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Abstract 

We study the residual entropy of a two-dimensional Ising model with crossing and four-spin 

interactions, both for the case that in zero magnetic field and that in an imaginary magnetic 

field ( )2 Bi k Tπ . The spin configurations of this Ising model can be mapped into the hydrogen 

configurations of square ice with the defined standard direction of the hydrogen bonds. Making 

use of the equivalence of this Ising system with the exactly solved eight-vertex model and 

taking the low temperature limit, we obtain the residual entropy. Two soluble cases in zero 

field and one soluble case in imaginary field are examined. In the case that the free-fermion 

condition holds in zero field, we find the ground states in low temperature limit include the 

configurations disobeying the ice rules. In another case in zero field that the four-spin 

interactions are −∞ , and the case in imaginary field that the four-spin interactions are 0, the 

residual entropy exactly agrees with the result of square ice determined by Lieb in 1967. In the 

solutions of the latter two cases, we have shown alternative approaches to the residual entropy 

problem of square ice. 
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I.  Introduction 

Exact solution of Ising model formulated on certain lattice is of interest in statistical physics 

for a long time. The simple one-dimensional Ising model was solved by Ising himself early in 

1920s1. In 1944, Onsager published his famous derivation of the solution for the two-

dimensional Ising model with nearest-neighbour interactions and without external field2. The 

result of Onsager was obtained by transfer matrix method, and rederived from various 

approaches3-5. In 1952, Lee and Yang obtained a solution for the two-dimensional Ising model 

with nearest-neighbour interactions in an imaginary external field6. This solution has also been 

determined from a variety of different approaches7-12. While the Ising models with nearest-

neighbour interactions on a square lattice are exactly solved, those formulated on a 

checkerboard lattice are more difficult to treat13, 14. This is caused by the frustrated structure of 

the checkerboard lattice.  

Residual entropy, determined directly by the ground state degeneracy, exists in many 

frustrated systems such as frustrated Ising model15, 16 and ice system17. Early in 1930s the 

theoretical explanation of the residual entropy of ice was proposed by the ice rules18, 19, which 

states that in the ice lattice there is only one hydrogen between every pair of nearest-neighbour 

oxygens to form a hydrogen bond and there are two hydrogens adjacent to each oxygen to 

constitute a H2O molecule. Denoting W as the number of hydrogen configurations obeying the 

ice rules and 
2H ON  as the number of H2O molecules, the residual entropy can be expressed as 

2H O

1 lnBS k W
N

= . Pauling first made a rough estimate for the residual entropy by mean field 

approximation19. This estimate was found to be a lower bound by Onsager and Dupuis20. Nagle 

used a series expansion method developed from DiMarzio and Stillinger’s approach21 and 

obtained an advanced theoretical approximation22. Nagle’s result is in excellent agreement with 

experiment23 and usually treated as the best theoretical estimate for the three-dimensional ice 
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so far. In 1967, the exact solution for the residual entropy of square ice 

 3 4ln
2 3BS k  =  

 
 (1) 

was published by Lieb using the transfer matrix method24, 25, which directly evaluated the 

number of hydrogen configurations obeying the ice rules on square lattice to solve the problem. 

In the context of Ising models, the residual entropy is also well appreciated at least since the 

exact solutions of the triangular model26 and the Kagomé model27. Anderson first showed the 

direct connection between the residual entropy of ice system and that of Ising model28. 

Especially, the close relation of square ice with the two-dimensional Ising model has been 

discussed by Lieb and Wu29, and by Liebmann15. Lieb and Wu29 further showed the mapping 

of some special cases of two-dimensional Ising system into the eight-vertex model30, and into 

the sixteen-vertex model like the general F model31 and the general KDP model32. Accurate 

calculation of the residual entropy of frustrated systems remains a challenging task, even for 

the two-dimensional checkerboard Ising model. 

In this article, our focus is the study of a two-dimensional Ising model on a checkerboard 

lattice with crossing and four-spin interactions. In Section II, we introduce the Ising model and 

verify the connection between this model and square ice. In Section III, following the work of 

Refs. 13 and 14, we examine two soluble cases in zero magnetic field and one soluble case in 

an imaginary magnetic field. For all these cases, we find the approach to the residual entropy 

by taking the low temperature limit of the partition function, instead of using the transfer matrix 

method or the combinational methods. The difference between the results in these cases is 

demonstrated, and the relation of the result with the residual entropy of square ice [Eq. (1)] in 

each case is discussed. The conclusions are outlined in Section IV. 

 

II.  Model 
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Consider a two-dimensional Ising model of N spins with crossing and four-spin interactions 

on a checkerboard lattice as shown in Fig. 1. The interaction energy of each crossed square is 

 ( ) ( )1 2 3 4 1 2 2 3 3 4 4 1 1 3 2 4 1 2 3 4, , ,E s s s s J s s s s s s s s s s s s s s s s= + + + + + + ∆  , (2) 

where J  is the two-spin interaction and ∆  is the four-spin interaction. In our case, J  is a 

positive constant. In the presence of an external magnetic field, the total Hamiltonian of the 

Ising model is  

 { }( ) ( )1 2 3 4
crossed square 1

, , ,  
N

i ex i
i

H s E s s s s H s
=

= −∑ ∑  , (3) 

where the periodic boundary condition is taken into account. The partition function can then 

be written as 

 { }( )
1
exp

i

N i
s

Z H sβ
=±

 = − ∑  (4) 

with 1 Bk Tβ =  and Bk  is the Boltzmann constant. The energy levels of ( )1 2 3 4, , ,E s s s s  within 

each crossed square and the corresponding degeneracy and spin configurations are listed in 

Table I. Each crossed square at a certain energy level is denoted as type A, B or C as shown in 

the table and one type A crossed square will be expressed as 1(A) hereafter. 

 

J

J

J J
J J

s1 s2

s3s4
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Fig. 1. The two-dimensional Ising model with crossing interactions (the four-spin interactions 

are not shown). 

Table I. The energy levels and the corresponding degeneracy and spin configurations of 

each crossed square. 

E 2J− + ∆  −∆  6J + ∆  

( )g E   6 8 2 

Spin configurations ( ) ( )2 1 2 1× + + × −  
( ) ( )3 1 1 1× + + × −  

or 
( ) ( )3 1 1 1× − + × +  

( )4 1× +  

or 
( )4 1× −   

Type A B C 

To verify the connection between this Ising model and square ice, we should first define the 

standard direction (denoted as +1) of the hydrogen bonds in square ice as shown in Fig. 2. One 

sees that each crossed square surrounded by four spins can be mapped into an oxygen lattice 

point of square ice, and the value +1/-1 of the four spins corresponds to the direction of the 

four hydrogen bonds around this site respectively. Therefore the hydrogen configurations of 

square ice can be mapped into the spin configurations of the Ising model, and those obeying 

the ice rules correspond to the configurations with two +1 spins and two -1 spins in every 

crossed square, i.e., ( )2N (A). Note that 2N  is the number of crossed squares and is also the 

number of H2O molecules. Then the ground state degeneracy ( )0g E  of the Ising model in the 

large-N limit directly leads to the residual entropy 

 ( )0
1lim ln

2B N
S k g E

N→∞
=     . (5) 
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In the low temperature limit only the ground states with the Boltzmann weight 0Ee β−  will 

appear in the partition function NZ , i.e., ( ) 0
0

E
NZ g E e β−
 . Thus we can obtain the expression 

for the residual entropy 

 ( )0
1lim lim ln

2B NN
S k Z E

Nβ
β

→∞ →∞

 
= + 

 
 . (6) 

The accurate calculation of the residual entropy defined above requires the exact solution of 

the partition function NZ  and the value of ground state energy 0E .  

 

Fig. 2. The standard direction (+1) of the hydrogen bonds in square ice. 

III.  Results and Discussions 

A.  Zero Field 0exH =  

To evaluate the partition function NZ  in the case of zero field 0exH = , Giacomini 

introduced a mapping of the Ising model into an eight-vertex model with 2N  vertices and 

showed the equivalence13 

 ( ) 82

1 exp 6
2 2N vN

NZ J Zβ = − + ∆ ×  
 . (7) 
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Following the mapping procedure13, the vertex weights of the eight-vertex model in our case 

can be obtained 

 

( )

( )

6 2 8
1

6 2 8
2

8
3 4 5 6 7 8

1 4 3 ,

1 4 3 ,
1 .

J J

J J

J

e e

e e
e

β β

β β

β

ω

ω

ω ω ω ω ω ω

+ ∆

+ ∆

= + +

= − +

= = = = = = −

 (8) 

Two soluble cases of this eight-vertex model are considered in Ref. 13, namely, the free-

fermion case33, 34 and the ∆ = −∞  case. In both cases, the explicit solution of NZ  can be 

obtained. We will present the solution and analyse the low temperature limit in both cases 

respectively. 

 

A.1.  Free-fermion Model 

   The eight-vertex model can be exactly solved when the free-fermion condition33, 34  

 1 2 3 4 5 6 7 8ωω ω ω ω ω ω ω+ = +   (9) 

is satisfied. Substituting Eq. (8) into Eq. (9), the free-fermion condition is expressed as  

 ( ) ( )exp 4 cosh 4 Jβ β∆ =  . (10) 

Obviously, the four-spin interaction ∆  is temperature-dependent when J is a positive constant. 

It is trivial to demonstrate that at finite temperature 0 J< ∆ <  and in the low temperature limit 

( β →∞ ) J∆→ . Then we can see from Table I that at zero temperature the energy of 

( ) ( )2 1 2 1× + + × −  configurations within a crossed square equals to that of ( ) ( )3 1 1 1× + + × − /

( ) ( )3 1 1 1× − + × +  configurations. Therefore, the ground states of the system at finite 

temperature are exactly the configurations with ( )2N (A), but at zero temperature they include 

the configurations with (B). That is, in the low temperature limit the ground states include the 

configurations disobeying the ice rules. The exact expression for the partition function of the 

free-fermion model is given by33, 34  



 

9 

 

( ) ( )
2 2

8 2 0 0

1 1lim ln ln 2 2 cos 2 cos 2 cos 2 cos
2 8vN

Z d d a b c d e
N

π π
θ φ θ φ θ φ θ φ

π→∞
= + + + + + −  ∫ ∫   (11) 

with 

 

2 2 2 2
1 2 3 4

1 3 2 4

1 4 2 3

3 4 7 8

3 4 5 6

2  ,
 ,
 ,
 ,
 .

a
b
c
d
e

ω ω ω ω
ωω ω ω
ωω ω ω
ω ω ω ω
ω ω ω ω

= + + +

= −
= −
= −

= −

  (12) 

Using the equivalence between the Ising system and the eight-vertex model [Eq. (7)] and 

simply substituting Eq. (8) and Eq. (10) into Eqs. (11)-(12), the partition function of the Ising 

system can then be written as  

 
( ) ( )

( ) ( )

2 2 28
2 0 0

8 8

1 1lim ln 2 ln 3
2 8

                                                                   2 2 1 1 cos cos .

J
NN

J J

Z J d d e
N

e e

π π β

β β

β θ φ
π

θ φ

−

→∞

− −

= − ∆ + +

− − + + 

∫ ∫
 (13) 

    It is easy to verify that the ground state energy of the Ising system at finite temperature is 

( )0 2
2
NE J= − + ∆ . Taking NZ  in Eq. (13) into account, the right-hand side of Eq. (6) at finite 

temperature becomes  

 
( ) ( )

( ) ( )

2 2 28
0 2 0 0

8 8

1 1lim ln ln 3
2 8

                                                                   2 2 1 1 cos cos .

J
NN

J J

Z E d d e
N

e e

π π β

β β

β θ φ
π

θ φ

−

→∞

− −

+ = +

− − + + 

∫ ∫
 (14) 

Now we take β →∞  to obtain the entropy in the low temperature limit  

 ( )
2 2

2 0 0

1 ln 9 2 2 cos cos
8
1.07052 .

BS k d d
π π
θ φ θ φ

π
 = − + ∫ ∫



 (15) 

This value is significantly larger than the residual entropy of square ice [Eq. (1)]. As mentioned 

before, the ground states at zero temperature include the configurations with (B), which disobey 

the ice rules and result in a larger configurational entropy. To verify the behaviour of the Ising 
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system in the low temperature limit, we express the partition function in the form of the 

summation of all energy levels in the system 

 ( ) ( )0
0

1

jEE
N j

j
Z e g E g E e βδβ −−

=

 
= + 

 
∑  . (16) 

Here jEδ  is the energy difference between each energy level and the ground state, i.e., 

0j jE E Eδ = −  and ( )jg E  is the degeneracy of the energy level. At finite temperature, the 

order of the energy within three types of crossed square is (A) (B) (C)< < . Therefore, ( )jg E  

depends only on the configurations consist of (A), (B) and (C), but not on the temperature. E.g., 

the first excited states at finite temperature are the configurations with ( )2 2N − (A) + 2(B) so 

that ( )1g E  is just the number of all possible combinations of ( )2 2N − (A) and 2(B) on the 

lattice shown in Fig. 1. Since ( )jg E  is temperature-independent, it is straightforward to 

express the residual entropy in Eq. (6) using Eq. (16)  

 ( ) ( )0
1

1lim ln lim
2

jE
B jN j

S k g E g E e
N

βδ

β

−

→∞ →∞
=

 
= + 

 
∑  . (17) 

As the ground states at finite temperature are the configurations with ( )2N (A), jEδ  for a 

certain energy level just depends on the number of (B) and (C). For the configuration 

( )2 j jN x y− − (A) + jx (B) + jy (C) at the energy level j , ( )2 8j j jE x J y Jδ = −∆ + . If 0jy > , 

we have lim 0jEe βδ

β

−

→∞
= . Then the energy levels corresponding to the configurations with (C) 

have no contribution to the summation in Eq. (17), and we may consider those corresponding 

to ( )2 jN x− (A) + jx (B) only. Notice that jx  should be even for these configurations, i.e., 

2j jx z= . E.g., for the first excited state at finite temperature 1 2x =  and 1 1z = . Using the free-

fermion condition Eq. (10), we have  
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 1lim
2

j
j

z
Ee βδ

β

−

→∞

 =  
 

.  (18) 

Substituting this factor into the expression of residual entropy produces 

 ( ) ( )0
1

1 1lim ln
2 2

jz

B jN j
S k g E g E

N
∗

→∞
=

  = +  
   

∑  , (19) 

where the summation ∗∑  is taken over all the energy levels corresponding to the 

configurations without (C). As shown in Eq. (15), we obtain the low temperature limit for this 

free-fermion model  

( ) ( ) ( )
2 2

0 2 0 0
1

1 1 1lim ln ln 9 2 2 cos cos
2 2 8

1.07052 .

jz

jN j
g E g E d d

N
π π
θ φ θ φ

π
∗

→∞
=

    + = − +       
∑ ∫ ∫



  (20) 

Compared with ( )0
1lim ln

2N
g E

N→∞
, which is the residual entropy of square ice, the result in 

this case is larger because the ground states at zero temperature include the configurations with 

(B) that disobey the ice rules.  

 

A.2.  ∆ = −∞  

Another soluble case of the eight-vertex model is that the condition  

 1 2 3 4,   ω ω ω ω= =   (21) 

is satisfied35, 36. One can see from the vertex weights in Eq. (8) that in this case the four-spin 

interaction ∆  should be −∞ . To study the exact thermodynamic properties of the system in 

this case, we should first define the effective Hamiltonian H  and the corresponding effective 

partition function NZ . The energy within each crossed square is modified as E E= −∆  with 

E defined in Eq. (2). Then the effective Hamiltonian H  is simply 
2
NH H= − ∆ , which leads 
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to the effective partition function exp
2N N
NZ Z β = − ∆  

. From Table II we can easily show 

that the order of the modified energy of the three types of crossed square is 

(A) (C) (B)< < = +∞ . Obviously, only the configurations without (B) have contributed to the 

partition function NZ . The ground states are exactly the configurations with ( )2N (A) 

obeying the ice rules. Therefore, the residual entropy of this system exactly agrees with that of 

square ice. Making use of the equivalence with the eight-vertex model shown in Eq. (7), the 

exact solution of NZ  can be obtained 

 [ ] 82

1 exp 3
2N vNZ NJ Zβ= − ×  . (22) 

Here the vertex weights are 

 
8

1 2
8

3 4 5 6 7 8

1 3 ,
1 .

J

J

e
e

β

β

ω ω

ω ω ω ω ω ω

= = +

= = = = = = −
  (23) 

Notice that the ground state energy of the system is 0E NJ= − . Similar to Eq. (6), the 

expression for the residual entropy in this case is given by 

 
( )0

8

1lim lim ln
2

1lim lim ln ln 2 8 .
2

B NN

vN

S k Z E
N

Z J
N

β

β

β

β

→∞ →∞

→∞ →∞

 
= + 

 
 

= − − 
 

  (24) 

Table II. The modified energy levels and the corresponding degeneracy and spin 

configurations of each crossed square. 

E   2J−  2− ∆  6J  

( )g E   6 8 2 
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Spin configurations ( ) ( )2 1 2 1× + + × −  
( ) ( )3 1 1 1× + + × −  

or 
( ) ( )3 1 1 1× − + × +  

( )4 1× +  

or 
( )4 1× −   

Type A B C 

The eight-vertex model is solved by Baxter35-38 when the condition Eq. (21) holds. Following 

Baxter’s work, the partition function 8vZ  can be expressed as the function of four quantities 

( )1, , 4jw j =   determined by the vertex weights in Eq. (23). Arranged in nonincreasing order 

1 2 3 4w w w w≥ ≥ ≥ , the values of ( )1, , 4jw j =   are given by 

 

8
1

8
2

8
3

4

2 ,
1,
1,

0.

J

J

J

w e
w e
w e
w

β

β

β

=

= +

= −
=

  (25) 

To obtain the solution for 8vZ , we first determine the parameters l, l′ , ζ  and V from 

( )1, , 4jw j =   

 

( )( )
( )( )

( )

( ) ( )

2 2 2 2
1 4 2 3

2 2 2 2
1 3 2 4

2

2 2
1 3
2 2
1 4

4

3

,

1 ,

sn ; ,

sn ; sn ; ,

w w w w
l

w w w w

l l

w wl
w w

wV l l
w

ζ

ζ

− −
=

− −

′ = −

−
=

−

=

 (26) 

where ( )sn ;lζ  and ( )sn ;V l  are Jacobian elliptic functions of modulus l. Next, we denote lK  

as the complete elliptic integral of the first kind of modulus l and define 

 ,   ,   exp .l

l l l

KVU q
K K K

ππζ πµ ′ 
= = = − 

 
  (27) 
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Since our interest is the low temperature limit, we will make use of a more convenient 

expression for 8vZ  applicable in the low temperature regime instead of the original series form 

(Eq. (7.7) in Ref. 36). We see from Eq. (25) that in the low temperature regime 2 3w w→ . 

According to Appendix E of Ref. 36, the partition function of this regime can be written as  

 ( )8 1 2
1lim ln 0

2 vN
Z h F F

N
ψ

→∞
= + − +  . (28) 

The four terms ( ) 1,  0 ,  h Fψ  and 2F  in this expression are given by 

( )( )( )( )2 2 2 2 2 2 2 2
1 2 1 3 2 4 3 41 2

cos cos
1 12 2ln tan ln
2 2 2 8cos cos

2 2
l

U

w w w w w w w w
Ul K

µ
π µψ

µ

    +            = + − − − −   ′      −        

, (29) 

 ( ) ( ) ( ) ( )
( ) ( )

2sinh cosh cosh
0

sinh 2 cosh
x x Ux

h dx
x x x

π µ µ
π µ

∞

−∞

− −      = ∫  , (30) 

 
( ) ( ) ( )

( )

22

1 2
1

sin cos cos
2

1 cos

n

n
n

n n nUqF
q n n

µ µ
µ

∞

=

−  =
−∑  , (31) 

and 

 ( ) ( )

( )
( ) ( )2 1 2

2 2 1
1

1 2 1 2 114 cot cos
2 1 2 21

n n

n
n

q n n U
F

n q

π µ

π µ

π π
µ µ

−∞

−
=

 − − − 
=    − −   
∑  , (32) 

respectively. Now it is straightforward to substitute Eq. (28) into Eq. (24) and obtain the 

expression for the residual entropy  

 ( ) ( ){ }1 2lim ln 2 8 0BS k J h F F
β

ψ β
→∞

= − − + − +  (33) 

with the four terms ( ) 1,  0 ,  h Fψ  and 2F  shown in Eqs. (29)-(32). Clearly, the residual entropy 

is exactly the summation of the low temperature limit of ln 2 8 Jψ β− − , ( )0h , 1F  and 2F . 

Taking the low temperature limit β →∞  of ( )1, , 4jw j =   in Eq. (25) we can easily find 
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 0,   1,   ,   0,
3

l l Vπζ′→ → → =   (34) 

 2,   ,   ,   0,   0
2 3l lK K U qπ πµ′→ → +∞ → = →   (35) 

and 

 ( )( )( )( )2 2 2 2 2 2 2 2
1 2 1 3 2 4 3 4

1 1 3ln ln 2 8 ln
8 4 16

w w w w w w w w Jβ   − − − − − − →     
 . (36) 

The limit values of the four terms ln 2 8 Jψ β− − , ( )0h , 1F  and 2F  in Eq. (33) will be given 

respectively using Eqs. (34)-(36).  

(1). ln 2 8 Jψ β− −  

It is straightforward to substitute Eqs. (34)-(36) into Eq. (29), and obtain 

 ( ) 3lim ln 2 8 ln
2

J
β

ψ β
→∞

 − − =  
 

 . (37) 

(2). ( )0h  

Substituting Eq. (35) into Eq. (30) produces 

 ( )
( )

2 2sinh cosh 1
3 3lim 0

2sinh 2 cosh
3

x x
h dx

x x x
β

π π

ππ

∞

−∞→∞

     −        =
 
 
 

∫  . (38) 

Performing the variable transformation 2
3

y xπ
=  and inserting the identity 

( ) ( )
1

0

cosh 1
sinh

y
yu du

y
−

= ∫  into Eq. (38) gives 

 ( ) ( ) ( )
( ) ( )

1

0

sinh cosh 11lim 0
2 sinh 3 cosh

yu y
h du dy

y yβ

∞

−∞→∞

−  = ∫ ∫  . (39) 

The result of this integral obtained by MATHEMATICA is 16ln
9 3

 
 
 

. That is, 
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 ( ) 16lim 0 ln
9 3

h
β→∞

 =  
 

 . (40) 

(3). 1F  

We can employ some series analysis techniques to deal with 1F . Starting from Eq. (31) with 

µ , U and q in Eq. (35), we have 

 

2
2

1 20 1

2 2sin cos 1
3 3lim 2lim

21 cos
3

n

nq n

n n
qF

nq n
β

π π

π

∞

→∞ →
=

     −        =
−  

 
 

∑  . (41) 

It is obviously to show  

 
2 2 2

1 2 2 20 01 2

2 1lim 2lim 8lim11 1 1
2

n n

n nq qn n

q q qF
q q q nn

β

∞ ∞

→∞ → →
= =

 
   

< = +   − − −  ×
 

∑ ∑  . (42) 

For the series term in the right-hand side of Eq. (42), one can see that 

 
( )
( )

22 2 2

2 2 2 21 1
2

ln 11 1
1 1 1 ln

n x x

n x x
n

qq q qdx dx
q n q x q q

∞ ∞ ∞

=

−
< < =

− − −∑ ∫ ∫  . (43) 

Then it is straightforward to find the right-hand side of Eq. (42) is 0. That is,  

 1lim 0F
β→∞

=  . (44) 

(4). 2F  

Using the similar techniques as in the analysis of 1F , we can conclude that  

 2lim 0F
β→∞

=  . (45) 

Substituting the limit values of the four terms into Eq. (33), we obtain the result for the 

residual entropy 

 3 16 3 4ln ln ln
2 2 39 3BS k     = + =        

 . (46) 
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This result exactly agrees with that of square ice [Eq. (1)]. As mentioned before, the ground 

states of the system in this case are exactly the configurations obeying the ice rules. Then the 

residual entropy determined by the ground state degeneracy ( )0
1lim ln

2N
g E

N→∞
 is consistent 

with the configurational entropy of square ice. In fact, we have shown an alternative derivation 

of this exact solution. 

 

B.  Imaginary Field ( )2πex BH i k T=  

   This case was first considered by Wu14, inspired by the famous solution of the two-

dimensional Ising model in an imaginary external field proposed by Lee and Yang6. Substitute 

Eq. (3) and the imaginary value of the magnetic field ( )2ex BH i k Tπ=  into Eq. (4), we may 

express the partition function as  

 ( )1 2 3 4
1 crossed square1

 exp , , ,  
i

N
N

N i
s i

Z i s E s s s sβ
=± =

 
= × − 

 
∑ ∑∏   (47) 

by using is
ii i s= × . Following Ref. 14, we assume N to be multiples of 4 so that the factor Ni  

in Eq. (47) equals to 1. The model in the presence of the imaginary field ( )2ex BH i k Tπ=  is 

solvable. Here we study the case that 0∆ = . From Table I it is trivial to demonstrate that, the 

ground states in this case are exactly the configurations with ( )2N (A). For the ground states, 

the number of -1 spins takes one half of N, which is also even such that 
1

1
N

i
i

s
=

=∏ . With this 

consideration and realizing the ground state energy 0E NJ= − , we can easily show that in the 

low temperature limit NZ  has the same behaviour as NZ  in the case ∆ = −∞  in zero field 

shown in Sec. III.A.2. Therefore the residual entropy in this case should be consistent with the 

result of square ice. 
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   Wu introduced a mapping of this Ising model with ( )2ex BH i k Tπ=  into an exactly solved 

eight-vertex model with 2N  vertices and showed the exact equivalence14 

 8N vZ Z=  .  (48) 

Following the mapping procedure14, 33, 39, the vertex weights of the eight-vertex model in this 

case are given by 

 

( )

( )

( )

2
1 2 3 4 7 8

2 6
5

2 6
6

sinh 4 ,
1 3 4 ,
2
1 3 4 .
2

J

J J

J J

e J

e e

e e

β

β β

β β

ω ω ω ω ω ω β

ω

ω

−

−

−

= = = = = = −

= − +

= + +

  (49) 

We can see that the condition Eq. (21) holds. As stated in Ref. 14, the partition function can be 

evaluated in this case if 5 6 0ω ω > . It is easy to verify that 5 0ω >  and 6 0ω >  so that this eight-

vertex model is solvable. Similar to the solution in Sec. III.A.2, 8vZ  in this case can be 

expressed as the function of four quantities ( )1, , 4jw j =   given by 

 

( )( ) ( )

( )

( )( ) ( )

2
2 8 2 8 8

1

2
8

2

2
2 8 2 8 8

3

4

3 4 3 4 1 ,
4

1 ,
2

3 4 3 4 1 ,
4

0.

J
J J J J J

J
J

J
J J J J J

ew e e e e e

ew e

ew e e e e e

w

β
β β β β β

β
β

β
β β β β β

− − − − −

−

− − − − −

 = − + + + + −  

= −

 = − + + + − −  
=

  (50) 

In the low temperature regime it can be written as 

 ( )8 1 2
1lim ln 0

2 vN
Z h F F

N
ψ

→∞
= + − +  , (51) 

where the four terms ( ) 1,  0 ,  h Fψ  and 2F  are defined in Eqs. (29)-(32) and Eqs. (26)-(27) with 

( )1, , 4jw j =   given in Eq. (50). Taking Eq. (51) and 0E NJ= −  into account, the expression 

for the residual entropy in this case can be obtained directly from Eq. (6) 
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 ( ) ( ){ }1 2lim 2 0BS k J h F F
β

ψ β
→∞

= − + − +  . (52) 

In the low temperature limit, Eqs. (34)-(35) still hold and we have 

 ( )( )( )( )2 2 2 2 2 2 2 2
1 2 1 3 2 4 3 4

1 1 3ln 2 ln
8 4 16

w w w w w w w w Jβ   − − − − − →     
 . (53) 

Then it is straightforward to demonstrate that 

 ( ) 3lim 2 ln
2

J
β

ψ β
→∞

 − =  
 

  (54) 

and the limit values of the other three terms ( )0h , 1F  and 2F  are completely identical to the 

results in Eqs. (40), (44) and (45) respectively. The residual entropy in Eq. (52) is therefore 

consistent with that in the case ∆ = −∞  in zero field shown in Sec. III.A.2, also with that of 

square ice 

 3 4ln
2 3BS k  =  

 
 . (55) 

 

IV.  Conclusions 

    In this article, we have studied the residual entropy of a two-dimensional Ising model with 

crossing and four-spin interactions. Following the work of Refs. 13 and 14, the exact solutions 

of the partition function in two soluble cases in zero field and one soluble case in an imaginary 

field ( )2ex BH i k Tπ=  are proposed by making use of the equivalence with the eight-vertex 

model. The residual entropy is then determined by the low temperature limit of the partition 

function and the ground state energy. In the free-fermion case in zero field, the ground states 

at zero temperature include the configurations disobeying the ice rules, which leads to a larger 

residual entropy than that of square ice. We have demonstrated, the residual entropy in this 

case is equal to 
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 ( )
2 2

2 0 0

1 ln 9 2 2 cos cos 1.07052
8

d d
π π
θ φ θ φ

π
 − + ∫ ∫   (56) 

with the contribution from the configurations without (C). In another soluble case in zero field 

that ∆ = −∞ , we have modified the energy levels and defined the effective Hamiltonian and 

partition function. The ground states of the modified system are exactly the configurations 

obeying the ice rules. Therefore the residual entropy exactly agrees with that of square ice [Eq. 

(1)]. Finally, in the case that 0∆ =  in an imaginary field ( )2ex BH i k Tπ= , the partition 

function in the low temperature limit has the same behaviour as that in the case ∆ = −∞  in zero 

field. Therefore the residual entropies in these two cases are equivalent. The solutions of these 

two cases can be seen as alternative approaches to the residual entropy problem of square ice.  

Instead of using the transfer matrix method or the combinational methods, we have examined 

the extensive ground state degeneracy and the residual entropy of a two-dimensional system in 

a thermodynamic point of view. This work provides new insights into the exact evaluation of 

the residual entropy in frustrated systems, especially the exact solution of the two-dimensional 

ice, which is a famous classical problem in statistical physics. The method of taking the low 

temperature limit of the system can be used in future studies, e.g., the calculation of the residual 

entropy of three-dimensional frustrated spin systems and ice40.  
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