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Abstract

We study the collective motion of self-propelled particles affected by the spatial-
dependent noise based on the Vicsek rules. Only the particles inside the special
region will affected by noise. The consideration of the spatial-dependent noise is
closer to reality because of the complexity of the environment. Interestingly, we
find that there exists an optimal amplitude of noise to adjust the average motional
direction of the system. Particular orientation of the noisy region makes the motional
direction of the system parallel to the orientation of the noisy region. The adjustment
of the motional direction of the system also depends on the shape, the proportion
and the spatial distribution of the noisy region. Our findings may inspire the capture
of the key features of collective motion underlying various phenomena.
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1. Introduction

Collective behavior of active agents is universally observed in rich scale of the sys-
tems from macroscopic to microscopic including the crowds of human([I], the schools
of fish[2] and the colonies of bateria[3] etc[4]. Because of the complexity of the en-
vironment, most of the time, the behavior of agents will inevitably encounter noise.
Noise is present in the study of many domains[5l 6, [7, [8 @ 10, 11 12 13] and it
plays an important role on the dynamics of the system including the system of active
matter[14], [I5] [16]. Studying how different kinds of noise affect the collective motion
and what the noise can do in the system of active matter is useful in exploring the
basic principles of collective motion, taking advantage of the features of noise and
avoiding the unexpected disturbance caused by noise.

One of the typical models to studying collective motion, named Vicsek model,
is proposed by Vicsek et.al in 1995[17]. In Vicsek model, all of the self-propelled
particles follow the rule of velocity alignment which considers both the average ve-
locity of the neighbor of particles and normal-distributed random noise to update
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the velocity of the particles[17, [I8]. Following Vicsek et.al, many researchers show
interest in studying the collective motion with different kinds of noise including
cross-correlated noise[19, 20, 21, 22], non-Gaussian noise[23], colored noise[24], 25],
Telegrahic-like noise[26] and hybrid noise[27] etc[28]. And many exotic phenom-
ena resulting from noise are found. Noise can induce the transition of the mo-
tional state of the system[29] [30 [31] and lead to symmetry breaking[32]. Driving
the particles[33], B4] and maximizes collective motion in heterogeneous media are
achieved by noise[35]. Noise also affects the criticality[36], synchronization[37] and
the diversity of collective motion in Vicsek model[38].

Although the studies on collective motion with noise make great progress in
the recent decades, just a few studies consider the effect of the spatial feature of
noise on collective motion[39]. Studying the collective motion with noise distributed
nonuniform in space is an important step to futher understanding the key factor
underlying the various phenomena of collective motion. Therefore, we pay attention
to the role of the spatial-dependent noise in the collective motion based on the Vicsek
rules. The update of the velocity of the particles will be affected by noise just when
the particles are inside the special region. By investigating the effect of the amplitude
of noise, the orientation, the shape, the proportion and the spatial distribution of
the noisy region on the average motional direction of the system, we find that the
proper spatial-dependet noise can perfectly make the motional direction of the system
parallel to the orientation of the noisy region.

2. Model and method

We consider N particles move in the square cell with periodic boundary condition.
The linear size of the square cell is L and the particles are regarded as points. Initially,
particles are randomly distributed in the cell. The position of all the particles update
simultaneously at each time step At following

xi(t + At) = x3(t) + vi(t) At (1)

where x;(t) and v;(t) denote the position and velocity of the particles i (i takes 1
to N) at time ¢ respectively. The initial direction of velocity of the particles are
distributed in [—m, 7] randomly and normally. The magnitude of velocity of each
particle is v. Based on the rules of velocity alignment in Vicsek model, the update
of the direction of velocity is as follow

0i(t+ At) = Arg[ Y ]+ Ad(1) (2)
JEN;(t)

0;(t) denotes the direction of the velocity of particle 7 at time ¢. N;(t) is the set
of neighbors of the particle ¢ which means N;(t) = {j : |xi — x3/ < r} and r is the
interaction radius of each particle. Af denotes the noise.

Considering the effect of complex environment on motion, we take the spatial-
dependent noise into account, which means

Ab(t) = n(xi(t))&:(t) (3)
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where (1) is a random number normally distributed in [—1/2, 1 /2]. When particle
i is in the rectangular region in green(as shown in Fig.1), n(x;(t)) = n, where 7, is
the amplitude of noise. Otherwise, n(x;(t)) = 0. As Fig. 1 shows, the orientation
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Fig. 1. The schematic diagram of our model with spatial-dependent noise. [ and h denote the
length and width of the noisy region respectively. And the orientation of the noisy region is denoted
by the angle 6,.

of the rectangular region is described by the angle 6, between the long axis of the
region and the positive direction of the X-axis which is shown by the red arrow. The
length and width of the rectangular region are [ and h respectively.

To characterize the feature of the collective behavior, normalized average velocity
is introduced as the order parameter, which is

1 N
¢:N—U ;vi (4)

3. Result and discussion

In the simulation, At =1, L= 10, v = 0.04. When n, = 0, the system will
finally arrive to a state that all the particles move in the same direction as shown in
Fig. 2(a). Fig .2(b) shows the probability distribution of the average direction of 100
realizations when n,, = (0, which implies the motional direction of the system in each
realization is random. In the present of the spatial-dependent noise, 7, # 0. We
observe that the motional direction is parallel to the orientation of the rectangular
region as shown in Fig. 2(c).

In order to know why the spatial-dependent noise can adjust the direction of the
system, we first investegate the effect of the amplitude of noise 7,, on the motion of
the system. To measure the deviation between the average motional direction and the
orientation of the rectangular region with noise, we consider the angle ;. As shown
in Fig. 2(d), the vector n; perpendicular to the length of the rectangular region is
define as its normal vector. If the angle between the average motional direction (#)
and the normal vector n; is larger than 0.57, the deviation is 0; = (8) — 0.5 as the
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Fig. 2. The effect of the amplitude of the spatial-dependent noise on the adjustment of motional
direction of the system. (a) the snapshot of all the particles move in almost the same direction
without noise(n,); (b) the probability distribution of the average motional direction (#) without
noise; (¢) the snapshot of the system moves with the effect of spatial-dependent noise (the rectan-
gular region in green is the noisy region); (d) the schematic diagram of the deviation 6, between
the average motional direction of the system (f) and the orientation of the noisy region; (e) the
deviation 0, as a function of the amplitude of noise 7,; (f) the number of the particles in the noisy
region at the beginning of the simulation N;,;;, reaching motional consensus N.,,s and the different
AN = Niops — Ninir as a function of 7,,.

black angle 6, shown in Fig. 2(d). Otherwise, 8, = 0.57 — (f) as the orange angle
04 shown in Fig. 2(d).

As Fig. 2(e) shows, the average deviation of the 100 realizations decreases as
the amplitude of noise increases. When n,, = /, the average deviation is minimum,
which means the best control of the direction of moltion.

To understand how the spatial-dependent noise can adjust the motional consensus
of the system, we study the number of particles in the noisy region in different
stages of the simulations. As shown in Fig. 2(f), with the increasing of 7,, the
number of particles when the system reaches motional consensus outside the noisy
region N.,,s decrease. And N, is minimum when 7, = 4. So do the different
AN = N, pns — Ninie. That means all the particles will move outside the noisy region
when the amplitude of spatial-dependent noise is optimal. It leads to the adjustment
of the average motional direction which is parallel to the orientation of the noisy
region. When the amplitude of the noise outside the noisy region is small, it will
have the similar phenomena and rules.

Beside the amplitude of the noise, the orientation of the noisy region is also im-
portant to the adjustment of the average motional direction. We respectively investe-



gate the average deviation of the motional direction (f;) and the probability when
(04) < 0.03. As shown in Fig. 3(a) and (b), the average deviation of the motional di-
rection is smaller than (.4 with various orientation of noisy region. And the system
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Fig. 3. The effect of the orientation of the noisy region on the adjustment of the motional direction
of the system. (a) the deviation 64 as a function of the orientation of the noisy region 6,; (b) the
probability that 64 is smaller than 0.03 as a function of 8,; The probability distribution of the
average motional direction (¢) when 6, = 0.0837(c) and 6, = 0.5837(e). (d) the average order
parameter (¢) as a function of 6,; (f) the schematic diagram of the average motional direction is
not parallel to the orientation of the noisy region because off the avoidence to move into the noisy
region.

moves parallel to the orientation of noisy region when r = 0, 0.257,0.57, 0.75m, «.

Although the average order parameter shown in Fig. 3(d) is large enough to
denote the motion consensus of the system. The average direction of the system is not
always parallel to the orientation of the noisy region. For example, when 6, = 0.0837
and 0, = 0.5837, the average motional direction of the system is horizontal and
vertical respectively, as the probability distribution of the average motional direction
shown in Fig. 3(c) and Fig. 3(e) respectively. The system will not prefer to move
parallel to the orientation of the noisy region except 0r = 0, 0.25w,0.57, 0. 757, 7.
Because of the periodic boundary condition, it will make particles move inside the
noisy region as Fig. 3(f) shows. And the system will be adjusted to move in the



direction that the particles will not move inside the noisy region.

The shape of the noisy region also has an impact on the motional direction of
the system. Keeping the same proportion of the noisy region as p = 0.1, we change
the length [ of the rectangular noisy region to investegate the effect of shape on the
motional direction. The length of the rectangular noisy region in Fig. 4(a),(c) and (e)
are [ = 8.0,1 = 5.0 and | = 3.0 respectively. With the decreasing of the length, the
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Fig. 4. The effect of the shape of the noisy region on the adjustment of the motional direction of the
system. The schematic diagram of the rectangular noisy region with length [ = 8.0(a), I = 5.0(c)
and [ = 3.0(e). The polardiagram of the probability distribution of the average motional direction
(0) when the length of the noisy region is | = 8.0(b), | = 5.0(d) and [ = 3.0(f).

noisy region gradually changes from a rectangle to a square. The motional direction
of the system is from horizontal to both vertical and horizontal. When [ = 5.0,
most of the motional direction is horizontal and a few motional directions is vertical
because of the available space for the system to move vertically outside the noisy
region.

Considering the proportion of the noisy region affect the degree of adjustment
of the motional direction, we study the effect of proportion of the noisy region by
investeagting the probability of realizations when the ratio of the particles moving
horizontally s is larger than 95 percent. As shown in Fig. 5(a), the noisy region
can not adjust the motional direction of the system at all when the proportion of
the noisy region is larger than 0.7. And the degree of adjustment to the motional
direction decreases as p increase. Large interaction radius, such as r = 2.0, weakens
the adjustment on motional direction which makes the adjustment unstable as shown
in Fig. 5(b).

As for the different spatial distribution of the noisy region, we set two equal-
proportion noisy regions in the square cell and study the adjustment of motional
direction of the system. Both one noisy region and two noisy regions, with the same
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Fig. 5. The effect of the proportion of the noisy region on the adjustment of the motional direction
of the system. The probability that the ratio of particles which move parallel to the orientation of
the noisy region is larger than 95 percent P(s > 0.95) as a function of the proportion of the noisy
region p with different total number of particles(a) and different interaction radius(b).

proportion, can adjust the motional direction of the system as shown in Fig. 6(c)
and (d), but the degree of adjustment is different.

Fig. 6. The effect of total proportion of the two noisy regiona on the adjustment of the motional
direction of the system. The degree of adjustment P(s > 0.95) as a function of p with different
total number of particles(a) and different interaction radius(b). The snapshots of the particles

move in the square with one noisy region(c) and two noisy regions(d). Total proportion of the noisy
region in (c) and (d) is 0.1.

As Fig. 6(a) shows, the two noisy region can hardly adjust the motional direction

of the system when p is larger than 0.6. This value is smaller than that when it is just
one noisy region, which implies the weaker ability to adjust the motional direction of
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the system compared to one noisy region with the same proportion. The difference
of the ability to adjust the motional direction for different interaction radius is larger
than that with one noisy region as shown in Fig. 6(b).

4. Conclusion

In conclusion, we study the collective motion of self-propelled particles affected by
spatial-dependent noise based on vicsek rules. The motion of the particles inside the
rectangular region of the square cell will be affected by noise. While other particles
will move without noise.

Our investigation reveals that spatial-dependent noise enables to adjust the av-
erage motional direction of the system rather than moving in the random direction.
And the amplitude of noise, orientation, shape, proportion and spatial-distribution
of noisy region have different impacts on the adjustment of the average motional
direction.

It exsits the optimal amplitude of noise to achieve that all the particles move
parallel to the orientation of the noisy region. When the orientation of the rectan-
gular noisy region are 6, = 0,0.257,0.57, 0.757, 7, the average motional direction
of the system is peraller to the orientation of the noisy region, which means the
spatial-dependent noise controls the motional direction of the system. The motional
direction of the system from just horizontal to both vertical and horizontal with the
change in the shape of the noisy regoin from rectangle to square.

The degree of the adjustment of the motional direction decreases as the proportion
of the noisy region increases both for one noisy region and two noisy regions. Large
interaction radius weaken the degree of adjustment of the motional direction. The
difference of adjustment between different r is larger with two noisy regions although
the total proportion of the noisy region is equal.

Our research may encourage further studies on the collective behavior in various
and complex environments.
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