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Kinetic theory of two-dimensional point vortices and fluctuation-dissipation theorem

Pierre-Henri Chavanis
Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France

We complete the kinetic theory of two-dimensional (2D) point vortices initiated in previous works.
We use a simpler and more physical formalism. We consider a system of 2D point vortices sub-
mitted to a small external stochastic perturbation and determine the response of the system to
the perturbation. We derive the diffusion coefficient and the drift by polarization of a test vortex.
We introduce a general Fokker-Planck equation involving a diffusion term and a drift term. When
the drift by polarization can be neglected, we obtain a secular dressed diffusion (SDD) equation
sourced by the external noise. When the external perturbation is created by a discrete collection
of N point vortices, we obtain a Lenard-Balescu-like kinetic equation reducing to a Landau-like
kinetic equation when collective effects are neglected. We consider a multi-species system of point
vortices. We discuss the process of kinetic blocking in the single and multi-species cases. When the
field vortices are at statistical equilibrium (thermal bath), we establish the proper expression of the
fluctuation-dissipation theorem for 2D point vortices relating the power spectrum of the fluctuations
to the response function of the system. In that case, the drift coefficient and the diffusion coefficient
satisfy an Einstein-like relation and the Fokker-Planck equation reduces to a Smoluchowski-like
equation. We mention the analogy between 2D point vortices and stellar systems. In particular,
the drift of a point vortex in 2D hydrodynamics [P.H. Chavanis, Phys. Rev. E 58, R1199 (1998)] is
the counterpart of the Chandrasekhar dynamical friction in astrophysics. We also consider a gas of
2D Brownian point vortices described by N coupled stochastic Langevin equations and determine
its mean and mesoscopic evolution. In the present paper, we treat the case of unidirectional flows
but our results can be straightforwardly generalized to axisymmetric flows.

PACS numbers: 95.30.Sf, 95.35.+d, 95.36.+x, 98.62.Gq, 98.80.-k

I. INTRODUCTION

There exist remarkable analogies between 2D point vortices and stellar systems [1–3]. This is basically due to
the fact that these systems have long-range interactions [4]. As a result, they self-organize into coherent structures
such as large-scale vortices (e.g. Jupiter’s Great Red spot) [2, 5] or globular clusters and galaxies [6]. However,
the relaxation towards these organized states is nontrivial. Systems with long-range interactions experience two
successive types of relaxation. There is first a violent collisionless relaxation to a metaequilibrium state on a very
short timescale of the order of the dynamical time tD. The collisionless evolution of stellar systems is governed by the
Vlasov-Poisson equations [7, 8] and the metaequilibrium state resulting from violent relaxation can be predicted by
the statistical theory of Lynden-Bell [9]. Similarly, the collisionless evolution of 2D point vortices is governed by the
Euler-Poisson equations [10] and the metaequilibrium state can be predicted by the Miller-Robert-Sommeria (MRS)
statistical theory [11, 12], which is the hydrodynamic analogue of the Lynden-Bell theory [1].1 These theories rely on
an assumption of ergodicity which is not always fulfilled in practice. This is the difficult problem of incomplete violent
relaxation [13]. Then, on a much longer timescale, there is a slow (secular) collisional relaxation due to finite N effects
(granularities) leading, for t → +∞, to the Boltzmann equilibrium distribution predicted by conventional statistical
mechanics. For stellar systems, this equilibrium state has been considered by Ogorodnikov [14, 15], Antonov [16], and
Lynden-Bell and Wood [17]. They showed that an equilibrium state does not always exist, even when the system is
artificially enclosed within a box in order to prevent its evaporation. Indeed, self-gravitating systems may experience
a gravothermal catastrophe [17]. For 2D point vortices, the Boltzmann equilibrium state has been considered by Joyce
and Montgomery [18, 19], Kida [20], and Pointin and Lundgren [21, 22] following the pioneering work of Onsager
[23].2 The relaxation time towards the Boltzmann distribution diverges algebraically with N so that, when N → +∞,
the system is always in the collisionless regime. Here, we focus on the secular evolution of the system for large but

1 The MRS theory applies either to the 2D point vortex gas in the collisionless regime (when N → +∞ with γ ∼ 1/N) or to continuous 2D
incompressible flows in the inviscid regime (when ν → 0). The late time evolution of continuous 2D incompressible flows is dominated
by viscous decay and does not relax towards an equilibrium state.

2 In his seminal paper on the statistical mechanics of 2D point vortices, Onsager [23] related the formation of large-scale vortices to the
existence of negative temperature states. Later on, in unpublished notes [24], he developed a mean field theory of 2D point vortices and
derived the Boltzmann-Poisson equation several years before the authors of Refs. [18–22].

http://arxiv.org/abs/2211.14353v1
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finite values of N .3 We briefly review the case of systems of material particles with long-range interactions (stellar
systems, plasmas, HMF model...) before considering the case of 2D point vortices.
Let us first consider the kinetic theory of spatially homogeneous systems with long-range interactions in dimension

d = 3. The evolution of a test particle in a thermal bath is described by a Fokker-Planck equation of the Kramers
form involving a diffusion term and a friction term. The friction and the diffusion coefficients satisfy the Einstein
relation. At statistical equilibrium, the diffusion and the friction balance each other and the Boltzmann distribution
is established. This approach was developed by Chandrasekhar [26–31] for stellar systems by analogy with the theory
of Brownian motion [32]. The theory of stochastic gravitational fluctuations was studied in [33–39]. If we consider the
evolution of the system as a whole, the kinetic evolution is described by the Landau [40] or Lenard-Balescu [41, 42]
equation introduced in plasma physics. These equations describe the collisional evolution of the system at the order
1/N due to the development of two-body correlations. They conserve mass and energy, satisfy an H-theorem for
the Boltzmann entropy, and relax towards the Boltzmann distribution. The relaxation time scales as NtD.

4 The
Lenard-Balescu equation takes into account collective effects [41–46] that are neglected in the Landau approach.
The Landau equation has also been applied to stellar systems by making a local approximation (which amounts to
considering that the system is spatially homogeneous). In the thermal bath approximation, we recover the original
Fokker-Planck (Kramers) equation of Chandrasekhar.5 However, self-gravitating systems are spatially inhomogeneous
and the local approximation leads to a logarithmic divergence at large scales. Furthermore, the Landau equation does
not take into account collective effects. Recently, the Landau and Lenard-Balescu equations have been generalized
to the case of spatially inhomogeneous systems by Heyvaerts [51] and Chavanis [52] using angle-action variables.
For gravitational systems, the proper treatment of spatial inhomogeneity removes the logarithmic divergence at large
scales. The inhomogeneous Landau and Lenard-Balescu equations conserve mass and energy and satisfy anH-theorem
for the Boltzmann entropy. They usually relax towards the Boltzmann distribution except in the case of unconfined
stellar systems where the relaxation is hampered by the phenomena of evaporation and gravothermal catastrophe
(core collapse). The Landau and Lenard-Balescu equations are valid for all systems with long-range interactions
in any dimension of space d. However, for spatially homogeneous systems in d = 1 (like the HMF model or spins
with long-range interactions moving on a sphere), the Landau and Lenard-Balescu collision terms vanish identically
[53, 54]. In that case, there is no kinetic evolution at the order 1/N . This is a situation of kinetic blocking due to the
absence of resonances. As a result, the system does not reach the Boltzmann distribution on a timescale NtD. We
thus have to take into account three-body correlations and develop the kinetic theory at the order 1/N2. An explicit
kinetic equation that is valid at the order 1/N2 has been obtained recently by Fouvry et al. [55, 56] for arbitrary
homogeneous 1D systems with long-range interactions in the approximation where collective effects can be neglected.
Remarkably, this equation satisfies an H-theorem and relaxes towards the Boltzmann distribution. This implies that
the relaxation time scales as N2tD for homogeneous 1D systems with long-range interactions.
The evolution of a test vortex in a thermal bath is described by a Fokker-Planck equation of the Smoluchowski form

involving a diffusion term and a drift term. The drift and the diffusion coefficients satisfy an Einstein-like relation. At
statistical equilibrium, the diffusion and the drift balance each other and the Boltzmann distribution is established.
This approach was developed by Chavanis [57, 58] by analogy with the theory of Chandrasekhar [26–28, 31] for stellar
systems and the theory of Brownian motion [32]. The theory of stochastic fluctuations in the point vortex gas was
studied in [59–61]. If we consider the evolution of the system as a whole, the kinetic evolution is more complicated.
It is described by a Landau-like [58, 62–65] or a Lenard-Balescu-like [66–69] equation. These equations describe the
collisional evolution of the system at the order 1/N due to two-body correlations. They conserve circulation and energy
and satisfy an H-theorem for the Boltzmann entropy. The Lenard-Balescu-like equation takes into account collective
effects that are ignored in the Landau-like equation. In the thermal bath approximation, we recover the original
Fokker-Planck (Smoluchowski-like) equation of Chavanis [57, 58]. For general flows that are neither unidirectional
nor axisymmetric, there is a collisional evolution at the order 1/N . The corresponding kinetic equation [see Eq. (128)
or Eq. (137) of [58]] approaches the Boltzmann distribution on a timescale NtD if there are sufficient “resonances”
between the point vortices [58]. However, for unidirectional flows and for axisymmetric flows with a monotonic profile
of angular velocity, the Landau and Lenard-Balescu-like collision terms vanish identically. Therefore, there is no

3 The kinetic theory of collisionless relaxation for systems with long-range interactions is discussed in [25] and references therein.
4 In plasma physics and stellar dynamics the relaxation time scales as (N/ lnN)tD because of logarithmic corrections. In plasma physics,
N represents the number of charges in the Debye sphere (usually denoted Λ). In stellar dynamics, N represents the number of stars in
the Jeans sphere which corresponds to the typical size of the cluster.

5 Chandrasekhar [26–28, 31] also considered the evolution of a test star experiencing gravitational encounters with field stars that are
not necessarily at statistical equilibrium. His work was further developed by Rosenbluth et al. [47]. If we assume that the system
evolves self-consistently [48, 49], the corresponding Fokker-Planck equation is equivalent to the Landau equation although it appears in
a different form (see [50] for the correspondence between the Chandrasekhar and Landau equations).
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kinetic evolution for unidirectional flows at the order 1/N . For axisymmetric flows, the system evolves until the
profile of angular velocity becomes monotonic and then stops evolving at the order 1/N . This is a situation of kinetic
blocking [62] due to the absence of resonances. As a result, the system does not reach the Boltzmann distribution on
a timescale NtD. In order to describe the relaxation of the system towards the Boltzmann distribution it is necessary
to take into account three-body correlations and develop the kinetic theory of 2D point vortices at the order 1/N2

like in the work of Fouvry et al. [55, 56].
In the present paper, we focus on the Landau and Lenard-Balescu equations for 2D point vortices at the order 1/N .

In previous works, these kinetic equations have been derived in different manners using the linear response theory
[57], the projection operator formalism [58], the BBGKY hierarchy [63, 69], the Klimontovich equation [63, 66, 68],
the Fokker-Planck equation [57, 58, 62, 68, 69], and the functional approach [65]. These derivations are rather formal
and technical. In the present paper, we complement the kinetic theory of point vortices in the following manner:
(i) We provide a simpler and more physical derivation of the kinetic equation of 2D point vortices. We compute the

diffusion coefficient D and the drift by polarization Vpol by a direct approach and substitute these expressions into
the Fokker-Planck equation written in a suitable form in which the diffusion coefficient is “sandwiched” between the
two gradients in position so that the drift by polarization appears naturally.
(ii) We derive the proper expression of the fluctuation-dissipation theorem for 2D point vortices.
(iii) We consider a multi-species system of point vortices while previous works were mostly restricted to point

vortices with the same circulation.
(iv) We consider unidirectional flows6 while previous works were developed for axisymmetric flows. We show that

in the thermal bath approximation the kinetic equation becomes similar to the Smoluchowski equation of Brownian
theory with a Rosen-Morse [71] (or Pöschl-Teller [72]) potential and a constant diffusion coefficient. This equation
can be transformed into a Schrödinger-like equation (in imaginary time) which can be solved analytically [73].
(v) We consider a system of collisionless 2D point vortices (or a continuous vorticity field) submitted to a small

external stochastic perturbation of arbitrary origin and derive a secular dressed diffusion (SDD) equation sourced by
the external noise.
(vi) The Landau and Lenard-Balescu equations are associated with the microcanonical ensemble where the system

of point vortices is isolated. In that case, the point vortices are fundamentally described by N -body Hamiltonian
equations [10]. We compare these results with those obtained for a gas of 2D Brownian point vortices [74, 75] described
by N -body stochastic Langevin equations. We establish a drift-diffusion equation governing their mean evolution as
well as a stochastic partial differential equation governing their mesoscopic evolution. Similar equations are obtained
from the stochastic damped 2D Euler equations.
(vii) Throughout the paper, we mention the numerous analogies between the kinetic theory of 2D point vortices

and the kinetic theory of stellar systems (and other systems with long-range interactions).
The paper is organized as follows. In Sec. II, we present the basic equations describing a system of 2D point vortices

submitted to a small external stochastic perturbation and introduce the quasilinear approximation. In Sec. III, we
explain how the linearized equation for the perturbation can be analytically solved with Fourier transforms by making
the Bogoliubov ansatz. In Sec. IV, we determine the linear response of the flow to a small external perturbation. In
Sec. V, we relate the dressed power spectrum of the total fluctuating stream function to the correlation function of
the external perturbation and consider the case where the external perturbation is due to a random distribution of
N field vortices. In Sec. VI, we derive the fluctuation-dissipation theorem satisfied by an isolated system of point
vortices at statistical equilibrium. In Sec. VII, we introduce the general Fokker-Planck equation adapted to a gas of
point vortices. In Sec. VIII, we derive the diffusion coefficient of a test vortex experiencing an external stochastic
perturbation and consider the case where the external perturbation is due to a random distribution of N field vortices.
In Sec. IX, we derive the drift by polarization experienced by a test vortex traveling in a background flow possibly
created by a smooth distribution of field vortices. In Sec. X, we consider the evolution of a test vortex is a sea of
field vortices at statistical equilibrium and establish the appropriate form of Einstein relation between the drift and
the diffusion. In Sec. XI, we derive the kinetic equation of 2D point vortices with an arbitrary velocity profile. In
Sec. XII, we show how this kinetic equation simplifies itself when the velocity profile is monotonic. In Sec. XIII, we
contrast the kinetic theory of an isolated Hamiltonian system of point vortices to the kinetic theory of a gas of 2D
Brownian point vortices. In Sec. XIV, we derive the SDD equation describing the mean evolution of a continuous
vorticity field submitted to a small external stochastic perturbation of arbitrary origin. In Sec. XV, we study the
mean evolution and the mesoscopic evolution of a continuous vorticity field described by the stochastic damped 2D

6 A kinetic theory of Stewart point vortices moving on the background of a shear flow with uniform vorticity has been developed in [70].
It is valid in the case of short-range interactions between point vortices making the problem similar to the kinetic theory of gases. This
is substantially different from the problem that we consider here where the evolution of the point vortices is due to long-range collisions
and collective effects.
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Euler equations. We recover by this approach the power spectrum and the diffusion coefficient of a gas of point
vortices. In Sec. XVI, we apply the same approach to the case of stochastically forced 2D point vortices. In Sec.
XVII, we summarise our results and compare the different kinetic equations obtained in this paper. The Appendices
provide useful complements to the results established in the main text.

II. BASIC EQUATIONS

We consider a system of 2D point vortices of individual circulation γ (see Appendix A). We assume that the point
vortices move under their own interactions and under the effect of an external stochastic incompressible velocity field
ue(r, t) (exterior perturbation) of zero mean. The equations of motion of the point vortices are

dri
dt

= −z×∇ψd(ri)− z×∇ψe(ri, t), (1)

where ψd(r) = −(1/2π)
∑

j γ ln |r − rj | is the exact stream function produced by the point vortices. They can

be written in Hamiltonian form as γdri/dt = −z × ∇(Hd + He), where Hd = −(1/2π)
∑

i<j γ
2 ln |ri − rj | is the

Hamiltonian of the point vortices and He =
∑

i γψe(ri, t) is the Hamiltonian associated with the external flow. The
discrete vorticity field ωd(r, t) =

∑

i γδ(r− ri(t)) of the point vortex gas satisfies the equations

∂ωd
∂t

+ (ud + ue) · ∇ωd = 0, (2)

ud = −z×∇ψd, ωd = −∆ψd, (3)

ue = −z×∇ψe, ωe = −∆ψe, (4)

where ψd(r, t) is the stream function produced by the point vortices and ψe(r, t) is the external stochastic stream
function. These equations are similar to the 2D Euler-Poisson equations for an incompressible continuous flow but
they apply here to a singular vorticity field which is a sum of Dirac distributions. The 2D Euler-Poisson equations
for an incompressible continuous flow are the counterparts of the Vlasov-Poisson equations in stellar dynamics [7] and
plasma physics [8] and the 2D Euler-Poisson equations for a singular system of point vortices are the counterparts of
the Klimontovich equations [76] in plasma physics.
We introduce the mean vorticity ω(r, t) = 〈ωd(r, t)〉 corresponding to an ensemble average of ωd(r, t). We then

write ωd(r, t) = ω(r, t) + δω(r, t) where δω(r, t) denotes the fluctuations about the mean vorticity. Similarly, we write
ψd(r, t) = ψ(r, t)+δψ(r, t) where δψ(r, t) denotes the fluctuations about the mean stream function ψ(r, t) = 〈ψd(r, t)〉.
Substituting this decomposition into Eq. (2), we get

∂ω

∂t
+
∂δω

∂t
+ (u+ δu+ ue) · ∇(ω + δω) = 0, (5)

u = −z×∇ψ, ω = −∆ψ, (6)

δu = −z×∇δψ, δω = −∆δψ. (7)

If we introduce the total fluctuations δutot = δu + ue, δψtot = δψ + ψe and δωtot = δω + ωe, which include the
contribution of the external perturbation, we can rewrite the foregoing equations as

∂ω

∂t
+
∂δω

∂t
+ (u+ δutot) · ∇(ω + δω) = 0, (8)

δutot = −z×∇δψtot, δωtot = −∆δψtot. (9)

Expanding the advection term in Eq. (8) we obtain

∂ω

∂t
+
∂δω

∂t
+ u · ∇ω + u · ∇δω + δutot · ∇ω + δutot · ∇δω = 0. (10)
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Taking the ensemble average of Eq. (10) and subtracting the resulting equation from Eq. (10) we obtain the two
coupled equations

∂ω

∂t
+ u · ∇ω = −∇ · 〈δωδutot〉, (11)

∂δω

∂t
+ u · ∇δω + δutot · ∇ω = −∇ · (δωδutot) +∇ · 〈δωδutot〉, (12)

which govern the evolution of the mean flow and the fluctuations. To get the right hand side of Eqs. (11) and (12) we
have used the incompressibility of the flow ∇ · δutot = 0 (see Appendix A). Equations (11) and (12) are exact in the
sense that no approximation has been made for the moment. The right hand side of Eq. (11) can be interpreted as a
“collision” term arising from the granularity of the system (finite N effects) and the correlations of the fluctuations
due to the external stochastic perturbation (forcing).7

We now assume that the external velocity is weak and treat the stochastic stream function ψe(r, t) as a small
perturbation to the mean field dynamics. We also assume that the fluctuation of the stream function δψ(r, t) created
by the point vortices is weak. Since the circulation of the point vortices scales as γ ∼ 1/N this approximation is valid
when N ≫ 1. If we ignore the external stochastic perturbation and the fluctuations of the stream function due to
finite N effects altogether, the collision term vanishes and Eq. (11) reduces to the 2D Euler equation

∂ω

∂t
+ u · ∇ω = 0. (13)

The 2D Euler-Poisson equations (13) and (6) describe a self-consistent mean field dynamics. It is valid in the limit
ψe → 0 and in a proper thermodynamic limit N → +∞ with γ ∼ 1/N . It is also valid for sufficiently short times.
We now take into account a small correction to the 2D Euler equation obtained by keeping the collision term on

the right hand side of Eq. (11) but neglecting the quadratic terms on the right hand side of Eq. (12). We therefore
obtain a set of two coupled equations

∂ω

∂t
+ u · ∇ω = −∇ · 〈δωδutot〉, (14)

∂δω

∂t
+ u · ∇δω + δutot · ∇ω = 0. (15)

These equations form the starting point of the quasilinear theory of 2D point vortices which is valid in a weak coupling
approximation (γ ∼ 1/N ≪ 1) and for a weak external stochastic perturbation (ψe ≪ 1). Equation (14) describes the
evolution of the mean vorticity sourced by the correlations of the fluctuations and Eq. (15) describes the evolution of
the fluctuations due to the granularities of the system (finite N effects) and the external noise. These equations are
valid at the order 1/N and to leading order in ψe.
If we restrict ourselves to unidirectional mean flows8 and introduce a cartesian system of coordinates, we have

u = U(y, t)x, ψ = ψ(y, t), ω = ω(y, t), (16)

U =
∂ψ

∂y
, ω = −∂

2ψ

∂y2
, ω = −U ′(y, t). (17)

On the other hand, the two components of the fluctuating velocity field read

(δutot)x =
∂δψtot

∂y
, (δutot)y = −∂δψtot

∂x
. (18)

7 We generically call it the “collision” term although it may have a more general meaning due to the contribution of the external
perturbation. A more proper name could be the “correlational” term.

8 In the following, we assume that the system remains unidirectional during the whole evolution. This may not always be the case. Even
if we start from a unidirectional flow ω0(y), the “collision” term (r.h.s. in Eq. (14)) will change it and induce a temporal evolution
of the vorticity field ω(y, t). The system may become dynamically (Euler) unstable and undergo a dynamical phase transition from a
unidirectional flow to a more complicated flow (e.g., a large scale vortex). We assume here that this transition does not take place or
we consider a period of time preceding this transition.
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As a result, Eqs. (14) and (15) become

∂ω

∂t
=

∂

∂y

〈

δω
∂δψtot

∂x

〉

, (19)

∂δω

∂t
+ U

∂δω

∂x
− ∂δψtot

∂x

∂ω

∂y
= 0. (20)

For the simplicity of the presentation, we have assumed that the external velocity field ue is of zero mean. If there is
an external (unidirectional) mean flow Ue, it can be included in U by making the substitution U → U +Ue. In other
words, U represents the total mean flow including the mean flow produced by the system of point vortices and by the
external perturbation.
Remark: Although we have introduced the above equations for a system of 2D point vortices, they are also valid

for a continuous 2D incompressible flow forced by an external velocity field. In that case, Eqs. (2)-(4) are the 2D
Euler equations for a continuous vorticity field ωc and a continuous velocity field uc replacing the discrete vorticity
field ωd and the discrete velocity field ud. If the continuous flow is submitted to an external stochastic perturbation
ue, we can decompose the vorticity and the velocity into a mean component plus a fluctuation, writing ωc = ω + δω
and uc = u+ δu, and obtain the same equations as above with a different interpretation (see Sec. XIV).

III. BOGOLIUBOV ANSATZ

In order to solve Eq. (20) for the fluctuations, we resort to the Bogoliubov ansatz. We assume that there exist
a timescale separation between a slow and a fast dynamics and we regard U(y) and ω(y) in Eq. (20) as “frozen”
(independent of time). This amounts to neglecting the temporal variation of the mean flow when we consider the
evolution of the fluctuations. This is possible when the mean vorticity field evolves on a secular timescale that is long
compared to the timescale over which the correlations of the fluctuations have their essential support. We can then
introduce Fourier transforms in x and t for the vorticity fluctuations, writing

δω(x, y, t) =

∫

dk

∫

dσ

2π
ei(kx−σt)δω̂(k, y, σ), (21)

δω̂(k, y, σ) =

∫

dx

2π

∫

dt e−i(kx−σt)δω(x, y, t). (22)

Similar expressions hold for the stream functions δψ(r, t) and ψe(r, t). For future reference, we recall the Fourier
representation of the Dirac δ-function

δ(σ) =

∫ +∞

−∞
eiσt

dt

2π
. (23)

Before going further, some comments about our procedure of derivation are required. In order to derive the Lenard-
Balescu equation describing the mean evolution of a system of point vortices under discreteness effects (“collisions”) at
the order 1/N we usually take ωe = 0 in Eq. (2) and consider an initial value problem as described in Sec. 3 of [68] (see
also Appendix J). In that case, Eq. (20) has to be solved by introducing a Fourier transform in space and a Laplace
transform in time. This brings a term δω̂(k, y, 0) related to the initial condition in the equation for the fluctuations
[see Eq. (J3)]. This is how discreteness effects (granularities) are taken into account in this approach. Calculating the
correlation function and substituting the result into Eq. (19), one obtains a Lenard-Balescu-like equation in which the
diffusion and the drift terms appear simultaneously. This derivation involves, however, rather technical calculations.
In the present paper, we shall derive the Lenard-Balescu equation differently by using a simpler and more physical
(or more pedagogical) approach based on the Fokker-Planck equation (see Sec. VII). In this approach, discreteness
effects are taken into account in the external perturbation ωe. Indeed, we can regard ωe either as having an arbitrary
origin (see Sec. VA) or as being generated by a collection of N point vortices – the so-called field vortices (see Sec.
VB). In the presence of an external perturbation, Eq. (20) can be solved by introducing Fourier transforms in space
and time.9 We can then derive the dressed power spectrum and the diffusion coefficient of a test vortex by taking

9 In the absence of external perturbation, we need to introduce a Laplace transform in time yielding a term related to the initial condition.
In our approach, the initial condition is rejected to the infinite past but we have to add a small imaginary term i0+ in the pulsation σ
of the Fourier transform to make the fluctuations vanish for t → −∞. In a sense, this procedure amouts to using a Laplace transform
in time but neglecting the initial condition.
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collective effects into account (see Sec. VIII). On the other hand, the drift by polarization of a test vortex can be
obtained by determining the response of the background flow to the perturbation that it has caused (see Sec. IX).
Substituting these coefficients into the Fokker-Planck equation, we obtain the Lenard-Balescu equation (see Secs. XI
and XII). This formalism also allows us to treat situations in which the external perturbation ωe is not necessarily
due to a discrete distribution of point vortices. In that case, we can derive more general kinetic equations. When
N → +∞, i.e. when the collisions between the point vortices are negligible, we obtain the secular dressed diffusion
(SDD) equation involving a diffusion term due to the external perturbation (see Sec. XIV). For finite N , we obtain
a mixed kinetic equation involving a SDD term and a Lenard-Balescu term (see Sec. XVII).

IV. RESPONSE FUNCTION

Let us determine the linear response of a 2D incompressible flow to a small external perturbation ωe(x, y, t). In the
present case, the perturbation is not necessarily stochastic. Since the perturbation is small, we can use the linearized
2D Euler equation (20). Taking the Fourier transform of this equation in x and t, we obtain

δω̂(k, y, σ) =
k ∂ω∂y

kU(y)− σ
δψ̂tot(k, y, σ). (24)

On the other hand, according to Eqs. (4) and (7), we have

∆δψtot = −δωtot = −δω − ωe. (25)

Writing this equation in Fourier space and combining the result with Eq. (24), we get

[

d2

dy2
− k2 +

k ∂ω∂y
kU(y)− σ

]

δψ̂tot = −ω̂e. (26)

The formal solution of this differential equation is

δψ̂tot(k, y, σ) =

∫

G(k, y, y′, σ)ω̂e(k, y
′, σ) dy′, (27)

where G(k, y, y′, σ) is the Green function defined by

[

d2

dy2
− k2 +

k ∂ω∂y
kU(y)− σ

]

G(k, y, y′, σ) = −δ(y − y′). (28)

Although not explicitly written, we must use the Landau prescription σ → σ + i0+ in Eq. (28). As a result,
G(k, y, y′, σ) is a complex function which plays the role of the response function (or dielectric function) in plasma

physics and stellar dynamics [6, 77]. It determines the response of the system δψ̂tot(k, y, σ) to an external perturbation
ω̂e(k, y, σ) through Eq. (27). Assuming that the perturbation ωe(x, y) is time-independent and taking σ = 0, Eq.
(28) reduces to

[

d2

dy2
− k2 +

∂ω
∂y

U(y)

]

G(k, y, y′) = −δ(y − y′). (29)

This equation determines the static response function G(k, y, y′) ≡ G(k, y, y′, σ = 0) of the system to a time-
independent perturbation.
Without external perturbation, the flow would be (by assumption) purely unidirectional, described by ω(y). The

external perturbation ωe(x, y, t) creates a weak flow ψe(x, y, t). This flow polarizes the system and induces through
Eq. (20) a small change in the vorticity field δω(x, y, t) producing in turn a weak flow δψ(x, y, t) through Eq. (7). As
a result, the total stream function acting on a point vortex, sometimes called the dressed or effective stream function,
is δψtot(x, y, t) = ψe(x, y, t)+ δψ(x, y, t). This is the sum of the stream function due to the external perturbation plus
the stream function induced by the system itself (i.e. the system’s own response). Since δψ occurs in Eqs. (7) and
(20), we have to solve a loop. The total stream function is related to the external perturbation ωe(x, y, t) by Eq. (27).
The dressed Green function G(k, y, y′, σ) takes into account the polarization of the system due to its self-interaction.
This corresponds to the so-called “collective effects”. The polarization cloud surrounding a point vortex may amplify
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or shield the action of the imposed external perturbation. Therefore, the stream function is modified by collective
effects: δψtot = ψe + δψ 6= ψe. This leads to the notion of “dressed” point vortices.10 If we neglect collective effects
(δω = δψ = 0), we have δψtot = ψe with

ψ̂e(k, y, σ) =

∫

Gbare(k, y, y
′)ω̂e(k, y

′, σ) dy′, (30)

where Gbare(k, y, y
′) satisfies the equation

(

d2

dy2
− k2

)

Gbare(k, y, y
′) = −δ(y − y′). (31)

Equations (30) and (31) define the bare stream function and the bare Green function. The bare Green function
Gbare(k, y, y

′) is just the Fourier transform in x of the potential of interaction between the vortices (see Appendix
B). Similarly, the Green function G(k, y, y′, σ) can be interpreted as a dressed potential of interaction between the
vortices taking into account collective effects. Neglecting collective effects amounts to replacing the dressed stream
function (or dressed Green function) by the bare stream function (or bare Green function).
Remark: When ωe = 0, Eq. (26) reduces to

[

d2

dy2
− k2 − U ′′(y)

U(y)− σ/k

]

δψ̂ = 0, (32)

where we have used Eq. (17). This is the celebrated Rayleigh equation [81, 82] which determines the proper complex
pulsations σ of the flow associated with the velocity field U(y). It plays the role of the dispersion relation in plasma
physics and stellar dynamics [6, 77]. It can be used to study the linear dynamical stability of unidirectional flows.

V. CORRELATION FUNCTION

We now assume that the external perturbation ωe(x, y, t) is a stochastic process and we determine the dressed
correlation function of the total stream function δψtot(x, y, t) that it induces. We first give general results and then
consider the case where the external perturbation is produced by a random distribution of N point vortices.

A. General results

We assume that the time evolution of the external vorticity field is a stationary stochastic process and write its
auto-correlation function as

〈ωe(x, y, t)ωe(x′, y′, t′)〉 = δ(y − y′)C(x − x′, y, t− t′). (33)

We assume that the fluctuations are δ-correlated in y but not necessarily in x and t. The function C(x− x′, y, t− t′)
describes a possibly colored noise. The Fourier transform in x and t of the correlation function of the external vorticity
field is therefore

〈ω̂e(k, y, σ)ω̂e(k′, y′, σ′)〉 = 2πδ(k + k′)δ(σ + σ′)δ(y − y′)Ĉ(k, y, σ), (34)

where Ĉ depends on k and σ (for a white noise it would be constant). Similarly, we define the correlation function
P (k, y, σ) of the total fluctuating stream function acting on the point vortices by

〈δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)〉 = 2πδ(k + k′)δ(σ + σ′)P (k, y, σ). (35)

10 The notion of “dressed” particles (or quasiparticles) has been introduced and developed by Hubbard [44–46] and Rostoker [78–80] in
plasma physics.
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We call it the power spectrum by analogy with plasma physics [45].11 Using Eqs. (27) and (34), we get

〈δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)〉 =

∫

dy′dy′′G(k, y, y′, σ)G(k′, y, y′′, σ′)〈ω̂e(k, y′, σ)ω̂e(k′, y′′, σ′)〉

= 2πδ(k + k′)δ(σ + σ′)

∫

dy′G(k, y, y′, σ)G(−k, y, y′,−σ)Ĉ(k, y′, σ)

= 2πδ(k + k′)δ(σ + σ′)

∫

dy′ |G(k, y, y′, σ)|2Ĉ(k, y′, σ), (36)

where we have used Eq. (C6). Comparing Eq. (36) with Eq. (35), we obtain

P (k, y, σ) =

∫

dy′ |G(k, y, y′, σ)|2Ĉ(k, y′, σ). (37)

This equation relates the power spectrum P (k, y, σ) of the total fluctuating stream function acting on the point

vortices to the correlation function Ĉ(k, y, σ) of the external stochastic perturbation. The “dressed” power spectrum
P (k, y, σ) takes into account collective effects. If we neglect collective effects, we just have to replace G(k, y, y′, σ) by
Gbare(k, y, y

′) in Eq. (37). In that case, we find that the “bare” power spectrum Pbare(k, y, σ) defined by

〈ψ̂e(k, y, σ)ψ̂e(k′, y, σ′)〉 = 2πδ(k + k′)δ(σ + σ′)Pbare(k, y, σ) (38)

is given by

Pbare(k, y, σ) =

∫

dy′Gbare(k, y, y
′)2Ĉ(k, y′, σ). (39)

We note that Ĉ(k, y, σ), P (k, y, σ) and Pbare(k, y, σ) are real and positive.
Remark: From Eq. (35) we easily obtain

〈δψ̂tot(k, y, t)δψ̂tot(k
′, y, t′)〉 = δ(k + k′)P(k, y, t− t′), (40)

where P(k, y, t) is the inverse Fourier transform in time of P (k, y, σ). Therefore, the static power spectrum P (k, y) =
P(k, y, 0) is

P (k, y) =

∫

P (k, y, σ)
dσ

2π
. (41)

B. Correlation function created by a random distribution of N field vortices

We now assume that the external vorticity is created by a random distribution of N point vortices. We allow for
different species of point vortices with circulations {γb}. The discrete vorticity of the field vortices is

ωe(x, y, t) =
∑

i

γiδ(x− xi(t))δ(y − yi(t)). (42)

The initial positions (xi, yi) of the point vortices are assumed to be uncorrelated and randomly distributed. The

distribution function of point vortices of species b, with circulation γb, is P
(b)
1 (y). The mean vorticity of species b is

therefore ωb(y) = NbγbP
(b)
1 (y), where Nb is the total number of point vortices of species b. When N → +∞ with

γ ∼ 1/N , the point vortices are advected by the mean flow U(y) produced by the total vorticity ω(y) =
∑

b ωb(y).
Their mean field trajectories are straight lines at constant y:

xi(t) = xi + U(yi)t, yi(t) = yi. (43)

As a result, the external vorticity can be written as

ωe(x, y, t) =
∑

i

γiδ(x− xi − U(y)t)δ(y − yi). (44)

11 More precisely, the power spectrum is k2P (k, y, σ).
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Passing in Fourier space, we obtain

ω̂e(k, y, σ) =
∑

i

γi

∫

dx

2π

∫

dt e−i(kx−σt)δ(x− xi − U(y)t)δ(y − yi)

=
1

2π

∑

i

γi

∫

dt e−ikxie−i(kU(y)−σ)tδ(y − yi)

=
∑

i

γie
−ikxiδ(kU(y)− σ)δ(y − yi). (45)

The correlation function of the external vorticity field in Fourier space is therefore

〈ω̂e(k, y, σ)ω̂e(k′, y′, σ′)〉 =

〈

∑

ij

γiγje
−ikxie−ik

′xjδ(kU(y)− σ)δ(k′U(y′)− σ′)δ(y − yi)δ(y
′ − yj)

〉

=

〈

∑

i

γ2i e
−i(k+k′)xiδ(kU(y)− σ)δ(k′U(y′)− σ′)δ(y − yi)δ(y

′ − yi)

〉

=
∑

b

Nbγ
2
b

∫

dx1dy1 e
−i(k+k′)x1δ(kU(y)− σ)δ(k′U(y′)− σ′)δ(y − y1)δ(y

′ − y1)P
(b)
1 (y1)

=
∑

b

γb

∫

dx1dy1 e
−i(k+k′)x1δ(kU(y)− σ)δ(k′U(y′)− σ′)δ(y − y1)δ(y

′ − y1)ωb(y1)

=
∑

b

2πγbδ(k + k′)δ(σ + σ′)δ(y − y′)δ(kU(y)− σ)ωb(y). (46)

To get the second line, we have used the decomposition
∑

ij =
∑

i+
∑

i6=j and the fact that the terms involving

different vortices (i 6= j) vanish in average since the point vortices are initially uncorrelated. To get the third line, we
have used the fact that the point vortices of the same species are identical. Comparing Eqs. (34) and (46), we find
that

Ĉ(k, y, σ) =
∑

b

γbδ(kU(y)− σ)ωb(y). (47)

This is the bare correlation function of the vorticity field created by the background point vortices. Using Eqs.
(37) and (47), we obtain the dressed power spectrum of the total fluctuating stream function created by a random
distribution of point vortices

P (k, y, σ) =
∑

b

γb

∫

dy′ |G(k, y, y′, σ)|2δ(kU(y′)− σ)ωb(y
′). (48)

This returns the expression (34) of the power spectrum given in Ref. [68] which was obtained from the Klimontovich
formalism. The present approach provides an alternative, more physical, manner to derive this result. Using Eqs.
(41) and (48), we obtain the static power spectrum

P (k, y) =
1

2π

∑

b

γb

∫

dy′ |G(k, y, y′, kU(y′))|2ωb(y′). (49)

If we neglect collective effects, we find that the bare correlation function of the total fluctuating stream function
produced by a random distribution of field vortices is

Pbare(k, y, σ) =
∑

b

γb

∫

dy′Gbare(k, y, y
′)2δ(kU(y′)− σ)ωb(y

′). (50)

It can be obtained from Eq. (48) by replacing the dressed Green function (28) by the bare Green function (31). The
same presciption can be used to obtain the bare static spectrum from Eq. (49).
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C. Energy of fluctuations

The energy of fluctuations

E =
1

2

∫

〈δωtotδψtot〉 dy =
1

2

∫

〈(∇δψtot)
2〉 dy, (51)

where δωtot = δω+ωe and δψtot = δψ+ψe are the total fluctuations of vorticity and stream function, can be calculated
as follows. Decompositing the fluctuations of stream function in Fourier modes, we get

E = −1

2

∫

dy

∫

dk

∫

dk′
∫

dσ

2π

∫

dσ′

2π
kk′ei(kx−σt)ei(k

′x−σ′t)〈δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)〉. (52)

Introducing the power spectrum from Eq. (35) and integrating over k′ and σ′, we obtain

E =
1

2

∫

dy

∫

dk

∫

dσ

2π
k2P (k, y, σ) =

1

2

∫

dy

∫

dk k2P (k, y). (53)

The energy of fluctuations is equal to the integral of k2P (k, y) over the wavenumber k and over the position y. Using
Eq. (37), we can rewrite the energy of fluctuations as

E =
1

2

∫

dy

∫

dk

∫

dσ

2π

∫

dy′ k2|G(k, y, y′, σ)|2Ĉ(k, y′, σ). (54)

When the perturbation is due to a distribution of N point vortices, using Eq. (47), we obtain

E =
1

4π

∑

b

∫

dy

∫

dk

∫

dy′ k2|G(k, y, y′, kU(y′))|2γbωb(y′). (55)

We note that E is constant in time.

VI. FLUCTUATION-DISSIPATION THEOREM FOR AN ISOLATED SYSTEM OF POINT VORTICES

AT STATISTICAL EQUILIBRIUM

A. Fluctuation-dissipation theorem

The fluctuation-dissipation theorem for a gas of point vortices can be written as

P (k, y, σ) = − 1

πβσ
ImG(k, y, y, σ). (56)

It relates the power spectrum P (k, y, σ) of the fluctuations to the response function G(k, y, y, σ) of a system of point
vortices at statistical equilibrium with an inverse temperature β.12 Although the fluctuation-dissipation theorem can
be established from very general arguments [83–88], we shall derive Eq. (56) directly from the results obtained in the
preceding sections.
We start from the general identity (see Appendix C)

ImG(k, y, y, σ) = π

∫

dy′ |G(k, y, y′, σ)|2δ(σ − kU(y′))k
∂ω′

∂y′
. (57)

If the vorticity field is created by different species of point vortices, it can be rewritten as

ImG(k, y, y, σ) = π
∑

b

∫

dy′ |G(k, y, y′, σ)|2δ(σ − kU(y′))k
∂ω′

b

∂y′
. (58)

12 Note that Eq. (56) is valid at positive and negative temperatures.
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If the point vortices are at statistical equilibrium with the Boltzmann distribution

ωb(y) = Ab e
−βγbψ(y), (59)

we have the identity

∂ωb
∂y

= −βγbψ′(y)ωb(y). (60)

Substituting Eq. (60) into Eq. (58), we obtain

ImG(k, y, y, σ) = −βπ
∑

b

γb

∫

dy′ |G(k, y, y′, σ)|2δ(σ − kU(y′))k
∂ψ′

∂y′
ωb(y

′)

= −βπ
∑

b

γb

∫

dy′ |G(k, y, y′, σ)|2δ(σ − kU(y′))kU(y′)ωb(y
′)

= −βσπ
∑

b

γb

∫

dy′ |G(k, y, y′, σ)|2δ(σ − kU(y′))ωb(y
′)

= −βσπP (k, y, σ). (61)

where we have used Eq. (17) to get the second line, the property of the δ-function to get the third line, and the
expression (48) of the power spectrum to get the fourth line. This establishes Eq. (56).

B. Static power spectrum

At statistical equilibrium, we have the following relation

P (k, y) = − 1

β
G(k, y, y) (62)

between the static power spectrum P (k, y) = 1
2π

∫

P (k, y, σ) dσ of the fluctuations (see Sec. V) and the static
response function G(k, y, y) = G(k, y, y, 0) (see Sec. IV). This relation can be derived directly from the microcanonical
distribution of point vortices at statistical equilibrium. It can also be recovered from the fluctuation-dissipation
theorem (56) as follows.
Integrating Eq. (56) between −∞ and +∞, we get

P (k, y) = − 1

β

∫ +∞

−∞

ImG(k, y, y, σ)

πσ
dσ. (63)

On the other hand, applying at σ = 0 the Kramers-Kronig relation [89, 90]

G(k, y, y, σ) = P
1

π

∫ +∞

−∞

Im [G(k, y, y, σ′)]

σ′ − σ
dσ′, (64)

where P is the principal value, we get

G(k, y, y, 0) =
1

π

∫ +∞

−∞

Im [G(k, y, y, σ)]

σ
dσ. (65)

Comparing Eqs. (63) and (65) we obtain Eq. (62).

VII. FOKKER-PLANCK EQUATION

Here, we consider the evolution of a test vortex of circulation γ submitted to an external stochastic stream function
ψe(x, y, t). The equations of motion of the test vortex are (see Appendix A and Sec. II)

dx

dt
= U(y, t) +

∂δψtot

∂y
(x, y, t),

dy

dt
= −∂δψtot

∂x
(x, y, t), (66)
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where δψtot(x, y, t) is the total fluctuation of the stream function. They can be written in Hamiltonian form as
γdr/dt = −z × ∇(H + δHtot), where H = γ

∫ y
U(y′) dy′ is the mean Hamiltonian and δHtot is the fluctuating

Hamiltonian. The test vortex follows a rectilinear trajectory at constant velocity U(y) on the line level y but it also
experiences a small stochastic perturbation δψtot = ψe+δψ which is equal to the external stream function ψe plus the
fluctuating stream function δψ produced by the system itself (collective effects). Eq. (66) can be formally integrated
into

x(t) = x+

∫ t

0

U(y(t′), t′) dt′ +

∫ t

0

∂δψtot

∂y
(x(t′), y(t′), t′) dt′, y(t) = y −

∫ t

0

∂δψtot

∂x
(x(t′), y(t′), t′) dt′, (67)

where we have assumed that, initially, the test vortex is at position (x, y). Since the fluctuations δψtot of the stream
function are small, the changes in the position of the test vortex in the y-direction are also small, and the dynamics
of the test vortex can be represented by a stochastic process governed by a Fokker-Planck equation [91]. The Fokker-
Planck equation can be derived from the Master equation by using the Kramers-Moyal expansion truncated at the
level of the second moments of the position increment. If we denote by P (y, t) the probability density that the test
vortex is at y at time t, the general form of the Fokker-Planck equation is

∂P

∂t
=

∂2

∂y2
(DP )− ∂

∂y
(PVtot) . (68)

The diffusion and drift coefficients are defined by

D(y) = lim
t→+∞

1

2t
〈(y(t)− y)2〉 = 〈(∆y)2〉

2∆t
, (69)

Vtot(y) = lim
t→+∞

1

t
〈y(t)− y〉 = 〈∆y〉

∆t
. (70)

In writing these limits, we have implicitly assumed that the time t is long compared to the fluctuation time but short
compared to the evolution time. As shown in our previous papers [63, 68], it is relevant to rewrite the Fokker-Planck
equation in the alternative form

∂P

∂t
=

∂

∂y

(

D
∂P

∂y
− PVpol

)

. (71)

The total drift can be written as

Vtot = Vpol +
∂D

∂y
, (72)

where Vpol is the drift by polarization (see Sec. IX of this paper and Sec. 4.3 of [68]) while the second term is due
to the variation of the diffusion coefficient with y (see Sec. 4.4 of [53]). The drift by polarization Vpol arises from the
retroaction (response) of the perturbation caused by the test vortex on the mean flow. It represents, however, only
one component of the total drift Vtot experienced by the test vortex, the other component being ∂D/∂y.
The two expressions (68) and (71) of the Fokker-Planck equation have their own interest. The expression (68), where

the diffusion coefficient is placed after the second derivative ∂2(DP ), involves the total drift Vtot and the expression
(71), where the diffusion coefficient is placed between the derivatives ∂D∂P , isolates the drift by polarization Vpol.
We shall see in Sec. XI that this second form is directly related to the Lenard-Balescu equation. It has therefore a
clear physical meaning.

VIII. DIFFUSION COEFFICIENT

A. General expression of the diffusion coefficient

We now calculate the diffusion coefficient of the test vortex from Eq. (69) following the approach developed in [68].
The increment in position of the test vortex in the y-direction is

∆y = −
∫ t

0

∂δψtot

∂x
(x(t′), y(t′), t′) dt′. (73)
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Substituting Eq. (73) into Eq. (69) and assuming that the correlations of the fluctuating velocity persist for a time less
than the time for the trajectory of the test vortex to be much altered, we can make a linear trajectory approximation

x(t′) = x+ U(y)t′, y(t′) = y, (74)

and write

D = lim
t→+∞

1

2t

∫ t

0

dt′
∫ t

0

dt′′
〈

∂δψtot

∂x
(x + U(y)t′, y, t′)

∂δψtot

∂x
(x+ U(y)t′′, y, t′′)

〉

. (75)

Introducing the Fourier transform of the total fluctuating stream function, we obtain
〈

∂δψtot

∂x
(x+ U(y)t′, y, t′)

∂δψtot

∂x
(x+ U(y)t′′, y, t′′)

〉

=

∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π

×kk′eik(x+U(y)t′)e−iσt
′

eik
′(x+U(y)t′′)e−iσ

′t′′〈δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)〉. (76)

Introducing the power spectrum from Eq. (35) and carrying out the integrals over k′ and σ′, we end up with the
result

〈

∂δψtot

∂x
(x+ U(y)t′, y, t′)

∂δψtot

∂x
(x+ U(y)t′′, y, t′′)

〉

=

∫

dk

∫

dσ

2π
k2ei(kU(y)−σ)(t′−t′′)P (k, y, σ). (77)

This expression shows that the auto-correlation function of the total fluctuating velocity appearing in Eq. (75) depends
only on the difference of times s = t′′ − t′. Using the identity [68]

∫ t

0

dt′
∫ t

0

dt′′ f(t′ − t′′) = 2

∫ t

0

dt′
∫ t

t′
dt′′ f(t′ − t′′) = 2

∫ t

0

dt′
∫ t−t′

0

ds f(s)

= 2

∫ t

0

ds

∫ t−s

0

dt′ f(s) = 2

∫ t

0

ds (t− s)f(s), (78)

and assuming that the autocorrelation function of the total fluctuating velocity f(s) decreases more rapidly than s−1,
we find for t→ +∞ that13

D =

∫ +∞

0

〈

∂δψtot

∂x
(x, y, 0)

∂δψtot

∂x
(x+ U(y)s, y, s)

〉

ds. (81)

Therefore, as in Brownian theory [32, 83, 84, 91, 92] and in fluid turbulence [93], the diffusion coefficient of a point
vortex is equal to the integral of the temporal auto-correlation function 〈Vy(0)Vy(t)〉 of the fluctuating velocity felt
by the point vortex [58]:

D =

∫ +∞

0

〈Vy(0)Vy(t)〉 dt. (82)

This is similar to the diffusion tensor of a star in a globular cluster which is given by Dij =
∫ +∞
0 〈Fi(0)Fj(t)〉 dt where

F(t) is the gravitational force by unit of mass experienced by the star [33, 39, 50, 94–98] (see also [44–46, 99, 100] for
plasmas). Replacing the velocity auto-correlation function by its expression from Eq. (77), which can be written as

〈Vy(0)Vy(t)〉 =
∫

dk

∫

dσ

2π
k2ei(kU(y)−σ)tP (k, y, σ), (83)

13 This formula can also be obtained by using the identity

D =
1

2

d

dt
〈(∆y)2〉 = 〈ẏ∆y〉 =

∫ t

0

〈

Vy(x, y, 0)Vy(x(t
′), y(t′), t′)

〉

dt′, (79)

where Vy = (δutot)y = −∂δψtot/∂x. Making the approximations discussed above and taking the limit t→ +∞, we obtain

D =

∫ +∞

0

〈Vy(x, y, 0)Vy(x+ U(y)s, y, s)〉 ds, (80)

which coincides with Eq. (81).
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we obtain

D =

∫ +∞

0

dt

∫

dk

∫

dσ

2π
k2ei(σ−kU(y))tP (k, y, σ). (84)

Making the change of variables t → −t, k → −k and σ → −σ, and using the fact that P (−k, y,−σ) = P (k, y, σ), we

see that we can replace
∫ +∞
0 dt by (1/2)

∫+∞
−∞ dt. Therefore, we get

D =
1

2

∫ +∞

−∞
dt

∫

dk

∫

dσ

2π
k2ei(σ−kU(y))tP (k, y, σ). (85)

Using the identity (23), we find that

D = π

∫

dk

∫

dσ

2π
k2δ(σ − kU(y))P (k, y, σ). (86)

The time integration has given a δ-function which creates a resonance condition for interaction. Integrating over the
δ-function (resonance), we arrive at the following equation

D =
1

2

∫

dk k2P (k, y, kU(y)). (87)

This equation expresses the diffusion coefficient of the test vortex in terms of the power spectrum of the fluctuations
at the resonance σ = kU(y). This is the general expression of the diffusion coefficient of a test vortex submitted to a
stochastic perturbation. When collective effects are neglected, we get

Dbare =
1

2

∫

dk k2Pbare(k, y, kU(y)). (88)

Using the relation between the power spectrum and the correlation function of the external perturbation [see Eq.
(37)], we obtain

D =
1

2

∫

dy′
∫

dk k2|G(k, y, y′, kU(y))|2Ĉ(k, y′, kU(y)). (89)

This expression shows that the diffusion coefficient of the test vortex depends on the correlation function of the
external perturbation Ĉ(k, y′, σ) and on the response function of the flow G(k, y, y′, σ) both evaluated at the resonance
frequencies σ = kU(y). As a result, the diffusion coefficient D(y) depends on the position y of the test vortex, on the
mean vorticity field ω(y) through the Green function G(k, y, y′, kU(y)) defined by Eq. (28), and on the mean velocity
U(y). When collective effects are neglected, i.e., when we replace G(k, y, y′, kU(y)) by Gbare(k, y, y

′) in Eq. (89), the
diffusion coefficient reduces to

Dbare =
1

2

∫

dy′
∫

dk k2Gbare(k, y, y
′)2Ĉ(k, y′, kU(y)). (90)

Remark: Alternative derivations of the general expression of the diffusion coefficient of a test vortex are given in
Appendices D 1 and D2 (see also Appendix E where we compute the velocity auto-correlation function of the test
vortex).

B. Expression of the diffusion coefficient due to N point vortices

We now assume that the external noise is due to a discrete collection of N point vortices. In that case Ĉ(k, y, σ) is
given by Eq. (47) and we obtain

D =
1

2

∑

b

γb

∫

dy′
∫

dk k2|G(k, y, y′, kU(y))|2δ(kU(y′)− kU(y))ωb(y
′). (91)

Using the identity

δ(λx) =
1

|λ|δ(x), (92)
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we can rewrite the foregoing equation as

D =
1

2

∑

b

γb

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))ωb(y
′). (93)

This is the general expression of the diffusion coefficient of a test vortex of circulation γ produced by N field vortices
of circulation {γb}. It returns Eq. (68) of [68]. The diffusion of the test vortex is due to the fluctuations of the field
vortices induced by finite N effects (granularities). This is why it depends on {γb} but not on γ.14

Introducing the function

χ(y, y′, U(y)) =
1

2

∫

|k||G(k, y, y′, kU(y))|2 dk, (94)

the diffusion coefficient (93) can be written in the more compact form

D =
∑

b

γb

∫

dy′χ(y, y′, U(y))δ(U(y′)− U(y))ωb(y
′). (95)

Using the identity

δ[g(x)] =
∑

j

1

|g′(xj)|
δ(x− xj), (96)

where the xj are the simple zeros of the function g(x) (i.e. g(xj) = 0 and g′(xj) 6= 0), we can write the diffusion
coefficient as

D =
∑

b

∑

r

γb
χ(y, yr, U(y))

|U ′(yr)|
ωb(yr), (97)

where the yr are the points that resonate with y, i.e., the points that satisfy U(yr) = U(y).
If the velocity profile is monotonic,15 using the identity

δ(U(y′)− U(y)) =
1

|U ′(y)|δ(y − y′), (98)

we find that

D =
∑

b

γb
χ(y, y, U(y))

|U ′(y)| ωb(y). (99)

For a multispecies gas of field vortices the diffusion coefficient D ∝ 1/|U ′(y)| decreases when the shear increases. If
we consider a single species gas of field vortices with circulation γb, the foregoing expression reduces to

D = γb
χ(y, y, U(y))

|U ′(y)| ωb(y) = |γb|χ(y, y, U(y)). (100)

To obtain the second equality, we have used the relation ωb(y) = −U ′(y) from Eq. (17).
Remark: An alternative derivation of the diffusion coefficient of a test vortex produced by N field vortices is given

in Appendix D 3 (see also Appendix E).

14 Note, however, that some field vortices may have the circulation γb = γ, i.e., they belong to the same species as the test vortex.
15 When the vorticity ω(y) is always of the same sign, the relation ω(y) = −U ′(y) from Eq. (17) implies that the velocity profile U(y) is

monotonic. This is the case, in particular, when the circulations {γb} of the point vortices have the same sign.
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C. Expression of the diffusion coefficient due to N point vortices without collective effects

If we neglect collective effects, the previous results remain valid provided that G(k, y, y′, kU(y)) is replaced by
Gbare(k, y, y

′). The bare diffusion coefficient of a test vortex is

Dbare =
1

2

∑

b

γb

∫

dy′
∫

dk |k|Gbare(k, y, y
′)2δ(U(y′)− U(y))ωb(y

′). (101)

Introducing the function

χbare(y, y
′) =

1

2

∫

|k|Gbare(k, y, y
′)2 dk, (102)

it can be written as

Dbare =
∑

b

γb

∫

dy′χbare(y, y
′)δ(U(y′)− U(y))ωb(y

′)

=
∑

b

∑

r

γb
χbare(y, yr)

|U ′(yr)|
ωb(yr). (103)

Explicit expressions of the function χbare(y, y
′) are given in Appendix B. In the dominant approximation, we have

χbare(y, y
′) ≃ (1/4) lnΛ.

If the velocity profile is monotonic, we obtain

Dbare =
∑

b

γb
χbare(y, y)

|U ′(y)| ωb(y) =
1

4

∑

b

γb
ln Λ

|U ′(y)|ωb(y), (104)

where we have used Eq. (B12). If the field vortices have the same circulation, Eq. (104) becomes

Dbare =
1

4
γb

ln Λ

|U ′(y)|ωb(y) =
1

4
|γb| ln Λ, (105)

where we have used Eq. (17). In that case, the bare diffusion coefficient is constant.

IX. DRIFT BY POLARIZATION

Let us consider a 2D incompressible flow with a continuous vorticity profile ω(y) and let us introduce a test vortex
with a small circulation γ in that flow. The vorticity profile ω(y) may be due to a collection of field vortices with
circulations {γb}, in which case it represent their mean vorticity in the limit Nb → +∞ with γb ∼ 1/Nb, but it can
also have a more general origin. We want to determine the drift by polarization experienced by the test vortex due to
the perturbation that it causes to the flow. We use the formalism of linear response theory developed in the previous
sections and treat the perturbation induced by the test vortex as a small external perturbation ωe(x, y, t) to the flow.

A. Drift by polarization with collective effects

The Fourier transform of the vorticity of the test vortex is [see Eq. (45)]

ω̂e(k, y, σ) = γe−ikx0δ(kU(y)− σ)δ(y − y0), (106)

where (x0, y0) denotes the initial position of the test vortex. According to Eqs. (27) and (106), the Fourier transform
of the total stream function (including collective effects) created by the test vortex is given by

δψ̂tot(k, y, σ) =

∫

G(k, y, y′, σ)ω̂e(k, y
′, σ) dy′

= γ

∫

G(k, y, y′, σ)e−ikx0δ(kU(y′)− σ)δ(y′ − y0) dy
′

= γG(k, y, y0, σ)e
−ikx0δ(kU(y0)− σ). (107)
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The Fourier transform of the corresponding velocity field in the y-direction Vy = (δutot)y = −∂δψtot/∂x is

V̂y(k, y, σ) = −ikδψ̂tot(k, y, σ)

= −ikγG(k, y, y0, σ)e−ikx0δ(kU(y0)− σ). (108)

Returning to physical space, we get

Vy(x, y, t) = −iγ
∫

dk

∫

dσ

2π
ei(kx−σt)kG(k, y, y0, σ)e

−ikx0δ(kU(y0)− σ)

= −i γ
2π

∫

dk eik(x−x0−U(y0)t)k G(k, y, y0, kU(y0)). (109)

The test vortex is submitted to the velocity field resulting from the perturbation that it has caused and, as a result, it
experiences a systematic drift [57]. Applying Eq. (109) at the position of the test vortex at time t (x = x0 + U(y0)t,
y = y0), we obtain the drift by polarization

Vpol = −i γ
2π

∫

dk k G(k, y, y, kU(y)). (110)

Since Vpol is real, we can write

Vpol =
γ

2π

∫

dk k ImG(k, y, y, kU(y)). (111)

Using the identity from Eq. (C5) we can rewrite the foregoing equation as

Vpol =
γ

2

∫

dk

∫

dy′ k2|G(k, y, y′, kU(y))|2δ(kU(y′)− kU(y))
∂ω′

∂y′
. (112)

Finally, using the identity from Eq. (92), we obtain

Vpol =
γ

2

∫

dk

∫

dy′ |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))
∂ω′

∂y′
. (113)

This is the general expression of the drift by polarization of the test vortex. It returns Eq. (81) of [68].16 The drift
by polarization of the test vortex is due to the retroaction (response) of the perturbation that it has caused to the
mean flow. This is why it is proportional to γ. The calculation of the polarization cloud created by the test vortex is
detailed in Appendix F.
Introducing the function from Eq. (94), the drift by polarization can be written in the more compact form as

Vpol = γ

∫

dy′ χ(y, y′, U(y))δ(U(y′)− U(y))
∂ω′

∂y′
. (114)

Using the identity from Eq. (96) we get

Vpol = γ
∑

r

χ(y, yr, U(y))

|U ′(yr)|
∂ω

∂y
(yr). (115)

If the velocity profile is monotonic, we obtain

Vpol = γ
χ(y, y, U(y))

|U ′(y)|
∂ω

∂y
. (116)

The drift by polarization is proportional to the vorticity gradient Vpol ∝ γ∇ω. If γ > 0 the test vortex ascends the
vorticity gradient. If γ < 0 the test vortex descends the vorticity gradient [58].

16 The fact that the drift velocity calculated in this section corresponds to Vpol in Eq. (72) is justified in Ref. [68] by calculating Vtot
directly from Eq. (70).
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If the vorticity ω is due to a collection of N field vortices with circulation {γb}, the drift by polarization takes the
form

Vpol =
γ

2

∑

b

∫

dk

∫

dy′ |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))
∂ω′

b

∂y′
. (117)

The other equations remain valid with ω =
∑

b ωb. If the field vortices have the same circulation γb, the velocity field
is monotonic (see footnote 15), and Eq. (116) reduces to

Vpol = γ
χ(y, y, U(y))

|U ′(y)|
∂ωb
∂y

. (118)

We note the similarity between Eq. (117) and the expression (93) of the diffusion coefficient created by a collection
of point vortices. The main difference is that the drift by polarization involves the gradient of the vorticity instead of
the vorticity itself. In addition the drift by polarization is proportional to the circulation γ of the test vortex while
the diffusion involves the circulations {γb} of the field vortices.
Remark: The drift by polarization Vpol is just one component of the total drift Vtot of the test vortex which is given

by Eq. (72). Substituting Eqs. (93) and (113) into Eq. (72) and making an integration by parts, we find that the
total drift is

Vtot =
∑

b

∫

dy′ ωb(y
′)

(

γb
∂

∂y
− γ

∂

∂y′

)

χ(y, y′, U(y))δ(U(y′)− U(y)). (119)

B. Drift by polarization without collective effects

It is instructive to redo the calculation of the drift by polarization by neglecting collective effects from the start.17

In that case, the change of the vorticity caused by the external perturbation is determined by the equation

∂δω

∂t
+ U

∂δω

∂x
− ∂ψe

∂x

∂ω

∂y
= 0, (120)

where we have neglected the term δψ in Eq. (20). Written in Fourier space, we get

δω̂(k, y, σ) =
k ∂ω∂y

kU(y)− σ
ψ̂e(k, y, σ). (121)

Using Eqs. (30) and (106), the stream function created by the test vortex is

ψ̂e(k, y, σ) = γGbare(k, y, y0)e
−ikx0δ(kU(y0)− σ). (122)

Therefore, according to Eq. (121), the perturbed vorticity field is

δω̂(k, y, σ) = γ
k ∂ω∂y

kU(y)− σ
Gbare(k, y, y0)e

−ikx0δ(kU(y0)− σ). (123)

The Fourier transform of the stream function associated with the perturbed vorticity field is [see Eqs. (7) and (B2)]

δψ̂(k, y, σ) =

∫

Gbare(k, y, y
′)δω̂(k, y′, σ) dy′. (124)

Combining Eqs. (123) and (124), we get

δψ̂(k, y, σ) = γ

∫

dy′Gbare(k, y, y
′)

k ∂ω
′

∂y′

kU(y′)− σ
Gbare(k, y

′, y0)e
−ikx0δ(kU(y0)− σ). (125)

17 We note that we cannot simply replace G by Gbare in Eq. (111) otherwise we would find Vpol = 0 since Gbare is real. We first have to
use Eq. (C5), then replace G by Gbare in Eq. (113).
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The Fourier transform of the corresponding velocity field in the y-direction Vy = (δu)y = −∂δψ/∂x is

V̂y(k, y, σ) = −ikδψ̂(k, y, σ)

= −ikγ
∫

dy′Gbare(k, y, y
′)

k ∂ω
′

∂y′

kU(y′)− σ
Gbare(k, y

′, y0)e
−ikx0δ(kU(y0)− σ). (126)

Returning to physical space, we get

Vy(x, y, t) = −iγ
∫

dk

∫

dσ

2π
ei(kx−σt)

∫

dy′ kGbare(k, y, y
′)

k ∂ω
′

∂y′

kU(y′)− σ
Gbare(k, y

′, y0)e
−ikx0δ(kU(y0)− σ)

= πγ

∫

dk

∫

dσ

2π
ei(kx−σt)

∫

dy′ kGbare(k, y, y
′)k

∂ω′

∂y′
δ(kU(y′)− σ)Gbare(k, y

′, y0)e
−ikx0δ(kU(y0)− σ)

=
γ

2

∫

dk eik(x−x0−U(y0)t)

∫

dy′ kGbare(k, y, y
′)k

∂ω′

∂y′
δ(k(U(y′)− U(y0)))Gbare(k, y

′, y0)

=
γ

2

∫

dk eik(x−x0−U(y0)t)

∫

dy′ |k|Gbare(k, y, y
′)
∂ω′

∂y′
δ(U(y′)− U(y0))Gbare(k, y

′, y0), (127)

where we have used the Landau prescription σ → σ + i0+ and the Sokhotski-Plemelj [101, 102] formula (C4) to get
the second line, and Eq. (92) to get the last line.
Applying Eq. (127) at the position of the test vortex at time t (x = x0 + U(y0)t, y = y0) and using the identity

Gbare(k, y
′, y) = Gbare(k, y, y

′) (see Appendix B), we obtain the drift by polarization

Vpol =
γ

2

∫

dk

∫

dy′ |k|Gbare(k, y, y
′)2δ(U(y′)− U(y))

∂ω′

∂y′
. (128)

This is the general expression of the drift by polarization when collective effects are neglected. It can be directly
obtained from Eq. (113) by replacing the dressed Green function G(k, y, y′, kU(y)) by the bare Green function
Gbare(k, y, y

′) (see footnote 17). Introducing the function from Eq. (102), it can be written in the more compact form

Vpol = γ

∫

dy′ χbare(y, y
′)δ(U(y′)− U(y))

∂ω′

∂y′

= γ
∑

r

χbare(y, yr)

|U ′(yr)|
∂ω

∂y
(yr). (129)

Explicit expressions of the function χbare(y, y
′) are given in Appendix B. In the dominant approximation, we have

χbare(y, y
′) ≃ (1/4) lnΛ. If the velocity profile is monotonic, we obtain

Vpol = γ
χbare(y, y)

|U ′(y)|
∂ω

∂y
=

1

4
γ

ln Λ

|U ′(y)|
∂ω

∂y
, (130)

where we have used Eq. (B12).
If the vorticity ω is due to a collection of field vortices, the drift by polarization takes the form

Vpol =
γ

2

∑

b

∫

dk

∫

dy′ |k|Gbare(k, y, y
′)2δ(U(y′)− U(y))

∂ω′
b

∂y′
. (131)

The other equations remain valid with ω =
∑

b ωb. If the field vortices have the same circulation γb, the velocity
profile is monotonic (see footnote 15) and Eq. (131) reduces to

Vpol =
1

4
γ

ln Λ

|U ′(y)|
∂ωb
∂y

. (132)

X. EINSTEIN RELATION

We consider here the evolution of a test vortex is a sea of field vortices and establish the Einstein relation for a
thermal bath and its generalization for an out-of-equilibrium bath.
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A. Einstein relation for a thermal bath

If the field vortices are at statistical equilibrium with the Boltzmann distribution (59), the drift by polarization
from Eq. (117) can be rewritten as

Vpol(y) = −β
∑

b

γb
γ

2

∫

dk

∫

dy′ |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))
dψ′

dy′
ωb(y

′)

= −β
∑

b

γb
γ

2

∫

dk

∫

dy′ |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))U(y′)ωb(y
′)

= −β
∑

b

γbU(y)
γ

2

∫

dk

∫

dy′ |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))ωb(y
′). (133)

To get the second line, we have used Eq. (17) and to get the third line, we have used the properties of the δ-function.
Recalling the expression (93) of the diffusion coefficient, we obtain

Vpol(y) = −DβγU(y) = −Dβγ dψ
dy
. (134)

We see that the drift by polarization Vpol = −Dβγ∇ψ is proportional to the gradient of the stream function (hence
perpendicular to the mean field velocity u = −z × ∇ψ) and that the drift coefficient is given by a form of Einstein
relation [57, 58]

µ = Dβγ, (135)

like in the theory of Brownian motion [32].18 The Einstein relation connecting the drift to the diffusion coefficient is
a manifestation of the fluctuation-dissipation theorem (see the Remark below). We note that the Einstein relation is
valid for the drift by polarization Vpol, not for the total drift which has a more complicated expression due to the term
∂D/∂y [see Eqs. (72) and (119)]. We do not have this subtlety for the usual Brownian motion where the diffusion
coefficient is constant. When β < 0 the drift by polarization is directed towards y = 0 so the point vortices tend
to accumulate at the center of the domain. When β > 0 the drift by polarization is directed away from y = 0 so
the point vortices tend to move to infinity. This is consistent with the results obtained by Onsager [23] from very
general considerations. The drift by polarization therefore provides a mechanism for the self-organization of point
vortices at negative temperatures. The existence of a systematic drift for 2D point vortices in a background vorticity
gradient, and the analogy with Brownian theory, were first discussed by Chavanis [57, 58]. The drift experienced by
a point vortex is the counterpart of the Chandrasekhar dynamical friction experienced by a star in a stellar system
[27, 28, 31]. They both arise from a polarization process [57, 97]. The necessity of the drift of point vortices and
the Einstein relation were discussed in Sec. III of [58] by using very general arguments similar to those given by
Chandrasekhar for stellar systems [27, 28, 31].
Remark: These results can also be obtained by substituting the fluctuation-dissipation theorem (56) valid at

statistical equilibrium into the expression (111) of the drift by polarization. This yields

Vpol(y, t) = −β γ
2
U(y)

∫

dk k2P (k, y, kU(y)). (136)

Recalling the expression (87) of the diffusion coefficient, we recover Eq. (134). In this sense, the Einstein relation is
another formulation of the fluctuation-dissipation theorem. On the other hand, combining Eqs. (82), (134) and (135)
we obtain the relation

µ = βγ

∫ +∞

0

〈Vy(0)Vy(t)〉 dt. (137)

This is a form of Green-Kubo [83, 84, 103] relation expressing the fluctuation-dissipation theorem. There is a similar
relation in Brownian theory, fluids, plasmas and stellar systems relating the friction coefficient to the force auto-
correlation function [39, 50, 83, 84, 96–98, 103–110].

18 We note that the temperature arising in this expression can be positive or negative. The temperature is negative in situations of most
physical interest [23].
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B. Generalized Einstein relation

We assume here that the vorticity field ω is due to a single population of point vortices with circulation γb that
is not necessarily at statistical equilibrium. In that case, the velocity field is monotonic (see footnote 15) and the
distribution of field vortices does not change on a timescale of the order N tD (see Sec. XII). It forms therefore an
out-of-equilibrium bath. The diffusion coefficient and the drift by polarization are given by Eqs. (100) and (118).
Combining these relations, we obtain

Vpol =
γ

γb
D
∂ ln |ωb|
∂y

. (138)

This equation can be seen as a generalized Einstein relation for an out-of-equilibrium bath. If the field vortices are
at statistical equilibrium with the Boltzmann distribution from Eq. (59), we recover the expression of the drift by
polarization from Eq. (134).
Remark: Eq. (138) can also be obtained by substituting into Eq. (111) the out-of-equilibrium fluctuation-dissipation

theorem (H4) derived in Appendix H and using Eq. (87).

XI. KINETIC EQUATION WITH AN ARBITRARY VELOCITY PROFILE

The kinetic equation of 2D point vortices can be obtained by substituting the expressions of the diffusion coefficient
(93) and drift by polarization (117) into the Fokker-Planck equation (71). This provides an alternative derivation
of the Lenard-Balescu equation of 2D point vortices as compared to the one given in [68] which is based on the
Klimontovich formalism. In this section, we study the general properties of this equation for an arbitrary velocity
profile.

A. Multi-species systems

Substituting Eqs. (93) and (117) into the Fokker-Planck equation (71) and introducing the vorticity ωa = NaγaP
(a)
1

of each species of point vortices, we obtain the integrodifferential equation

∂ωa
∂t

=
1

2

∂

∂y

∑

b

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))

(

γbω
′
b

∂ωa
∂y

− γaωa
∂ω′

b

∂y′

)

, (139)

where ωa stands for ωa(y, t) and U(y) stands for U(y, t). The mean velocity U(y, t) is determined by the total vorticity
ω(y, t) =

∑

a ωa(y, t). Equation (139) is the counterpart of the multi-species Lenard-Balescu equation in plasma
physics. When collective effects are neglected, i.e., when G(k, y, y′, kU(y)) is replaced by Gbare(k, y, y

′), it reduces to
the multi-species Landau equation. It can be shown [62, 73] that the kinetic equation (139) conserves the total energy
E = 1

2

∫

ωψ dy, the total impulse P =
∫

ωy dy and the vortex number Na (or the circulation Γa = Naγa =
∫

ωa dy)

of each species of point vortices, and that the Boltzmann entropy S = −
∑

a

∫

ωa

γa
ln ωa

γa
dy increases monotonically:

Ṡ ≥ 0 (H-theorem). Furthermore, the multi-species Boltzmann distribution19

ωeq
a (y) = Aae

−βγaψ(y), (140)

where the inverse temperature β is the same for all species of point vortices, is always a steady state of the kinetic
equation (139). We note that the Boltzmann distribution of the different species of point vortices satisfies the relation

ωeq
a (y) = Cab[ω

eq
b (y)]γa/γb , (141)

where Cab is a constant (independent of y). As discussed in Sec. XII, the kinetic equation (139) does not necessarily
relax towards the Boltzmann distribution because of the phenomenon of kinetic blocking [62]. The Lenard-Balescu

19 The Boltzmann distribution is the “most probable” distribution of point vortices. It can be obtained by maximizing the Boltzmann
entropy S at fixed energy E, impulse P and vortex numbers Na by introducing appropriate Lagrange multipliers β (inverse temperature),
V (translation velocity) and µa (chemical potentials) [62, 73]. In the following, for simplicity, we shall work in a frame of reference
where V = 0. More generally, we have to replace the stream function ψ by the relative stream function ψeff = ψ − V y [111].
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equation is valid at the order 1/N so it describes the evolution of the system on a timescale of the order NtD. It may
be necessary to develop the kinetic theory at higher order to describe the relaxation of the system of point vortices
towards the Boltzmann distribution.
Remark: Substituting Eqs. (87) and (111) into the Fokker-Planck equation (71) we obtain the kinetic equation

∂ωa
∂t

=
1

2

∂

∂y

∫

dk k2
[

P (k, y, kU(y))
∂ωa
∂y

− ωa
γa
πk

ImG(k, y, y, kU(y))

]

. (142)

Using Eqs. (48) and (C5), we can check that Eq. (142) is equivalent to Eq. (139).

B. Moment equations

Introducing the notation from Eq. (94) the kinetic equation (139) can be written as

∂ωa
∂t

=
∂

∂y

∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]

(

γbω
′
b

∂ωa
∂y

− γaωa
∂ω′

b

∂y′

)

. (143)

Using the identity from Eq. (96), we get

∂ωa
∂t

=
∂

∂y

∑

b

∑

r

χ(y, yr, U(y))

|U ′(yr)|

(

γbω
r
b

∂ωa
∂y

− γaωa
∂ωrb
∂yr

)

. (144)

Equation (143) has the form of a Fokker-Planck equation

∂ωa
∂t

=
∂

∂y

(

D
∂ωa
∂y

− ωaV
(a)
pol

)

(145)

with a diffusion coefficient [see Eq. (95)]

D =
∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]γbω
′
b =

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]ω′
2 (146)

and a drift by polarization [see Eq. (117)]

V
(a)
pol = γa

∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]
∂ω′

b

∂y′
= γa

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]
∂ω′

∂y′
. (147)

In the second equalities of Eqs. (146) and (147) we have introduced the total vorticity ω =
∑

a ωa =
∑

aNaγaP
(a)
1

and the second moment ω2 =
∑

a γaωa =
∑

aNaγ
2
aP

(a)
1 of the vorticity distribution. As explained previously, the

diffusion coefficient D of a test vortex is due to the fluctuation of all the field vortices so it depends on {γb} through
ω2. By contrast, the drift by polarization of a test vortex of species a is due to the retroaction (response) of the

perturbation that this point vortex caused on the mean flow ω. As a result, V
(a)
pol is proportional to γa.

The equation for the total vorticity is

∂ω

∂t
=

∂

∂y

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]

(

ω′
2

∂ω

∂y
− ω2

∂ω′

∂y′

)

. (148)

This equation depends on the second moment ω2. We can write down a hierarchy of equations for the moments

ωn =
∑

a γ
n−1
a ωa =

∑

aNaγ
n
aP

(a)
1 . The generic term of this hierarchy is

∂ωn
∂t

=
∂

∂y

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]

(

ω′
2

∂ωn
∂y

− ωn+1
∂ω′

∂y′

)

. (149)

This hierarchy is not closed since the equation for ωn depends on ωn+1.
Remark: If we neglect collective effects, the kinetic equation (143) reduces to

∂ωa
∂t

=
∂

∂y

∑

b

∫

dy′ χbare(y, y
′)δ[U(y′)− U(y)]

(

γbω
′
b

∂ωa
∂y

− γaωa
∂ω′

b

∂y′

)

, (150)

where χbare(y, y
′) is given in Appendix B. In the dominant approximation, we have χbare(y, y

′) ≃ (1/4) lnΛ.
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C. Thermal bath approximation

We consider a test vortex20 of circulation γ in “collision” with field vortices of circulations {γb}. We assume
that the vorticity ωb of the field vortices is prescribed (the validity of this approximation is discussed below). The
velocity profile U(y), which is determined by ω =

∑

b ωb, is also prescribed. This situation corresponds to the bath
approximation in its general form. Under these conditions, the Lenard-Balescu equation (143) reduces to

∂P

∂t
=

∂

∂y

∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]

(

γbω
′
b

∂P

∂y
− γP

dω′
b

dy′

)

. (151)

Equation (151) governs the evolution of the probability density P (y, t) of finding the test vortex of circulation γ in y
at time t. It can be written under the form of a Fokker-Planck equation

∂P

∂t
=

∂

∂y

(

D
∂P

∂y
− PVpol

)

(152)

with

D =
∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]γbω
′
b =

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]ω′
2 (153)

and

Vpol = γ
∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]
dω′

b

dy′
= γ

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]
dω′

dy′
. (154)

In this manner, we have transformed an integrodifferential equation of the Lenard-Balescu or Landau form [see Eq.
(143)] into a differential equation of the Fokker-Planck form [see Eq. (151)].
This bath approach is self-consistent in the general case only if the field vortices are at statistical equilibrium,

otherwise their distribution ωb evolves in time due to discreteness effects. If we assume that the field vortices are at
statistical equilibrium with the Boltzmann distribution (59), corresponding to the thermal bath approximation, the
Fokker-Planck equation (151) becomes

∂P

∂t
=

∂

∂y

∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]

(

γbω
′
b

∂P

∂y
+ βγbγPU(y′)ω′

b

)

=
∂

∂y

∑

b

∫

dy′ χ(y, y′, U(y))δ[U(y′)− U(y)]γbω
′
b

(

∂P

∂y
+ βγPU(y)

)

, (155)

where we have used Eqs. (17) and (59) to get the first equality, and the properties of the δ-function to get the second
equality. Using Eq. (17) again, we can write the Fokker-Planck equation under the form

∂P

∂t
=

∂

∂y

[

D(y)

(

∂P

∂y
+ βγP

dψ

dy

)]

, (156)

where D is given by Eq. (153) with the Boltzmann distribution (59). Equation (156) can also be directly obtained
from Eq. (152) by using the expression (134) of the drift by polarization valid for a thermal bath (Einstein relation).
The Fokker-Planck equation (156) conserves the normalization condition

∫

P dy = 1 and decreases the free energy

F = E − TS with E =
∫

γPψ dy and S = −
∫

P lnP dy monotonically: Ḟ ≤ 0 (canonical H-theorem). It relaxes
towards the Boltzmann distribution

Peq(y) = Ae−βγψ(y). (157)

Since the Fokker-Planck equation (156) is valid at the order 1/N , the relaxation time of a test vortex in a thermal
bath scales as

tbathR ∼ NtD, (158)

20 This can be a single point vortex or an ensemble of noninteracting point vortices of the same species. In the second case, we take into
account the collisions between the test vortices γ and the field vortices {γb}, but we ignore the collisions between the test vortices.
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where tD is the dynamical time. The Fokker-Planck equation (156) for a test vortex is similar to the Smoluchowski
[112] equation describing the evolution of an overdamped Brownian particle submitted to an external potential ψ.
The Smoluchowski equation for a test vortex evolving in a sea of field vortices is the counterpart of the Klein-Kramers-
Chandrasekhar equation [27–32, 113, 114] for a test star evolving in a stellar system. The relaxation of a system of
point vortices towards statistical equilibrium is due to a competition between diffusion and drift [57, 58]. Similarly, the
relaxation of a stellar system is due to a competition between diffusion and friction [27, 28, 31]. We note that 2D point
vortices do not have inertia. This is why they resemble overdamped Brownian particles described by the Smoluchowski
equation in configuration space rather than inertial Brownian particles described by the Kramers equation in phase
space.
Remark: In the thermal bath approximation, substituting the fluctuation-dissipation theorem (56) into the kinetic

equation (142) and using Eq. (17), we obtain

∂P

∂t
=

1

2

∂

∂y

∫

dk k2P (k, y, kU(y))

(

∂P

∂y
+ βγP

dψ

dy

)

. (159)

This equation is equivalent to the Fokker-Planck equation (156). The diffusion coefficient D is given by Eqs. (48)
and (87) which return Eq. (153).

D. Pure diffusion

When γ ≪ γb, the drift by polarization can be neglected (Vpol = 0) and the test vortex has a purely diffusive
evolution. In that case, the Fokker-Planck equation (152) reduces to

∂P

∂t
=

∂

∂y

(

D
∂P

∂y

)

, (160)

where D is given by Eq. (153). We note that the diffusion coefficient D depends on the circulations {γb} of the field
vortices through the second moment ω2. This reflects the discrete nature of the field vortices. On the other hand, the
diffusion coefficient does not depend on the circulation γ of the test vortex.
Remark: Since the diffusion coefficient depends on y and since it is placed between the two spatial derivatives ∂/∂y,

Eq. (160) is not exactly a diffusion equation. It can be rewritten as Eq. (68) showing that the test vortex experiences
a drift [see Eq. (72)]

Vtot =
∂D

∂y
. (161)

E. Pure drift

When γ ≫ γb, the diffusion can be neglected (D = 0) and the test vortex has a purely deterministic evolution. In
that case, the Fokker-Planck equation (152) reduces to

∂P

∂t
=

∂

∂y
(−PVpol) , (162)

where Vpol is given by Eq. (154). We note that the drift by polarization Vpol is proportional to the circulation γ of
the test vortex. On the other hand, it depends only on the mean vorticity field ω, not on the individual circulations
{γb} of the field vortices reflecting their discrete nature. As a result, Eq. (162) remains valid when a test vortex of
circulation γ evolves in a continuous vorticity field ω which is not necessarily due to a collection of point vortices.
Remark: The deterministic motion of the test vortex induced by the drift term can be written as

dy

dt
= Vpol(y, t), (163)

and we have Vtot = Vpol [see Eq. (72)]. This equation describes the drift of a point vortex in a mean flow. This
is the counterpart of the sinking satellite problem in stellar dynamics [6]. The change of energy of the test vortex
is ǫ̇ = γUVpol. This relation can be obtained by taking the time variation of E = γ

∫

Pψ dy, using Eq. (162), and
integrating by parts. Using the general expression (112) of the drift term, we obtain

ǫ̇ =
γ2

2

∫

dk

∫

dy′ k[kU(y′)]|G(k, y, y′, kU(y))|2δ(kU(y′)− kU(y))
dω′

dy′
. (164)
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For a stationary flow of the form ω = ω(ψ), we find that

ǫ̇ =
γ2

2

∫

dk

∫

dy′ [kU(y′)]2|G(k, y, y′, kU(y))|2δ(kU(y′)− kU(y))
dω′

dψ′ . (165)

Therefore ǫ̇ is negative if dω/dψ < 0 and positive if dω/dψ > 0. In the first case, the test vortex loses energy to the flow
and in the second case it gains energy from the flow. For the Boltzmann distribution (59), we have dω/dψ = −βω2

[111]. Therefore, dω/dψ < 0 corresponds to β > 0 (positive temperature) and dω/dψ > 0 corresponds to β < 0
(negative temperature).

XII. KINETIC EQUATION WITH A MONOTONIC VELOCITY PROFILE

In this section, we study the general properties of the kinetic equation of 2D point vortices when the velocity profile
is monotonic.

A. Multi-species systems

If we velocity profile is monotonic, using identity (98), the kinetic equation (143) becomes21

∂ωa
∂t

=
∂

∂y

∑

b

χ(y, y, U(y))

|U ′(y)|

(

γbωb
∂ωa
∂y

− γaωa
∂ωb
∂y

)

. (166)

It can be written as a Fokker-Planck equation of the form of Eq. (145) with a diffusion coefficient [see Eq. (99)]

D =
∑

b

χ(y, y, U(y))

|U ′(y)| γbωb =
χ(y, y, U(y))

|U ′(y)| ω2 (167)

and a drift by polarization [see Eq. (116)]

V
(a)
pol = γa

∑

b

χ(y, y, U(y))

|U ′(y)|
∂ωb
∂y

= γa
χ(y, y, U(y))

|U ′(y)|
∂ω

∂y
. (168)

Equation (166) conserves the energy, the impulse and the vortex number of each species, and satisfies an H-theorem
for the Boltzmann entropy. At equilibrium, the currents Ja defined by ∂ωa/∂t = −∂Ja/∂y vanish (for each species),
and we have the relation

ωeq
a (y) = Cab[ω

eq
b (y)]γa/γb , (169)

where Cab is a constant (independent of y). This relation is similar to Eq. (141) which was obtained in the case
where the equilibrium vorticity is given by the Boltzmann distribution (140). However, it is important to mention
that Eq. (166) does not relax towards the Boltzmann distribution (see below). Therefore, the equilibrium vorticity
distribution ωeq

a (y) in Eq. (169) is generally not given by Eq. (140).
Equation (148) for the total vorticity reduces to

∂ω

∂t
= 0. (170)

This equation is closed and shows that the average vorticity profile does not change (the total current vanishes). This
kinetic blocking is discussed in more detail in the following section. We note, by contrast, that the vorticity ωb of
the different species evolves in time. Because of the drift term (see Sec. IX) the vortices with large positive (resp.

21 It is possible that, initially, the velocity profile is non-monotonic but that it becomes monotonic during the evolution. In that case, the
evolution of the vorticity is first described by Eq. (143), then by Eq. (166).
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negative) circulation tend to concentrate around maxima (resp. minima) of vorticity. The hierarchy of equations for
the moments of the vorticity, Eq. (149), reduces to

∂ωn
∂t

=
∂

∂y

[

χ(y, y, U(y))

|U ′(y)|

(

ω2
∂ωn
∂y

− ωn+1
∂ω

∂y

)]

. (171)

This hierarchy of moments is not closed (for n ≥ 2) since the equation for ωn depends on ωn+1.
Remark: If we neglect collective effects, the function χ(y, y, U(y)) can be replaced by χbare(y, y) = 1

4 ln Λ (see
Appendix B) and the kinetic equation (166) reduces to

∂ωa
∂t

=
1

4
lnΛ

∂

∂y

∑

b

1

|U ′(y)|

(

γbωb
∂ωa
∂y

− γaωa
∂ωb
∂y

)

. (172)

The subsequent equations (167)-(171) can be simplified similarly.

B. Single-species systems

For a single species gas of point vortices, the Lenard-Balescu equation (143) reduces to

∂ω

∂t
= γ

∂

∂y

∫

dy′ χ(y, y′, kU(y))δ(U(y′)− U(y))

(

ω′ ∂ω

∂y
− ω

∂ω′

∂y′

)

. (173)

Since the velocity profile of a single species gas of point vortices is monotonic (see footnote 15) we find, using identity
(98), that

∂ω

∂t
= γ

∂

∂y

∫

dy′ χ(y, y′, kU(y))
1

|U ′(y)|δ(y
′ − y)

(

ω′ ∂ω

∂y
− ω

∂ω′

∂y′

)

= 0. (174)

We recall that the Lenard-Balescu equation (173) is valid at the order 1/N so it describes the evolution of the average
vorticity on a timescale NtD under the effect of two-body correlations. Equation (174) shows that the vorticity
does not change on this timescale (the current vanishes at the order 1/N). This is a situation of kinetic blocking
due to the absence of resonance at the order 1/N .22 The vorticity may evolve on a longer timescale due to higher
order correlations between the point vortices. For example, three-body correlations are of order 1/N2 and induce an
evolution of the vorticity on a timescale N2 tD.
Remark: The same situation of kinetic blocking at the order 1/N occurs for 1D homogeneous systems of material

particles with long-range interactions such as 1D plasmas and the HMF model above the critical energy [53, 64]. In
that case, an explicit kinetic equation has been derived at the order 1/N2 [55, 56]. This equation does not display
kinetic blocking and relaxes towards the Boltzmann distribution. In that case, the relaxation time scales as N2tD.
The same results are expected to hold for unidirectional or axisymmetric distributions of 2D point vortices. By
contrast, for more general flows that are neither unidirectional nor axisymmetric, the kinetic equation of 2D point
vortices is given by Eq. (128) or Eq. (137) of [58] (see also Eq. (54) in [63] and Eq. (16) in [62]) and the collision term
does not necessarily vanish.23 In that case, the system may relax towards the Boltzmann distribution on a timescale
NtD. The same situation holds for 1D inhomogeneous systems of material particles with long-range interactions such
as 1D self-gravitating systems and for homogeneous or inhomogeneous systems of material particles with long-range
interactions in d ≥ 2 which relax towards the Boltzmann distribution on a timescale NtD [53, 64].

22 For an axisymmetric distribution of point vortices, the angular velocity profile is not necessarily monotonic, even in the single-species
case. As long as the angular velocity profile is nonmonotonic there are resonances leading to a nonzero current (J 6= 0). However, the
relaxation stops (J = 0) when the profile of angular velocity becomes monotonic even if the system has not reached the Boltzmann
distribution of statistical equilibrium. This “kinetic blocking” for axisymmetric flows is illustrated in [62].

23 This is because there are potentially more resonances at the order 1/N for complicated flows than for unidirectional and axisymmetric
flows. Similarly, resonances appear for inhomogeneous 1D systems with long-range interactions that are not present for homogeneous
1D systems [115].
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C. Out-of-equilibrium bath

The kinetic equation governing the evolution of a test vortex of circulation γ in a bath of field vortices with
circulations {γb} and vorticities {ωb} is given by Eq. (151). If the velocity profile is monotonic, using identity (98),
this Fokker-Planck equation becomes

∂P

∂t
=

∂

∂y

∑

b

χ(y, y, U(y))

|U ′(y)|

(

γbωb
∂P

∂y
− γP

dωb
dy

)

. (175)

It can be written as Eq. (152) with

D =
∑

b

χ(y, y, U(y))

|U ′(y)| γbωb =
χ(y, y, U(y))

|U ′(y)| ω2, (176)

and

Vpol = γ
∑

b

χ(y, y, U(y))

|U ′(y)|
dωb
dy

= γ
χ(y, y, U(y))

|U ′(y)|
dω

dy
. (177)

If we neglect collective effects, the function χ(y, y, U(y)) can be replaced by χbare(y, y) =
1
4 ln Λ (see Appendix B). As

explained in Sec. XIC, this approach is self-consistent in the multispecies case only if the field vortices are at statistical
equilibrium with the Boltzmann distribution from Eq. (59) otherwise their distribution evolves under the effect of
collisions (see Sec. XII A). However, if the field vortices have the same circulation, their distribution does not change
on a timescale N tD (see Sec. XII B). They are in a blocked state. In that case, the bath approximation is justified
(on this timescale) for an arbitrary vorticity field ωb, not only for the Boltzmann distribution. The Fokker-Planck
equation (175) can then be rewritten as

∂P

∂t
=

∂

∂y

[

D(y)

(

∂P

∂y
− γ

γb
P
d ln |ωb|
dy

)]

(178)

with

D =
χ(y, y, U(y))

|U ′(y)| γbωb = χ(y, y, U(y))|γb|. (179)

This equation can also be directly obtained from the Fokker-Planck equation (152) by using the expression of the drift
by polarization given by Eq. (138) and the diffusion coefficient from Eq. (100). The distribution of the test vortex
relaxes towards the equilibrium distribution

Peq(y) = A|ωb|γ/γb (180)

on a relaxation time tbathR ∼ NtD.
Remark: In the bath approximation, substituting the out-of-equilibrium fluctuation-dissipation theorem (H4) into

the kinetic equation (142), we obtain

∂P

∂t
=

1

2

∂

∂y

∫

dk k2P (k, y, kU(y))

(

∂P

∂y
− γ

γb
P
d ln |ωb|
dy

)

. (181)

This equation is equivalent to the Fokker-Planck equation (178). The diffusion coefficient D is given by Eqs. (87)
and (H3) which return Eq. (179).

D. Thermal bath

In the thermal bath approximation, using Eq. (59), the Fokker-Planck equation (178) reduces to

∂P

∂t
=

∂

∂y

[

D

(

∂P

∂y
+ βγP

dψ

dy

)]

, (182)
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in agreement with Eq. (156). When the field vortices have the same circulation γb, the equilibrium stream function
can be calculated analytically (see Appendix G) yielding

ψ = − 2

|β|γb
ln

{

cosh

( |β|γbΓby
4

)}

(β < 0). (183)

The equilibrium distribution of the test vortex is given by [see Eq. (157) with Eq. (183)]

Peq(y) =
A

cosh
2γ
γb

(

|β|γbΓby
4

) , (184)

where A is a constant determined by the normalization condition
∫ +∞
−∞ Peq(y) dy = 1. On the other hand, if we neglect

collective effects, the diffusion coefficient (179) has a constant value given by

D = χbare(y, y)|γb| =
1

4
|γb| ln Λ, (185)

where we have used Eq. (B12). When the diffusion coefficient it constant, it is possible to transform the Smoluchowski
equation (182) into a Schrödinger equation with imaginary time [73, 91]. Indeed, making the change of variables

P (y, t) = Φ(y, t)e−
1

2
βγψ(y), (186)

we obtain after simplification the Schrödinger-like equation

∂Φ

∂t
= D

∂2Φ

∂y2
− V (y)Φ (187)

with the effective potential

V (y) = −1

2
Dβγ

d2ψ

dy2
+

1

4
Dβ2γ2

(

dψ

dy

)2

. (188)

When the stream function is given by Eq. (183) we explicitly obtain

V (y) =
1

16
Dβ2γ2Γ2

b



1−
1 + γb

γ

cosh2
(

|β|γbΓby
4

)



 . (189)

This is a Rosen-Morse [71] (or Pöschl-Teller [72]) potential. Interestingly, the Smoluchowski equation (182) with the
potential from Eq. (183) can be solved analytically [73].

XIII. 2D BROWNIAN POINT VORTICES

In the previous sections, we have considered an isolated system of 2D point vortices described by N -body Hamilto-
nian equations (see Appendix A). This is the Kirchhoff [116] model. It is associated with the microcanonical ensemble
where the energy E of the system is conserved. When N → +∞ with γ ∼ 1/N , the collisions between vortices are
negligible and the evolution of the mean vorticity is described by the 2D Euler-Poisson equations (6) and (13). These
equations generically experience a process of violent relaxation towards a quasistationary state (QSS) on a few dynam-
ical times tD.

24 On a longer timescale ∼ NtD, the evolution of the mean vorticity is governed by the Lenard-Balescu
equation (139), which is valid at the order 1/N . This equation takes into account the collisions between the vortices.
For general flows that are not unidirectional or axisymmetric, the kinetic equation of point vortices [see Eq. (128) or
Eq. (137) of [58]] is expected to relax towards the Boltzmann distribution with energy E on a timescale tR ∼ N tD.
For unidirectional flows and for axisymmetric flows with a monotonic profile of angular velocity, the Lenard-Balescu

24 This metaequilibrium state, which is a stable steady state of the 2D Euler-Poisson equations, may be an unidirectional or axisymmetric
flow (as considered in this paper) or have a more complicated structure.
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equation (for a single species system of point vortices) reduces to ∂ω/∂t = 0. This leads to a situation of kinetic
blocking [62]. In that case, the relaxation towards the Boltzmann distribution (59) with energy E is described by a
kinetic equation valid at the order 1/N2 but the collision term of this equation is not explicitly known (see, however,
Refs. [55, 56] in the case of material particles with long-range interactions). It is expected to relax towards the
Boltzmann distribution on a timescale tR ∼ N2tD.
In Ref. [75] we have formally introduced a system of 2D Brownian point vortices described by N -body stochastic

Langevin equations25

dri
dt

= z×
∑

j

γj
2π

ri − rj

|ri − rj |2
+ βDγi

∑

j

γj
2π

ri − rj

|ri − rj |2
+
√
2DRi(t), (190)

where i = 1, ..., N label the point vortices and Ri(t) is a Gaussian white noise satisfying 〈Ri(t)〉 = 0 and

〈Rαi (t)Rβj (t′)〉 = δijδαβδ(t − t′). As compared to the Kirchhoff model (first term), this Brownian model includes

a drift velocity (second term) and a random velocity (third term). This corresponds to the canonical ensemble where
the temperature T is fixed. This Brownian model could describe the motion of quantized 2D point vortices in Bose-
Einstein condensates and superfluids, where the fluctuations and the dissipation (drift) are caused by impurities. When
N → +∞ with γ ∼ 1/N , the collisions between the vortices are negligible and the evolution of the mean vorticity is
described by a mean field Fokker-Planck equation which has the form of a system of 2D Euler-Smoluchowski-Poisson
equations

∂ω

∂t
+ u · ∇ω = ∇ · [D(∇ω + βγω∇ψ)] , (191)

ω = −∆ψ. (192)

These equations relax towards the Boltzmann distribution (59) with temperature T on a diffusive (Brownian) timescale
tB ∼ L2/D, where L is the system size. When D → 0, these equations first experience a process of violent relaxation
towards a QSS on a few dynamical times tD before slowly relaxing towards the Boltzmann distribution (59), as
discussed in [119] in the context of the BMF model.26

The 2D Euler-Smoluchowski-Poisson equations (191) and (192) associated with the canonical ensemble are struc-
turally very different from the Lenard-Balescu equation (139) associated with the microcanonical ensemble. They are
also very different from the Smoluchowski equation (156) describing the evolution of the mean vorticity of a system
of noninteracting test vortices in a thermal bath of field vortices at statistical equilibrium. In that case, the stream
function ψ(y) is determined by the equilibrium distribution of the field vortices whereas in Eqs. (191) and (192)
the stream function ψ(r, t) is self-consistently produced by the distribution of the point vortices itself. Furthermore,
the 2D Euler-Smoluchowski-Poisson equations (191) and (192) are valid when N → +∞ while the Lenard-Balescu
equation (139) and the Smoluchowski equation (156) are valid at the order 1/N .
The 2D Boltzmann-Poisson equations may admit several equilibrium states.27 The 2D Euler-Smoluchowski-Poisson

equations describe the evolution of the mean vorticity towards one of these equilibrium states which is stable in the
canonical ensemble. Following [75, 123], if we consider the evolution of 2D Brownian point vortices on a mesoscopic
scale, we have to add a stochastic term in the kinetic equation. This noise term arises from finite N effects and takes
fluctuations into account (note that we are still neglecting the collisions between the vortices). This leads to the

25 We have similarly introduced a system of self-gravitating Brownian particles in Ref. [117] and a system of Brownian particles with a
cosine interaction, called the Brownian mean field (BMF) model, in Ref. [118].

26 When N is finite and N2 ≪ 1/D, the system may first achieve a QSS on a timescale tD , followed by a microcanonical equilibrium state
at energy E on a timescale tR ∼ N tD or tR ∼ N2 tD (depending on the structure of the flow), itself followed by a canonical equilibrium
state at temperature T on a timescale tB ∼ L2/D (see Ref. [119]). When the fluctuations are taken into account, the phenomenology
is even richer as discussed at the end of this section and in Sec. XVI.

27 This is the case in a shear layer where the statistical equilibrium state may be either unidirectional (jet) or have the form of a large
scale vortex [120]. This is also the case when the point vortices have positive and negative circulations. In that case, the statistical
equilibrium states have the form of monopoles, dipoles or even tripoles [121, 122]. In the present section, we write the equations for a
single species gas of point vortices, but these equations can be straightforwardly generalized to a multi-species gas (see e.g. [75, 111]
and Appendix I).
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stochastic 2D Euler-Smoluchowski-Poisson equations [75]28

∂ω

∂t
+ u · ∇ω = ∇ · [D(∇ω + βγω∇ψ)] +∇ ·

[

√

2DγωR(r, t)
]

, (193)

ω = −∆ψ, (194)

where R(r, t) is a Gaussian white noise such that 〈R(r, t)〉 = 0 and 〈Ri(r, t)Rj(r′, t)〉 = δijδ(r−r
′)δ(t− t′). When the

2D Boltzmann-Poisson equations admit different equilibrium states, Eqs. (193) and (194) can be used to study random
transitions from one state to the other (see Ref. [124] in a similar context). The probability of transition is given
by the Kramers formula, which can be established from the instanton theory associated with the Onsager-Machlup
functional [124, 125].
The equation for the velocity field corresponding to Eqs. (193) and (194) reads [75]

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P +D∆u− µωu+

√

2Dγω z×R(r, t), (195)

where µ = Dβγ is the drift coefficient. Since β < 0 in the most relevant situations, the term −µωu represents a
nonlinear anti-friction (forcing) proportional to ωu that opposes itself to the diffusion term D∆u.
For unidirectional flows (possibly resulting from a process of violent relaxation), the stochastic Smoluchowski-

Poisson equations (193) and (194) become

∂ω

∂t
=

∂

∂y

(

D
∂ω

∂y
+ µω

∂ψ

∂y

)

+
∂

∂y

[

√

2DγωR(y, t)
]

, (196)

ω = −∂
2ψ

∂y2
. (197)

Using Eq. (17), they can be combined into a single equation for the velocity field

∂U

∂t
= D

∂2U

∂y2
+ µU

∂U

∂y
−
√

−2DγU ′(y)R(y, t). (198)

If we set v = −µU , the foregoing equation may be rewritten as

∂v

∂t
+ v

∂v

∂y
= D

∂2v

∂y2
+
√

2Dµγv′(y, t)R(y, t). (199)

It can be viewed as a stochastic (noisy) viscous Burgers equation for a pseudo “velocity” field v(y, t) with a viscosity
D. If we neglect the noise, it reduces to the viscous Burgers equation

∂v

∂t
+ v

∂v

∂y
= D

∂2v

∂y2
. (200)

This analogy allows us to solve the 1D Smoluchowski-Poisson equation analytically by using the Cole-Hopf transfor-
mation [73]. We note that the stationary solution of Eq. (200) is [see Eqs. (G7)]

v =
1

2
µΓ tanh

( |β|γΓy
4

)

(201)

Remark: Equations (193) and (194) or Eqs. (196) and (197) take into account finite N effects (γ ∼ 1/N) which
are responsible for the noise term (fluctuations) but they ignore the collisions between the point vortices that would
lead to the Lenard-Balescu collision term, as well as the correlations arising from the noise term. The correlations
arising from the noise term induce an additional nonlinear diffusion of the mean vorticity (on a timescale NtD) which
is discussed in Sec. XVI.

28 The evolution of the discrete (exact) vorticity field ωd(r, t) =
∑N

i=1 γiδ(r−ri(t)) is also determined by stochastic 2D Euler-Smoluchowski-
Poisson equations of the form of Eqs. (193) and (194) with ω and ψ replaced by ωd and ψd [75, 123]. Taking the ensemble average of
these equations and making a mean field approximation (N → +∞ with γ ∼ 1/N), we obtain Eqs. (191) and (192). Keeping track of
the fluctuations at a mesoscopic scale, we obtain Eqs. (193) and (194).
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XIV. SECULAR DRESSED DIFFUSION EQUATION

In this section, we consider the case where a continuous incompressible 2D flow29 is submitted to an external
stochastic velocity field ue [see Eqs. (2)-(4)]. We consider a rather general situation where the external forcing is
not necessarily induced by point vortices. We show that, under the effect of the external forcing, the evolution of
the mean flow satisfies a SDD equation. We derive the SDD equation from the Klimontovich equation and from the
Fokker-Planck equation and analyze its main properties.

A. From the Klimontovich equation

Under the assumptions of Sec. II, the basic equations governing the evolution of the mean vorticity ω(y, t) of a
unidirectional flow30 forced by an external perturbation are given by Eqs. (19) and (20). Introducing the Fourier
transforms of the fluctuations of vorticity and stream function, these equations can be rewritten as

∂ω

∂t
=

∂

∂y

∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π
(ik′)ei(kx−σt)ei(k

′x−σ′t)〈δω̂(k, y, σ)δψ̂tot(k
′, y, σ′)〉, (202)

δω̂(k, y, σ) =
k ∂ω∂y

kU(y)− σ
δψ̂tot(k, y, σ), (203)

and they can be combined into

∂ω

∂t
=

∂

∂y

∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π
(ik′)ei(kx−σt)ei(k

′x−σ′t)
k ∂ω∂y

kU(y)− σ
〈δψ̂tot(k, y, σ)δψ̂tot(k

′, y, σ′)〉. (204)

Introducing the power spectrum of the fluctuations from Eq. (35) we obtain

∂ω

∂t
= −i ∂

∂y

∫

dk

∫

dσ

2π
k

k ∂ω∂y
kU(y)− σ

P (k, y, σ). (205)

Recalling the Landau prescription σ → σ + i0+ and using the Sokhotski-Plemelj formula (C4), we can replace
1/(kU(y)− σ − i0+) by +iπδ(kU(y)− σ). Accordingly,

∂ω

∂t
= π

∂

∂y

∫

dk

∫

dσ

2π
k2δ(kU(y)− σ)P (k, y, σ)

∂ω

∂y
. (206)

Integrating over the δ-function (resonance), we get

∂ω

∂t
=

1

2

∂

∂y

∫

dk k2P (k, y, kU(y))
∂ω

∂y
. (207)

Therefore, the secular evolution of the mean vorticity ω(y, t) sourced by the external stochastic perturbation is
governed by a nonlinear diffusion equation of the form

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y

)

(208)

with a diffusion coefficient

D[y, ω] =
1

2

∫

dk k2P (k, y, kU(y)). (209)

29 This could be an intrinsically continuous flow (see the Remark at the end of Sec. II) or a gas of point vortices in the mean field limit
N → +∞ with γ ∼ 1/N where the collisions between the point vortices are negligible.

30 This configuration, which is a steady state of the 2D Euler equation, may be imposed initially or result from a process of violent
relaxation.
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Using Eq. (37), we can express the diffusion coefficient in terms of the correlation function of the external vorticity
field as

D[y, ω] =
1

2

∫

dy′
∫

dk k2|G(k, y, y′, kU(y))|2Ĉ(k, y′, kU(y)). (210)

The diffusion coefficient depends on the correlation function of the external perturbation Ĉ(k, y′, σ) and on the
response function G(k, y, y′, σ) of the flow evaluated at the resonance frequencies σ = kU(y). As a result, the
diffusion coefficient D[y, ω] depends on the position y and on the vorticity ω(y, t) itself through the response function
G(k, y, y′, kU(y)) defined by Eq. (28). It also depends implicitly on ω(y, t) through U(y, t). Equation (208) with the
diffusion coefficient from Eq. (210) is therefore a complicated integrodifferential equation called the SDD equation.
This is the counterpart of the SDD equation derived in Ref. [53] for homogeneous systems of material particles with
long-range interactions forced by an external stochastic perturbation.31 When collective effects are neglected, i.e.,
when we replace G(k, y, y′, kU(y)) by Gbare(k, y, y

′) in Eqs. (210), we obtain

Dbare[y, ω] =
1

2

∫

dy′
∫

dk k2Gbare(k, y, y
′)2Ĉ(k, y′, kU(y)). (211)

In that case, Eq. (208) is called the SBD equation.
Remark: If our system consists in a gas of point vortices with individual circulation γ ∼ 1/N and N ≫ 1 (large but

finite), the SDD equation describes the diffusive evolution of this near-equilibrium system caused by the fluctuations
of the stream function induced by the external perturbation. The evolution timescale is intermediate between the
violent collisionless relaxation time ∼ tD and the collisional relaxation time ∼ NtD or ∼ N2tD.

B. From the Fokker-Planck equation

The SDD equation (208) can also be derived from the Fokker-Planck equation (71). If our system is a continuous
vorticity field or an ensemble of point vortices with circulation γ ∼ 1/N in the collisionless limit N → +∞, the drift
by polarization, which is proportional to γ (see Sec. IX), vanishes

Vpol = 0. (212)

Indeed, the perturbation on the system caused by the test particle is negligible. In that case, the Fokker-Planck
equation (71) reduces to

∂ω

∂t
=

∂

∂y

(

D
∂ω

∂y

)

. (213)

The diffusion coefficient can be calculated as in Sec. VIII A returning the expression from Eqs. (209)-(211). Therefore,
the Klimontovich approach and the Fokker-Planck approach coincide.
Remark: We note that, in Eq. (213), the diffusion coefficient is “sandwiched” between the two spatial derivatives

∂/∂y in agreement with Eq. (208). As explained in Sec. VII, this is not the usual form of the Fokker-Planck equation
which is given by Eq. (68). Therefore, the test vortex experiences a drift [see Eq. (72)]

Vtot =
∂D

∂y
, (214)

arising from the spatial inhomogeneity of the diffusion coefficient.32 Using Eqs. (69) and (70), the relation (214) can
be written as

〈∆y〉
∆t

=
1

2

∂

∂y

〈(∆y)2〉
∆t

. (215)

31 A similar, but different, equation is derived in Refs. [126, 127]. See Ref. [128] for a comparison between these two approaches.
32 This formula is established by a direct calculation in Sec. 4.4 of [68].
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C. Properties of the SDD equation

Some general properties of the SDD equation (208) can be given. First of all, the circulation of the system Γ =
∫

ω dy
is conserved since the right hand side of Eq. (208) is the divergence of a current. By contrast, the energy and the
impulse of the system are not conserved, contrary to the case of the Lenard-Balescu equation [62], since the system
is forced by an external medium. Taking the time derivative of the energy

E =
1

2

∫

ωψ dy, (216)

using Eq. (208), and integrating by parts, we get

Ė = −
∫

D[y, ω]
∂ω

∂y

∂ψ

∂y
dy. (217)

In general, Ė has not a definite sign. However, for ω = ω(ψ) we find that Ė = −
∫

ω′(ψ)D(∂ψ/∂y)2 dy ≥ 0. When
ω′(ψ) ≤ 0, the energy is injected in the system and when ω′(ψ) ≥ 0 the energy is absorbed from the system. For the

impulse P =
∫

ωy dy, we find that Ṗ = −
∫

D ∂ω
∂y dy. Finally, introducing the H-functions

S = −
∫

C(ω) dy, (218)

where C(ω) is any convex function, we get

Ṡ =

∫

C′′(f)D[y, ω]

(

∂ω

∂y

)2

dy. (219)

Because of the convexity condition C′′ ≥ 0 and the fact that D is positive (see Sec. XIVA), we find that Ṡ ≥ 0.
Therefore, all the H-functions increase monotonically with time. This is different from the case of the Lenard-Balescu
equation where only the Boltzmann entropy increases monotonically [62].

D. Connection between the SDD equation and the multi-species Lenard-Balescu equation

Let us discuss the connection between the SDD equation (208) with Eq. (210) and the multi-species Lenard-Balescu
equation (139). The Lenard-Balescu equation governs the evolution of the vorticity ωa(y, t) of point vortices of species
a under the effects of “collisions” with point vortices of all species “b” (including the point vortices of species a) with
vorticity ωb(y

′, t). The dressed Green function is given by Eq. (28) where ω(y, t) denotes the total vorticity
∑

b ωb(y, t)
and U(y, t) is the corresponding velocity field. The set of equations (139), in which all the vorticities ωa(y, t) evolve
in a self-consistent manner, is closed.
We now make the following approximations to simplify these equations. The point vortices of circulation γa with

vorticity ωa(y, t) form our system. They will be called the test vortices. The vortices of circulation {γb}b6=a with
vorticities {ωb(y, t)}b6=a form the external – background – medium. They will be called the field vortices. We take into
account the collisions induced by the field vortices on the test vortices but we neglect the collisions induced by the
test vortices on the field vortices and on themselves. This approximation is valid for very light test vortices γa ≪ γb
or, more precisely, in the limit Na → +∞ with γa ∼ 1/Na (see Sec. XID). Finally, the vorticities {ωb(y, t)}b6=a of the
field vortices are either assumed to be fixed (bath) or evolve according to their own dynamics (i.e. following equations
that we do not write explicitly). Under these conditions, the kinetic equation (139) reduces to

∂ωa
∂t

=
1

2

∂

∂y

∑

b6=a

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))γbω
′
b

∂ωa
∂y

. (220)

This equation can be interpreted as a nonlinear diffusion equation. The diffusion arises from the discrete distribution
of the field vortices which creates a fluctuating velocity field (Poisson shot noise) acting on the test vortices. For
that reason, the diffusion coefficient of the test vortices is proportional to the circulations {γb} of the field vortices.
The diffusion coefficient has no contribution from vortices of species a. The condition γa ≪ γb justifies neglecting
the fluctuations induced by the test vortices on themselves. On the other hand, the drift by polarization vanishes
(Vpol = 0). Indeed, since the circulation γa of the test vortices is small, the test vortices do not significantly perturb
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the vorticity of the medium, so there is no drift by polarization (no retroaction). As a result, the circulation γa → 0
of the vortices of species a does not appear in the kinetic equation (220).
Equation (220) can be written as a SDD equation

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y

)

(221)

with a diffusion tensor

D[y, ω] =
1

2

∑

b

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))γbω
′
b, (222)

where we have droped the subscript a for clarity. The expression (222) of the diffusion coefficient is consistent with

Eq. (210) where Ĉ(k, y, σ) is the bare correlation function of the vorticity field created by a discret collection of field
vortices of circulations {γb} given by Eq. (47). To exactly recover the SDD equation (208) with Eq. (210), we have
to replace ω(y, t)+

∑

b ωb(y) by ω(y, t) in the dressed Green function. This assumes that the external medium – field
vortices – is non polarizable (i.e. collective effects can be neglected) while our system – test vortices – is polarizable
(i.e. collective effects must be taken into account).33 As we have already mentioned, the SDD equation (221) is a
nonlinear diffusion equation involving a diffusion coefficient which depends on the distribution function of the system
ω(y, t) itself. It is therefore a complicated integrodifferential equation.

E. SDD equation with damping

Let us add a small linear damping term −αω on the right hand side of the SDD equation (213) in order to account
for a possible dissipation. This yields

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y

)

− αω. (223)

The general behavior of this nonlinear equation is difficult to predict because it depends on the correlation function
of the external potential. Furthermore, since the diffusion tensor is a functional of ω, the SDD equation presents a
rich and complex behavior. It may relax towards a non-Boltzmannian steady state determined by

∂

∂y

(

D[y, ω]
∂ω

∂y

)

− αω = 0, (224)

or exhibit a complicated (e.g. periodic) dynamics. Using Eq. (17), we can rewrite Eq. (223) in terms of the velocity
field U(y, t) as

∂U

∂t
= D[y, U ]

∂2U

∂y2
− αU. (225)

The stationary solution of this equation is a jet profile U(y) determined by

d2U

dy2
= α

U

D[y, U ]
. (226)

Since D generically depends on U (the diffusion coefficient is a functional of U), this equation is a very nonlinear
equation that has nontrivial solutions. If we assume that the external noise is due to N point vortices and if the
velocity field is monotonic we have (see Sec. VIII B)

D =
∑

b

γb
χ(y, y, U(y))

|U ′(y)| ωb(y), (227)

33 In the present case, Eq. (221) with Eq. (222) is more accurate than the SDD equation (208) with Eq. (210) because it takes into
account the polarizability of the external medium.
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where we have assumed that U(y, t) is produced by ω(y, t) only. If we neglect collective effects and assume that ωb(y)
is uniform, we find that D ∼ 1/|U ′(y)|. On the other hand, when D is constant,34 Eqs. (225) and (226) reduce to

∂U

∂t
= D

∂2U

∂y2
− αU (228)

and

D
∂2U

∂y2
− αU = 0. (229)

In that case, Eq. (229) leads to an exponential jet: U(y) = e−|y|.
Remark: These results are similar to the results obtained for zonal jets in the context of forced 2D turbulence

[129–140]. This connection is not unexpected since these approaches are based on the quasilinear theory of the
2D Euler equation (see an early work in Ref. [141] in the context of the theory of violent relaxation). The fact
that the diffusion coefficient is generically inversely proportional to the local shear, D ∼ 1/|Σ|, with Σ = −U ′(y)
for unidirectional flows and Σ = r(d/dr)(Uθ/r) for axisymmetric flows, was pointed out in [57, 58]. Therefore, the
diffusion is generically reduced as the shear increases. However, the forcing that we consider in this section is different
from the forcing considered in Refs. [129–140]. Therefore, the approaches and the results are substantially distinct
and complementary to each other.

F. SDD equation with drift

By analogy with the Smoluchowski equation (156) or (191), we can heuristically add a drift term on the right hand
side of the SDD equation (213). This leads to an equation of the form

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y
+ µω

∂ψ

∂y

)

, (230)

where ψ is either a given external stream function or the self-consistent stream function produced by the vorticity
field ω. In this latter case, using Eq. (17), we can rewrite Eq. (230) in terms of the velocity field U(y, t) alone as

∂U

∂t
= D[y, U ]

∂2U

∂y2
+ µU

∂U

∂y
. (231)

If we set v = −µU , we get

∂v

∂t
+ v

∂v

∂y
= D[y, v]

∂2v

∂y2
. (232)

This equation is similar to a viscous Burgers equation with a viscosity D[y, v] which is a functional of the pseudo
“velocity” v(y, t).35 The stationary solutions of Eqs. (230) and (231) satisfy

∂

∂y

(

D[y, ω]
∂ω

∂y
+ µω

∂ψ

∂y

)

= 0, D[y, U ]
∂2U

∂y2
+ µU

∂U

∂y
= 0. (233)

G. Stochastic SDD equation

The SDD equation (230), which is a deterministic partial differential equation, describes the evolution of the mean
vorticity ω(y, t). If we take fluctuations into account, by analogy with the results presented in [75], we expect that
the mesoscopic vorticity ω(y, t) will satisfy a stochastic partial differential equation of the form

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y
+ µω

∂ψ

∂y

)

+
∂ζ

∂y
(y, t), (234)

34 This is the case, for example, when the external perturbation is created by a random distribution of point vortices with equal circulation
γb, when collective effects are neglected, and when U(y, t) in the diffusion coefficient is produced by ωb(y, t) only (see Sec. VIII C).

35 When ψ(y) is a given external stream function, v∂yv is replaced by vg∂yv with vg = −µdψ/dy.
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where ζ(y, t) is a noise term with zero mean that generally depends on ω(y, t). When D is constant and when the
fluctuation-dissipation theorem is fulfilled so that µ = Dβγ, as in the case of 2D Brownian vortices (see Sec. XIII),
the noise term is given by [75]

ζ(y, t) =
√

2DγωQ(y, t), (235)

where Q(y, t) is a Gaussian white noise satisfying 〈Q(y, t)〉 = 0 and 〈Q(y, t)Q(y′, t′)〉 = δ(y − y′)δ(t − t′). This
expression can be obtained from an adaptation of the theory of fluctuating hydrodynamics [123]. When D[ω] is a
functional of ω, the noise term may be more complicated.36 When the deterministic equation (230) admits several
equilibrium states, the noise term in Eq. (234) can trigger random transitions from one state to the other (see, e.g.,
[124, 125, 127, 143–145] in different contexts).
Remark: Similarly, we can introduce a stochastic term (noise) in Eq. (223) to describe the evolution of the system

on a mesoscopic scale. This leads to the stochastic SDD equation

∂ω

∂t
=

∂

∂y

(

D[y, ω]
∂ω

∂y

)

− αω +
∂ζ

∂y
(y, t). (236)

Using Eq. (17), it can be written in terms of the velocity field as

∂U

∂t
= D[y, U ]

∂2U

∂y2
− αU − ζ(y, t). (237)

The comments made previously also apply to these stochastic partial differential equations.

XV. STOCHASTIC DAMPED 2D EULER EQUATION

In this section, we consider the stochastic damped 2D Euler equation

∂ωc
∂t

+ uc · ∇ωc = −αωc +
√

2γαωcQ(r, t), (238)

where ωc(r, t) is a continuous vorticity field, Q(r, t) is a Gaussian white noise satisfying 〈Q(r, t)〉 = 0 and
〈Q(r, t)Q(r′, t′)〉 = δ(r − r

′)δ(t − t′), α is a small damping coefficient, and γ has the dimension of a circulation
(we will ultimately take the limit α → 0 and γ → 0). We introduce this equation in an ad hoc manner but we will
show below that the stochastic term generates a power spectrum that coincides with the power spectrum produced
by an isolated distribution of point vortices of circulation γ ∼ 1/N ≪ 1. This approach therefore provides another
manner to determine the power spectrum of a gas of point vortices. This is an additional motivation to study Eq.
(238) in detail. The calculations of this section are inspired by similar calculations on fluctuating hydrodynamics
performed in [123].
When α → 0, the mean vorticity ω(r, t) = 〈ωc(r, t)〉 rapidly reaches a QSS which is a steady state of the 2D

Euler-Poisson equations. This process of violent relaxation takes place on a few dynamical times. If the evolution is
ergodic, the QSS can be determined by the MRS statistical theory [11, 12]. The kinetic theory of violent relaxation
is discussed in [141, 146]. On a longer timescale, the mean vorticity evolves through a sequence of QSSs sourced
by the noise. Adapting the procedure of Sec. II to the present context, and assuming that the mean flow (QSS) is
unidirectional, we obtain the quasilinear equations

∂ω

∂t
= −αω +

∂

∂y

〈

δω
∂δψ

∂x

〉

, (239)

∂δω

∂t
+ U

∂δω

∂x
− ∂δψ

∂x

∂ω

∂y
= −αδω +

√

2γαωQ(x, y, t), (240)

where Q(x, y, t) is a Gaussian white noise satisfying 〈Q(x, y, t)〉 = 0 and 〈Q(x, y, t)Q(x′, y′, t′)〉 = δ(x − x′)δ(y −
y′)δ(t − t′). Introducing the Fourier transforms of the fluctuations of vorticity and stream function, we can rewrite
these equations as

∂ω

∂t
= −αω +

∂

∂y

∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π
(ik′)ei(kx−σt)ei(k

′x−σ′t)〈δω̂(k, y, σ)δψ̂(k′, y, σ′)〉, (241)

36 A general approach to obtain the noise term and the corresponding action is to use the theory of large deviations [142].



38

δω̂(k, y, σ) =
k ∂ω∂y

kU(y)− σ − iα
δψ̂(k, y, σ)− i

√

2γαω(y)

kU(y)− σ − iα
Q̂(k, y, σ), (242)

where Q̂(k, y, σ) is a Gaussian white noise satisfying 〈Q̂(k, y, σ)〉 = 0 and 〈Q̂(k, y, σ)Q̂(k′, y′, σ′)〉 = δ(k + k′)δ(y −
y′)δ(σ + σ′). Substituting Eq. (242) into Eq. (241), we get

∂ω

∂t
= −αω +

∂

∂y

∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π
(ik′)ei(kx−σt)ei(k

′x−σ′t)
k ∂ω∂y

kU(y)− σ − iα
〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉. (243)

In writing Eq. (243) we have only considered the contribution of the term 〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉 which leads to a
diffusive evolution. The other terms will be investigated elsewhere [73].
Let us study Eq. (242) for the fluctuations and determine the power spectrum P (k, y, σ) of the fluctuating stream

function defined by

〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉 = 2πδ(k + k′)δ(σ + σ′)P (k, y, σ). (244)

The fluctuations of vorticity and stream function are related to each other by the Poisson equation

∆δψ = −δω. (245)

Writing this equation in Fourier space, we get

(

d2

dy2
− k2

)

δψ̂ = −δω̂. (246)

Substituting Eq. (242) into Eq. (246), we obtain

[

d2

dy2
− k2 +

k ∂ω∂y
kU(y)− σ − iα

]

δψ̂(k, y, σ) =
i
√

2γαω(y)

kU(y)− σ − iα
Q̂(k, y, σ). (247)

The formal solution of this differential equation is

δψ̂(k, y, σ) = −
∫

dy′G(k, y, y′, σ)
i
√

2γαω(y′)

kU(y′)− σ − iα
Q̂(k, y′, σ), (248)

where the Green function G(k, y, y′, σ) is defined in Eq. (28). The correlation function of the fluctuations of the
stream function is therefore

〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉 = −
∫

dy′dy′′G(k, y, y′, σ)G(k′, y, y′′, σ′)

× 2γα
√

ω(y′)ω(y′′)

(kU(y′)− σ − iα)(k′U(y′′)− σ′ − iα)
〈Q̂(k, y′, σ)Q̂(k′, y′′, σ′)〉. (249)

For a Gaussian white noise, we get

〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉 =
∫

dy′ |G(k, y, y′, σ)|2 2γαω(y′)

(kU(y′)− σ)2 + α2
δ(k + k′)δ(σ + σ′), (250)

where we have used Eq. (C6) to simplify the expression. Taking the limit α → 0 and using the identity

lim
ǫ→0

ǫ

x2 + ǫ2
= π δ(x), (251)

we finally obtain

〈δψ̂(k, y, σ)δψ̂(k′, y, σ′)〉 = π

∫

dy′ |G(k, y, y′, σ)|22γω(y′)δ(kU(y′)− σ)δ(k + k′)δ(σ + σ′), (252)

leading to

P (k, y, σ) = γ

∫

dy′ |G(k, y, y′, σ)|2δ(kU(y′)− σ)ω(y′). (253)
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This returns the power spectrum (48) produced by a random distribution of field vortices.
Substituting Eqs. (244) and (253) into Eq. (243) and repeating the calculations of Sec. XIV, we obtain the

nonlinear diffusion equation

∂ω

∂t
= −αω +

∂

∂y

(

D[y, ω]
∂ω

∂y

)

(254)

with a diffusion coefficient

D[y, ω] =
1

2

∫

dk k2P (k, y, kU(y)) =
1

2
γ

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))ω(y′), (255)

which coincides with the diffusion coefficient of a gas of point vortices (see Sec. VIII). Using Eq. (17), we can write
Eq. (254) in terms of U(y, t) as in Eq. (225). If ω(y) is of constant sign, U(y) is monotonic (see footnote 15) and we
get

D[y, ω] =
1

2
γ

∫

dk |k||G(k, y, y, kU(y))|2 ω(y)

|U ′(y)| =
1

2
|γ|

∫

dk |k||G(k, y, y, kU(y))|2. (256)

If we neglect collective effects, we find that the diffusion coefficient is constant (see Appendix B):

D =
1

2
|γ|

∫

dk |k|Gbare(k, y, y)
2 =

1

4
|γ| lnΛ. (257)

In that case, the equation for U(y, t) coincides with Eqs. (228) and (229). The term −αω describes the damping of
the system on a timescale 1/α and the diffusion coefficient D[y, ω] ∼ 1/N describes its evolution on a timescale NtD.
On a mesoscopic scale, we can keep track of the fluctuations in the evolution of the vorticity and write

∂ω

∂t
= −αω +

∂

∂y

(

D[y, ω]
∂ω

∂y

)

+
√

2αγωQ(y, t), (258)

where Q(y, t) is a Gaussian white noise satisfying 〈Q(y, t)〉 = 0 and 〈Q(y, t)Q(y′, t′)〉 = δ(y − y′)δ(t − t′). Equation
(258) without the noise term may have several equilibrium states. The noise term allows the system to switch from one
equilibrium state to another one through random transitions (see, e.g., [124, 125, 127, 143–145] in different contexts).
Remark: The power spectrum of a gas of point vortices can be obtained in different manners. It can be obtained

from the linearized Klimontovich equation by solving an initial value problem (see Eq. (34) of Ref. [68]). It can also
be obtained by considering the dressing of the bare correlation function of a random distribution of point vortices
viewed as an external perturbation (see Eq. (48) of Sec. VB). Finally, in this section, we have determined the power
spectrum [see Eq. (253)] directly from the stochastic damped 2D Euler equation (238) in the spirit of fluctuating
hydrodynamics [123].

XVI. STOCHASTICALLY FORCED 2D POINT VORTICES

In this section, we consider a stochastic model of 2D point vortices described by the N coupled Langevin equations

dri
dt

=
1

2π
z×

∑

j

γj
ri − rj

|ri − rj |2
+
√
2νRi(t), (259)

where i = 1, ..., N label the point vortices and Ri(t) is a Gaussian white noise satisfying 〈Ri(t)〉 = 0 and

〈Rαi (t)Rβj (t′)〉 = δijδαβδ(t − t′). The variable ν can be interpreted as a diffusion coefficient or as a small viscos-

ity (we will ultimately take the limit ν → 0). This stochastic model of 2D point vortices was introduced by Marchioro
and Pulvirenti [74]. It also corresponds to the model of 2D Brownian point vortices introduced in [75] with β = 0
(see Sec. XIII).

The exact equation satisfied by the discrete vorticity field ωd(r, t) =
∑N

i=1 γiδ(r− ri(t)) is [75]

∂ωd
∂t

+ ud · ∇ωd = ν∆ωd +∇ ·
[

√

2νγωR(r, t)
]

, (260)

where R(r, t) is a Gaussian white noise such that 〈R(r, t)〉 = 0 and 〈Rα(r, t)Rβ(r′, t)〉 = δαβδ(r − r
′)δ(t − t′). For

simplicity, we consider a single species gas of point vortices but the generalization to multiple species of point vortices
is straightforward.
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In this section, we neglect the collisions (finite N effects) between the point vortices that would lead to a Lenard-
Balescu collision term (see Secs. XI and XII) and focus on the effect of the noise. In that case, the mean vorticity
ω(r, t) = 〈ωd(r, t)〉 satisfies the equation

∂ω

∂t
+ u · ∇ω = ν∆ω (261)

and the mesoscopic vorticity satisfies the equation

∂ω

∂t
+ u · ∇ω = ν∆ω +∇ ·

[

√

2νγωR(r, t)
]

. (262)

When ν → 0 the mean vorticity ω(r, t) rapidly reaches a QSS which is a steady state of the 2D Euler-Poisson
equations. On a longer timescale, the mean vorticity evolves through a sequence of QSSs sourced by the noise. This is
similar to the problem discussed in Sec. XV. Adapting the procedure of Sec. II to the present context, and assuming
that the mean flow (QSS) is unidirectional, we obtain the quasilinear equations

∂ω

∂t
= ν

∂2ω

∂y2
+

∂

∂y

〈

δω
∂δψ

∂x

〉

, (263)

∂δω

∂t
+ U

∂δω

∂x
− ∂δψ

∂x

∂ω

∂y
= ν

∂2δω

∂x2
+

∂

∂x

[

√

2νγωQ(x, y, t)
]

, (264)

where Q(x, y, t) is a Gaussian white noise satisfying 〈Q(x, y, t)〉 = 0 and 〈Q(x, y, t)Q(x′, y′, t′)〉 = δ(x−x′)δ(y−y′)δ(t−
t′). Repeating the calculations of Sec. XIV with only minor modifications, we obtain the nonlinear diffusion equation

∂ω

∂t
= ν

∂2ω

∂y2
+

∂

∂y

(

D[y, ω]
∂ω

∂y

)

(265)

with the diffusion coefficient D[y, ω] from Eq. (255) which coincides with the diffusion coefficient of a gas of point
vortices (see Sec. VIII). The diffusion coefficient ν describes the evolution of the system on a diffusive timescale L2/ν
(where L is the size of the system) and the diffusion coefficient D[y, ω] ∼ 1/N describes its evolution on a timescale
NtD. We should also take into account the collisions between the point vortices, leading to the Lenard-Balescu current
from Eq. (139), which develop on the same timescale.
At a mesoscopic level,37 we can keep track of the forcing in the evolution of the vorticity and write

∂ω

∂t
= ν

∂2ω

∂y2
+

∂

∂y

(

D[y, ω]
∂ω

∂y

)

+
∂

∂y

[

√

2νγωQ(y, t)
]

, (266)

where Q(y, t) is a Gaussian white noise satisfying 〈Q(y, t)〉 = 0 and 〈Q(y, t)Q(y′, t′)〉 = δ(y − y′)δ(t − t′). Using Eq.
(17), we can rewrite Eq. (266) in terms of the velocity field U(y, t) as

∂U

∂t
= (ν +D[y, U ])

∂2U

∂y2
−
√

−2DγU ′(y)R(y, t). (267)

XVII. SUMMARY OF THE DIFFERENT KINETIC EQUATIONS

In this section, we recapitulate the different kinetic equations derived in our paper.

A. Lenard-Balescu equation

The Lenard-Balescu equation (139) governs the mean evolution of an isolated system of 2D point vortices due to
discreteness effects (“collisions”).

37 We stress that there are several levels of description. The mesoscopic description leading to Eq. (266) takes place at a higher scale than
the mesoscopic description leading to Eq. (262).
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It can be derived from the Klimontovich formalism by taking ue = 0 in Eq. (2) and considering an initial value
problem as explained in Sec. 3 of [68]. In that case, Eq. (20) with ψe = 0 has to be solved by using a Fourier transform
in space and a Laplace transform in time. This introduces in Eq. (24) a term related to the initial condition [see Eq.
(23) in [68]] instead of the term related to ψe. We can then compute the collision term in Eq. (19) with ψe = 0 as in
Sec. 3 of [68] and obtain the Lenard-Balescu equation (139).
Another approach is to start from the Fokker-Planck equation (68) or (71) and compute the diffusion and drift

coefficients individually.
(i) To compute the diffusion coefficient from Eq. (69) leading to Eq. (87), we have to evaluate the power spectrum of

the stream function fluctuations created by a random distribution of field vortices. This can be done in two manners.
(a) The first possibility is to take ψe = 0 in Eq. (2) and solve Eq. (20) with ψe = 0 by using a Fourier transform

in space and a Laplace transform in time as mentioned above. This leads to the expression (23) of [68] for the
fluctuations, which involves the initial condition. The power spectrum is then given by Eq. (34) of [68] and the
diffusion coefficient by Eq. (68) of [68].
(b) Another possibility is to introduce a stochastic perturbation ψe in Eq. (2) and solve Eq. (20) by introducing

Fourier transforms in space and time. This leads to Eq. (24) for the fluctuations, which involves the external
perturbation. The power spectrum is then given by Eq. (37). If we assume that the external perturbation is due to
a collection of field vortices, we can use Eq. (47) to obtain the expression (48) of the power spectrum. The diffusion
coefficient is then given by Eq. (93).
(ii) We can compute the drift in two manners.
(a) The first possibility is to compute the total drift (70) arising in Eq. (68) by proceeding like in Secs. 4.3 and

4.4 of [68]. This leads to Eq. (102) of [68]. We then find that the total drift splits in two terms: a term interpreted
as a “drift by polarization” (see Sec. 4.3 of [68]) and another term related to the gradient of the diffusion coefficient
(see Sec. 4.4 of [68]). Substituting the diffusion coefficient (Eq. (23) of [68]) and the total drift (Eq. (102) of [68])
in the ordinary expression (68) of the Fokker-Planck equation, and using an integration by parts, we obtain the
Lenard-Balescu equation (139). This is the approach followed in Sec. 4.5 of [68].
(b) Alternatively, we can compute the drift by polarization arising in Eq. (71) by considering the response of the

mean flow to the perturbation created by the test vortex (see Sec. IX). This leads to Eq. (113). This calculation
convincingly shows that Vpol can be interpreted as a drift by polarization. Substituting the diffusion coefficient (93)
and the drift by polarization (113) in the expression (71) of the Fokker-Planck equation, we obtain the Lenard-Balescu
equation (139). This derivation is simpler (less technical) and more physical that the one given in [68].

B. SDD equation

The SDD equation (208) with Eqs. (209) and (210) governs the mean evolution of a gas of point vortices submitted
to an external stochastic perturbation in the limit where the collisions between the point vortices are negligible, i.e.,
in the limit N → +∞ with γ ∼ 1/N → 0. In that case, we can solve Eq. (20) by using Fourier transforms in space
and time. This leads to the expression (37) of the power spectrum. The SDD equation can be derived from the
Klimontovich formalism (see Sec. XIVA) or from the Fokker-Planck formalism (see Sec. XIVB). Since there is no
drift by polarization (γ → 0), the Fokker-Planck equation (71) reduces to Eq. (213). Using Eq. (37), the diffusion
coefficient (87) can be written as in Eq. (89). Substituting Eqs. (87) and (89) into Eq. (213), we obtain the SDD
equation (208) with Eqs. (209) and (210). The SDD equation also describes the mean evolution of a continuous
vorticity field submitted to an external stochastic perturbation (see the Remark at the end of Sec. II).

C. General kinetic equation

We now present a kinetic equation that generalizes the Lenard-Balescu equation (139) and the SDD equation (208)-
(210). We consider a collection of point vortices of circulation γ submitted to a stochastic perturbation that can be
internal or external to the system (or both). The test vortices experience a diffusion due to the stochastic perturbation
and a drift by polarization due to retroaction (response) of the mean flow to the deterministic perturbation that they
induce. The evolution of their density (mean vorticity) is thus governed by a general Fokker-Planck equation of the
form of Eq. (71) where D is given by Eq. (87) and Vpol is given by Eq. (111). Explicitly,

∂ω

∂t
=

1

2

∂

∂y

∫

dk k2
[

P (k, y, kU(y))
∂ω

∂y
− ω

γ

πk
ImG(k, y, y, kU(y))

]

. (268)

Alternative expressions of this kinetic equation can be obtained by using Eqs. (89) and (113) instead of Eqs. (87)
and (111). This kinetic equation is more general than the Lenard-Balescu equation (139) because the noise is not
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necessarily due to a discrete collection of point vortices. It is also more general than the SDD equation (208)-(210)
because it takes into account the drift by polarization of the test vortices. If we neglect the drift by polarization (i.e.
γ → 0) we recover the SDD equation. If we assume that the external perturbation is only due to field vortices and use
Eqs. (93) and (117), we recover the Lenard-Balescu equation. If we assume that a part of the stochastic perturbation
is due to point vortices and another part is due to an external noise, we get an hybrid (mixed) kinetic equation with
a Lenard-Balescu term and a SDD term (see Sec. XVII D).

D. Hybrid kinetic equation and its subcases

In order to be as general as possible, we consider a system of test vortices of circulation γ in “collision” with field
vortices of circulations {γb} and submitted in addition to an external noise. The evolution of the mean vorticity of
the test vortices is governed by a mixed kinetic equation of the form38

∂ω

∂t
= CLB + CSDD, (269)

with a Lenard-Balescu collision term CLB due to the collisions between the point vortices (finite N effects) and a
collision term CSDD due to the external noise. This corresponds to Eq. (268) with a power spectrum P = PLB+PSDD.
Let us consider particular cases of this equation:
(i) When γ → 0, we can neglect the drift by polarization and we get a diffusion equation with two terms of diffusion

DLB and DSDD.
(i-a) In the absence of external noise, we recover the diffusion equation (160) with Eq. (153).
(i-b) When γb → 0 we can neglect the diffusion induced by the field vortices and we recover the SDD equation (208)

with Eqs. (209) and (210).
(ii) When γb → 0, we can neglect the diffusion induced by the field vortices and we get a Fokker-Planck equation

of the form of Eq. (268) with a diffusion term DSDD due to the external noise and a drift by polarization.
(ii-a) In the absence of external noise, we recover the deterministic equation (162) with Eq. (154).
(ii-b) When γ → 0, we can neglect the drift by polarization and we recover the SDD equation (208) with Eqs. (209)

and (210).
(ii-c) In the case where the field vortices are at statistical equilibrium, we can simplify the drift by polarization and

we get an equation of the form of Eq. (230).
(iii) In the absence of external noise, we recover the Lenard-Balescu equation (139).
(iii-a) When γ → 0, we can neglect the drift by polarization and we recover the diffusion equation (160) with Eq.

(153).
(iii-b) When γb → 0, we can neglect the diffusion induced by the field vortices and we recover the deterministic

equation (162) with Eq. (154).
(iii-c) In the case where the field vortices are at statistical equilibrium we can simplify the drift by polarization and

we recover the Smoluchowski equation (156).

XVIII. CONCLUSION

In this paper, we have completed the kinetic theory of 2D point vortices initiated in previous works. We have
proposed a new and more physical derivation of the kinetic equation for a multispecies system of point vortices.
We started from the Fokker-Planck equation written in the form of Eq. (71) and we computed the diffusion

coefficient D and the drift by polarization Vpol of a test vortex.
In order to take collective effects into account, we considered the response of the system to a small perturbation

of arbitrary origin. We showed that the response function of the flow is determined by the dressed Green function
G(k, y, y′, σ) defined by Eq. (28).
To derive the diffusion coefficient D, we assumed that the perturbation is a stationary stochastic process char-

acterized by a bare correlation function Ĉ(k, y, σ) and we determined the dressed power spectrum P (k, y, σ) of the
total fluctuating stream function experienced by the test vortex [see Eq. (37)]. The diffusion coefficient is then given
by Eqs. (87) and (89). We considered the case of an arbitrary external perturbation and the case of a perturbation

38 For simplicity, we assume that the test vortices of circulation γ evolve in a bath of field vortices of circulations {γb}. We can then treat
the test vortices as representing a particular species “a” and write self-consistent kinetic equations for all the species.
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produced by a collection of N point vortices. In that latter case, we explicitly determined the bare correlation function
[see Eq. (47)], the dressed power spectrum [see Eq. (48)], and the diffusion coefficient [see Eq. (93)].
To derive the drift by polarization Vpol, we used the fact that the test vortex induces a small perturbation on the

flow and we determined the response of the flow to that perturbation. The drift velocity of the test vortex then
corresponds to the velocity produced by the perturbation that it has caused [see Eqs. (111) and (113)].
It is interesting to contrast the origin of the diffusion and drift by polarization of the test vortex. The diffusion of

the test vortex is due to the stochastic perturbation caused by the field vortices or, more generally, by an external
random potential. The drift by polarization of the test vortex is due to the retroaction (response) of the perturbation
that it causes on the mean flow. This is a purely deterministic process. This is why the drift by polarization is
proportional to the circulation γ of the test vortex while the diffusion coefficient is proportional to the circulations
{γb} of the field vortices.
Substituting the expressions of the diffusion coefficient and drift by polarization into the Fokker-Planck equation

(71) we obtained the general kinetic equation (268). When the collisions between the point vortices are neglected
(N → +∞), and when the system is subjected to an external perturbation, it reduces to the SDD equation (208) with
Eqs. (209) and (210). When the system is isolated and the noise is due to the system of point vortices itself (finite N
effects), it reduces to the Lenard-Balescu equation (139). In that latter case, we discussed the phenomenon of kinetic
blocking that occurs when the velocity profile is monotonic. In the present paper, we considered unidirectional flows
but similar results can be obtained for axisymmetric flows [62, 68, 69]. On the other hand, when collective effects are
neglected, a general kinetic equation can be derived for an arbitrary distribution of point vortices [see Eq. (128) or
Eq. (137) of [58]].
The previous results are valid for an isolated Hamiltonian system of point vortices. We also considered the case

of 2D Brownian (stochastically forced) point vortices in the canonical ensemble and we established the mean field
Fokker-Planck equation (191) and the stochastic Fokker-Planck equation (193). This last equation can describe
random transitions between different equilibrium states caused by finite-N fluctuations. We showed furthermore that
the fluctuations induce a nonlinear diffusion of the point vortices [see Eqs. (265) and (266)].
Another goal of the paper was to emphasize the fluctuation-dissipation theorem for 2D point vortices. The velocity

of a test vortex moving in a sea of field vortices can be decomposed in two components. There is a mean field velocity
due to the average distribution of point vortices and a “microscopic” velocity due to the discrete interaction between
vortices (collisions). In turn, this microscopic velocity can be decomposed in two parts. There is a random part giving
rise to a diffusion and a deterministic part giving rise to a systematic drift. The drift velocity and the random velocity
must be related at statistical equilibrium because they both come from the same origin (finite N effects). This internal
relationship between the systematic drift and the random part of the microscopic velocity is of a very general nature
which is manifested in the so-called fluctuation-dissipation theorem [84]. A similar relationship between the friction
and the random part of the microscopic force arises in the theory of Brownian motion and in the kinetic theory of
systems with long-range interactions (self-gravitating systems, plasmas, HMF model...). The fluctuation-dissipation
theorem states a general relationship between the response of a given system to an external perturbation and the
internal fluctuations of the system in the absence of the perturbation. Specifically, it provides a relation between the
response function of the system, the correlation function of the fluctuations, and the temperature. In the case of 2D
point vortices at statistical equilibrium it takes the form of Eq. (56) between the power spectrum and the imaginary
part of the Green function. This implies a relation between the drift velocity and the diffusion coefficient given by the
Einstein relation (135) or by the Kubo formula (137). These equations involve the temperature of the point vortex
gas which may be positive or negative.
In a companion paper [73], we shall study in more detail the kinetic equations derived in the present contribution

and complement further the kinetic theory of 2D point vortices. Our results can also be exported to other systems
with long-range interactions such as self-gravitating systems.

Appendix A: The point vortex model

We consider an incompressible and inviscid flow described by the Euler equations

∇ · u = 0,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇P. (A1)

For a 2D flow, the incompressibility condition becomes ∂xux + ∂yuy = 0. In that case, we can introduce a stream
function ψ(r, t) such that ux = ∂yψ and uy = −∂xψ. The velocity field can be written as

u = −z×∇ψ, (A2)
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where z is a unit vector normal to the plane of the flow. The vorticity is defined by ∇× u. For a 2D incompressible
flow, the vorticity is parallel to z and related to the stream function through the Poisson equation

ω = −∆ψ. (A3)

Using the identity (u · ∇)u = ∇(u2/2)− u× (∇× u) and taking the curl of Eq. (A1), we obtain

∂ω

∂t
+ u · ∇ω = 0. (A4)

This equation expresses the advection of the vorticity by the flow. It can be written as Dω/Dt = 0, where D =
∂/∂t + u · ∇ is the material derivative (Stokes operator). Equations (A3) and (A4) define the 2D Euler-Poisson
system. In an infinite domain, the Poisson equation (A3) can be integrated into

ψ(r, t) = − 1

2π

∫

ln |r− r
′|ω(r′, t) dr′, (A5)

leading to the velocity field

u(r, t) = − 1

2π
z×

∫

r
′ − r

|r′ − r|2ω(r
′, t) dr′. (A6)

For a system of N point vortices with circulation γi the vorticity field can be written as

ω(r, t) =
∑

i

γiδ(r− ri(t)). (A7)

The discrete vorticity is a sum of Dirac δ-functions. Substituting this expression into Eq. (A4) we find after straight-
forward manipulations (see below) that the velocity of a test vortex is given by

Vi(t) =
dri
dt

= u(ri(t), t). (A8)

From Eqs. (A5)-(A7), we get

ψ(r, t) = − 1

2π

∑

i

γi ln |r− ri|, u(r, t) =
1

2π
z×

∑

i

γi
r− ri

|r− ri|2
, (A9)

and

Vi =
dri
dt

= −z×∇ψ(ri) =
1

2π
z×

∑

j

γj
ri − rj

|ri − rj |2
. (A10)

The velocity of a point vortex is induced by the other point vortices. This is different from the case of material
particles where the interaction between the particles produces an acceleration (or a force), not a velocity. In a sense,
a point vortex does not have inertia. The equations of motion of the point vortices can be written in Hamiltonian
form as

γi
dxi
dt

=
∂H

∂yi
, γi

dyi
dt

= −∂H
∂xi

, (A11)

with the Hamiltonian

H = − 1

2π

∑

i<j

γiγj ln |ri − rj |. (A12)

These are the so-called Kirchhoff equations [116]. We note that the coordinates (x, y) of the point vortices are
canonically conjugate. We can also write the equations of motion of the point vortices under the form

γi
dri
dt

= −z×∇H. (A13)
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Proof of Eq. (A8): From Eq. (A7) we have

∂ω

∂t
= −

∑

i

γi∇δ(r− ri(t)) ·
dri
dt
, (A14)

and

u · ∇ω = u(r, t) ·
∑

i

γi∇δ(r − ri(t))

=
∑

i

γi∇ (δ(r− ri(t))u(r, t))

=
∑

i

γi∇ (δ(r− ri(t))u(ri(t), t))

=
∑

i

γiu(ri(t), t) · ∇δ(r− ri(t)), (A15)

where we have used the incompressibility of the flow to get the second line of Eq. (A15). Substituting these expressions
into Eq. (A4), we obtain Eq. (A8) and the Kirchhoff equations (A11) and (A12). Inversely, starting from Eq. (A8) or
from the Kirchhoff equations (A11) and (A12), we find that the discrete vorticity field defined by Eq. (A7) satisfies Eq.
(A4). The discrete 2D Euler equation (A4) expressed in terms of δ-functions is the counterpart of the Klimontovich
equation in plasma physics.

Appendix B: Green function without collective effects

The stream function ψ produced by the vorticity field ω is determined by the Poisson equation (A3). Introducing
a system of cartesian coordinates and taking its Fourier transform in the x-direction, we obtain

d2ψ̂

dy2
− k2ψ̂ = −ω̂. (B1)

The general solution of this equation is given by

ψ̂(k, y, σ) =

∫

Gbare(k, y, y
′)ω̂(k, y′, σ) dy′, (B2)

where Gbare(k, y, y
′) is the bare Green function determined by the differential equation

d2Gbare

dy2
− k2Gbare = −δ(y − y′). (B3)

In an unbounded domain, this equation can be solved analytically as follows. For y 6= y′, we have

d2Gbare

dy2
− k2Gbare = 0. (B4)

This equation can be integrated into

Gbare(k, y, y
′) = Ae−|k||y−y′|, (B5)

where we have selected the solution that decays to zero at infinity. To determine the constant A we integrate Eq.
(B3) between −∞ and +∞, giving

∫ +∞

−∞

d2Gbare

dy2
dy − k2

∫ +∞

−∞
Gbare dy = −1. (B6)

Since Gbare(k, y, y
′) and its derivatives vanish at infinity, the foregoing equation reduces to

2k2A

∫ +∞

0

e−|k|y dy = 1, (B7)
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yielding

A =
1

2|k| . (B8)

Therefore, the bare Green function in an infinite domain is given by

Gbare(k, y, y
′) =

1

2|k|e
−|k||y−y′|. (B9)

Introducing the function

χbare(y, y
′) =

1

2

∫

|k|Gbare(k, y, y
′)2 dk, (B10)

and using Eq. (B9), we get

χbare(y, y
′) =

∫ +∞

0

1

4k
e−2k|y−y′| dk. (B11)

When y′ = y, this integral reduces to

χbare(y, y) =
1

4

∫ +∞

0

dk

k
=

1

4
lnΛ, (B12)

where lnΛ =
∫ +∞
0

dk/k = ln(λmax/λmin). We note that χbare(y, y) involves an integral that diverges logarithmically
at small and large scales. It can be regularized by introducing appropriate cut-offs (see Refs. [57, 58, 67] for more
details) leading to a logarithmic factor lnΛ similar to the Coulomb logarithm in plasma physics. When y′ 6= y, the
integral from Eq. (B11) is convergent at small scales (k → +∞) but divergent at large scales (k → 0). In the dominant
approximation, we can write39

χbare(y, y
′) ≃ 1

4
lnΛ. (B13)

In order to regularize the large-scale divergence in Eq. (B11) we can replace the Poisson equation (A3) by the
screened Poisson equation

∆ψ − k2Rψ = −ω, (B14)

and ultimately take the limit kR → 0 [58]. Equation (B14) can be introduced in an ad hoc manner but it is interesting
to note that it also corresponds to the quasigeostrophic (QG) model describing geophysical flows [147]. In that context,
k−1
R is the so-called Rossby radius. The bare Green function corresponding to Eq. (B14) is obtained from Eq. (B9)

by making the substitution k2 → k2 + k2R. This yields

Gbare(k, y, y
′) =

1

2
√

k2 + k2R
e−

√
k2+k2

R
|y−y′|. (B15)

The function defined by Eq. (B10) takes the form

χbare(y, y
′) =

1

4

∫ +∞

0

k

k2 + k2R
e−2

√
k2+k2

R
|y−y′| dk. (B16)

It can be written as

χbare(y, y
′) =

1

4
E1(2kR|y − y′|), (B17)

39 Collective effects are usually negligible when y′ → y. In that case, χ(y, y, U(y)) can be replaced by χbare(y, y) = (1/4) lnΛ. More
generally, in the dominant approximation, χ(y, y′, U(y)) may be replaced by (1/4) lnΛ with good accuracy.
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where

E1(x) =

∫ +∞

x

e−t

t
dt (B18)

is the exponential integral. For x→ 0, we have the expansion E1(x) = −γE − lnx+ ..., where γE = 0.57721 is Euler’s
constant. Therefore, for kR → 0, we get

χbare(y, y
′) ≃ 1

4
[−γE − ln(2kR|y − y′|)] , (B19)

which is perfectly well-defined for y′ 6= y. When y′ = y, the integral (B16) converges at large scales (k → 0) but
diverges logarithmically at small scales (k → +∞).
Remark: The previous results can be generalized to an arbitrary potential of interaction of the form u(|r− r

′|) such
that ψ(r) =

∫

u(|r− r
′|)ω(r′) dr′. For the 2D Euler equation in an infinite domain we have u(|r− r

′|) = − 1
2π ln |r− r

′|
and for the QG equations in an infinite domain we have u(|r− r

′|) = 1
2πK0(kR|r− r

′|), where K0(x) is the modified
Bessel function of zeroth order. We note that Gbare(k, |y−y′|) = û(k, |y−y′|) is the Fourier transform of the potential
of interaction u(|r− r

′|) with respect to the variable x. Using Eqs. (B9) and (B15), we find that

ln |r− r
′| = −π

∫

eik(x−x
′) 1

|k|e
−|k||y−y′| dk, (B20)

K0(kR|r− r
′|) = π

∫

eik(x−x
′) 1
√

k2 + k2R
e−

√
k2+k2

R
|y−y′| dk. (B21)

Appendix C: An important identity

The Green function G(k, y, y′, σ) introduced in Sec. IV is determined by the equation

d2G

dy2
− k2G+

k ∂ω∂y
kU(y)− σ

G = −δ(y − y′) (C1)

with the Landau prescription σ → σ + i0+. Multiplying Eq. (C1) by G(k, y, y′, σ)∗ and integrating over y between
−∞ and +∞, we get

−
∫ +∞

−∞

∣

∣

∣

∣

dG

dy

∣

∣

∣

∣

2

dy − k2
∫ +∞

−∞
|G|2 dy +

∫ +∞

−∞

k ∂ω∂y
kU(y)− σ

|G|2 dy = −G(k, y′, y′, σ)∗, (C2)

where we have integrated the first term by parts. Taking the imaginary part of this equation, we find that

ImG(k, y′, y′, σ) = Im

∫ +∞

−∞

k ∂ω∂y
kU(y)− σ

|G|2(k, y, y′, σ) dy. (C3)

Using the Sokhotski-Plemelj formula

1

x± i0+
= P

(

1

x

)

∓ iπδ(x), (C4)

we obtain the important identity

ImG(k, y, y, σ) = π

∫ +∞

−∞
k
∂ω′

∂y′
δ(kU(y′)− σ)|G(k, y′, y, σ)|2 dy′. (C5)

We also mention the identity

G(−k, y, y′,−σ) = G(k, y, y′, σ)∗, (C6)

which can be derived from Eq. (C1) by using the Landau prescription.
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Appendix D: Alternative derivations of the diffusion coefficient

1. General expression of the diffusion coefficient using Fourier transforms in position and time

The change in position (in the y-direction) of a test vortex due to the total fluctuating stream function is

dy

dt
= Vy = −∂δψtot

∂x
(x, y, t). (D1)

Integrating this equation between 0 and t, we obtain

∆y = −
∫ t

0

∂δψtot

∂x
(x(t′), y(t′), t′) dt′

= −
∫ t

0

∂δψtot

∂x
(x + U(y)t′, y, t′) dt′, (D2)

where we have used the unperturbed equation of motion (74) in the second equation (this accounts for the fact that
the point vortex follows the mean field trajectory at leading order). Decomposing the stream function in Fourier
modes, we get

∆y = −
∫ t

0

dt′
∂

∂x

∫

dk

∫

dσ

2π
eik(x+U(y)t′)e−iσt

′

δψ̂tot(k, y, σ)

= −
∫

dk

∫

dσ

2π
ikeikxδψ̂tot(k, y, σ)

∫ t

0

ei(kU(y)−σ)t′ dt′

= −
∫

dk

∫

dσ

2π
ikeikxδψ̂tot(k, y, σ)

ei(kU(y)−σ)t − 1

i(kU(y)− σ)
. (D3)

The diffusion coefficient is defined by [see Eq. (69)]

D = lim
t→+∞

〈(∆y)2〉
2t

. (D4)

Substituting Eq. (D3) into Eq. (D4), we obtain

D = − lim
t→+∞

1

2t

∫

dk

∫

dk′
∫

dσ

2π

∫

dσ′

2π
kk′ei(k+k

′)x〈δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)〉e

i(kU(y)−σ)t − 1

i(kU(y)− σ)

ei(k
′U(y)−σ′)t − 1

i(k′U(y)− σ′)
.

(D5)
Introducing the power spectrum from Eq. (35), the foregoing equations can be rewritten as

D = lim
t→+∞

1

2t

∫

dk

∫

dσ

2π
k2P (k, y, σ)

|ei(kU(y)−σ)t − 1|2
(kU(y)− σ)2

. (D6)

Using the identity

lim
t→+∞

|eixt − 1|2
x2t

= 2πδ(x), (D7)

we find that

D = π

∫

dk

∫

dσ

2π
k2P (k, y, σ)δ(kU(y)− σ). (D8)

Integrating over the δ-function (resonance), we get

D =
1

2

∫

dk k2P (k, y, kU(y)), (D9)

which returns Eq. (87). Then, using Eq. (37) we obtain Eq. (89).
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Remark: If we do not take the limit t → +∞ in Eq. (D6), we obtain a time-dependent diffusion coefficient of the
form

D(t) = π

∫

dk

∫

dσ

2π
k2P (k, y, σ)∆(kU(y)− σ, t) (D10)

with the regularized function

∆(x, t) =
1

2πt

|eixt − 1|2
x2

=
1− cos(xt)

πtx2
. (D11)

When t→ +∞, we can make the replacement ∆(x, t) → δ(x) corresponding to the diffusive regime. When t→ 0, we
have ∆(x, t) ∼ t/2π corresponding to the ballistic regime.

2. General expression of the diffusion coefficient using a Fourier transform in position

We can make the calculations of the previous section in a slightly different manner. In Eq. (D2) we decompose the
total fluctuating stream function in Fourier modes in position but not in time. In that case, we get

∆y = −
∫ t

0

dt′
∂

∂x

∫

dk eik(x+U(y)t′)δψ̂tot(k, y, t
′)

= −
∫ t

0

dt′
∫

dk ikeik(x+U(y)t′)δψ̂tot(k, y, t
′). (D12)

Substituting Eq. (D12) into Eq. (D4), we obtain

D = − lim
t→+∞

1

2t

∫ t

0

dt′
∫ t

0

dt′′
∫

dk

∫

dk′ kk′ei(k+k
′)xeikU(y)t′eik

′U(y)t′′
〈

δψ̂tot(k, y, t
′)δψ̂tot(k

′, y, t′′)
〉

. (D13)

Introducing the inverse Fourier transform in time of the power spectrum from Eq. (40), we can rewrite the foregoing
equation as

D = lim
t→+∞

1

2t

∫ t

0

dt′
∫ t

0

dt′′
∫

dk k2eikU(y)(t′−t′′)P(k, y, t′ − t′′). (D14)

Using the identity (78), we get

D = lim
t→+∞

1

t

∫ t

0

ds (t− s)

∫

dk k2eikU(y)sP(k, y, s). (D15)

Assuming that P(k, y, s) decreases more rapidly than s−1, we obtain

D =

∫ +∞

0

ds

∫

dk k2eikU(y)sP(k, y, s). (D16)

Making the change of variables s → −s and k → −k, and using the fact that P(−k, y,−s) = P(k, y, s), we see that

we can replace
∫ +∞
0

ds by (1/2)
∫+∞
−∞ ds. Therefore,

D =
1

2

∫ +∞

−∞
ds

∫

dk k2eikU(y)sP(k, y, s). (D17)

Finally, taking the inverse Fourier transform in time of P(k, y, s) we find that

D =
1

2

∫

dk k2P (k, y, kU(y)), (D18)

which returns Eq. (87). Then, using Eq. (37) we obtain Eq. (89). We note that P(k, y, s) is complex while P (k, y, σ)
is real. They satisfy the identities P(−k, y, s) = P(k, y, s)∗ = P(k, y,−s) and P (k, y, σ) = P (k, y, σ)∗ = P (−k, y,−σ)
which can be directly obtained from the definition of P(k, y, s) and P (k, y, σ) in Sec. V.
Remark: If we introduce the temporal Fourier transform of P(k, y, t) in Eq. (D14) we get

D = lim
t→+∞

1

2t

∫ t

0

dt′
∫ t

0

dt′′
∫

dk

∫

dσ

2π
k2eikU(y)(t′−t′′)e−iσ(t

′−t′′)P (k, y, σ), (D19)

which is equivalent to Eq. (75) with Eq. (77). If we integrate over t′ and t′′, we recover Eq. (D6).
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3. Diffusion coefficient created by N point vortices

According to Eqs. (27) and (45), the total fluctuating stream function created by a collection of N point vortices is

δψ̂tot(k, y, σ) =
∑

i

γiG(k, y, yi, σ)e
−ikxiδ(σ − kU(yi)). (D20)

Substituting this expression into Eq. (D3) and integrating over σ, we obtain

∆y = − 1

2π

∑

i

γi

∫

dk ikeikx
eik(U(y)−U(yi))t − 1

ik(U(y)− U(yi))
G(k, y, yi, kU(yi))e

−ikxi . (D21)

The diffusion coefficient from Eq. (D4) is then given by

D = − lim
t→+∞

1

2t

〈

1

4π2

∑

ij

γiγj

∫

dk

∫

dk′ kk′ei(k+k
′)x e

ik(U(y)−U(yi))t − 1

ik(U(y)− U(yi))

eik
′(U(y)−U(yj))t − 1

ik′(U(y)− U(yj))

×G(k, y, yi, kU(yi))G(k
′, y, yj, k

′U(yj))e
−ikxie−ik

′xj

〉

. (D22)

Since the point vortices are initially uncorrelated, and since the point vortices of the same species are identical, we
get (see the similar steps detailed after Eq. (46) in Sec. VB)

D = − lim
t→+∞

1

2t

∑

b

1

4π2

∫

dx′
∫

dy′
∫

dk

∫

dk′ kk′ei(k+k
′)x e

ik(U(y)−U(y′))t − 1

ik(U(y)− U(y′))

eik
′(U(y)−U(y′))t − 1

ik′(U(y)− U(y′))

×G(k, y, y′, kU(y′))G(k′, y, y′, k′U(y′))e−i(k+k
′)x′

γbωb(y
′). (D23)

Integrating over x′, then over k′, and using the identity from Eq. (C6), we get

D = lim
t→+∞

1

2t

∑

b

1

2π

∫

dy′
∫

dk k2
|eik(U(y)−U(y′))t − 1|2
k2(U(y)− U(y′))2

|G(k, y, y′, kU(y′))|2γbωb(y′). (D24)

Finally, using Eq. (D7), we obtain

D =
1

2

∑

b

∫

dy′
∫

dk k2δ [k(U(y)− U(y′))] |G(k, y, y′, kU(y′))|2γbωb(y′), (D25)

which returns Eq. (91). Integrating over the δ-function (resonance) with the identity from Eq. (92), we recover Eq.
(93).
Remark: If we do not take the limit t → +∞ in the foregoing equations, we obtain a time-dependent diffusion

coefficient

D(t) =
1

2

∑

b

∫

dy′
∫

dk k2∆ [k(U(y)− U(y′)), t] |G(k, y, y′, kU(y′))|2γbωb(y′), (D26)

where the regularized function ∆(x, t) is defined in Eq. (D11).

Appendix E: Velocity auto-correlation function and diffusion coefficient with collective effects

The y-component of the velocity of a test vortex is

Vy = −∂δψtot

∂x
, (E1)

where δψtot(x, y, t) is the total fluctuating stream function acting on the test vortex. Introducing the Fourier transform
of the total stream function, the velocity auto-correlation function of the test vortex accounting for collective effects
can be written as

〈Vy(x, y, 0)Vy(x + U(y)t, y, t)〉 = −
∫

dk

∫

dσ

2π

∫

dk′
∫

dσ′

2π
kk′eikxeik

′(x+U(y)t)e−iσ
′t
〈

δψ̂tot(k, y, σ)δψ̂tot(k
′, y, σ′)

〉

.

(E2)
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To define the correlation function, we have used a Lagrangian point of view and we have used the fact that the test
vortex follows the mean field trajectory from Eq. (74) at leading order. Using the expression (35) of the correlation
function of the total fluctuating stream function (power spectrum), we get

〈Vy(x, y, 0)Vy(x+ U(y)t, y, t)〉 =
∫

dk

∫

dσ

2π
k2ei(σ−kU(y))tP (k, y, σ). (E3)

Recalling the relation (37) between the dressed correlation function of the total fluctuating stream function and the
bare correlation function of the external vorticity field, we obtain

〈Vy(x, y, 0)Vy(x+ U(y)t, y, t)〉 =
∫

dy′
∫

dk

∫

dσ

2π
k2ei(σ−kU(y))t|G(k, y, y′, σ)|2Ĉ(k, y′, σ). (E4)

If the external vorticity field is created by N point vortices then, using Eq. (47), the foregoing equation becomes

〈Vy(x, y, 0)Vy(x+ U(y)t, y, t)〉 =
∑

b

γb

∫

dy′
∫

dk

∫

dσ

2π
k2ei(σ−kU(y))t|G(k, y, y′, σ)|2δ(kU(y′)− σ)ωb(y

′)

=
∑

b

γb
2π

∫

dy′
∫

dk k2eik(U(y′)−U(y))t|G(k, y, y′, kU(y′))|2ωb(y′). (E5)

Explicit expressions of the velocity auto-correlation function of a point vortex are given in [58, 73]. Using Eq. (81),
we find that the diffusion coefficient of the test vortex is

D =
1

2

∑

b

γb

∫

dy′
∫

dk k2|G(k, y, y′, kU(y))|2δ(kU(y′)− kU(y))ωb(y
′)

=
1

2

∑

b

γb

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))ωb(y
′). (E6)

This returns the result from Eq. (93).

Appendix F: Polarization cloud

In this Appendix we determine the polarization cloud created by a test vortex moving in the flow.

1. With collective effects

If we take into account collective effects, the change of vorticity of the flow due to an external perturbation ωe is
given in Fourier space by Eqs. (24) and (27). We assume here that the perturbation is caused by a point vortex of
circulation γ. The Fourier transform of the vorticity created by the point vortex is [see Eq. (45)]

ω̂e(k, y, σ) = γe−ikx0δ(kU(y)− σ)δ(y − y0), (F1)

where (x0, y0) denotes the initial position of the test vortex. From Eqs. (24), (27) and (F1), we get

δψ̂tot(k, y, σ) = γ G(k, y, y0, σ)e
−ikx0δ(kU(y0)− σ) (F2)

and

δω̂(k, y, σ) = γ
k ∂ω∂y

kU(y)− σ
G(k, y, y0, σ)e

−ikx0δ(kU(y0)− σ). (F3)

Returning to physical space, we obtain

δω(x, y, t) = γ

∫

dk

∫

dσ

2π
ei(kx−σt)

k ∂ω∂y
kU(y)− σ

G(k, y, y0, σ)e
−ikx0δ(kU(y0)− σ)

=
γ

2π

∂ω
∂y

U(y)− U(y0)

∫

dk eik(x−x0−U(y0)t)G(k, y, y0, kU(y0)). (F4)
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If we measure the position x with respect to the position of the test vortex at the instant t, writingX = x−x0−U(y0)t,
we get

δω(X, y) =
γ

2π

∂ω
∂y

U(y)− U(y0)

∫

dk eikXG(k, y, y0, kU(y0)). (F5)

If we neglect collective effects, we just have to replace the dressed Green function by the bare Green function. This
yields

δω(X, y) =
γ

2π

∂ω
∂y

U(y)− U(y0)

∫

dk eikXGbare(k, y, y0). (F6)

Using the expression (B9) of the bare Green function in an infinite domain, we find that

δω(X, y) =
γ

2π

∂ω
∂y

U(y)− U(y0)

∫

dk eikX
1

2|k|e
−|k||y−y0|. (F7)

The integral displays a logarithmic divergence when k → 0. In the dominant approximation, we can write

δω(X, y) =
γ

2π

∂ω
∂y

U(y)− U(y0)
lnΛ. (F8)

For y → y0, we obtain the equivalent

δω(X, y) ∼ γ

2π

ω′(y0)

U ′(y0)(y − y0)
lnΛ, (F9)

provided that U ′(y0) 6= 0.

2. Without collective effects

If we neglect collective effects from the start, the change of vorticity due to the external field is given by

δω̂(k, y, σ) =
k ∂ω∂y

kU(y)− σ
ψ̂e(k, y, σ) (F10)

with Eq. (30). If the external vorticity is created by a point vortex, using Eqs. (30), (F1) and (F10), we obtain

ψ̂e(k, y, σ) = γ Gbare(k, y, y0)e
−ikx0δ(kU(y0)− σ) (F11)

and

δω̂(k, y, σ) = γ
k ∂ω∂y

kU(y)− σ
Gbare(k, y, y0)e

−ikx0δ(kU(y0)− σ). (F12)

Equations (F11) and (F12) correspond to Eqs. (F2) and (F3) with the dressed Green function replaced by the bare
Green function. They finally lead to Eqs. (F6)-(F9).

Appendix G: Solution of the Boltzmann-Poisson equation

We consider a distribution of N point vortices with equal circulation γ at statistical equilibrium in an infinite
domain. We assume that the mean flow is unidirectional. The equilibrium vorticity is given by the Boltzmann
distribution (59) coupled to the Poisson equation (A3). This leads to the Boltzmann-Poisson equation

−d
2ψ

dy2
= ω = Ae−βγψ. (G1)
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The constant A is determined by the circulation (or vortex number) Γ = Nγ and the inverse temperature β is
determined by the energy of the flow E (see below). The vorticity can be written as

ω = ω0e
−φ with φ = βγ(ψ − ψ0), (G2)

where ω0 and ψ0 are the vorticity and the stream function at the origin y = 0. Equilibrium states exist in an infinite
domain only for β < 0. Introducing the rescaled distance ξ = (|β|γω0)

1/2y, we can write the Boltzmann-Poisson
equation (G1) as

d2φ

dξ2
= e−φ (G3)

with boundary conditions φ(0) = φ′(0) = 0. This equation is similar to the Emden equation in astrophysics [148, 149].
It is also similar to the equation of motion of a particle of unit mass moving in a potential V (φ) = e−φ, where φ plays
the role of the position and ξ the role of time. It has the analytical solution (see, e.g., [149])

e−φ =
1

cosh2
(

ξ√
2

) . (G4)

Computing the total circulation Γ =
∫ +∞
−∞ ω(y) dy = −2ψ′(+∞), we find that the central vorticity is given by

ω0 = |β|γΓ2/8. We can then write the equilibrium vorticity profile as

ω =
|β|γΓ2

8

1

cosh2
(

|β|γΓy
4

) . (G5)

Taking ψ0 = 0 by convention, we obtain the equilibrium steam function

ψ = − 2

|β|γ ln

{

cosh

( |β|γΓy
4

)}

. (G6)

The corresponding velocity field is

U(y) = −1

2
Γ tanh

( |β|γΓy
4

)

. (G7)

Finally, the inverse temperature β is related to the energy by

E =
1

2

∫ +∞

−∞
ω(y)ψ(y) dy = − Γ

|β|γ

∫ +∞

0

ln[cosh(x)]

cosh2(x)
dx = − Γ

|β|γ (1− ln 2). (G8)

Appendix H: Out-of-equilibrium fluctuation-dissipation theorem

In this Appendix, we consider an arbitrary distribution of point vortices with a monotonic velocity profile (see Sec.
XII) and we establish a form of out-of-equilibrium fluctuation-dissipation theorem.
If the velocity field is monotonic, we have the identity [see Eq. (96)]

δ(kU(y′)− σ) =
1

|kU ′(y∗)|
δ(y′ − y∗), (H1)

where y∗ = U−1(σ/k) is the (unique) root of the equation kU(y∗) = σ. Substituting Eq. (H1) into Eq. (C5), we
obtain

ImG(k, y, y, σ) = πk
∂ω

∂y
(y∗)

1

|kU ′(y∗)|
|G(k, y∗, y, σ)|2. (H2)

Similarly, Eq. (48) can be written as

P (k, y, σ) =
∑

b

γb|G(k, y, y∗, σ)|2
ωb(y∗)

|kU ′(y∗)|
. (H3)
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For a single species system of point vortices with circulation γb, combining Eqs. (H2) and (H3), we obtain the
out-of-equilibrium fluctuation-dissipation theorem

ImG(k, y, y, σ) =
πk

γb

∂ ln |ωb|
∂y

(y∗)P (k, y, σ). (H4)

In the case where the field vortices are at statistical equilibrium with the Boltzmann distribution (59) we recover the
usual fluctuation-dissipation theorem (56).

Appendix I: A simplified kinetic equation

In this Appendix, we propose a simplified kinetic equation that may approximately describe the dynamical evolution
of a Hamiltonian system of 2D point vortices in certain cases. To obtain this equation, we make the thermal bath
approximation in the Lenard-Balescu equation (143), leading to Eq. (156), but we assume that ψ(y, t) evolves self-
consistently with time, being determined by the total vorticity ω(y, t) =

∑

a ωa(y, t) through the Poisson equation (6)
instead of being prescribed as in Sec. XIC.40 This gives

∂ωa
∂t

=
∂

∂y

[

D

(

∂ωa
∂y

+ βγaωa
∂ψ

∂y

)]

, (I1)

∆ψ = −
∑

a

ωa, (I2)

where D is given by Eq. (153). This equation does not conserve the energy contrary to the Lenard-Balescu equation
(143). However, following [111, 150], we can enforce the energy conservation by allowing β to depend on time in such

a way that Ė =
∫

ψ ∂ω∂t dy = 0. This yields

β(t) = −
∫

D ∂ω
∂y

∂ψ
∂y dy

∫

Dω2

(

∂ψ
∂y

)2

dy

. (I3)

Equation (I1) with Eqs. (I2) and (I3) conserves the circulations of each species, the energy, and increases the entropy
(H-theorem) [111].41 It relaxes towards the Boltzmann distribution of statistical equilibrium on a timescale NtD. This
equation is well-posed mathematically and interesting in its own right. It can be seen as a heuristic approximation
of the Lenard-Balescu equation (143) providing a simplified kinetic equation for a Hamiltonian system of 2D point
vortices. However, since the approximation leading to Eq. (I1) is uncontrolled, the solution of this equation may
substantially differ from the solution of the Lenard-Balescu equation (143). For example, in the case where there is
no resonance, Eq. (I1) gives a non-vanishing flux (∂ω/∂t 6= 0) driving the system towards the Boltzmann distribution
on a timescale NtD while the Lenard-Balescu flux vanishes (∂ωLB/∂t = 0) and the Boltzmann distribution is reached
on a longer timescale N2tD.

42 More generally, the relevance of Eq. (I1) should be determined case by case by solving
this equation numerically and comparing its solution with the solution of the Lenard-Balescu equation (143) or with
direct numerical simulations of the N -point vortex system.
In principle, the diffusion coefficient D is a functional of ωa but we shall assume D = cst for simplicity. We also

take β = cst in Eq. (I1) like in the case of 2D Brownian vortices described by the canonical ensemble. In that case,
Eqs. (I1) and (I2) conserve the circulations of the different species of point vortices and decrease the free energy
F = E − TS. With this setting, we can take fluctuations due to finite N effects into account by adding a noise term
in the kinetic equation like in Sec. XIII. This leads to43

∂ωa
∂t

+ u · ∇ωa = ∇ · [D (∇ωa + βγaωa∇ψ)] +∇ ·
[

√

2DγaωaRa(r, t)
]

, (I4)

40 In Sec. XIC, ψ(y) is determined by the vorticity
∑

b ωb(y) of the field vortices assumed to be independent of time.
41 We can also conserve the linear impulse by introducing a relative stream function ψeff = ψ−V (t)y instead of ψ and proceed like in Ref.

[111].
42 This timescale discrepency could be corrected by empirically changing the value of D in Eq. (I1) to make it of order 1/N2.
43 It is also possible to take into account fluctuations in the more general equations (I1)-(I3) and in the Lenard-Balescu equation (143) but

the expression of the noise is more complicated [142].
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∆ψ = −
∑

a

ωa. (I5)

Interestingly, Eqs. (I4) and (I5) apply to arbitrary flows (with the limitations about their validity mentioned previ-
ously). These equations are interesting in their own right. They could be used to describe random transitions between
different equilibrium states as discussed in Sec. XIII.

Appendix J: Lenard-Balescu equation for 2D point vortices

We consider an isolated system of N point vortices with identical circulation γ. We assume that the mean flow is
unidirectional. We want to determine the kinetic equation of 2D point vortices due to finite N effects by using the
Klimontovich approach. The derivation is similar to the one given for axisymmetric flows in Refs. [66, 68]. We start
from the quasilinear equations (19) and (20) without the external potential (ψe = 0) that we rewrite as

∂ω

∂t
=

∂

∂y

〈

δω
∂δψ

∂x

〉

, (J1)

∂δω

∂t
+ U

∂δω

∂x
− ∂δψ

∂x

∂ω

∂y
= 0. (J2)

Taking the Fourier-Laplace transform of Eq. (J2), we find that

δω̃(k, y, σ) =
k ∂ω∂y

kU − σ
δψ̃(k, y, σ) +

δω̂(k, y, 0)

i(kU − σ)
, (J3)

where δω̂(k, y, 0) is the Fourier transform of the initial vorticity fluctuation caused by finite N effects. Combining
this relation with the Poisson equation ∆δψ = −δω written in Fourier space [see Eq. (B1)], we get

[

d2

dy2
− k2 +

k ∂ω∂y
kU(y)− σ

]

δψ̃ = −δω̂(k, y, 0)
i(kU − σ)

. (J4)

The formal solution of this differential equation is

δψ̃(k, y, σ) =

∫

G(k, y, y′, σ)
δω̂(k, y′, 0)

i(kU ′ − σ)
dy′, (J5)

where the Green function is defined in Eq. (28) and U ′ stands for U(y′). Taking the inverse Laplace transform of this
equation, using the Cauchy residue theorem, and neglecting the contribution of the damped modes for sufficiently
late times,44 we obtain

δψ̂(k, y, t) =

∫

dy′G(k, y, y′, kU ′)δω̂(k, y′, 0)e−ikU
′t. (J6)

On the other hand, taking the Fourier transform of Eq. (J2), we find that

∂δω̂

∂t
+ ikUδω̂ = ik

∂ω

∂y
δψ̂. (J7)

This first order differential equation in time can be solved with the method of the variation of the constant, giving

δω̂(k, y, t) = δω̂(k, y, 0)e−ikUt + ik
∂ω

∂y

∫ t

0

dt′ δψ̂(k, y, t′)eikU(t′−t). (J8)

44 We only consider the contribution of the pole σ−kU ′ and ignore the contribution of the proper modes of the flow which are the solutions
of the Rayleigh equation (32). See Ref. [151] for general considerations about the linear response theory of systems with long-range
interactions.
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Substituting Eq. (J6) into Eq. (J8), we obtain

δω̂(k, y, t) = δω̂(k, y, 0)e−ikUt + ik
∂ω

∂y

∫

dy′G(k, y, y′, kU ′)δω̂(k, y′, 0)e−ikUt
∫ t

0

dt′ eik(U−U ′)t′ . (J9)

Eqs. (J6) and (J9) relate δψ̂(k, y, t) and δω̂(k, y, t) to the initial fluctuation δω̂(k, y, 0).
We can now compute the flux

〈

δω
∂δψ

∂x

〉

=

∫

dkdk′ ik′eikxeik
′x〈δω̂(k, y, t)δψ̂(k′, y, t)〉. (J10)

From Eqs. (J6) and (J9) we get

〈δω̂(k, y, t)δψ̂(k′, y, t)〉 =
∫

dy′G(k′, y, y′, k′U ′)e−ik
′U ′te−ikUt〈δω̂(k, y, 0)δω̂(k′, y′, 0)〉

+

∫

dy′G(k′, y, y′, k′U ′)e−ik
′U ′tik

∂ω

∂y

∫

dy′′G(k, y, y′′, kU ′′)〈δω̂(k, y′′, 0)δω̂(k′, y′, 0)〉e−ikUt
∫ t

0

dt′ eik(U−U ′′)t′ .

(J11)

The correlation function of the initial fluctuations in Fourier space is given by (see, e.g., Appendix D of [68])

〈δω̂(k, y, 0)δω̂(k′, y′, 0)〉 = γ

2π
δ(k + k′)δ(y − y′)ω(y). (J12)

Eq. (J11) then reduces to

〈δω̂(k, y, t)δψ̂(k′, y, t)〉 = 1

2π
G(−k, y, y,−kU)γω(y)δ(k+ k′)

+
1

2π

∫

dy′G(−k, y, y′,−kU ′)ik
∂ω

∂y
G(k, y, y′, kU ′)δ(k + k′)γω(y′)

∫ t

0

ds e−ik(U−U ′)s, (J13)

where we have set s = t− t′. Substituting this relation into Eq. (J10), and taking the limit t→ +∞, we obtain
〈

δω
∂δψ

∂x

〉

= − 1

2π

∫

dk ikG(−k, y, y,−kU)γω(y)

− 1

2π

∫

dk ik

∫

dy′G(−k, y, y′,−kU ′)ik
∂ω

∂y
G(k, y, y′, kU ′)γω(y′)

∫ +∞

0

ds e−ik(U−U ′)s. (J14)

Making the transformations s→ −s and k → −k we see that we can replace
∫ +∞
0

ds by 1
2

∫ +∞
−∞ ds. We then get

〈

δω
∂δψ

∂x

〉

= − 1

2π

∫

dk ikG(−k, y, y,−kU)γω(y)

− 1

2π

∫

dk ik

∫

dy′G(−k, y, y′,−kU ′)ik
∂ω

∂y
G(k, y, y′, kU ′)γω(y′)

1

2

∫ +∞

−∞
dt′ eik(U−U ′)t′ . (J15)

Using the identities (23) and (92), we obtain
〈

δω
∂δψ

∂x

〉

= − 1

2π

∫

dk ikG(−k, y, y,−kU)γω(y)

+
1

2

∫

dk |k|
∫

dy′G(−k, y, y′,−kU ′)
∂ω

∂y
G(k, y, y′, kU ′)γω(y′)δ(U − U ′). (J16)

Finally, using Eq. (C6), we can rewrite the foregoing equation as
〈

δω
∂δψ

∂x

〉

= − 1

2π

∫

dk k ImG(k, y, y, kU) γω(y) +
1

2

∫

dk |k|
∫

dy′
∂ω

∂y
|G(k, y, y′, kU ′)|2γω(y′)δ(U − U ′). (J17)

The first term is the drift term and the second term is the diffusion term. Using the identity (C5) and substituting
the flux from Eq. (J17) into Eq. (J1), we obtain the Lenard-Balescu-like equation

∂ω

∂t
=
γ

2

∂

∂y

∫

dy′
∫

dk |k||G(k, y, y′, kU(y))|2δ(U(y′)− U(y))

(

ω′ ∂ω

∂y
− ω

∂ω′

∂y′

)

. (J18)
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We recall that for a unidirectional flow made of a single species system of point vortices, the Lenard-Balescu flux
vanishes (see Sec. XII). We can easily extend the derivation of the Lenard-Balescu equation to the multispecies case,
leading to Eq. (139).
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[49] M. Hénon, Ann. Astrophys. 24, 369 (1961)
[50] P.-H. Chavanis, Astron. Astrophys. 556, A93 (2013)
[51] J. Heyvaerts, Mon. Not. R. Astron. Soc. 407, 355 (2010)
[52] P.H. Chavanis, Physica A 391, 3680 (2012)
[53] P.-H. Chavanis, Eur. Phys. J. Plus 127, 19 (2012)



58

[54] J.B. Fouvry, B. Bar-Or, P.H. Chavanis, Phys. Rev. E 99, 032101 (2019)
[55] J.B. Fouvry, B. Bar-Or, P.H. Chavanis, Phys. Rev. E 100, 052142 (2019)
[56] J.B. Fouvry, P.H. Chavanis, C. Pichon, Phys. Rev. E 102, 052110 (2020)
[57] P.H. Chavanis, Phys. Rev. E 58, R1199 (1998)
[58] P.H. Chavanis, Phys. Rev. E 64, 026309 (2001)
[59] P.H. Chavanis, C. Sire, Phys. Rev. E 62, 490 (2000)
[60] P.H. Chavanis, C. Sire, Phys. Fluids 13, 1904 (2001)
[61] P.H. Chavanis, Phys. Rev. E 65, 056302 (2002)
[62] P.H. Chavanis, M. Lemou, Eur. Phys. J. B 59, 217 (2007)
[63] P.H. Chavanis, Physica A 387, 1123 (2008)
[64] P.H. Chavanis, J. Stat. Mech. (2010) P05019
[65] J.B. Fouvry, P.H. Chavanis, C. Pichon, Phys. Lett. A 380, 2589 (2016)
[66] D. Dubin, T.M. O’Neil, Phys. Rev. Lett. 60, 1286 (1988)
[67] D. Dubin, Phys. Plasmas 10, 1338 (2003)
[68] P.H. Chavanis, J. Stat. Mech. (2012) P02019
[69] P.H. Chavanis, Physica A 391, 3657 (2012)
[70] S.V. Nazarenko, V.E. Zakharov, Physica D 56, 381 (1992)
[71] N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)
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