

dt e−st P(J, t) =
1

1− ψ̃(s)

∫ ∞
0

dτ e−sτf(τ)P0(J, τ) (48)

where, as before, ψ̃(s) denotes the Laplace transform of the waiting time distribution

ψ(τ). Similar to the configuration probability, P(J, t) also reaches a stationary limit for
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α > 1, which is formally given by,

Pst(J) =
1

〈τ〉

∫ ∞
0

dτ f(τ)P0(J, τ). (49)

In the following, we investigate the behaviour of the total current fluctuations.

6.1. Average total current

We start by computing the average total current 〈J(t)〉, which is most conveniently

using the renewal equation in the Laplace space. Multiplying (48) by J and integrating

over J , we get,

J̃(s) =
1

1− ψ̃(s)

∫ ∞
0

dτ e−sτf(τ)〈J0(τ)〉, (50)

where, J̃(s) =
∫∞

0
dt e−st〈J(t)〉 denotes the Laplace transform of the average total

current, and 〈J0(τ)〉 is the average current in the absence of resetting. We are primarily

interested in the long-time behaviour of 〈J(t)〉, which is controlled by the small s

behaviour of the J̃(s). For small s, the integral in (50) is dominated by the large

τ behaviour of the integrand and it suffices to consider the large-time behaviour of

〈J0(τ)〉 '
√
τ/π [see Eq. (22)], which yields,

J̃(s) ' 1

1− ψ̃(s)

(
1

2s3/2
− t

3/2
0√
π
E− 1

2
(st0) +

t
3/2
0√
π
Eα− 1

2
(st0)

)
, (51)

where Eν(z) denotes the exponential integral function (see Sec. 8.19 in [37]).

To obtain the large-time behaviour of 〈J(t)〉 it suffices to consider the leading order

behaviour of J(s) for s→ 0 and then invert the Laplace transform. The details of this

computation is provided in the Appendix A, here we quote the main results. It turns

out that the large-time behaviour of the average total current also depends strongly on

the value of α. For α ≤ 1, we have, for small s,

J̃(s) =
Γ(3/2− α)

Γ(1− α)
√
π
s−3/2 +O(s−α), (52)

which, in turn, leads to,

〈J(t)〉 ' 2Γ(3/2− α)

Γ(1− α)π

√
t, (53)

in the late-time regime. On the other hand, for 1 < α ≤ 3/2, we get,

J̃(s) =
α− 1

α
tα−1
0 Γ(3/2− α)sα−5/2 +O(s−3/2), (54)

which leads to an algebraic late-time growth with an α–dependent exponent,

〈J(t)〉 ' 2(α− 1) tα−1
0√

πα(3− 2α)
t3/2−α. (55)

Combining Eqs. (53) and (55), we get Eq. (5) which has been quoted earlier.

Figure 7 (a) and (b) show plots of 〈J(t)〉 for different values of α < 3/2 which confirms

this prediction.



Symmetric Exclusion Process under Stochastic Power-law Resetting 18

(a)

t

〈J(t)〉

√tα=0.2
α=0.7
α=0.9

10−1

100

102

100 103

(b)

t

α=1.2
α=1.3 t3/2-α

1

3

100 103

(c)

t

α=2.0
α=2.5
α=3.0

0.4

0.55

0.7

100 102 5×103

Figure 7. Plot of the average total current 〈J(t)〉 versus t for α < 1 (a), 1 < α < 3/2,

(b) and α > 3/2 (c). The red dashed line in (a) indicates the
√
t growth for α < 1

[see Eq. (53)], and the solid black lines in (b) indicate the predicted t3/2−α growth

for 1 < α < 3/2 [see Eq. (55)]. The black solid lines in (c) indicate the predicted

stationary values [see Eq. (57)]. The system size L = 1000 for all three panels while

t0 = 0.01 for (a) and t0 = 1 for (b) and (c).

For α > 3/2, J̃(s) ∼ 1/s for small s, indicating that the average total current

eventually reaches a stationary value Jst in this regime. This stationary value can be

approximately determined from the coefficient of 1/s in the series expansion of J̃(s) in

Eq. (51). However, this approximate estimate of Jst is not very accurate since for large

α > 3/2 the typical time between consecutive resets becomes small enough so that the

behaviour of the current at shorter times becomes relevant. Instead, we compute Jst

exactly using Eq. (49) — multiplying both sides of the equation by J and integrating

over J , we get,

Jst =
1

〈τ〉

∫ ∞
0

dτf(τ)〈J0(τ)〉. (56)

Using the exact expression for 〈J0(t)〉 from Eq. (22), we get,

Jst =
α− 1

α

[
1

6
e−2t0

(
4t0I0(2t0) + (4t0 − 1)I1(2t0)

)
+ (4t0)α−1 Γ(1− α)Γ(α− 3

2
)

4
√
πΓ(α)

− t0
2− α 2F2

(
1

2
, 2− α; 2, 3− α;−4t0

)]
, (57)

where 2F2(a1, a2; b1, b2; z) is a generalised hypergeometric function (see Sec. 16.2 of [37]).

Figure 7(c) shows a plot of 〈J(t)〉 versus t for α > 3/2; the eventual stationary values

agree perfectly with the above prediction. As expected, the time required to reach the

stationary value decreases as α is increased.

6.2. Variance of the total current

It is also interesting to look at the variance of the total current,

σ2(t) = 〈J2(t)〉 − 〈J(t)〉2. (58)
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Figure 8. Plot of the variance of the total current σ2(t) versus t for α < 1 (a) and

1 < α < 2 (b). The red dashed line in (a) indicates the linear growth while the black

solid lines in (b) indicate the predicted t2−α growth [see Eq. (61)]. The numerical

simulations have been done on a lattice of size L = 1000, with t0 = 0.01 for (a) and

t0 = 1 for (b).

The second moment 〈J2(t)〉 can be computed following the same trajectory-based

approach used in the previous section. From (48), we get its Laplace transform,

J̃2(s) =

∫ ∞
0

dt e−st〈J2(t)〉 =
1

1− ψ̃(s)

∫ ∞
0

dτ e−sτf(τ)〈J2
0 (τ)〉. (59)

Once again, we focus on the small s behaviour, which can be computed by using the

long-time expression of 〈J2
0 (t)〉 from (22), and is given by,

J̃2(s) =
1

1− ψ̃(s)

{ 1

πs2

[
1− e−st0(1 + st0) +

π

2

(
1− 1√

2

)√
s
]

+
t20
π
Eα−1(st0) +

t
3/2
0√
π

(
1− 1√

2

)[
Eα− 1

2
(st0)− E− 1

2
(st0)

]}
. (60)

The large time behaviour of 〈J2(t)〉 can then be obtained from the s→ 0 behaviour

of J̃2(s) and then taking the inverse Laplace transform; the details of this computation

is given in Appendix B. Finally, for α < 2, we get an algebraic growth for the variance,

σ2(t) ∼ t∆(α) with,

∆(α) =

{
1 for α < 1

2− α for 1 < α ≤ 2.
(61)

Figure 8 shows a plot of σ2(t) vs t for different values of α which verifies this predicted

algebraic growth.

For α > 2, the variance approaches a stationary value at large times. However, it

is difficult to calculate this stationary values as the complete time-dependent behaviour

of 〈J0(t)2〉 is not known.

6.3. Distribution of the total current

The long-time behaviour of the first two moments does not give any information about

the shape of the total current distribution, nor on the large fluctuations. In this section,
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we use the renewal equation (47) to characterize the late-time probability distribution

of the total current P(J, t), for α < 1 and α > 1.

To obtain the distribution of the total current for α < 1, we use the approximate

form of F (τ, t − τ) (14) in Eq. (47) along with the Gaussian form of P0(J, t) given in

Eq. (21). The resulting integral cannot be performed analytically and we take resort to

numerical integration.
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Figure 9. The total current distribution P(J, t) for a set of values of α < 1 at t = 2000.

For better visual clarity, we have shown the plots for α ≤ 1/2 in (a) and α > 1/2 in (b).

The symbols indicate data from numerical simulations, which aredone with L = 1000

and t0 = 0.01, whereas the solid lines indicate the theoretical predictions from Eq.

(47).

Figure 9 shows the plot of the numerically evaluated P(J, t) for different values of

α, along with the same obtained from simulations. The total current distribution is

strongly non-Gaussian with an asymmetric peak at a non-zero value of J . A qualitative

difference appears between the shape of the distribution for α ≤ 3/4 and α > 3/4 — in

the former case the value of P(J, t) remains finite at J = 0 while it diverges in the latter

case.

For α > 1, the total current approaches a stationary distribution given by Eq. (49),

Pst(J) =
α− 1

αt0

∫ ∞
0

dτ f(τ)P0(J, τ), (62)

where P0(J, τ) is the current distribution in the absence of resetting [see (21)]. Although

the integral in the above equation cannot be performed analytically, the stationary

distribution of the total current Pst(J) can be obtained for any value of J , using

numerical integration. This is illustrated in Fig. 10, where where the predicted Pst(J)

is compared with the same obtained from numerical simulations, showing a very good

agreement.

7. Conclusions

In this article, we explore the effects of a (non-Markovian) power-law stochastic resetting

protocol on a simple model of interacting particles, namely the symmetric exclusion
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Figure 10. Plot of the stationary total current distribution for α > 1. The symbols

indicate the data obtained from numerical simulations and the black solid lines indicate

the analytical prediction from Eq. (62). The simulations are performed on a lattice of

size L = 1000 with t0 = 1.

process. We consider a SEP on a half-filled periodic lattice, where, apart from the usual

symmetric hopping dynamics, the system is reset to a step-like configuration, with all the

particles clustered in the left-half of the system, after random waiting times, which are

drawn from a power-law distribution. We show that, such a non-Markovian resetting

protocol results in a range of intriguing features, absent in the Markovian resetting

scenario. In particular, we focus on the density profile and particle currents, which

show very different behaviour depending on the power-law exponent α.

We start by re-deriving the renewal equation for non-Markovian resetting in the

configuration space using a trajectory based approach. We use this renewal equation to

analytically compute the density profile. In particular, for α > 1, the density reaches a

non-trivial stationary profile, which we compute exactly. On the other hand, for α < 1,

the density profile eventually becomes uniform. In this case, we analytically study the

relaxation behaviour of the density profile.

The non-Markovian resetting protocol drastically changes the transport properties

of the SEP. In the absence of the resetting, the diffusive particle current across the

central bond grows ∼
√
t, while Markovian resetting with a constant rate gives rise

to a linear temporal growth of the current. We show that, in the presence of power-

law resetting, the average diffusive current through a thermodynamically large system,

shows an algebraic temporal growth at late-times ∼ tθ(α) where, θ = 1/2 for α ≤ 1/2,

θ = α for 1/2 < α ≤ 1 and θ = 1 for α > 1. We further show that the variance of the

diffusive current also shows an algebraic growth with an α-dependent exponent, which

we characterize using numerical simulations.

We also study the behaviour of the distribution of the diffusive current. Using

the trajectory based approach perturbatively, we analytically obtain the distribution

in the short-time regime, which shows strongly non-Gaussian and skewed features.
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Furthermore, we find that, the late-time distribution of the diffusive current follows a

non-trivial scaling form [see Eq. (46)], where the shape of the scaling function depends

strongly on α. It turns out that, for α > 2 the scaling function approaches a Gaussian.

It is well known that introduction of dynamical resetting gives rise to a resetting

current as well. We also study the fluctuations of the total current, which, again, shows

much richer behaviour compared to the case of Markovian resetting. Using the renewal

approach, we show that the average current also shows an algebraic temporal growth

∼ tφ(α) with φ = 1/2 for α ≤ 1, φ = 3/2 − α for 1 < α ≤ 3/2, and it approaches a

stationary value for α > 3/2 which we compute exactly. The distribution of the total

current can also be computed using the renewal approach. In particular, we find that, for

α < 1 the distributions show strongly non-Gaussian fluctuations and some particularly

interesting behaviour near J = 0. For α > 1, we evaluate the stationary distributions

using numerical integration, which also show strongly non-Gaussian typical fluctuations.

This work adds a significant contribution towards understanding the effect of non-

Markovian resetting on transport properties of extended system using a simple model.

It would be interesting to study how to behaviour of current changes for other non-

Markovian and time-dependent resetting protocols.
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Appendix A. Computation of the late-time behaviour of the average total

current

In this Appendix we derive the large time growth exponents of the average total

current 〈J(t)〉 using a trajectory based approach. First, we consider the large time

approximation of the average diffusive current for SEP in absence of resetting (22).

Using 〈J0(t)〉 =
√

t
π

in Eq. (50), we have

J̃(s) =
1

1− ψ̃(s)

∫ ∞
0

dτ e−sτf(τ)

√
t

π
. (A.1)

Here, f(τ) is the survival function as defined in (12), and ψ̃(s) is the Laplace transform

of ψ(t). Using the explicit form of f(τ), the above integral can be performed exactly

and leads to Eq. (51) in the main text.

To extract the large-time behaviour of 〈J(t)〉, we investigate the small s behaviour

of J̃(s). To this end, we first note that, near z = 0,

Eν(z) = Γ(1− ν)zν−1 +O(1). (A.2)

Using the above equation and expanding the numerator and denominator of J̃(s) around
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s = 0, we get,

J̃(s) =
1√
π

c0s
α−3/2 + c1 + c2s+O(s2)

b0sα + b1s+O(s2)
. (A.3)

with

b0 = tα0 Γ(1− α), b1 =
αt0
α− 1

, and,

c0 = tα0 Γ

(
3

2
− α

)
, c1 =

4αt
3/2
0

3(2α− 3)
, c2 =

4αt
5/2
0

5(2α− 5)
(A.4)

It is clear from the above equation that the leading order behaviour of J̃(s) for small s

depends on the value of α. In the following, we discuss the different regimes separately.

• For α < 1, the small s-behaviour of both the numerator and denominator in

Eq. (A.3) are dominated by the respective first terms, which, in turn, gives,

J̃(s) ' 1√
π

c0

b0

s−3/2. (A.5)

Using the explicit forms of c0 and b0 and taking the inverse Laplace transform we

get Eq. (53), which describes the late-time growth of the average total current for

α < 1.

• A different behaviour emerges when 1 < α ≤ 3/2. In this case, the numerator in

Eq. (A.3) is still dominated by the first term, while denominator is dominated by

the ∼ s term. Hence, we have,

J̃(s) =
1√
π

c0

b1

sα−5/2, (A.6)

which, upon inverse Laplace transform leads to Eq. (55) for the large-time behaviour

in this regime.

• Finally, for α > 3/2, we have,

J̃(s) =
1√
π

c1

b1s
, (A.7)

which indicates that the average total current reaches a stationary value in this

regime. However, simply taking the inverse Laplace transform of the above equation

gives a rather inaccurate estimate of this stationary value, and we need to take

recourse to a different method, as discussed in the main text.

Appendix B. Computation of the variance of the total current

Higher moments of the total current also follow the renewal equation (47), or

equivalently, Eq. (48). In particular, following Eq. (48) the Laplace transform of the

second moment of the total current can be expressed as,

J̃2(s) =

∫ ∞
0

dt e−st〈J2(t)〉 =
1

1− ψ̃(s)

∫ ∞
0

dτ e−sτf(τ)〈J2
0 (τ)〉. (B.1)
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The long-time behaviour of 〈J2
0 (τ)〉, the second moment of the current in the absence

of resetting, can be obtained from Eq. (22),

〈J2
0 (t)〉 = σ2

0(t) + 〈J0(t)〉2 '
(

1− 1√
2

)√
t

π
+
t

π
. (B.2)

Using (B.2) in (B.1), and performing the integral we get Eq. (60) in the main text.

To extract the large time behaviour of 〈J2(t)〉 we proceed in the same way as before,

by expanding the numerator and denominator around s = 0,

J̃2(s) =
d0s

α−2 + d1s
α−3/2 + d2 + d3s+O(s2)

b0sα + b1s+O(s2)
, (B.3)

where

d0 =
tα0 Γ(2− α)

π
, d1 =

(
1− 1√

2

)√
πtα0 Γ(3/2− α), (B.4)

d2 =

(
1− 1√

2

)
4
√
παt

3/2
0

3(2α− 3)
− αt20

2π(2− α)
, and,

d3 = −
(

1− 1√
2

)
4
√
παt

5/2
0

5(2α− 5)
+

αt30
3π(3− α)

.

Clearly, the dominating behaviour of J̃2(s) near s = 0 depends on the value of α and

we proceed in the same way as before, exploring the different regimes.

• For α < 1, both the numerator and denominator in (B.3) are dominated by the

corresponding first terms, leading to,

J̃2(s) ' d0

b0

s−2 =
(1− α)

π
s−2. (B.5)

Taking inverse Laplace transform, we get,

〈J2(t)〉 ' 1− α
π

t, (B.6)

which leads to the variance

σ2(t) = 〈J2(t)〉 − 〈J(t)〉2 ' t

π

(
1− α− 4Γ(3/2− α)2

πΓ(1− α)2

)
, (B.7)

where we have used Eq. (53). Clearly, the variance grows linearly in time for large

times.

• For 1 < α < 2, the leading order contribution in the numerator of Eq. (B.3) comes

from the first term, while the denominator is dominated by the second term. This,

in turn, leads to,

J̃2(s) ' d0

b1

sα−3 =
tα−1
0 (α− 1)Γ(2− α)

απ
sα−3. (B.8)

Consequently, we have,

〈J2(t)〉 =
tα−1
0 (α− 1)

πα(2− α)
t2−α. (B.9)

In fact, in this regime, the variance σ2(t) = 〈J2(t)〉 − 〈J(t)〉2 also grows with the

same exponent since 〈J(t)〉2 ∼ t3−2α grows with a smaller exponent for α < 3/2

and 〈J(t)〉2 becomes stationary for α > 3/2.
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• For α > 2, we have,

J̃2(s) ' d2

b1s
, (B.10)

indicating that the second moment reaches a stationary value in this regime.

However, similar to the case of average current, an inverse Laplace transform of

the above equation does not provide a very accurate estimate of the stationary

value.

Summarizing the above analysis we get Eq. (61) in the main text.
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