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Inhomogeneous environments are rather ubiquitous in nature, often implying anomalies resulting
in deviation from Gaussianity of diffusion processes. While sub- and superdiffusion are usually
due to conversing environmental features (hindering or favoring the motion, respectively), they are
both observed in systems ranging from the micro- to the cosmological scale. Here we show how a
model encompassing sub- and superdiffusion in an inhomogeneous environment exhibits a critical
singularity in the normalized generator of the cumulants. The singularity originates directly from the
asymptotics of the non-Gaussian scaling function of displacement, which we prove to be independent
of other details and hence to retain a universal character. Our analysis, based on the method first
applied in [A. L. Stella et al., arXiv:2209.02042 (2022)], further allows to establish a relation
between the asympototics and diffusion exponents characteristic of processes in the Richardson
class. Extensive numerical tests fully confirm the results.

Anomalous spatial diffusion occurs when the mean
squared displacement

〈
x2
〉
∼ t2ν grows non-linearly in

time, yielding by definition subdiffusion for ν < 1/2 and
superdiffusion when ν > 1/2 [1]. Deviations from nor-
mal diffusion (ν = 1/2) are often found in nature in sys-
tems ranging from microscopic to cosmological scales [2].
Subdiffusion (ν < 1/2) is commonly observed in the bi-
ological contexts of particles moving inside living cells
nuclei, cytoplasm and across membranes [1, 3–12]. Su-
perdiffusion (ν > 1/2) is also rather ubiquitous. It is
found in active intracellular transport [13–16], migration
processes of cells [17] and more complex organisms and
animals [12, 18–21], as well as in the contexts of target
search processes [22], particle dispersion in turbulent flu-
ids [23–25], and cosmic rays transport [26, 27].

The probability density function (PDF) p(x, t) of dis-
placement x is expected to satisfy at long times t

p(x, t) ∼ t−νf(x/tν) (1)

where the scaling function f(·) has a non-Gaussian shape
for ν 6= 1/2 [2], implying an anomalous scaling of dis-
placement in time [28]. With f(·) integrable on R and
decaying to zero sufficiently fast for large absolute argu-
ment, the n-th order cumulants of displacement diverge
as tnν for t → ∞. Indeed, setting z = x/tν , the form
of asymptotic decay of the displacement scaling function
can be argued to be [29]

f(z) ∼ |z|ψe−c|z|
δ+1

(2)
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for some positive constant c and exponents δ and ψ. Two
known classes of anomalous diffusion processes, deter-
mined through specific relations between the exponents δ
and ν, are expected to exhibit such a decay [28, 29]. The
Fisher class is characterized by the relation δ = ν/(1−ν),
first established in the context of polymers with excluded
volume in equilibrium [30], while the Richardson class re-
lation, δ = (1−ν)/ν, stems from a seminal paper dealing
with particles dispersion in turbulent fluids [31]. The lat-
ter is expected to apply when diffusion steps have certain
dependencies on space position [32].

Anomalous scaling is also directly responsible for uni-
versal features of diffusion processes [29]. The generating
function G(λ, t) =

∫
R dx e

λxp(x, t) grows asymptotically

as ∼ exp(tζε(λ)) for some ζ > 0, defining a scaling cu-
mulant generating function (SCGF)

ε(λ) = lim
t→∞

1

tζ
logG(λ, t) (3)

which exhibits a power-law singularity around λ = 0 de-
pending on ν and δ [29]. Universality is expected since
the derivation shows that the singularity is determined
by the asymptotic large |z| behavior of the scaling func-
tion, which can be common to different processes. Of
such a feature, the model treated in the present work
provides an explicit example. The exponent ζ in Eq.
3 determines the extensivity in time of the generating
function. The Fisher class is consistent with a standard
definition of the SCGF, in which the generator is simply
divided by t (hence ζ = 1). This extensivity in time re-
minds the extensivity in size one encounters when dealing
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with equilibrium critical phenomena, so that the t→∞
limit yields the analogue of a difference of equilibrium
free energy densities, with time playing the role of size
[33, 34]. For the Richardson class the method foresees
a non-standard extensivity in time and the necessity to
divide the generator by a power tζ , with ζ 6= 1 depending
on the diffusion exponent [29]. In spite of the different
extensivity involved, also our derivation for Richardson
processes should be regarded as a way of establishing
a parallel between equilibrium criticality and dynamics
[29], according to a strategy on which much of our un-
derstanding of non-equilibrium is based [35–37].

The approach of Ref. [29] was explicitly applied and
shown to predict exact results for the continuous time
random walk (CTRW) model and fractional drift diffu-
sion equations [4, 38, 39]. Both free and biased mod-
els exhibited sub-diffusion, while only in the biased case
super-diffusion could be encompassed. Moreover, such
applications implied adoption of standard extensivity of
the cumulant generator (ζ = 1 in Eq. 14), as appropri-
ate for processes in the Fisher class. It remains an open
issue to test the validity of this analysis for processes be-
longing to the Richardson class and possibly displaying
both sub- and super-diffusion regimes. The present work
is devoted to the exploration of a specific diffusion model
with both such features.

The process we consider in this work was introduced
in Ref. [32] to model a scenario of inhomonogenous dif-
fusion, in which the diffusion constant has an explicit
dependence on the position [40, 41]. We show how this
model can exhibit anomalous scaling at all times, imply-
ing that Eq. 1 holds as an equality. However, unlike in
the case of the CTRW model a direct analytical evalua-
tion of the SCGF is not feasible for this process. We show
how the method of Ref. [29] allows to circumvent this
problem and to correctly estimate the leading part of the
SCGF, proven to abide by a non-trivial Richardson-like
extensivity. We highlight the existence of a universal sin-
gularity for the SCGF, as in the case of CTRW and frac-
tional diffusion equations. Integration with large devia-
tion theory [35, 36] shows how the PDF in the long-time
limit is modulated by a non standard singular rate func-
tion, related to the fractional extensivity of the SCGF.
Ultimately, numerical evaluations of the integrals in the
asymptotic regime corroborate the correctness of the pre-
dictions of our method.

The starting point is a particle moving in a one-
dimensional axis according to the following Langevin dy-
namics:

dx

dt
=
√

2D(x)ξ(t) (4)

where ξ is a δ-correlated (〈ξ(t)ξ(t′)〉 = δ(t − t′)) white
Gaussian noise, while the diffusion coefficient has a
power-law spatial dependence D(x) = D0|x|q for some
D0 > 0 and any q < 2. Adopting Stratonovich prescrip-
tion, the corresponding Fokker-Plank equation is:

∂tp(x, t) = ∂x

[√
D(x)∂x

[√
D(x)p(x, t)

]]
(5)

FIG. 1. Examples of SCGFs ε(λ) (a) and rate functions I(w)
(b) for different regimes of anomalous diffusion: subdiffusion
(blue shades), superdiffusion (green shades) and normal dif-
fusion (red). Both exhibit the expected power-law singularity
predicted in Eqs. 14 and 16 for λ = 0 and w = 0, respectively.

Given an initial condition p(x, t = 0) = δ(x), the prob-
ability density function regulating the process can be
shown to be [32]

p(x, t) =
|x|−q/2√
4πD0t

e
− |x|2−q

(2−q)2D0t (6)

yielding a mean squared displacement

〈
x2(t)

〉
=

Γ
(

6−q
2(2−q)

)
π1/2

(2− q)
4

2−q (D0t)
2

2−q (7)

where Γ(·) is the complete Gamma function. It is there-
fore clear how this model provides subdiffusion in the
case q < 0 and superdiffusion for 0 < q < 2, with the
following relation connecting the spatial dependence of
the diffusion constant with the diffusion exponent ν:

ν =
1

2− q
. (8)

The PDF of the process can be easily seen to abide by
the scaling form of Eq. 1 with

f(z) =
|z| 1−2ν

ν

√
4πD0

e−
ν2|z|1/ν
D0 (9)

as scaling function, where we remind that z = x/tν . Note
that scaling in Eq. 5 holds exactly at all times, not just
in the asymptotic long-time limit. Quite remarkable is
also the fact that the scaling function in Eq. 9 presents
as valid on the whole z axis the behavior predicted on the
basis of general arguments in Ref. [29] for its large |z|
tails. It can be shown that both these circumstances are
determined by the particular initial condition chosen for
the process [42]. Setting p(x, 0) = δ(x − x0) with some
nonzero x0 would lead to the validity of the scaling form
in Eqs. 5 and 9 only for large t and large |z| [42, 43].

For every 0 < ν < 1 the generating function of the mo-
ments can be found through the two-sided Laplace trans-

form G(λ, t) =
∫ +∞
−∞ dx eλxp(x, t) [44], which in terms of

the rescaled displacement z reads:

G(λ, t) =
1√

4πD0

∫ +∞

−∞
dz |z|

1−2ν
ν eλzt

ν− ν
2|z|1/ν
D0 (10)
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An exact evaluation of this integral for long t is not fea-
sible, so that application of the Laplace’s maximization
method of Ref. [29] for its estimate, besides being sug-
gested by the form of the tails, appears mandatory.

As time increases, the integrand in Eq. 10 concen-
trates around some specific value z̄ that maximizes the
argument of the exponential. Separating the analysis for
positive and negative values of z we find

z̄ = sgn(λ)

(
1

ν
D0|λ|tν

) ν
1−ν

(11)

where sgn(·) represents the sign function, implying that
z̄ and λ have the same sign. Moreover, for long times z̄
diverges to +∞ and −∞ as a power of t for λ > 0 and
λ < 0, respectively. Substituting such value in the ex-
ponential form and performing the Gaussian integration
centered in z̄ allows to obtain asymptotically [29]

logG(λ, t) = λtν z̄ − ν2

D0
z̄1/ν + (12)

+ 1
2 log( ν

1−ν ) +O(z̄−1/ν)

where a term proportional to log z̄ turns out to have co-
efficient zero. The cancellation of this term ∝ log z̄ is due
to the fact that, with reference to the notations adopted
in Eq. 2, the exponents characterizing the tails of f(z)
satisfy ψ = (δ − 1)/2, which is also valid for all cases of
anomalous diffusion studied in Ref. [29].

Taking into account Eq. 11, we can eventually write

logG(λ, t) = (1− ν)
(
D0

ν t|λ|
1/ν
) ν

1−ν + (13)

+ 1
2 log( ν

1−ν ) +O(t−
ν

1−ν )

implying a scaling of the cumulants of the Richardson
class [31] with ζ = ν/(1 − ν). Consequently, a scaling
cumulant generating function can be defined as

ε(λ) = lim
t→∞

logG(λ, t)

t
ν

1−ν
= (1− ν)

(
D0

ν
|λ|1/ν

) ν
1−ν

(14)

which exhibits a power-law singularity of order 1/(1− ν)
around λ = 0 as shown above, implying a divergence of
the n-th derivative as soon as n exceeds 1/(1−ν). In the
case ν = 1/2 the SCGF of the free Brownian diffusion is
recovered, finding also consistency with the SCGF of a
free Markovian (memory-less) CTRW [45, 46].

In Eq. 13 appears a constant term 1
2 log ν/(1 − ν) in-

dependent of time, which is negative for sub-, positive
for super- and zero for normal diffusion. In the context
of equilibrium critical phenomena, this type of term, de-
termined, e.g., by the specific form of the scaling func-
tion of the magnetization for finite magnetic systems at
criticality, has been tentatively identified [47] with the
Privman-Fisher [48, 49] universal amplitude discussed
in the context of finite size scaling theory [33]. In the
present context time takes the place of size, but it ap-
pears remarkable that the term is nonzero only in case
anomalous scaling holds (ν 6= 1/2) and its sign marks a
distinction between super- and subdiffusion. The parallel

FIG. 2. (a) Numerical evaluation of the cumulant gen-
erating function logG(λ = 1, t) for different values of
ν (including sub-, normal and superdiffusion). Plotting

against the rescaled time t
ν

1−ν shows an excellent collapse
already at times t > 1. (b) Numerical evaluation of the
SCGF through the normalized cumulant generating function

t−
ν

1−ν logG(λ, t) at t = 10, hinting the presence of a Richard-
son kind of scaling for the cumulants. An excellent collapse
for 6 decades hints that the SCGF ε(λ) ∼ |λ|1/(1−ν), implying
a power-law singularity of such order around λ = 0.

of the approach of Ref. [29] with studies of anomalous
scaling in equilibrium critical phenomena certainly ac-
quires motivation for deeper investigation in light of the
presence of this analogue of Privman-Fisher amplitude.

Integration of our results within the framework of large
deviation theory [35, 36] shows how the singularity of the
SCGF translates into a singularity of the rate function
I(w) modulating the probability of observing fluctuations

of the rescaled position w = x/t
ν

1−ν [29]. In the case of
normal diffusion (ν = 1/2), w coincides dimensionally
with a velocity, while for ν < 1/2 and ν > 1/2 can be
interpreted as a sub- and super-velocity, respectively. For
simplicity, we will refer to w as an “anomalous velocity”
in this manuscript. The probabiliy of observing a certain
deviation from the typical value w = 0 – expected given
the absence of any form of drift in the model – in the
long-time limit follows a large deviation principle

p(x/t
ν

1−ν = w, t) ∼ e−t
ν

1−ν I(w) . (15)

The convexity and differentiability of the SCGF (Eq. 14)
ensures the validity of the Gärtner-Ellis theorem [50, 51]
which allows to express the rate function as Legendre-
Fenchel transform of ε [52, 53]:

I(w) = sup
λ∈R

[wλ− ε(λ)] =
ν2|w|1/ν

D0
(16)

Thus, the anomalous scaling induces a singular behavior
in the rate function, as already observed for processes
in the Fisher class [29]. It is convenient here to stress
that the above result showing the consequences of anoma-
lous scaling of the displacement distribution on the rate
function is not related to what in the recent literature
is referred to as “anomalous scaling of dynamical large
deviations” [54–56].

Finally, let us validate all the above results with nu-
merical calculations. Contrary to the CTRW and frac-
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tional drift diffusions examples presented in Ref. [29],
this inhomogeneous diffusion model does not allow for
an exact evaluation of the cumulant generating function
logG. The integral defining the generating function in
Eq. 10 cannot be expressed in terms of explicit func-
tions for any arbitrary value of the diffusion exponent
0 < ν < 1. Therefore, we need to proceed with a nu-
merical estimation of such integral and extrapolate from
the results its asymptotic dependence on time to verify
that the extensivity of the cumulant generating function
is the one predicted for the Richardson class. In Fig. 2a
we report the numerical evaluation of logG(λ = 1, t) as a
function of time, for different diffusion exponents ranging
from ν = 0.3 (sub-diffusion) to ν = 0.7 (super-diffusion)
including the case of normal diffusion ν = 1/2. Plot-
ting against tν/(1−ν) in log-log scale, shows an excellent
collapse on the bisector line already for t ∼ 1, quickly
consolidating as time increases. This corroborates the
validity of the approach in estimating an extensivity of
the Richardson class through the Laplace method (Eq.
13). Additionally, the numerics find agreement with the
predictions of the sign of the Privman-Fisher constant
term appearing in Eq. 13. For short times, we are able
to appreciate how logG approaches the bisector line from
below (negative constant) for sub-diffusive motions and
from above (positive constant) for super-diffusive mo-
tions, while in the case of normal diffusion (zero-costant)
the collapse holds at any time.

This result hints that for large enough times one should
be able to normalize the cumulant generating function
over tν/(1−ν) and obtain a finite SCGF for all values of λ
(Eq. 14). We do so by evaluating numerically logG(λ, t)
at t = 10 as a function of the dual parameter λ, again
for different values of ν encompassing sub-, normal and
super-diffusion. Normalizing such integral over tν/(1−ν)

as suggested by the previous analysis, we obtain an es-
timation of the SCGF, which is formally reached only
in the t → ∞ limit. Plotting in log-log scale against
λ1/(1−ν) (Fig. 2b) we find a perfect collapse on the bisec-
tor line for all values of λ, simultaneously corroborating
the full shape of the SCGF predicted in Eq. 14 and the
existence of power-law singularities in the origin as those
reported in Fig. 1.

Summarizing, we showed that the method of Ref. [29]
applies to a diffusion process in the Richardson class,
predicting correctly the nonstandard extensivity in time
of logG and the singularity of the SCGF in the dual
parameter. The model considered is remarkable in sev-
eral respects. In first place it satisfies scaling for all t
and presents the form in Eq. 1 of the scaling function
on the whole z axis. The fact that these properties be-
come only asymptotic for initial conditions different from
p(x, 0) = δ(x) provides a concrete example of the way
universality mechanisms operate in the approach. In-
deed, the results of Ref. [42] allow to easily verify that
adoption of p(x, 0) = δ(x − x0) leaves scaling valid for
t → ∞ with the same form of scaling function at large
|z|. Thus, the leading singular behavior does not change
for these modified initial conditions [29]. Another re-
markable feature of the model is the simple ν-dependent
form of the analogue of the Privman-Fisher amplitude,
which distinguishes with its sign between sub- and super-
diffusion. Once verified that the approach of Ref. [29]
works successfully for processes in both the Fisher and
the Richardson class, it is legitimate to ask if, in view
of its flexibility, the range of applications could encom-
pass also diffusions outside these classes. The formalism
leading to equations like Eq. 12 in fact leaves room for
different relations linking ν and δ, only at the cost of
adjusting the extensivity in time of logG. The explo-
ration of such possibilities, or a deeper understanding of
the reason why Fisher and Richardson relations play a
special role is left for future investigations.
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