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Abstract
By using modular functions on the upper complex half-plane, we study

a class of strain energies for crystalline materials whose global invariance
originates from the full symmetry group of the underlying lattice. This
follows Ericksen’s suggestion which aimed at extending the Landau-type
theories to encompass the behavior of crystals undergoing structural phase
transformation, with twinning, microstructure formation, and possibly
associated plasticity effects. Here we investigate such Ericksen-Landau
strain energies for the modelling of reconstructive transformations, fo-
cusing on the prototypical case of the square-hexagonal phase change in
2D crystals. We study the bifurcation and valley-floor network of these
potentials, and use one in the simulation of a quasi-static shearing test.
We observe typical effects associated with the micro-mechanics of phase
transformation in crystals, in particular, the bursty progression of the
structural phase change, characterized by intermittent stress-relaxation
through microstructure formation, mediated, in this reconstructive case,
by defect nucleation and movement in the lattice.

Keywords. Reconstructive phase transformations, square-hexagonal transformation,
crystal plasticity, Poincaré half-plane, Dedekind tessellation, Klein invariant, modular
forms, deformation pathways

1 Introduction

Ericksen’s early proposal [1; 2] of an infinite and discrete invariance group for a
crystalline material’s strain energy aimed at expanding Landau-type variational ap-
proaches to encompass structural phase transformations and twinning in crystals, with
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the associated phenomena of fine microstructure, and possibly defects, forming in the
lattice. Accordingly, the material invariance of the crystalline substance should reflect
the global symmetry of the underlying lattice, with the strain energy density σ invari-
ant under all the deformations mapping the lattice onto itself. See also [3] for a similar
viewpoint. This invariance dictates the location of countably-many ground states for
the crystal in strain space, including those produced by the lattice-invariant shears
and rotations which play a key role in twinning mechanisms when in the presence of
structural phase changes, as well as in lattice-defect creation and ensuing plastification
phenomena [4; 5; 6; 7; 8; 9; 10; 11].

A wide-ranging extension of non-linear elasticity theory originated in this way,
with special attention initially given to suitable ranges of finite but not too-large
deformations, i.e., to ‘Ericksen-Pitteri neighborhoods’ (EPNs) in strain space [2; 12; 5;
6; 4], whereon the global lattice invariance reduces to point-group symmetry.1 A large
body of literature originated from such EPN-based approach, especially aiming at
modelling reversible martensitic transformations [14; 4; 5; 15; 16; 17; 11], also with the
goal of improving the mechanical properties of shape-memory alloys, for instance to
enhance their reversibility performance through the control of twinned-microstructure
formation [18; 19].

Another line of research used the above Ericksen-Landau framework to model a
wider class of phenomena in crystal mechanics, including reconstructive structural
transformations where strains may attain or go beyond the EPN bundaries, producing
defect nucleation and evolution in the lattice, and, in general, also to model phe-
nomena directly related to the plastic behavior of crystalline materials, where the
large deformations are not confined to any EPNs in strain space. Although discus-
sions of the behavior of 3D crystals based on global lattice symmetry can be found
in [20; 7; 21; 22; 23], more systematic research has been done been done on crystal
elasto-plasticity only in the 2D case. A family of Ericksen-Landau energies 2D crys-
tals, obtained by patching suitable polynomials to obtain C2-smoothness and global
invariance, was proposed in [6]. This allowed an improved understanding of the be-
havior of crystalline materials also in regimes of large deformations possibly outside
the EPNs [8; 9; 10; 24; 25; 26].

A parallel line of work on the 2D case was based on the observations in [27; 3], where
the natural tools proposed for a theory encompassing full lattice symmetry in 2D are
modular functions, the well known class of complex maps arising in diverse branches of
Mathematics and Physics [28; 29; 32; 33; 34]. This led to the formulation of potentials
suitable for 2D crystal plasticity, by following, in particular, the suggestion in [27]
to construct Ericksen-Landau energies by means of the ’Klein modular invariant’ J
[28; 29; 30; 31]. This is akin to using a modular order parameter for crystal mechanics,
extending earlier related notions such as the ’transcendental order parameter’ in [35;
36]. In this spirit, [25; 37] consider J-based strain energies with a unique ground state,
up to full lattice symmetry, exploring the ensuing variational modelling of 2D crystal
elasto-plasticity.

1 These domains were considered in [2] to reconcile the present approach to crystal me-
chanics with the Laudau-type theories based on standard point-group invariance [12; 5; 6].
Structural phase transitions are termed ’weak’ when their spontaneous transformation strains
are confined to suitable EPNs. Finite deformations within these domains cause symmetry
breaking in the distorted lattices, and the parent and product lattices’ point-group sym-
metries are in a group-subgroup relation. When this does not happen the phase change is
reconstructive. Most relevant examples of the latter are the bcc-fcc or bcc-hcp transformations
in 3D [13], and the s-h transformation in 2D Bravais lattices, see [6] for more details.
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Here we continue these investigations by examining an explicit, simplest class of
Ericksen-Landau J-based strain potentials for reconstructive transformations in 2D
lattices, focussing on the most relevant case of energy functions exhibiting ground
states with the two maximal symmetries, square and hexagonal (s-h), of 2D Bravais
lattices. We explore some basic properties of the s-h strain-energy landscapes moulded
by global symmetry, in particular their bifurcation and valley-floor network, which are
important in the selection of the activated deformation paths under total-energy mini-
mization. We thus use a global s-h potential in the simulation of a quasi-static shearing
test, obtaining typical effects associated with the micromechanics of phase transforma-
tions in crystals. In particular, we observe strain avalanching underpinned by bursty
coordinated basin-hopping activity of the local strain values under the slowly changing
boundary conditions. This produces the inhomogeneous progression of the structural
phase change, characterized by jagged stress relaxation via bursty microstructure de-
velopment in the body, also mediated, in the reconstructive case, by defect nucleation
and movement in the lattice. The present simulations also confirm the role, high-
lighted yet in [37], of the energy’s valley floors as largely establishing the deformation
pathways for a crystal’s intermittent evolution under an external driving.

2 Strain energies for 2D crystalline materials

2.1 The strain energy of 2D crystals
and Ericksen’s proposal for its invariance

We consider a two-dimensional (2D) hyperelastic material, whose deformations are
one-to-one maps x = x(X), where the Cartesian coordinates (x1, x2) identifying the
current positions of material points X = (X1, X2) in a given reference state are consid-
ered with respect to a given ortho-normal basis {u1, u2}. The deformation gradient
F = ∇x has matrix elements Fij = ∂xi/∂Xj , and C = FTF = CT > 0 is the sym-
metric, positive-definite the Cauchy-Green strain tensor. The strain-energy density
σ is a smooth real function of C, and satisfying the material-symmetry requirements
(1)1-(1)3:

σ = σ(C) = σ(GTCG), G ∈ G, G = E−1GL(2, Z)E, (1)

to hold for any C and for any tensor G in a suitable group G characterizing the
response of the material. For crystalline substances we assume with Ericksen that the
invariance group G be dictated by the material’s underlying lattice structure [1; 2],
see also [3; 39; 5; 11]. In the 2D case under consideration here, this means that G
should be a suitable conjugate to the group describing the global symmetry of 2D
Bravais lattices, as is made explicit in Eq. (1)4 above, with E = (ehj ), for ej = ehj uh
(summation understood, with j, h = 1, 2), where {e1, e2} are the lattice basis in the
reference state, and GL(2,Z) denotes the group of unimodular (thus invertible) 2 by
2 matrices with integral entries [5]. For brevity we refer to assumption (1)4 as to
the GL-invariance of the density σ in (1), which we split into the sum of a convex
volumetric part σv, penalizing the departure of det C from 1, and a distortive term σd

depending on the unimodular tensor C̄ = (det C)−1/2C:

σ(C) = σv(det C) + σd(C̄). (2)

Due to the GL-periodicity (1)4, σd in (2) is non-convex and only needs to be defined
on a GL-fundamental domain in the space of unimodular strains, such as D made
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explicit in (5) below.

2.2 Modular forms and GL-invariant strain energies
on the Poincaré half plane

Due to their GL-invariance, smooth potentials as in (1)-(2) are closely related to the
modular functions on the Poincaré upper complex half-plane H [3; 27]. This is best
seen by smoothly mapping the space of 2D unimodular (positive-definite, symmetric)
strain tensors C̄ bijectively to H:

ẑ(C̄) = C̄−1
11 (C̄12 + i) ∈ H, (3)

H = {x+ iy ∈ C, y > 0}, (ds)2 =
[
(dx)2 + (dy)2

]
/y2 , (4)

where (4)2 is the standard 2D hyperbolic metric on H [40; 41; 42], and Cij are the
components of C in the basis {u1, u2}. In the above complex parameterization of
strain space the material-symmetry maps C 7→ GTCG, for G ∈ G, correspond to the
action on H of the isometries of H (linear fractional transformations) with integral
entries, supplemented by the map z 7→ −z̄, see [37] for details. The Dedekind tessella-
tion of H shown in Fig. 1 [33; 43] represents geometrically this action, evidencing the
GL(2,Z)-related congruent copies of the fundamental domain2

D = {z ∈ H : |z| ≥ 1, 0 ≤ Re(z) ≤ 1
2
} (5)

on H. In light of this, [27] suggested that, as a main building block to obtain GL-
invariant smooth potentials σd in (1), one can use the a well-known ’Klein invariant’
J , which is a SL(2,Z)-periodic holomorphic function on H [28; 29; 31; 30], the modular
group SL(2,Z) being the positive-determinant subgroup of GL(2,Z). Indeed, owing to
the properties of J , it is possible to consider J-based Ericksen-Landau strain-energy
functions σd as in (1)-(2) by setting

σd(C̄) = σd

(
J(ẑ(C̄))

)
, (6)

where the smooth function σd(J) should be such that it guarantees [37]: (a) the full
GL-periodicity (1) for (6), rather than the sole invariance under SL(2,Z) exhibited
by J ; and, (b) the existence of a positive-definite elastic tensor for any stable lattice
configuration. Examples of such potentials, suitable for the elasto-plasticity of 2D
crystals, and for their reconstructive transformations, are discussed explicitly hereafter.

2.3 Strain energies for 2D crystal plasticity

In [25; 37] were analyzed some simplest forms of GL-invariant J-based strain-energy
functions σd as in (6), exhibiting a single ground-state configuration in each GL-copy

2The structure of D summarizes the (unimodular) strains giving all the possible ways
in which a 2D Bravais lattice can be deformed, up to GL-symmetry. The interior of D
corresponds to strain tensors producing lattices with trivial (oblique) symmetry; points on
the boundary ∂D are associated with strains generating lattices with nontrivial symmetries,
including rectangular and rhombic lattices; finally the corner points i and ρ = eiπ/3 correspond
to strains giving respectively a square and a hexagonal lattice. See [27], [6] for further details,
also on the relation of the fundamental domain (5) to the EPNs mentioned in the Introduction.
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Figure 1: (Color online) (a) Dedekind tessellation of the Poincaré half-plane H. Gray
or white domains represent GL-copies of the fundamental domain D in (5). The
positions are indicated of nine GL-equivalent square points

(
i, i + 1, ζ = 1

2
(i + 1),

ζ + 1, ..., in blue
)
, and four GL-equivalent hexagonal points

(
ρ = eiπ/3, ρ − 1, ...,

in purple
)
. The GL-equivalent points appear to be getting closer to each other the

closer they get to the real axis, but are equidistant in the hyperbolic metric (4)2 on
the strain space H. This rectangle and the indicated red dashed arc of the unit circle
about the origin of H refer also to Fig. 2. (b) Plot of the GL-periodic strain energy
with square minimizers, see the function σi in (8) with µ = 1. The plot is on the
rectangle in panel (a), so that we observe nine energy wells, with bottoms at the nine
blue square GL-equivalent points of panel (a).
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of the fundamental domain D. This is a particularly relevant class of strain potentials,
which can be used to model elasto-plastic phenomena in crystalline materials.

Let the (unique, up to G-symmetry) equilibrium configuration for the lattice be
given by the strain C̄0, and set z0 = ẑ(C̄0) ∈ D. Then for any z0 such that J ′(z0) 6= 0
(that is, for any ground state except for square and hexagonal ones: z0 6= i, ρ) the
simplest J-based GL-invariant strain-energy function in (6) has the form:

σz0
(
C̄
)

= µ|J(z)− J(z0)|2, (7)

where µ > 0 is an elastic modulus, and z = ẑ(C̄) as in (3). In the case of the
maximally symmetric ground states z0 = i (square) or z0 = ρ (hexagonal), taking
into account that J(i) = 1, J(ρ) = 0, J ′(i) = 0, J ′(ρ) = J ′′(ρ) = 0, we have that the
simplest J-based GL-potentials with non-degenerate elastic moduli at their minimizers
are respectively given by:

σi
(
C̄
)

= µ|J(z)− 1| for z0 = i (square) (8)

σρ
(
C̄
)

= µ|J(z)|2/3 for z0 = ρ (hexagonal). (9)

As an example, we show in Fig. 1 a portion of the GL-periodic energy landscape on
H given by the square energy (8).

3 Ericksen-Landau theory for reconstructive
transformations in crystalline materials

3.1 Simplest J-based strain energies for the
square-hexagonal transformation

The functions in (7)-(9) can be used to construct GL-potentials of the type (6) with
more than one minimizer in the fundamental domain D, so that they are suitable for
crystals which may undergo structural phase changes between different stable equi-
librium configurations of their lattice (see Footnote (3)). *****Here we consider ex-
plicitly the case of reconstructive transformations, and their most relevant case, in
which the two energy minimizers in D are the maximally symmetric points i (square)
and ρ (hexagonal). This will produce a GL-invariant potential suitable for the s-h
transformation in 2D Bravais lattices.3

A simplest class of such s-h densities is given by the following normalized linear
combination of the two functions in (8)-(9):

σR

(
C̄
)

= σi
(
C̄
)

+ βσρ
(
C̄
)

= µ|J(z)− 1|+ βµ|J(z)|2/3,
(10)

where z = ẑ(C̄) as in (3) and (6), and where we consider β > − 3
2
. The modulus µ

is here a scale factor which will henceforth be set to 1, so that (10) defines a one-
parameter family of potentials with critical points i and ρ, whose relative height is
controlled by β as shown in Fig. 2.

3Strain energies for weak (symmetry-breaking) martensitic transformations (see Footnote
(1)) involve the presence of several variant wells inside the EPNs [5; 4; 11], and thus have
more complex forms than the 2D potentials considered hereafter in (10), and which can still
be written in terms of the functions in (7)-(9), as is preliminarily discussed in [38].
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Figure 2: (Color online) GL-invariant strain energy for the square-hexagonal phase
transformation. (a) Plot of the s-h potential σR in Eq. (10) for β = 1 and µ = 1,
on the domain in Fig. 1(a), whereon the energy σR exhibits thirteen energy wells:
nine well bottoms are located at the nine equivalent square points, and four at the
equivalent hexagonal points, shown in Fig. 1(a). (b) Section of the plot of the s-h
energy σR in (10) with µ = 1 and varying β, taken along the unit-circle shown in
red in Fig. 1(a). The value φ = π

2
corresponds to the square point i, while φ = π

3

and φ = 2π
3

correspond to the two neighbouring hexagonal points ρ − 1 and ρ, with
rhombic points given by generic values of φ, see also Fig. 1 and Footnote (2).
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Figure 3: (Color online) Bifurcation and valley floors for the s-h energies. (a) Section
on the plane (β, y), for x = 1

2
, of the GL-invariant bifurcation diagram for the critical

points of the s-h energy σR in Eq. (10) for β > − 3
2
. Dotted and solid lines indicate

unstable and stable critical-point branches, respectively, with the square-i (solid red
line) and hexagonal-ρ (solid green lines) which coexist as local minimizers for 0 < β <
3
2
, with rhombic saddles in between (dotted blue lines). See also Video V1 in the SM.

(b) GL-invariant hyperbolic network of the valley floors on H for the strain energy σR

in Eq. (10), for β = 1. Nodes (blue and purple symbols) are at the s-h minimizers,
and edges are along those geodesics on H which contain a pair of s-h minimizers (for
clarity only the arcs joining such s-h points are marked, by dotted red lines). The
rhombic saddles mentioned in panel (a) are marked by black dots. See also Figs. 4-5,
and Videos V2, V3 [45; 46] in the SM.

3.2 Bifurcation and valley floors

We show in Fig. 3(a) the bifurcation on the plane (β, y), with x = 1
2
, for the critical

points of the s-h energy σR in (10). This is obtained from the way the global GL-
symmetry of the potential constrains, via the implied local (point-group) symmetry,
the second-derivatives of its critical and bifurcation points [2; 5]. This diagram ex-
pectedly has the same main features as the one pertaining to the polynomial-based
s-h energy in [6]. The actual GL-periodicity of the bifurcation pattern of the energy
in (10) is sketched in Video V1 of the Supplementary Material (SM), see [44].

In Fig. 3(a) we see that the square critical point i of σR is stable for β < 3
2
,

losing stability at β = 3
2

through a subcritical pitchfork to two rhombic critical points
(saddles). On the other hand, ρ is a minimum for β > 0, becoming unstable at
β = 0, where symmetry dictates the presence of a monkey saddle, unfolding [47] via a
transverse bifurcation to three rhombic critical-point branches (standard saddles, only
one of which belongs to the plane (β, y) of the figure; see also Video V1 in the SM).
The points i and ρ are the only local minimizers of σR in D for 0 < β < 3

2
, and in

this range the energy σR in (10) is thus suitable to model the s-h transformation. The
coexisting minima i and ρ have the same energy at the Maxwell value β = βM = 1,
so that the global minimum is i for 0 ≤ β ≤ 1, while it is ρ for 1 ≤ β ≤ 3

2
.

For the s-h energy σR in (10) with 0 < β < 3
2
, it is also interesting to highlight

the structure of the infinite GL-invariant network of the valley floors connecting the
energy extremals on H, which, as mentioned in the Introduction, considerably inform
us regarding the evolution of the strain field in H. Precisely, the valley floors of an
energy σ are the gradient-extremal loci on H locally satisfying H∇σ−ξ∇σ = 0, with
ξ ∈ R and Hv · v ≥ 0 [48; 49; 50], where ∇σ and H are respectively the gradient and
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Hessian of σ, and v is any vector orthogonal to the energy gradient, with derivatives
and orthogonality considered in relation to the hyperbolic metric (4)2. This produces
the following explicit gradient-extremal equation:

2

y3
|∇σ|2 v2 −

2

y2
H∇σ + ξ∇σ = 0, (11)

where v2 is the unit vector in the y-direction on H, and derivatives are intended in
its standard atlas (x, y). For β = 1 the valley floors of the s-h energy σR obtained
from (11) compose the hyperbolic network highlighted in Fig. 3(b), whose edges lie on
those geodesics of H [40; 41] which contain both the s-h minimizers.

4 Shear-driven s-h transformation

We investigate numerically the behavior of an s-h phase-transforming crystal in quasi-
static shearing, imposed to the top side of a square body containing a coaxial square
lattice, with fixed bottom side and the remaining two sides free. In this incremental
test, for each value of the shear parameter γ a local minimizer of the body’s total
strain-energy functional is computed through the density σR in (10) with β = 1, and
complying with the imposed boundary conditions (see [37] for computational details).

Figs. 4(d)-(e)-(f) show three snapshots of the resulting γ-dependent strain field in
the sheared crystal. Figs. 4(a)-(b)-(c) highlight the corresponding strain clustering as
a cloud of points which evolves with γ on the GL-domains of the Dedekind tessellation
of H. See Video V2 [45] in the SM for the numerical simulation of shearing up to
γ = 0.24.

The stress-strain relation in Fig. 4(g) shows that the initially defect-free lattice
begins shearing with a significant elastic charge, the associated strain cloud widening
away from ib in H, as γ moves away from 0, due to the growing strain heterogeneity
caused by the unloaded body-sides, see Figs. 4(a)-(d). A large transformation event
at about γ = 0.13 ends the elastic regime, with a large stress drop taking place as
part of the strain cloud in H splits away from its initial location near the reference
state i towards the neighbouring well in ρ. A portion of the cells’ strains remain far
from the well bottoms, elastically stabilized on the intermediate non-convex regions,
see Figs. 4(b)-(c).

From there on, the imposed shearing induces a bursty deformation process in the
body, characterized by an intermittent sequence of stress-relaxation events due to
avalanching s-h microstructure formation assisted by lattice-defect evolution, as can
be seen in Figs. 4(e)-(f)-(g), and Video V2 in the SM [45]. These phenomena occur
as the strain field in the lattice locally takes advantage, for the relative minimiza-
tion of the total energy, of the available s-h GL-wells of the density σR. Twin-type
bands and dislocations emerge as neighboring lattice cells suitably stretch or shear
and rotate while satisfying Hadamard’s kinematic compatibility, together with the im-
posed boundary conditions.4 Long-range elastic interactions correspondingly produce
coordinated basin-hopping on H which results in strain avalanches within the shear-
ing body under the slow driving, see also [25; 37; 26]. These complex deformation
mechanisms involving both phase transition and defect evolution, occur here with no
need for auxiliary hypotheses: they originate directly from energy minimization not

4The presence of defects in the lattice as a consequence of the phase change, as shown in
Fig. 4, leads to the irreversibility typically observed in reconstructive transformations, in both
experiment and simulation [7; 52].
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Figure 4: (Color online) Shearing of an s-h phase-transforming crystal, with strain
energy σR in (10) for β = 1. The imposed loading is along a primary-shear direction in
the square lattice, parallel to the driven horizontal body-sides. The associated path in
H is the straight dashed blue line i→ 1+ i in panels (a), (b), (c), with increasing shear
parameter γ (green dot), from the defect-free reference configuration in the ground
state z0 = i (γ = 0) to the GL-equivalent fully-sheared square configuration i + 1
(γ = 1). Convexity domains around each s-h energy minimizer are shaded gray, and
the valley floors of σR are in dashed-red as in Fig. 3(b). The snapshots (a), (b), (c)
show the evolution of the strain clustering during shear, given by the heatmap 2D-
histogram for the cell-strain density evolving on the Dedeking tessellation of H in
Fig. 1(a). Panels (d), (e), (f) show the associated body deformation (whreon the
color coding for the cell strains in H is as in panel (a)), with panel (g) displaying
the stress-strain relation (blue jagged line) for increasing γ. The response is elastic
to about γ = 0.13, after which a bursty phase-transformation regime begins. Panels
(d), (e), (f) show this is marked by the formation of s-h phase mixtures (twin bands and
lath-type microstructures) mediated by evolving lattice defects, as seen in the detail
inset to panel (e). The deformation’s intermittency is tracked in panel (g) through the
sequence of relaxation events given by the jumps in the jagged stress-strain diagram,
as well as the orange spikes indicating the percentage of cell-strain values that are
hopping energy basin for each value of γ. Panels (a), (b), (c) show that the strain-
cloud path on H under the imposed boundary condition here follows the directions of
the valley floors in the energy landscape, as is the case in crystal plasticity [37]. More
information on the bursty deformation triggered in this shear test is also in Figs. 5-6
and Videos V2, V3, V4 in the SM [45; 46; 51].
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Figure 5: (Color online) Snapshot of the bursty evolution of the strain field on H
(γ = 0.24) shown directly on a portion of the energy landscape during the shear-
driven s-h transformation. The GL-energy is σR in Eq. (10) with β = 1, so the s-h
wells i, ρ, ζ, i+ 1, ..., all have the same depth. The avalanching strain values largely
follow the energy valley floors indicated in dashed red, as in Fig. 3(b). See also Video
V3 [46] in the SM.

only due to the GL-arrangement of the density minimizers in strain space, but also
to the way in which the global GL-symmetry shapes the energy landscape. Indeed,
we observe here in Figs. 4(e)-(f)-(g), as is the case also with crystal plasticity [37],
that the GL-energy valley floors act as strain-cloud deformation pathways on H. For
instance, the creation and evolution of the vertical shear bands in Figs. 4(e)-(f), is due
to strain avalanches occurring as suitable lattice domains leave the square reference
state i, with the strain cloud following the valley-floor path i → ρ → ζ in H, see
Figs. 4(b)-(c), although the body is being externally loaded in the horizontal principal
shear direction i → i + 1 (green dot in the same figures) for the square crystal. The
activation of the deformation pathway i → ρ → ζ implies s-h phase transformation
events happening together with, and assisted by, dislocational effects in the lattice, as
some cells’ strains respectively reach the ρ-well (hexagonal) or the ζ-well (fully sheared
square by a principal lattice-invariant shear) when the driving forces them away from
i. We see how, in the present variational GL-modelling, plastification may arise in
the lattice via defect nucleation through lattice-invariant shears [7; 6; 25; 8; 9; 10; 24],
because in the reconstructive case the barriers to the these shears are only as high as
the barriers relative to the phase transformation itself.

Fig. 5 and Video V3 [46] in the SM display explicitly the shearing body’s strain
cloud as it flows in quasi-static intermittent fashion along the energy-surface valley
floors. Most of the cell’s strains are located near the involved well bottoms, with a
fraction elastically stabilized on the non-convex regions between wells. Our simula-
tions confirm the role of the GL-network of valley floors as giving the deformation
pathways for the strain cloud on H during total-energy minimization, and show, as
in [37], that these features of the energy landscape can help to better inform also
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Figure 6: (Color online) Highlight of a strain burst characterizing the shear-driven s-h
transformation in Fig. 4. This strain-evolution event in the square body undergoing
quasi-static shear (γ = 0.20) corresponds to a spike (in orange) in the intermittent
basin-hopping activity of the local strains on H, with the associated relaxation drop
in the stress-strain relation (blue jagged line). The strain avalanche is computed by
considering the norm of the strain difference at each cell for two consecutive values of
γ in the simulation, near γ = 0.20. See Video V4 [51] in the SM for more details.

other crystallographically-based approaches to crystal micromechanics, such as the
phase-field models in [23; 53].

To conclude, we highlight explicitly the strain avalanches characterizing the inter-
mittent deformation in this shear test, showing one such event in Fig. 6. It originates
from a burst of coordinated basin-hopping activity of the strain-values in H, associ-
ated to microstructure and defect evolution in the lattice, producing a stress-relaxation
event. The computed sequence of the strain avalanches observed in our quasi-static
simulation is shown in Video V4 [51] of the SM. These results from the model qualita-
tively agree well with the strain-intermittency behavior experimentally observed dur-
ing mechanically induced martensitic transformation in slowly driven shape-memory
alloys, as evidenced in [54].

Aknowledgements. We acknowledge the financial support of the Italian PRIN projects
2017KL4EF3, 2020F3NCPX 001, and of INdAM-GNFM.

5 Appendix: Online Supplementary Material

5.1 Caption to Supplementary Video V1 [44]

Animation showing the GL-periodic β-bifurcation diagram for the critical points of
the s-h potential σR in (10).

A section of this diagram is shown in Fig. 3(a). The Poincaré disk model [39; 6;
38; 55] is used here for the 2D hyperbolic space. The purple square and green circles

12



in the disk respectively correspond to square and hexagonal points, with fat [slim]
rhombic points given by bold [thin] blue lines, while red curves represent rectangular
points. The 3D-diagram corresponds to increasing β from bottom to top. Vertical
lines indicate stable (bold) or unstable (dotted) square and hexagonal critical points.
Stability ranges for these s-h extremals are as detailed in Fig. 3(a) and in the text.
In particular, there is the s-h coexistence interval 1

2
< β < 3

2
where both the square

and hexagonal points are local minimizers, with branches of rhombic saddle points
bifurcating from these two maximally symmetric ones with features and multiplicities
as described in Fig. 3(a): three transverse rhombic branches issue from each hexagonal
bifurcation point, while two rhombic branches issue with a subcritical pitchfork from
each square bifurcation point. For completeness here are also indicated the supercrit-
ical pitchforks from square to rectangular local minimizers of the potential σR in (10)
for β ≤ − 3

2
.

5.2 Caption to Supplementary Video V2 [45]

Shearing of a homogeneous square body containing an initially defect-free square lat-
tice for an s-h phase-transforming crystal with strain energy σR in (10) with β = 1.
The imposed loading is along a primary shear direction in the square lattice, aligned
with both the parallel square-cell side and bottom body side. The shearing boundary
condition is imposed through the constrained horizontal sides of the body, with the
two remaining sides free. See also Figs. 2-3-4 in the main text.

(a) Bursty deformation field in the body for increasing shear parameter γ, indi-
cated by the moving green dot along the γ-axis in (e). Lattice points are color-coded
according to (c) depending on the energy basin in the Poincaré half-plane H visited by
the strain of each lattice cell during loading. Defect nucleation and evolution accom-
pany the phase transformation, intrinsically produced in this model through energy
minimization. See also Fig. 4(d)-(e)-(f).

(b)-(d)-(f) Intermittent evolution of the γ-dependent histograms of the four 2D
deformation-gradient parameters recorded during the shear simulation.

(b) Evolution of the 2D histogram (strain cloud) of the density of strain param-
eters on the Dedekind tessellation of H during shearing. The histogram color-coding
provides the percentage of body cells with strain located at each point of H. The
straight horizontal dashed-blue line between the two neighboring square configura-
tions i and i + 1 is the image in H of the primary shear path imposed as boundary
condition. The initial configuration is in i for γ = 0, while γ = 1 corresponds to i+ 1.
Shading indicates the convexity domains around the s-h minimizers in H of the energy
σR, while the red dashed lines mark the valley floor segments as in Fig. 3, which largely
direct the strain-cloud evolution under the slow driving. See also Fig. 4(a)-(b)-(c) and
Fig. 5.

(c) Color-code map used in (a) for the GL-energy basins of σR on the Dedekind
tessellation of H. The ridges marking the basins’ boundaries are computed via a
Eq. (11) in the main text.

(d) Evolution of the histogram for the values of det F, indicating volumetric effects
in the lattice.

(e) Bursty s-h phase transformation in the shearing test. Jagged stress-strain
body behavior (blue), with the underlying spikes (orange) showing the percentage of
basin-hopping strain values during loading, as γ grows. The body response is elastic
to about γ = 0.13, where, after a first large stress drop, intermittent stress-relaxation
continues for growing γ. See also Fig. 4(g) and Fig. 6.
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(f) Evolution of the histogram for the values of the angle θ in the polar decomposi-
tion of the deformation gradient F, indicating local lattice rotation accompanying the
phase transformation process. Notice the different rotation angles of the s-h phase-
microstructure bands, resulting in an evolving bimodal distribution for θ.

5.3 Caption to Supplementary Video V3 [46]

Quasi-static bursty evolution of the strain field on H for growing parameter γ, shown
directly on the energy landscape during the shear-driven s-h transformation. The GL-
energy is σR in Eq. (10) with β = 1, so the s-h wells i, ρ, ζ, i+ 1, ..., all have the same
depth. Under the slow driving the strain values largely follow the energy valley floors
indicated in dashed red in Fig. 3(b) and Fig. 5. See also panel (b) in Video V2 [45] in
the SM.

5.4 Caption to Supplementary Video V4 [51]

Strain avalanching during the shear-driven s-h phase transformation.
(c)-(a) For reference, these two panels report respectively the evolution of the

strain field in the shearing body, as in Video V2(a), and the associated jagged stress-
strain relation, from Video V2(e).

(b) Intermittent strain avalanching within the shearing crystal. Each event corre-
sponds to phase transformation and defect evolution in the deforming lattice. Avalan-
ches are computed by considering the difference in strain norm at each lattice cell for
two consecutive values of γ in the simulation. The GL-energy is σR in Eq. (10) with
β = 1, as in Fig. 2. See also Fig. 6.
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[9] Pérez-Reche, F.-J., Triguero, C., Zanzotto, G., Truskinovsky, L., 2016. Origin of
scale-free intermittency in structural first-order phase transitions. Phys. Rev. B
94:114102.
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