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Abstract

In the joint paper “Bridging the neuroscience and physics of time” Rovelli, as the
physicist coauthor of neuroscientist Dean Buonomano, makes statements that rely
on theoretical frameworks employed when the laws of thermodynamics and general
relativity were discovered. Their reconsideration in the light of subsequent insights
suggests growth of entropy is not the origin of time’s arrow and that a notion of
universal simultaneity may exist within general relativity. This paper is a slightly
extended form of my invited contribution to the forthcoming Frontiers in Psychology
special issue “Physical time within human time”.

1 Introduction

The great discoveries in physics—Copernican revolution, Newton’s laws, thermody-
namics, quantum mechanics, and relativity—were all made in a prevailing framework
of concepts and knowledge. Thus, forces played no role in Copernicus’s reformulation
of Ptolemy’s astronomy; it was first Kepler and then Newton who introduced them. For
his part, Newton formulated his laws in the now rejected framework of absolute space
and time. It was Carnot’s study of steam engines that led to the discovery of ther-
modynamics in 1850, when virtually nothing was known about the universe at large.
Finally, the spacetime form in which Einstein created general relativity obscured crit-
ical aspects of its dynamical structure that came to light decades later. The contexts
in which these discoveries were made need to be taken into account in their modern
interpretation and cast doubt on Rovelli’s claims in [1].

2 Thermodynamics

Of thermodynamics, Einstein said [2] “It is the only physical theory of universal content
which I am convinced that, within the framework of applicability of its basic concepts,
will never be overthrown.” Einstein did not spell out the basic concepts that ensure
the applicability of thermodynamics. They are hard to find in textbooks, but history
suggests what they are. Steam engines fail if their steam is not confined. Accordingly,
for the atomistic explanation of the laws of thermodynamics the creators of statistical
mechanics always assumed particles which collide with each other and bounce elasti-
cally off the walls of a box. Thermodynamics is the science of confined systems. In
them growth of entropy (usually interpreted as a measure of disorder) from a special
low entropy state is readily explained. What is impossible to explain by the known

1julian.barbour@physics.ox.ac.uk.
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time-reversal symmetric laws of nature is the origin in confined systems of the special
initial state.2

In the theory of dynamical systems, those ‘in a box’ correspond formally to ones that
have a phase space of bounded Liouville measure; to my knowledge systems with phase
spaces of unbounded measure have never been seriously studied in statistical mechanics.
This is a remarkable lacuna since it is only in confined systems that the Poincaré
recurrence theorem holds and is the main reason why a satisfactory explanation of
time’s arrow eluded Boltzmann [3] and so many since. We need to see if lifting the
phase-space bound gives the sine qua non for solution to the problem of time’s arrow:
time-irreversible behaviour in generic solutions of time-reversal symmetric equations
without invocation of a special condition.

I will show this is the case in the oldest dynamical theory, the Newtonian N -body
problem of gravitating point particles of masses mi, i = 1, . . . N . It has an unbounded
phase space since its scale variable, the root-mean-square length

`rms =
1

M

√∑
i<j

mimjr2ij , rij = |ri − rj |, M =
N∑
i

mi, (1)

is unbounded above. As shown in [4, 5, 6] this leads to behaviour quite different
from confined systems. If the energy is non-negative and (1) does not vanish, then
as a function of Newton’s absolute time t the graph of `rms(t) is concave upwards
and tends to infinity either side of a unique minimum or ‘Janus point’. Moreover,
D = d`rms/dt is monotonic, tending from −∞ to ∞ in both time directions; D is
therefore a Lyapunov variable, which rules out Poincaré recurrence: N -body statistics
cannot be ‘box statistics’.

This is confirmed by the behaviour of the Newton potential energy

VNew = −
∑
i<j

mimj

rij
(2)

made scale-invariant as the shape potential Vshape through multiplication by
√
`rms:

Vshape =
√
`rmsVNew. (3)

With its sign reversed Vshape may, as in [4, 5], be called the shape complexity since,
independently of gravitational theory, it is a sensitive measure of the extent to which
mass points in Euclidean space have a uniform or clustered distribution. Indeed `−1

mhl ∝
−VNew, where

`−1
mhl =

1

M2

∑
i<j

mimj

rij
(4)

is the mean harmonic length, which means that

Cshape =
`rms

`mhl
(5)

2It is important to distinguish systems that are closed in the sense of not being subject to external
forces from ones that are confined, either physically by a box in a laboratory or theoretically by an artificial
nondynamical potential wall. The N -body problem, which I discuss in this paper, is closed in the traditional
sense but not confined because critically, as I will emphasise, its scale variable can grow without bound.
General relativity, which I also discuss, has spatially closed solutions, but their volume and Hubble radius
grow without bound in eternally expanding solutions.

2



Complexity

Fig. 1 (from [4]).

has an absolute minimum when the particles are most uniformly distributed and in-
creases rapidly when they cluster because that changes `rms relatively little but greatly
reduces `mhl. Note that Cshape depends only on the shape of the particle distribution.
In fact, the entire objective content in any N -body solution resides entirely in the
shapes it contains.3 For the ‘shape-dynamic’ representation of gravitational theory see
[6].

Provided E ≥ 0 and zero-measure solutions to be discussed below are excluded,
the qualitative behaviour of Cshape shown in Fig. 1 for a numerical N -body solution
of 1000 particles is universal: Cshape grows with fluctuations between linearly rising
bounds either side of the Janus point, where (as in the ‘artist’s impression’) the particle
distribution is uniform and becomes clustered either side. The existence of the Janus
point owes nothing to a special condition added to Newton’s laws. It is present in every
generic solution with E ≥ 0.4 Further theories with unbounded phase spaces, other
potentials, and Janus points in all of their solutions are listed in [8].

The behaviour either side of the Janus point justifies its moniker: on the N -body
timeline it lies between bidirectional arrows of time that the secular growth of Cshape

defines. Observers must be present on one or other side of the Janus point and even
though Newton’s laws are time-reversal symmetric will experience an arrow of time and
an apparent birth of time and their universe in a uniform state in their past. The arrow
does not arise from statistical behaviour of an ensemble of solutions and is secular, not
a fluctuation. What is more the increased clustering that Cshape measures reflects the

3Imagined as ‘snapshots’ showing the relative positions of the particles, the shapes could all be jumbled
up in a random heap without any physical information being lost.

4Figure 1 (from [4]) is for equal-mass particles with vanishing energy and angular momentum, E = L = 0.
These Machian conditions [7] match the dynamical structure of spatially closed general-relativistic solutions
[6] and merely enhance the Janus-point behaviour always present when E ≥ 0.
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formation of more or less isolated systems that virialise and then generally decay. Their
‘birth-virialisation-death’ arrows, the hallmark of self-confined thermodynamic systems
like stars, all align with the master complexity arrow. It is noteworthy that subsystem
decay often leaves two particles in elliptical orbits around their centre of mass. These
‘Kepler pairs’ generally live forever and become ever better rods, clocks and compasses
all in one, each of them perfectly synchronised with all the others [4, 5]. Unlike growth
of entropy, which is associated with increase of disorder, growth of complexity reflects
increase of order.

It is particularly interesting that the zero-measure N -body solutions mentioned
above (and discussed in [5], chaps. 16–18) model ‘big bangs’ in general relativity: they
begin with zero size as measured by (1). In them the behaviour of Cshape matches what
is seen on either side of the Janus point in Fig. 1. Finally, the solutions with negative
energy either have a ‘Janus region’ with bidirectional arrows of time either side of it or
remain permanently bound and are virialised within a bounded region as is typical of
statistical-mechanical systems with phase spaces of bounded measure. Moreover the
relational Machian form of Newtonian gravity [7] that models GR allows only solutions
with E = L = 0 and ensures there are always dynamical arrows of time.

Thus, the complete set of solutions of the N -body problem divide into those that
never leave a bounded region of their phase space and those that explore an unbounded
region. The former exhibit typical thermodynamic behaviour while the latter always
have master dynamical arrows of time and secondary thermodynamic behaviour in
emergent subsystems that the master arrow entails. This is all a direct consequence of
Newton’s laws. Despite being time-reversal symmetric, they are fully capable of having
solutions that are time-asymmetric on one or both sides of a distinguished point that
has a dynamical as opposed to ad hoc origin and show that time-reversal symmetric
dynamics is perfectly compatible with a dynamical (not statistical) arrow of time.

Let me compare these rigorous results in the N -body problem with some of the
comments of Rovelli, who represents the physics side of [1] and says: “For a theoretical
physicist . . . the distinction between past and future requires thermodynamics, hence
is statistical only.” Further, from the time-reversal invariance of “all elementary me-
chanical laws” it follows that “the manifest time orientation of the world around us can
only be a macroscopic phenomenon that is accounted for in terms of the distinction
between micro and macrophysics, and caused by low entropy in the early universe.”
Despite Einstein’s caveat, there is no discussion on Rovelli’s part of the conditions of
applicability of the basic concepts of thermodynamics. Along with virtually all physi-
cists who have written about the arrow of time he retains the conceptual framework
created by the discovery of thermodynamics through the study of steam engines and
the associated restriction to dynamical systems with phase spaces of bounded Liouville
measure. If, as is certainly the case for a model N -body universe, the phase space of
the universe is unbounded, we must surely be prepared to reexamine dogmas from the
1850s.

3 General Relativity and Simultaneity

In the form in which Einstein formulated GR in 1915, there is no distinguished notion of
simultaneity in spacetime, which can be foliated completely freely by three-dimensional
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hypersurfaces provided they are spacelike. However, decades later important insights
were gained into the structure of GR when treated as a dynamical theory of evolving
curved three-dimensional geometry. In 1958, Dirac [9] cast GR into its simplest possible
Hamiltonian form by eliminating all nonphysical degrees of freedom. He came to the
remarkable conclusion that this could be done “only at the expense of givng up four-
dimensional symmetry” (Dirac’s emphasis) and continued “I am inclined to believe
from this that four-dimensional symmetry is not a fundamental feature of the physical
world.” In contrast to Einstein’s great insight that “each individual solution [in classical
GR] . . . exhibits four-dimensional symmetry” Dirac argued this need not apply in a
quantum theory because “the individual solution has no quantum analogue”. Therefore
“Hamiltonian methods [needed for quantisation], if expressed in their simplest form,
force one to abandon the four-dimensional symmetry”.

In 1959 Dirac [10] introduced a condition which ensured this by introducing a
dynamically distinguished notion of universal simultaneity (by maximal slicing), but
only valid for universes of infinite spatial extent. In the same year Arnowitt, Deser,
and Misner (ADM) [11] published the first of a series of papers that also cast GR
into Hamiltonian form but, by not insisting on the simplest possible form, did so in a
way that left open four-dimensional symmetry. It was the ADM form that Astekhar,
Rovelli, and Smolin adopted in their attempt to create a discrete form of quantum
gravity they called loop quantum gravity (LQG). However, despite some early success,
the key problem in LQG—the quantum treatment of what is called the Hamiltonian
constraint—has defied resolution for more than 30 years. The difficulty arises in large
part because ADM retained four-dimensional symmetry. More evidence that it might
be abandoned with advantage comes from important work of York [12] in the early
1970s on the initial-value problem in GR. This showed that three-dimensional spatial
symmetry is an integral part of GR and introduced a notion of universal simultaneity
(defined by hypersurfaces of constant mean extrinsic curvature) that, while also casting
the dynamics of GR into maximally simple form, differs from Dirac’s choice in being
applicable if the universe is spatially closed and allows it to evolve.5

I do not claim Dirac’s and York’s work definitively restores universal simultaneity
but it does suggest need for a qualification of Rovelli’s statement “Objectively defined
global simultaneity surfaces are not defined in general relativity.” Moreover, since: 1)
the currently observed accelerated expansion of the universe suggests that, like the N -
body problem, it too has an unbounded phase space; 2) Dirac’s and York’s maximally
simple forms of GR have group-theoretical dynamical structures closely analogous to
those of the N -body big-bang solutions; 3) there are analogues of the complexity both
for vacuum GR [5, 13] and GR coupled to a scalar field [14] it seems likely that, pace
Rovelli, the arrow of time in our universe has a dynamical and not statistical origin.

Finally, the complexity (5) has remarkable properties with radical possibilities I
have not been able to address in this note and are discussed in [15].

Acknowledgements. My thanks to Pooya Farokhi and Anish Battacharya for
helpful discussions.

5My comments about Dirac’s and York’s work need amplification and qualification and strictly hold
only for ‘two-sided spacelike infinitesimal slabs’ of globablly hyperbolic spacetimes. However, in both cases
they characterise the dynamical structure of GR when cast in its maximally simple form. From the group-
theoretical point of view, they establish a close parallel with the solutions of the N -body problem that are
maximally simple through being completely free of the effects of Newtonian absolute structures [15].
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