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Topological superconductors support Majorana modes, which are quasiparticles that are their own
antiparticles and which obey non-Abelian statistics in which successive exchanges of particles do
not always commute. Here we investigate whether a two-dimensional superconductor with ordinary
s-wave pairing can be rendered topological by the application of a strong magnetic field. To address
this, we obtain the self-consistent solutions to the mean field Bogoliubov-de Gennes equations, which
are a large set of nonlinearly coupled equations, for electrons moving on a lattice. We find that the
topological “quantum Hall superconductivity” is facilitated by a combination of spin-orbit coupling,
which locks an electron’s spin to its momentum as it moves through a material, and a coupling to
an external periodic potential which gives a dispersion to the Landau levels and also distorts the
Abrikosov lattice. We find that, for a range of parameters, the Landau levels broadened by the
external periodic potential support topological superconductivity, which is typically accompanied
by a lattice of “giant” h/e vortices as opposed to the familiar lattice of h/2e Abrikosov vortices. In
the presence of a periodic potential, we find it necessary to use an ansatz for the pairing potential
of the form ∆(r)ei2Q·r where ∆(r) has a periodicity commensurate with the periodic potential.
However, despite this form of the pairing potential, the current in the ground state is zero. In the
region of ordinary superconductivity, we typically find a lattice of dimers of h/2e vortices. Our work
suggests a realistic proposal for achieving topological superconductivity, as well as a helical order
parameter and unusual Abrikosov lattices.

I. INTRODUCTION

Majorana modes, which are quasiparticles which may
be considered as their own anti-particles, are perhaps the
most readily realizable non-Abelian anyons. In topolog-
ical superconductors, they appear as zero-energy quasi-
particles which reside in the cores of Abrikosov vortices,
or appear as chiral boundary modes. Their non-Abelian
braid statistics, although not yielding all unitary gates,
are a major step towards topological quantum compu-
tation with anyons [1–14]. Besides their potential ap-
plication for quantum computation and being of funda-
mental scientific interest, achieving Majorana modes in
the lab could lead to the physical realization of interest-
ing theoretical models, such as the Sachdev-Ye-Kitaev
model [15]. There are several candidate condensed mat-
ter systems which are thought to host Majorana modes,
including the ν = 5/2 fractional quantum Hall effect, two
dimensional p-wave superconductors, and two dimen-
sional films of 3He-A superfluid [16]. In addition, there
have been proposals to engineer topologically interesting
structures which host Majorana modes. In particular,
topological p-wave superconductivity (SC) is thought to
arise when a spin-orbit coupled electron gas is proximity
coupled to an s-wave superconductor, owing to the ap-
pearance of a single Fermi surface in certain parameter
regimes [17–30]. Particularly notable are proposals for
quasi-one dimensional systems, e.g. semiconductor wires
[19, 22, 26, 31–34], magnetic atom chains [35–39], and
planar Josephson junctions [40, 41], for realizing topo-
logical superconductivity (TSC). Some exciting progress
has been made on these fronts [42].

In earlier work, Sau et al. proposed a heterostruc-
ture consisting of a spin-orbit coupled two-dimensional

electron gas (2DEG) coupled to a ferromagnetic insu-
lator and an s-wave superconductor [21, 22]. The fer-
romagnetic insulator causes a gap in the single-particle
spectrum of the 2DEG at zero momentum. This gap,
along with spin-orbit coupling (SOC), leads to the ap-
pearance of a single Fermi surface for certain values of
the chemical potential. When the system is coupled to
an s-wave superconductor, effective chiral p-wave TSC is
realized in a single band. They studied the properties
of the BdG spectrum in the regime where vortices are
well-separated. Crucially for these works, it is the SOC,
together with the Zeeman-like effect from the magnetic
insulator, which gives rise to the topological phase.

A related idea is to apply a magnetic field to a two-
dimensional system, utilizing the orbital effect to real-
ize TSC. Indeed the topological nature of the underly-
ing Landau levels (LLs) sets the stage nicely for TSC
when a pairing gap is opened [20, 24]. The combina-
tion of SC and quantum Hall (QH) systems, both integer
(IQHE) and fractional (FQHE), has been thought to be
fertile ground for the realization not only of TSC with
the concomitant Majorana particles, but also more ex-
otic topological phases that harbor parafermions and Fi-
bonacci anyons [43–51]. In order to integrate the orbital
effect of the magnetic field and SC, there are, broadly
speaking, two approaches. The first, like the above pro-
posal, involves proximity coupling a QH system to a su-
perconductor. It is necessary to take into account the
vortices in superconductors exposed to a magnetic field
[52–56]. Zocher and Rosenow [52], Mishmash et al. [53]
and Chaudhary and MacDonald [55] showed that there is
no TSC for particles in the lowest LL (or lowest few LLs)
if the unit cell of the Abrikosov lattice has only one (or in
general an odd number of) superconducting flux quanta
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(that is, the unit cell violates magnetic translation sym-
metry), as is the case for the usual triangular Abrikosov
lattice or even a square Abrikosov lattice. It was shown
that the spectrum of the Bogoliubov-de Gennes (BdG)
equations, which is completely determined by the s-wave
pairing potential when the normal state bands are flat,
has an even degeneracy in the case of a square or trian-
gular Abrikosov vortex lattice, and therefore any quasi-
particle spectral gap closing across a topological phase
transition must lead to a Chern number change by an
even integer, thereby precluding the appearance of TSC
that requires odd integer Chern number. All of these
works considered LLs with SOC. Also, because they con-
sidered proximity-induced SC, they did not need to find
a self-consistent mean-field state within the 2DEG, since
the pairing, and consequently the Abrikosov lattice, are
inherited from a nearby bulk superconductor, and hence
are a part of the Hamiltonian defining the problem, not
of its solution.

The second approach is to apply a strong magnetic field
to an intrinsic two-dimensional superconductor, driving
it into the Landau level limit. It has been known for
some time that BCS mean field theory predicts that su-
perconductivity can be enhanced due to the Landau level
structure of systems in a strong magnetic field [57–76].
Because of the enlargement of the density of states in
Landau levels, it has been predicted that the critical tem-
perature in this limit approaches that of the zero-field
value [58, 59]. This has been referred to as quantum Hall
superconductivity [76]. In contrast to the case of prox-
imity coupled SC to LLs, the vortex lattice structure is
determined by electrons pairing in LLs within the same
sample, and consequently a vortex lattice structure can-
not be assumed but must be solved for self-consistently
[61, 66, 70]. In spite of extensive theoretical efforts, con-
vincing experimental demonstrations of these remarkable
predictions have been lacking. In addition, to our knowl-
edge, there has not been any study of the possibility of
topological superconductivity in such systems. That is
the focus of the present study.

In this work, we explore if TSC can arise from pair-
ing between electrons occupying LLs, which may be re-
ferred to as “quantum Hall topological superconductiv-
ity.” For this purpose, we consider a fully self-consistent
mean-field theory of a lattice model under a magnetic
field with a phenomenological attractive on-site Hubbard
interaction. We also consider Rashba SOC and a peri-
odic superlattice potential. We numerically determine
phase diagrams without SOC or superlattice potential,
with SOC and without superlattice potential, without
SOC and with superlattice potential, and with SOC and
superlattice potential. We find that while SOC is nec-
essary for TSC, the application of a superlattice poten-
tial markedly enlarges the regions hosting TSC in the
phase diagram. The reason is because the Abrikosov
lattice distorted by the superlattice potential has more
than one superconducting flux quantum in a unit cell.
(As shown below, the TSC often occurs in regions where

FIG. 1. A schematic of the numerically determined phase
diagram in the presence of both spin-orbit coupling and a su-
perlattice potential as a function of the strength of the onsite
attractive interaction −U and the chemical potential µ. The
regions of topological superconductivity (TSC), depicted in
red, roughly coincide with Landau levels broadened by the
superlattice potential. The vortices here typically tend to
form a lattice of “giant” vortices (as shown in the bottom left
of the figure), where a giant vortex consists of two supercon-
ducting vortices merged into one. In the regions of ordinary
superconductivity (shaded yellow), the vortices typically form
a lattice of dimers as depicted on the right of the figure. The
vortex lattices are square because of our choice of a square
superlattice potential.

two Abrikosov vortices merge into a “giant” vortex.) A
schematic phase diagram is shown in Fig. 1. More de-
tailed phase diagrams are given below. In order to prop-
erly treat systems with a superlattice potential, we find
it necessary to consider helical pairing functions, which
describe Cooper pairs with non-zero center-of-mass mo-
mentum. This ansatz is the same as the one employed
by Fulde and Ferrell [77]. We also describe vortex lat-
tice structures arising in our model, some of which are
quite unexpected. We finally discuss some prospective
experimental realizations of this model.

II. MODEL

A. Hamiltonian

We consider spin- 12 fermions on a square lattice in a
magnetic field with Rashba SOC, a single-particle poten-
tial, and onsite attractive interaction. The interacting
Hamiltonian is

H = H0 +HSO +HI, (1)



3

where

H0 =−
∑

j,δ,σ

(
eiAδ(rj)c†j+δ,σcj,σ + e−iAδ(rj)c†j,σcj+δ,σ

)

−
∑

j,σ

(
µ− V (rj)

)
c†j,σcj,σ

HSO =VSO
∑

j

(
eiAx̂(rj)

(
c†j+x̂,↓cj,↑ − c†j+x̂,↑cj,↓

)

+ ieiAŷ(rj)
(
c†j+ŷ,↓cj,↑ + c†j+ŷ,↑cj,↓

))
+ h.c.

HI =− U
∑

j

c†j,↑c
†
j,↓cj,↓cj,↑,

(2)

where rj is the location of site j, VSO is the SOC strength,
µ is the chemical potential, U is the interaction strength,
Aδ(rj) are the hopping (Peierls) phases, δ = x̂, ŷ, σ =↑,
↓. The annihilation (creation) operators for fermions of

spin σ at site j are cj,σ (c†j,σ). We have set the hopping

amplitude to unity. Note that Aδ(rj) appears both in
the hopping term and the SOC term, which is necessary
for gauge invariance. The Rashba SOC takes the form
of the lattice-discretized version of HR = αẑ · (σ × π)
where π is the kinematic momentum (further discussion
of this term can be found in the Supplementary Materials
(SM) [78]). Finally, we include a periodic single-particle
potential of the form

V (r) = −Vsp
2

∑

δ=x̂,ŷ

cos
(
ηδ · r

)
(3)

where Vsp is the strength of the periodic superlattice po-
tential and ηx and ηy are the wavevectors of the periodic
superlattice potential in the x and y directions, respec-
tively.

B. Magnetic unit cell

A discussion of the translation symmetries of the non-
interacting part of the Hamiltonian, i.e. H0 +HSO, is in
order – we will discuss the interacting partHI below. The
magnetic field in our model is chosen so that the mag-
netic flux through each square plaquette of the lattice
is the same rational fraction α = 1/q of the flux quan-
tum Φ0 = h/e. This rational fraction, and in particular
the denominator q, determines the translation properties
of the non-interacting Hamiltonian by constraining the
unit cell of the system – called the magnetic unit cell
(MUC) – to have a multiple of q sites [79–84]. For our
calculation, we choose q = 64 and take the MUC to be a
square consisting of 16× 16 sites. The total flux through
this magnetic unit cell is four flux quanta. We will take
the pairing potential to have the same periodicity as the
MUC. This choice of MUC allows for triangular, square,
and dimerized lattice structures for the Abrikosov flux

lattice. (We note that the smallest choice would be an
8 × 8 MUC, which encloses one flux quantum, but that
does not allow a triangular lattice of Abrikosov vortices.
We have also examined several cases for other MUC types
at the same magnetic field, such as 4 × 64 with 4 flux
quanta per MUC, and found that in all these cases the
energies were higher than those obtained with the 16×16
MUC.)
The single-particle potential V (r) is chosen to be com-

mensurate with the MUC, and in particular we take
(ηx, ηy) = ( 2π8 ,

2π
8 ). Previous authors [52, 53, 55] have

emphasized the need to break the translation symmetry
of the vortex lattice in order to realize TSC in the pres-
ence of Abrikosov vortices. Our choice of single-particle
potential accomplishes this, since the unit cell for the
periodic potential contains one flux quantum h/e. In ex-
periments, we expect that the magnetic length can be
tuned to the wavelength of the periodic single-particle
superlattice potential by tuning the magnetic field.

C. Mean-field theory

A mean-field factorization of the interacting part of the
Hamiltonian HI is performed in the pairing channel

HI =− U
∑

j

c†j,↑c
†
j,↓cj,↓cj,↑

→− U
∑

j

(
⟨cj,↓cj,↑⟩c†j,↑c

†
j,↓ + ⟨c†j,↑c

†
j,↓⟩cj,↓cj,↑

− ⟨c†j,↑c
†
j,↓⟩⟨cj,↓cj,↑⟩

)
(4)

In this work, we consider a mean-field ansatz of the form

HI → H∆ = −
∑

j

∆je
i2Q·rjc†j,↑c

†
j,↓ + h.c.+

∑

j

|∆j |2
U

(5)
where the field ∆j is assumed to be periodic with the
same periodicity as the MUC. The vector Q, which we
will refer to as a boost vector, is treated as a variational
parameter; the optimumQ is that which leads to a mean-
field groundstate with the lowest energy. Note that, due
to the phase factor ei2Q·rj , the pairing potential in this
model is not necessarily periodic. The addition of this
phase factor gives the superconducting condensate a fi-
nite momentum 2Q [85–89], although the groundstate
with nonzero Q does not carry a finite net current. This
admits a short proof: since we are to minimize the energy
with respect to Q, we must have δEMF

δQ = 0 where EMF

is the energy. However δEMF

δQ is also the net current (see

Appendix A). Thus it vanishes in the ground state.
The self-consistency equations are

∆je
i2Q·rj = U⟨Γ|cj,↓cj,↑|Γ⟩ (6)

where |Γ⟩ is the mean-field groundstate. In order to
solve this equation, we first make a boost transforma-
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tion on the mean-field Hamiltonian. A similar transfor-
mation has been employed in studies of helical phases in
non-centrosymmetric superconductors [86–88]. We de-
fine boost operators UB(Q) which act on the creation
operators in position space as

c̄i,σ ≡ U†
B(Q)ci,σUB(Q) = ci,σe

iQ·ri , (7)

where the bar over the operators is meant to denote oper-
ators in a boosted ‘frame’. The mean-field Hamiltonian,
defined as HMF = H0 + HSO + H∆, is transformed us-
ing the boost operators. The action of the boosts on the
terms H0 and HSO has the effect of shifting the hopping
phases by A(rj) → A(rj)−Q. The boost has the effect
on H∆ of cancelling the phase factor ei2Q·rj . In other
words,

H̄∆ = U†
B(Q)H∆UB(Q) = −

∑

j

∆jc
†
j,↑c

†
j,↓+h.c.+

∑

j

|∆j |2
U

(8)
Thus the pairing Hamiltonian in the barred frame has
the same periodicity as H̄0 and H̄SO, and we can make
use of the BdG formalism, using the magnetic Bloch ba-
sis, to solve the mean-field problem. The self-consistency
equations in the barred frame are

∆j = U⟨Γ̄|cj,↓cj,↑|Γ̄⟩ (9)

where |Γ̄⟩ = U†
B(Q)|Γ⟩ is the mean-field groundstate in

the barred frame.

D. Bogoliubov-de Gennes formalism

The mean-field Hamiltonian in the boosted frame can
be expressed in terms of a BdG Hamiltonian by first
transforming it into (magnetic) momentum space using
the formula cj,σ = 1

L

∑
k e

ik·Rjcj̃,σ(k), where Rj is the
coordinate of the origin of the MUC in which site j re-
sides and j̃ denotes the site within the MUC of site j. In
other words rj = Rj + r̃j where r̃j is the coordinate of j̃
(relative to the origin of the MUC). L is the number of
MUCs in both the x and y directions; we consider L large
enough so that the results are converged to the thermo-
dynamic limit, where we define convergence according to
the following criterion: a solution ∆L

j to Eq. (9) with sys-
tem size L is said to be converged to the thermodynamic
limit if it is also a solution to Eq. (9) with system size
L + 2 to within the tolerance of the iterative algorithm
used to solve Eq. (9) (see the Appendix C for more de-
tails on the algorithm). Generally, we find that we need
L ≥ 32 for a 16 × 16 MUC for the pairing potential to
be well converged. We also note that the Chern num-
ber (discussed below) is well-converged for much smaller
system size – L ≈ 6 for 16 × 16 MUC using a 24 × 24
momentum space grid for the Chern number calculation
(see section IIG below).

The mean-field Hamiltonian may be written as

HMF =
1

2

∑

k

4Nsite∑

α,β=1

ψ†
α(k)

(
HBdG(k)

)
αβ
ψβ(k)

+
1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

,

(10)

where




ψj̃(k)
ψj̃+Nsite

(k)
ψj̃+2Nsite

(k)
ψj̃+3Nsite

(k)


 =




cj̃,↑(k)
cj̃,↓(k)

c†
j̃,↑(−k)

c†
j̃,↓(−k)


 (11)

and

HBdG(k) =

=




h(k) Σ(k) 0 ∆↑↓(k)
Σ†(k) h(k) ∆↓↑(k) 0

0 −∆∗
↑↓(−k) −h∗(−k) −Σ∗(−k)

−∆∗
↓↑(−k) 0 −ΣT(−k) −h∗(−k)




(12)

is the BdG Hamiltonian. Nsite is the number of sites
in the MUC. Each entry in Eq. (12) represents a ma-
trix: h(k) contains all the elements for hoppings (in the
barred frame), the chemical potential, and the single-
particle potential; Σ(k) contains the SOC elements (in
the barred frame), and ∆↑↓(k) contains the pairing ele-
ments. Fermi statistics and Hermiticity imply ∆T

↓↑(k) =
−∆↑↓(−k). In our model, ∆↑↑(k) = ∆↓↓(k) = 0 and
∆↓↑(k) = −∆↑↓(k) = diag(∆j̃). Note that HBdG(k) is

particle-hole symmetric P−1HBdG(k)P = −HBdG(−k)
with P = Kτx where τx is a Pauli matrix acting on the
particle and hole subspaces and K is complex conjuga-
tion. This symmetry and its implications are further dis-
cussed in the SM [78]

We define the BdG quasiparticle creation operators as

γ†β(k) =
4Nsite∑

α=1

ψ†
α(k)Uαβ(k) (13)

By assumption, these are eigenoperators, so

[
HMF, γ

†
β(k)

]
= Eβ(k)γ

†
β(k), (14)

which implies that the columns of Uαβ must be eigenvec-
tors of the BdG Hamiltonian

4Nsite∑

α=1

(
HBdG(k)

)
δα
Uαβ(k) = Eβ(k)Uδβ(k). (15)

We identify (15) as the BdG equations. The groundstate
|Γ̄⟩ is obtained by filling the vacuum with the negative
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energy BdG quasiparticle states. The mean-field ground-
state energy is given by

EMF =
1

2

∑

Eβ(k)<0

Eβ(k) +
1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

(16)

E. Self-consistency equations

To solve the self-consistency equations, we define the
Gor’kov Green’s function at momentum k as

Gαβ(k) = ⟨ψ†
α(k)ψβ(k)⟩

=

4Nsite∑

m,n=1

U†
mα(k)⟨γ†m(k)γn(k)⟩Uβn(k)

=

4Nsite∑

m=1

U†
mα(k)Uβm(k)f(Em(k))

(17)

where f(E) = 1
exp(E/kBT )+1 is the Fermi-Dirac distribu-

tion function. We consider only T = 0 in this work. The
self-consistency equations can be expressed in terms of G
as

∆j = U⟨Γ̄|cj,↓cj,↑|Γ̄⟩

=
U

L2

∑

k,k′

ei(k+k′)·Rj ⟨Γ̄|cj̃,↓(k′)cj̃,↑(k)|Γ̄⟩

=
U

L2

∑

k

Gj̃+3Nsite,j̃
(k)

(18)

This equation is solved iteratively to achieve self-
consistency.

F. Rationale for boosts

We consider superconductivity arising from Landau
levels which are broadened by the presence of the single-
particle potential in Eq. (3). A portion of the normal
state spectrum (i.e. the energies of H0 +HSO) is shown
in Fig. 2. Each band is spin-split due to the presence of
SOC and, in contrast to a system without a single particle
potential, the Landau levels are broadened and acquire a
dispersion. The minima and maxima of the bands occur
at non-zero momenta and consequently a pairing Hamil-
tonian describing pairs with finite momentum – that is,
one that pairs particles at Q − k and Q + k – is re-
quired to open a superconducting gap at Fermi surfaces
which appear when the chemical potential µ is tuned to
within a band. Fig. 3 shows the condensation energy
as a function of the boost momentum vector Q. The
stars indicate momenta corresponding to self-consistent
mean-field states with the lowest energy, and it is at these
momenta where a full pairing gap appears. An optimal

FIG. 2. The energies of broadened Landau levels plotted in
the magnetic Brillouin zone. The single particle potential
strength is Vsp = 0.2 (in units where the hopping amplitude
is set to unity). The flux per plaquette α = 1/64. The Rashba
SOC strength is VSO = 0.1. Because of the presence of the
single-particle potential, the Landau levels become dispersive,
and because of the SOC, the spin degeneracy is lifted. The
maximum and minimum of the top band, which like the max-
ima and minima of other bands occur at finite momentum,
are marked with a red and blue X, respectively

FIG. 3. Condensation energy as a function of the boost vector
Q for Vsp = 0.1, VSO = 0.1, U = 3.2, µ = −3.48 in the
magnetic Brillouin zone. The stars indicate the minimum
energy states. Note that states differeing by a half reciprocal
lattice vector have the same energy.

boost moves the Fermi surface so that it becomes cen-
tered at k = G/2, where G is a reciprocal lattice vector
(more information about the boost transformation can
be found in the Appendix B).
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G. Chern number

We compute the Chern number, an integer-valued bulk
topological invariant of the BdG Hamiltonian, to clas-
sify the system’s topology. The non-Abelian formalism
is used to avoid having to keep track of topological tran-
sitions of bands far below the Fermi level. We define the
Berry connection in terms of its eigenvectors |um(k)⟩:

Amn
µ (k) = i⟨um(k)|∂µ|un(k)⟩, (19)

where ∂µ ≡ ∂/∂kµ, µ = x, y and m,n are band indices.
The Berry curvature is defined in terms of Amn

µ (k)

Fmn
µν (k) = ∂µA

mn
ν − ∂νA

mn
µ + i [Aµ, Aν ]

mn
(20)

and the Chern number is given by the integral over states
with negative energy of the BdG Hamiltonian

C =
1

2π

∫

MBZ

d2kTr [F (k)]E(k)<0 (21)

We numerically evaluate this integral using the method
by Fukui, et. al [90] which is highly efficient for gapped
systems. The Berry curvature is determined on a grid in
a discretized MBZ by defining

Mmn
λ (kα) = ⟨um(kα)|un(kα + eλ)⟩. (22)

The points on the grid are labeled by kα and the spac-
ing vectors are eλ where λ = 1, 2. In terms of the link
variables defined as

Uλ(kα) =
detMλ(kα)

|detMλ(kα)|
, (23)

the discrete Berry curvature at each point on the grid is
given by

F̃ (kα) = ln
(
U1(kα)U2(kα + e1)

U−1
1 (kα + e2)U

−1
2 (kα)

)
(24)

The Chern number is then given by

C =
1

2πi

∑

α

F̃ (kα). (25)

When the Chern number is odd, the system is in the
topological superconducting phase hosting non-Abelian
Majorana quasiparticles. When the Chern number is
even, the system does not host Majorana quasiparticles,
and is in the same topological classification as a quan-
tum Hall state. We find both possibilities in our results,
but since both cases are, properly speaking, topological,
we hereafter distinguish the former class of systems by
referring to it as the non-Abelian topological phase.

III. RESULTS

We explored phase diagrams for a multitude of values
of SOC and periodic potential strength for small Landau
level filling factors (up to Landau level index n = 8), as
shown in Fig. 4. The self-consistent mean field equations
were solved for each point on the phase diagrams, which
each consist of 6400 (80 × 80) points. For each point,
guesses consisting of random complex numbers at each
site within the MUC, as well as uniform real numbers,
were used to start the iterative algorithm, and 16 × 16
(with flux 4 h/e) MUCs were used. The total energy was
calculated for each solution (Eq. 16) and the solution
with the minimum energy was taken to be the ground-
state solution. The color on the phase diagrams denotes
∆max, the maximum value of the modulus of the self-
consistent real space pairing potential |∆j | in the ground
state. The points marked with red stars are points where
the system is in the non-Abelian phase, i.e. the Chern
number is an odd integer. The corresponding density of
states (DOS) in the normal state is shown to the left of
each phase diagram. Let us now consider four different
cases:

No SOC or superlattice potential: Fig. 4 (a) shows the
phase diagram when both the SOC and single-particle
potential are set to zero. The single particle spectrum
consists of spin-degenerate Landau levels, which have a
band width on the order of 10−14 and their spacing (the
cyclotron energy ℏωc) is approximately 0.2. The phase
boundary separating non-superconducting and supercon-
ducting regions of the phase diagram displays substan-
tial oscillatory behavior due to the Landau level struc-
ture. At lower interaction strength, superconductivity
is present when the chemical potential is tuned to pre-
cisely the energy of a Landau level, but disappears when
it is tuned to the gaps between different Landau levels.
We hereafter refer to regions of enhanced superconduc-
tivity at Landau level energies as Landau level spikes.
At larger interaction strength (U ≥ 3.5), superconduc-
tivity is strongly augmented, and oscillations due to the
Landau level structure disappear. We will refer to this re-
gion as the strong pairing regime. The non-Abelian phase
of topological superconductivity does not appear in the
system without a periodic potential and SOC. Instead,
the Chern numbers for all of the points shown are even
integers. This follows from the spin degeneracy of the
energy levels (see Appendix E). In the weak interaction
portion of the phase diagram, when the energies are be-
tween Landau level spikes, the Chern number is 2ν where
ν is the filling factor, consistent with the system being
in a quantum Hall insulating phase. Within the Landau
level spikes, the Chern number is an even integer, start-
ing at 2ν when the interaction is weak, and decreases
in even increments as the interaction is increased, un-
til the strong pairing regime where the Chern number is
zero. It is interesting to note that superconductivity and
nontrivial topology coincide on the Landau level spikes,
although the topology is Abelian in nature.
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FIG. 4. The density of states of the system in the normal state on the left and the phase diagram on the right showing ∆max

(colorbar), the maximum value of the modulus of the self-consistent real space pairing potential |∆j | in the ground state. The
points where non-Abelian topological superconductivity is realized are denoted with small red stars. The parameters for each
phase diagram are (a) VSO = 0 and Vsp = 0, (b) VSO = 0.1 ≈ ℏωc/2 and Vsp = 0, (c) VSO = 0.15 ≈ 3/2ℏωc and Vsp = 0, (d)
VSO = 0 and Vsp = 0.2 ≈ ℏωc, (e) VSO = 0.1 ≈ ℏωc/2 and Vsp = 0.1 ≈ ℏωc/2, (f) VSO = 0.1 ≈ ℏωc/2 and Vsp = 0.2 ≈ ℏωc. The
self consistency equations for all systems are solved, and the systems with a finite single-particle potential are boosted to an
optimum value of Q.

FIG. 5. (a) The maximum absolute value of the pairing potential; (b) the BdG spectral gap (δE); and (c) the Chern number
(C) for systems with chemical potentials along the orange line in Fig. 4 (c) at U = 3.18 (left panel), the blue line in Fig. 4
(e) at U = 3.2 (middle panel), and the green line in Fig. 4 (f) at U = 3.34 (right panel). The blue dots and red stars indicate
systems we have studied. Blue dots correspond to systems with even Chern number and red stars correspond to systems with
odd Chern number. The transitions indicated by the black and gree arrows in the right panel are discussed in detail in the SM
[78].

SOC with no superlattice potential: Figs. 4 (b) and (c)
show the phase diagrams of systems without the single
particle potential but with SOC strength VSO = 0.1 and
VSO = 0.15, respectively. Due to nonzero SOC, the spin
degeneracy of the Landau levels is lifted, and the energies

are given approximately by

ϵ0 =
1

2
ℏωc − 4

ϵm,± = ℏωc

(
m±

√
π

4

V 2
SO

ℏ2ω2
c

m+
1

4

)
− 4 (m > 0)

(26)
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FIG. 6. Typical vortex lattice structures from the solutions to the self-consistent mean field equations (upper panels) with their
current textures (lower panels). (a) The vortex lattice at Vsp = 0, VSO = 0.1, U = 3.52, µ = −3.92. In the lowest few Landau
levels, the self-consistent solutions is a triangular lattice of Abrikosov vortices carrying flux h/2e. (b) The vortex lattice at
Vsp = 0.2, VSO = 0.1, U = 3.34, µ = −3.66. The single-particle potential distorts the vortex lattice, drawing the vortices to
areas of high potential energy. Typically in the topological region, the system forms a lattice of giant vortices. (c) The vortex
lattice at Vsp = 0, VSO = 0.1, U = 3.24, µ = −3.08. Other kinds of vortex order form at higher chemical potential (Landau
level filling factor ν ≈ 10). For example, the vortices may form a (distorted) honeycomb lattice.

and accordingly there are Landau level spikes at these en-
ergies. Interestingly, we find small regions where the non-
Abelian phase of topological superconductivity appears,
most markedly at higher filling factors (at or around
µ = −3). For weaker interaction strength the Chern
number at the non-Abelian points is an odd integer close
to twice the filling factor, and decreases as the interaction
strength is increased, until the Chern number becomes
zero in the strong-pairing regime. The vortex structure
at these points will be discussed below. We remark that
we do not find non-Abelian TSC arising from supercon-
ductivity in the lowest Landau level, which has been the
subject of recent studies [52, 53, 55].

Plots of the maximum absolute value of the pairing po-
tential, the BdG spectral gap (δE), and the Chern num-
ber (C), for chemical potentials along the orange line in
Fig. 4 (c), at fixed U = 3.18, are shown in the left
panel of Fig. 5. Points where the system is in the non-
Abelian phase are denoted with red stars. Oscillations
in Fig. 5 (a) (left panel) which correspond to the Lan-
dau level spikes. The spectral gaps in Fig. 5 (b) (left

panel) come in two varieties: superconducting gaps and
quantum Hall insulating gaps. The values of the quan-
tum Hall insulating gaps, which occur when ∆ = 0, are
given by 2min(|µ− ϵm±|), and are much larger than su-
perconducting gaps. When ∆ ̸= 0, the gaps are super-
conducting gaps. Generally, the superconducting gaps
are small, about an order of magnitude less than the
cyclotron energy, in the regime where non-Abelian TSC
appears. As seen in Fig. 5 (c) (left panel), the Chern
number exhibits discrete jumps as the chemical poten-
tial µ is tuned. These topological phase transitions come
in two varieties: (1) transitions where the change in the
Chern number is associated with a closing of the spec-
tral gap, and (2) first-order transitions, where the Chern
number changes without gap closing; these are associ-
ated with a change in the vortex lattice structure. This
is discussed in detail with examples in the SM [78].

Superlattice potential with no SOC: Fig. 4 (d) shows
the phase diagram for the system with periodic poten-
tial strength Vsp = 0.2 but without SOC. The optimum
boost vector is used for each point on the phase diagram.
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Despite the Landau levels becoming significantly broad-
ened, as can be seen in the DOS and in the correspond-
ing smearing of the Landau level spikes, the non-Abelian
phase does not appear, and the system transitions from
an Abelian TSC or quantum Hall insulating phase at
weak interaction to trivial superconductivity at stronger
interaction. It comes as no surprise that we do not find
the non-Abelian phase when there is a spin degeneracy.
This follows from Eqs. (19)-(21) and is established in
detail in Appendix E).

Both superlattice potential and SOC: Finally, includ-
ing both a single-particle potential and SOC leads to
a considerable enhancement of non-Abelian TSC in the
phase diagram. Fig. 4 (e) shows the phase diagram for
Vsp = 0.1 and VSO = 0.1, and Fig. 4 (f) shows the phase
diagram for Vsp = 0.2 and VSO = 0.1. Non-Abelian TSC,
which is marked using small red stars in the phase di-
agram, generally appears at the boundary between the
quantum Hall insulator and superconducting phases, par-
ticularly along broadened Landau level spikes. Plots of
the maximum absolute value of the pairing potential, the
BdG spectral gap (δE), and the Chern number (C), for
parameters along the blue line in Fig. 4 (e) and the green
line in Fig. 4 (f), are shown in the middle panel of Fig. 5
and the right panel of Fig. 5, respectively. Points where
the system is in the non-Abelian phase are denoted with
red stars. Oscillations can be seen in Fig. 5 (a) (mid-
dle panel), and to a lesser degree in Fig. 5 (a) (right
panel), which reflect the Landau level spikes. The spec-
tral gaps are about an order of magnitude less than the
cyclotron energy, at points where non-Abelian TSC ap-
pears. Again, we find topological phase transitions that
come in the two varieties mentioned above (gap-closing
and first-order).

A. Vortices and Majoranas

Due to the applied perpendicular magnetic field, the
pairing potential experiences orbital frustration and
Abrikosov vortices develop at the centers of which the
pairing potential is zero. We find a plethora of configu-
rations formed by the Abrikosov vortices, some of which
are quite unexpected. As anticipated, Abrikosov vortices
form a triangular lattice in the n = 0 and n = 1 Lan-
dau levels when the SOC and single-particle potential
are absent. In addition we found square vortex lattice
solutions with approximately 1− 2% higher energy than
the triangular lattice solutions. With SOC, but with-
out single-particle potential, a triangular lattice of vor-
tices forms when the chemical potential is in the lowest
5 spin-split Landau levels – an example is shown in Fig.
6 (a). In both cases, at higher chemical potential, the
vortex structure is far more diverse. Of particular note
is the vortex structure at topological points in Figs. 4
(b) and (c), a typical example of which is shown in Fig.
6 (c). Here the vortices form a honeycomb lattice, al-
though not all the bonds are identical. Other interesting

structures appear in the non-topological regions in the
strong pairing regime at chemical potential above the
first few Landau levels. We show these in Fig. 11 of
the Appendix. Finally, when a single-particle potential
is included, the vortices are distorted at all chemical po-
tentials. In particular, vortices are drawn to locations
where the single-particle potential is high. The vortices
form dimer pairs, or combine to form giant vortices, con-
sisting of two Abrikosov vortices. Topological points in
Figs. 4 (e) and (f) typically host the latter configuration
(Fig. 6 (b)).
As revealed by the finite gap when the system is in the

non-Abelian topological phase, we do not find Majorana
modes with zero energy in the bulk of the system. In-
stead the Majorana modes, which are thought to reside
at vortex cores, hybridize with their neighbors and open
a gap [9, 10, 12, 13, 53, 91–100]. Nevertheless, because
of the non-trivial Chern number and the bulk-boundary
correspondence, we expect there to be chiral Majorana
edge modes at the boundaries of samples in this phase.

IV. DISCUSSION

In this work, we investigated the emergence of TSC
from topologically flat bands broadened by a superlattice
potential. The robust SOC and the superlattice poten-
tial are essential components of our model. We comment
on the relationship of our findings to potential materi-
als platforms. A variety of systems have been discovered
to exhibit superconductivity with strong SOC, includ-
ing iron-based superconductors, interfaces of insulating
oxides, and transition metal dichalcogenides [101, 102].
More detailed, material-specific calculations would be re-
quired in the future to establish any specific candidate
material, which is beyond the scope of this paper.
Our calculations have focused on a specific region of

parameter space, which in our model contains a large
number of parameters, and we would like to clarify this
region to better explain the relationship between our re-
sults and any class of candidate materials. In the fol-
lowing discussion, we will express all energies in our cal-
culations in units of the hopping amplitude t, which we
have set to unity in our model. The cyclotron energy in
our calculations is approximately 0.2. We have selected
SOC strengths of 0.1 in the phase diagrams shown in fig-
ures 3(e) and 3(f) of the main article. Our calculations
are therefore directly applicable when the SOC strength
is less than but close to the cyclotron energy. The cy-
clotron energy in real materials is determined by the ef-
fective mass m∗, as well as the strength of the applied
magnetic field B through the formula

ℏωc = ℏ
eB

m∗

As an example, the cyclotron energy for bare electrons in
a magnetic field of 20 T is estimated to be about 2 meV.
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Based on this information, we will now discuss some ma-
terials platforms individually. This is by no means in-
tended to be an exhaustive list. A summary of relevant
parameters for the following systems is provided in Table
I

Iron-based superconductors. The semimetallic iron-
pnictides and iron-chalcogenides are a group of high-
temperature superconductors that have generated sig-
nificant enthusiasm in the condensed matter community
since their discovery in 2008. These discoveries have ush-
ered in a remarkable era of superconductivity known as
the “iron age.” The Rashba SOC in iron-based supercon-
ductors is found to be in the range 5 − 25 meV [103].
In addition, the pairing gap is found to be in this same
range [103]. However, due to the strong interactions in
these materials, the effective mass may be as high as 20
times the bare electron mass [104, 117]. In order to model
these materials, it may be preferable to take the SOC to
be significantly greater than the cyclotron energy. It is
anticipated that increasing the SOC will not diminish
TSC, and we have performed additional calculations to
support this claim. We show results for Rashba SOC
strength of VSO = 1.0 (5 times the cyclotron energy) in
Fig. 7.

Oxide interfaces. Superconductivity has been reported
in the electron gas formed at the interfaces of LaAlO3 and
SrTiO3 [118]. In addition, tunable Rashba SOC has been
explored in this system with Rashba SOC strength in the
range 1−10 meV [105, 106]. The superconducting gap is
found to be approximately 40 µeV [107] and the effective
mass is m∗ = 3me where me is the electron mass [105,
108]. Given these parameters, we are optimistic about
the applicability of our results to this material platform.

Transition metal dichalcogenides. Superconductivity
has been reported in layers of transition metal dichalco-
genide (TMD) materials, resulting in 2D superconduc-
tivity. Examples of materials in this class include MoS2,
MoSe2, WS2, WSe2, and NbSe2. Layers of these mate-
rials break inversion symmetry within the plane, giving
rise to Ising, instead of Rashba, SOC. Ising SOC tends
to lock the electron spins perpendicular to the plane in a
momentum-dependent way. In TMDs, this manifests as
an effective Zeeman field with opposite signs at the K and
K’ points of the hexagonal Brillouin zone. Because the
SOC is not Rashba, our calculations are not readily appli-
cable to these systems. However, Ising superconductivity
still gives rise to a momentum-dependent spin-splitting
[119], so it may be worthwhile in the future to investigate
the possibility of TSC using Ising SOC instead of Rashba
SOC, as we did in our calculations. We point out that
a crossover from Ising to Rashba SOC has also been re-
cently observed in NbSe2/Bi2Se3 heterostructures [120].
We hope that our study will stimulate inquiry along this
direction.

In discussing the inclusion of a superlattice potential,
the lattice period of the superlattice is an additional rel-
evant parameter. Our calculations have focused on the
case where the superlattice period is comparable to the

magnetic length ℓB . The magnetic length is determined
by the strength of the applied magnetic field B through
the formula

ℓB =

√
ℏ
eB

≈ 25√
B in Tesla

nm

For reference, ℓB ≈ 6 nm for a magnetic field B = 20
T. Below, we list systems where a superlattice potential
may be achievable.
Gating periodic patterned dielectric substrates. The en-

gineering of superlattices has been reported using pat-
terned dielectrics, with strengths up to 50 meV and lat-
tice periods as small as 35 nm [121–125]. In order to
make direct connection with our results, let us suppose
that the magnetic field B ∼ 20 T, so that ℓB ≈ 6 nm.
Thus, for our results to directly apply, it may be desirable
to reduce the lattice period of the superlattice relative to
what has been currently achieved. On physical grounds,
however, we expect that TSC is readily achievable with
large superlattice periods. This is because the superlat-
tice potential brings about TSC through a distortion of
the vortex lattice. This distortion is clearly possible with
large superlattice periods. Therefore, we see gating peri-
odic patterned dielectric substrates as a very promising
route to inducing TSC using a superlattice potential.
Moiré patterns. A moiré pattern can be formed by

stacking layers of materials with a relative twist, in which
case the lattice vectors of the two layers are relatively ro-
tated by an angle θ, or by stacking materials with slightly
mismatched lattice periodicities. The moiré pattern leads
to a periodic potential with a periodicity determined by
θ with a strength on the order of hundreds of meV [126]
in bilayer MoS2. Exciting recent progress has been re-
ported in the fabrication of Van der Waals superconduct-
ing heterostructures wherein moiré patterns have been
achieved [127]. Since materials from this class typically
host Ising spin-orbit coupling, instead of Rashba spin-
orbit coupling, further calculations would be required to
make a firm connection between our proposal and these
materials. Finally, we comment on the connection of the
parameters of our “effective” model to an experimental
system. Our phase diagrams shows TSC at rather large
U ∼ 3, an order of magnitude larger than the cyclotron
energy. However, the gap ∆ for these values of U is
roughly of the same order of magnitude as the cyclotron
energy. In experiments, it is the pairing gap ∆ that is
typically measured rather than the coupling strength U
between electrons. Therefore, in order to relate our find-
ings to experimental data, the parameter U in our model
should be fixed by matching the gap ∆ to its experimen-
tal value. We have listed some values of ∆ for systems
that we discussed in the previous paragraphs in Table I.

Previously, the helical phase of superconductors was
discussed in the context of non-centrosymmetric super-
conductors using Ginzburg-Landau theory [86–88, 128].
Certain terms, known as Lifshitz invariants, can be elim-
inated from the free energy by performing a helical (or
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Material VSO (meV) ∆ (meV) m∗ (me) ℏωc (meV)

Iron-based thin films 5-25 [103] 5-25 [103, 104] 10 [104] .2
LaAlO3/SrTiO3 interfaces 1-10 [105, 106] 0.04 [107] 3 [105, 108] .7

TMDs [109–116] 50-150 (Ising) ∼ 1 ∼ 0.4 ∼ 6

TABLE I. Estimates of key parameters in some select classes of spin-orbit coupled superconductors. VSO is the SOC strength,
determined by the spin-splitting at the Fermi level. ∆ denotes the superconducting gap. m∗ is the effective electron mass,
expressed in terms of the bare electron mass me. ℏωc is the cyclotron energy at a magnetic field of 20 T, computed using the
material’s effective electron mass.

in our language, boost) transformation when inversion
symmetry is broken. This is a similar procedure to the
one we employ, albeit in a microscopic theory. However,
even in the absence of Rashba SOC when inversion sym-
metry is preserved, helical transformations are necessary
in our model because of the presence of a magnetic field
and superlattice potential.

This work has demonstrated the dramatic influence on
the vortex lattice structure by a superlattice potential, in
the case of ℓB/aM ≈ 1, where ℓB is the magnetic length
and aM is the superlattice vector. Understanding the vor-
tex lattice structure for other values of ℓB/aM, particu-
larly irrational values, and the corresponding topological
properties in this model, will be left for future work.

Finally, we would like to discuss some issues related
to realizing intrinsic quantum Hall superconductivity. It
has been over 50 years since quantum Hall superconduc-
tivity was first explored [129], however, due to the re-
quirement of low densities or very high magnetic fields,
it has not been achieved in experiments. In addition,
theoretical studies on intrinsic quantum Hall supercon-
ductivity, including this one, have relied on mean-field
theories which do not allow for all possible instabilities.
In a real material, the interaction will be a mixture of
attractive and repulsive, and this may lead to competi-
tion between other correlated phases including, but not
limited to, FQHE, stripe phases, charge density waves,
and spin density waves. The question of whether other
strongly correlated phases may arise, particularly in the
case of flat LLs, is an interesting question beyond mean-
field theory, which we leave for the future.
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Appendix A DERIVATION OF THE
EXPRESSION FOR THE NET CURRENT

In the main text, we pointed out that the condition
that the energy be minimized with respect to Q implies
that the net current vanishes, since the net current is
Jnet =

δEMF

δQ . In this appendix, we derive this expression

for the net current.
The current density across a link starting at position

ri along the µ-direction (µ = x, y) is

Jµ(ri) = − ∂HMF

∂Aµ(ri)
(27)

where Aµ(ri) is the hopping phase across the same link
and HMF is the mean-field Hamiltonian. The net current
in the µ-direction is the sum over all of the sites of Jµ(ri)

(Jnet)µ = −
∑

i

∂HMF

∂Aµ(ri)
(28)

As we have pointed out in the main text, shifting Q
is equivalent to shifting all of the hopping phases by a
position-independent amount A(rj) → A(rj) −Q. Un-
der a small shift δQ, the change in HMF, to first order in
δQ, is given by

HMF

(
{Aµ(ri)− δQµ}

)

=HMF

(
{Aµ(ri)}

)
−
∑

µ=x,y

δQµ

∑

i

∂HMF

∂Aµ(ri)

=HMF

(
{Aµ(ri)}

)
+ δQ · Jnet

(29)

Therefore

(Jnet)µ =
δHMF

δQµ
(30)

Taking the groundstate expectation value (and using the
Feynman-Hellmann theorem), we find Jnet =

δEMF

δQ .

Appendix B BOOSTS

Non-relativistic physics is invariant under Galilean
boosts, whereas relativistic physics is invariant under
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FIG. 7. Topological superconductivity still appears (denoted
with red stars) when the spin-orbit coupling strength is high.
In this figure, the spin-orbit coupling strength is VSO = 1.0,
the superlattice potential strength is Vsp = 0.2 and the inter-
action strength U = 3.98. The Zeeman energy is zero.

Lorentz boosts. In classical mechanics, the transforma-
tion rule for a Galilean boost by velocity v is

x̄ = x+ vt

t̄ = t
(31)

This increases the velocity of every particle in the system
by v.

Continuing to the quantum mechanical case, suppose
we have N identical fermions with mass m and momenta
k1 ̸= k2 ̸= · · · ≠ kN . We will neglect spin for the mo-
ment since Galilean boosts do not affect the spins of the
particles. The action of a Galilean boost is given by an
operator UB(v) which acts on a first-quantized momen-
tum eigenstate as follows

UB(v)|k1, . . . ,kN ⟩ = |k1 +mv, . . . ,kN +mv⟩ (32)

To deduce the operator form of UB(v), we determine its
action on position space eigenkets. In fact:

UB(v)|x1, . . . ,xN ⟩

=
1

LN

∑

{k}
exp

(
− i
∑

i

ki · xi

)
UB(v)|k1, . . . ,kN ⟩

=
1

LN

∑

{k}
exp

(
− i
∑

i

ki · xi

)
|k1 +mv, . . . ,kN +mv⟩

=
1

LN

∑

{k}
exp

(
− i
∑

i

(ki −mv) · xi

)
|k1, . . . ,kN ⟩

=exp
(
imv ·

∑

i

xi

)
|x1, . . . ,xN ⟩,

(33)

so we see that the position kets are eigenstates of the
boost operator. This also allows us to deduce that the
operator form of UB(v) is

UB(v) = exp
(
imv ·X

)
= exp

(
iMv ·RCM

)
(34)

where X =
∑

i xi is the sum of the positions of all the
particles, M =

∑
imi = Nm is the total mass of the

system, and RCM is the center of mass coordinate of the
system. We see that UB(v) is unitary. Using the form

UB(v) = exp
(
imv ·X

)
, we can write UB(v) in second

quantized representation as

UB(v) = exp

(
imv ·

∫
d2r rc†rcr

)
(35)

For notational consistency with the main text, we will
set mv = Q and define UB(v) ≡ UB(Q). Now consider
the action of UB(Q) on the field operators. We have (we
may use the Baker-Campbell-Hausdorff formula to show
this)

c̄r := U†
B(Q)crUB(Q) = cre

iQ·r (36)

where barred operators are operators for the “boosted
frame”. As an example, let us apply this boost to a
system of free spinless fermions described by the Hamil-
tonian

H =
∑

k

(
ϵ(k)− µ

)
c†kck (37)

where ck = 1
L

∑
r e

−ik·rcr. Note that by Eq. (36), we
have

U†
B(Q)ckUB(Q) = c̄k = ck−Q (38)

Suppose we view the system in Eq. (37) in a frame
boosted by Q, then the Hamiltonian H̄ in this frame
is

H̄ = U†
B(Q)HUB(Q) =

∑

k

(
ϵ(k)− µ

)
c̄†kc̄k

=
∑

k

(
ϵ(k)− µ

)
c†k−Qck−Q

=
∑

k

(
ϵ(k +Q)− µ

)
c†kck

(39)

It will be useful to see how the ground states in the lab
and boosted frames are related. In the lab frame, the
ground state is

|Φ0⟩ =
( ∏

k s.t.
ϵ(k)<µ

c†k

)
|0⟩ (40)

whereas in the boosted frame

|Φ̄0⟩ =
( ∏

k s.t.
ϵ(k)<µ

c̄†k

)
|0⟩ =

( ∏

k s.t.
ϵ(k)<µ

c†k−Q

)
|0⟩

=

( ∏

k s.t.
ϵ(k+Q)<µ

c†k

)
|0⟩

(41)
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FIG. 8. The total energy, measured relative to the normal
state (i.e. the condensation energy), as a function of the boost
vector Q. The hopping amplitude in the square lattice model
has been set to unity. The minima occur when the Fermi
surface is situated such that k+ + k− = G where k± are
momenta on opposite sides of the Fermi surface and G is a
reciprocal lattice vector. See Fig. 9.

These are related as

|Φ0⟩ = UB(Q)|Φ̄0⟩ (42)

This relation holds generally and can be used to find the
groundstate in the lab frame once the ground state in the
boosted frame is known.

As a simple example to elucidate the procedure in the
main text, we may take a lattice system, in zero magnetic
field, described by the Hamiltonian

H =
∑

k,σ

(
ϵ(k)− µ

)
c†kσckσ − U

∑

j

c†j,↑c
†
j,↓cj,↓cj,↑ (43)

where ϵ(k) = −2
(
cos kx + cos ky

)
. We perform a mean-

field decoupling with a helical ansatz, as discussed in
the main article, to determine the self-consistent super-
conducting groundstate. The condensation energies are
shown in Fig. 8, which is used to determined the ground
state, and the accompanying Bogoliubov-de Gennes spec-
tra for several boost vectorsQ are shown in Fig. 9, where
it can be seen how it changes for different choices of Q.

Appendix C ALGORITHM

The following is an algorithm to solve the mean-field
problem self-consistently. Its inputs are the dimensions
of the MUC, which contains Φ = nΦ0 flux where n ∈ Z
(Φ0 = h/e is the flux quantum), the interaction strength
U , the chemical potential µ, the spin-orbit coupling
strength VSO, the superlattice potential strength Vsp, and

the initial guess for the s-wave pairing potential ∆
(0)
j . Its

outputs are the Gor’kov Green’s function G(k) and the
mean-field groundstate energy EMF of the system.

FIG. 9. The Bogoliubov-de Gennes spectrum for boost vec-
tors (a) at the minimum energy point Q = 0, where it can
be seen that a robust pairing gap opens; (b) at the minimum
energy point Q = (π, π), where it can be seen that a robust
pairing gap also opens; and (c) slightly away from Q = 0.
In general, away from the minimum energy Q, one generally
finds small indirect gaps, or indirect gap closings in the spec-
trum.

Algorithm 1 Iterative algorithm for solving the mean-
field equations.

Require: M , N , n, U , µ, VSO, Vsp, ∆
(0)
j

Ensure: ∆j , G(k) ∀k ∈ MBZ, EMF

Build the diagonal blocks of HBdG(k) using h(k), Σ(k)
∀k ∈ HBZ;
δ∆ =∞;
l = 0
while δ∆ > τ do ▷ The tolerance for differences in ∆ is
τ = 10−5.

Update/build ∆↓↑ using ∆
(l)
j ;

for k ∈ HBZ do
Update off-diagonal blocks of HBdG(k) using ∆↓↑;
Compute G(k) by diagonalization of HBdG(k), using

(17) and particle-hole symmetry for G(−k);
Do a running sum to compute ∆

(l+1)
j ;

end for
Compute pairing potential difference δ∆ =

maxj

(∣∣∆(l+1)
j −∆

(l)
j

∣∣
)
;

l← l + 1;
end while
Compute EMF

Appendix D HOW TO DETERMINE AN
OPTIMUM BOOST VECTOR ANALYTICALLY

For a particular gauge, the sum of the hopping phases
along edges linking the minima of the superlattice po-
tential determines an optimum boost vector (one that
results in the lowest mean-field energy). See Fig. 10.
Such a boost leads to zero accumulated phase for parti-
cles with k = 0 traversing the unit cell of the potential
in both the x and y directions, thereby respecting the C4

symmetry of the superlattice potential and resulting in
the minimum energy.
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FIG. 10. The unit cell of the superlattice potential used in the main text. The color plot underneath the lattice shows the
contours of the potential with the maximum denoted in bright yellow and the minimum in deep blue. For a given choice of
gauge A, an optimum boost vector (one that leads to the lowest mean-field energy) is given by the sum of the hopping phases
along edges connecting the minima of the superlattice potential.

Appendix E THE REASON THERE IS NO TSC
WHEN VSO = 0

We do not find topological superconductivity without
spin-orbit coupling. This follows from the spin degen-

eracy in the spectrum of our BdG Hamiltonian in the
absence of spin-orbit coupling. Without spin-orbit cou-
pling, the mean field Hamiltonian reads

HMF = −
∑

j,δ,σ

(
eiAδ(rj)c†j+δ,σcj,σ+e

−iAδ(rj)c†j,σcj+δ,σ

)
−
∑

j,σ

(
µ−V (rj)

)
c†j,σcjσ−

∑

j

(
∆jc

†
j,↑c

†
j,↓+∆∗

jcj,↓cj,↑−
|∆j |2
U

)

(44)

Consider the spin-flip operator F̂ defined as F̂ cj,σF̂
† = cj,−σ. Clearly the hopping and chemical potential terms are

invariant under the operation of F . The action of F on the pairing term is

F̂H∆F̂
† = −

∑

j

(
∆jc

†
j,↓c

†
j,↑ +∆∗

jcj,↑cj,↓ −
|∆j |2
U

)
= −

∑

j

(
−∆jc

†
j,↑c

†
j,↓ −∆∗

jcj,↓cj,↑ −
|∆j |2
U

)
(45)

So H∆ is, strictly speaking, not invariant under F̂ . It
is, however, invariant up to a global gauge transfor-
mation which renders ∆j → −∆j . Thus the mean-

field Hamiltonian has a symmetry Ŝ = e−iN̂π/2F̂ where

N̂ =
∑

j,σ c
†
j,σcjσ. Under this symmetry, the eigenvectors

of the BdG Hamiltonian generally transform as



u↑(k)
u↓(k)
v↑(k)
v↓(k)


→ i



u↓(k)
u↑(k)
−v↓(k)
−v↑(k)


 (46)

A spin-up state has the form
(
u(k) 0 0 v(k)

)T
and so the corresponding spin-down state is

i
(
0 u(k) −v(k) 0

)T
. Constructing the Berry connec-

tion matrix out of these two bands, we see that

A↓↓
µ (k) = i

[
u∗(k)∂µu(k) + v∗(k)∂µv(k)

]
(47)

and we find the same result for A↑↑
µ (k). The Berry curva-

tures for these bands are thus the same F ↑↑
µν (k) = F ↓↓

µν (k).
The Chern number for these bands is given by
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FIG. 11. Additional unexpected vortex lattice structures (above) from the solutions to the self-consistent mean field equations
(in the main text) with their current textures (below). (a) Dimer vortex configuration at Vsp = 0.2, VSO = 0.1, U = 3.48,
µ = −3.66. Dimer configurations of vortices can form due to the influence of the superlattice potential. We find that the
appearance of dimerized vortices signals the exit from the non-Abelian topological phase. (b-c) Unexpected vortex configurations
may appear even in the absence of a superlattice potential particularly at higher Landau level filling (or chemical potential).
Shown here are (b) a stabilized square lattice configuration at Vsp = 0, VSO = 0.1, U = 3.2, µ = −2.92 and (c) a “double
dimer” at Vsp = 0, VSO = 0.1, U = 3.54, µ = −3.22.

C =
1

2π

∫

MBZ

d2k
[
F ↑↑
xy (k) + F ↓↓

xy (k)
]

= 2
1

2π

∫

MBZ

d2k
[
F ↑↑
xy (k)

]
∈ 2Z

(48)

Therefore the sum of the Chern numbers from all the
filled bands is an even integer, thus excluding the non-
Abelian topological phase.

Appendix F ROLE OF ZEEMAN FIELD

We find that upon including the Zeeman effect into
the calculation, superconductivity is suppressed due to
the Pauli limit

EP
Z ≈ |∆| (49)

where EP
Z is the Pauli limited Zeeman energy and ∆ is

the pairing potential. However, TSC survives. This is
shown in Fig. 12 and described in detail in the caption.

Appendix G EMERGENCE OF p-WAVE
SUPERCONDUCTIVITY

In this section, We comment on the emergence of
p-wave component of superconductivity in our model,
which can arise from s-wave superconductivity and
Rashba spin-orbit coupling due to singlet-triplet mixing,
as inversion symmetry is broken by Rashba spin-orbit
coupling [101]. We explicitly show this by calculating
p-wave components of the order parameter.

Let us define

Ψjσδ = ⟨cj,σcj+δ,σ⟩ (50)

The expectation values can be determined from the
Gor’kov Green’s function (see the SM [78]) It is conve-
nient to transform these variables to the px+ ipy compo-
nent Ψjσ+ and px − ipy component Ψjσ−.
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FIG. 12. The pairing potential is reduced based on the Pauli
limit. When the value of EZ reaches 0.2, all the points with
pairing potential less than or equal to approximately 0.2 in
the absence of Zeeman field (µ ≈ −4 to µ ≈ −3.3, highlighted
with a blue rectangle) are significantly reduced. However,
we still find topological superconductivity (denoted with red
stars). Here we have set the attractive interaction U = 3.38,
the superlattice potential strength Vsp = 0.2, the spin-orbit
coupling strength VSO = 0.1.

FIG. 13. Top: The blue dots and red stars are the maxi-
mum absolute value of the pairing potential. Blue dots cor-
respond to systems with even Chern number and red stars
correspond to systems with odd Chern number. The green
triangles are 10Umax (|Ψj↓+|) and the orange triangles are
10Umax (|Ψj↓+|). Middle: the BdG spectral gap (δE). Bot-
tom: the Chern number (C). The parameters are U = 3.34,
Vsp = 0.2, and VSO = 0.1 (the same as in Fig. 6 of the main
article).

Ψjσ+ =
1

2
[Ψjσx̂ − iΨjσŷ]

Ψjσ− =
1

2
[Ψjσx̂ + iΨjσŷ]

(51)

Out of the components Ψj↑+, Ψj↓+, Ψj↑−, and Ψj↓−,
we find that Ψj↑− and Ψj↓+ are dominantly the largest.
In Fig. 13, we show these components, together with
the s-wave component, for parameters U = 3.34, Vsp =
0.2, and VSO = 0.1 (the same as in Fig. 6 of the
main article). The green curve in the upper panel is
10Umax (|Ψj↓+|) and the orange curve in the upper panel
is 10Umax (|Ψj↓+|). The curve with blue dots and red
stars is max (|∆j |) = Umax (|⟨cj,↓cj,↑⟩|). It is thus clear
that the s-wave component is much larger than the p-
wave component by roughly a factor of 60. We also see
that the emergence of a p-wave component accompanies
the appearance of superconductivity, not just topological
superconductivity. This is to be expected because super-
conductors with broken parity and time-reversal symme-
tries typically exhibit singlet-triplet mixing.
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T. Kim, M. Hoesch, et al., Nature Physics 12, 311
(2016).

[104] S. Haindl, Iron-Based Superconducting Thin Films
(Springer, 2021).

[105] A. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Can-
cellieri, and J.-M. Triscone, Physical Review Letters
104, 126803 (2010).

[106] K. Shanavas and S. Satpathy, Physical Review Letters
112, 086802 (2014).

[107] G. Singh, G. Venditti, G. Saiz, G. Herranz, F. Sánchez,
A. Jouan, C. Feuillet-Palma, J. Lesueur, M. Grilli,
S. Caprara, and N. Bergeal, Phys. Rev. B 105, 064512
(2022).

[108] L. Mattheiss, Physical Review B 6, 4740 (1972).
[109] X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan,
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The Supplementary Materials section contains the following. Section I contains details on particle-hole symmetry
and how to take full advantage of it when solving the mean-field problem. In Section II, we construct the mean-
field groundstate while utilizing particle-hole symmetry. In Section III, we construct the Gor’kov Green’s function
and write correlation functions, including those relevant for the self-consistency equations. In Section IV we derive
an expression for the current operator, and in Section V, the spin-orbit coupling Hamiltonian. Section VI closely
examines a case where the spectral gap closes and re-opens across a Chern number-changing transitions (topological
phase transition).

I. PARTICLE-HOLE SYMMETRY

The BdG Hamiltonian has a particle-hole symmetry. Define P = Kτx where τx is a Pauli matrix acting on the
particle and hole subspaces and K is complex conjugation. Then

P−1HBdG(k)P = −HBdG(−k) (1)

The implications of this symmetry for our problem are crucial, so it is worth unpacking them more carefully. Consider
the subspace of equal and opposite fixed momenta (k,−k), along with the BdG Hamiltonian matrices HBdG(k) and
HBdG(−k) at those momenta. Suppose that U(k) and U(−k) are unitary matrices which diagonalize each:

U†(k)HBdG(k)U(k) = diag
(
E1(k), . . . , E4MN (k)

)

U†(−k)HBdG(−k)U(−k) = diag
(
E1(−k), . . . , E4MN (−k)

) (2)

where the energies are listed in non-decreasing order E1(±k) ≤ · · · ≤ E4MN (±k) and MN is the number of sites in
the magnetic unit cell. Note that there are many unitary matrices which yield the energies in non-decreasing order if
some of the energies are degenerate. Using particle-hole symmetry, we have

PU†(k)P−1PHBdG(k)P−1PU(k)P−1

= Pdiag
(
E1(k), . . . , E4MN (k)

)
P−1

⇒
(
PU†(k)P−1

)
HBdG(−k)

(
PU(k)P−1

)

= diag
(
− E2MN+1(k), . . . ,−E4MN (k),

− E1(k), . . . ,−E2MN (k))
)

(3)

So PU(k)P−1 is a unitary matrix which diagonalizes HBdG(−k) but PU(k)P−1 ̸= U(−k) in general, since its action
on HBdG(−k) does not necessarily yield a diagonal matrix with non-decreasing elements. However, they can be related
to one another by a permutation matrix R which reorders the basis. By looking at (3), and keeping in mind that
E1(k), . . . , E4MN (k) is non-decreasing, we can see that

U(−k) = PU(k)P−1R (4)

where

R =

(
A2MN×2MN 0

0 A2MN×2MN

)
(5)

and AQ×Q is a Q × Q anti-diagonal matrix with unit entries. So if we know the eigenvectors of HBdG(k) (that is,
we diagonalize and find U(k)), we know the eigenvectors of HBdG(−k), since we simply can perform a particle hole
transformation on U(k). This means that we only need to diagonalize the Hamiltonian for half of the MBZ, say on
the domain HBZ = {(kx, ky)|kx ≥ 0, ky ≥ 0} ∪ {(kx, ky)|kx > 0, ky < 0}. Note that for a finite system where only a
discrete set of momenta are allowed, one should tune the boundary conditions such that if k is an allowed momentum,
then −k is also an allowed momentum. For L odd (see the definition of L in the main text just above Eq. 10), this
entails periodic boundary conditions, while for L even, anti-periodic boundary conditions. Furthermore, particle-hole
symmetry implies that we must have the following equality of sets

{
E1(−k), . . . , E4MN (−k)

}

=
{
− E2MN+1(k), . . . ,−E4MN (k),−E1(k),

. . . ,−E2MN (k)
}

(6)
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The left hand side of (6) is in non-decreasing order, by assumption – if we reorder the right hand side to be non-
decreasing, we must have that

Eq(−k) = −E4MN−q+1(k) q = 1, . . . , 4MN (7)

And, correspondingly, since PU(k)P−1R diagonalizes HBdG(−k) with the energies ordered non-decreasingly, we have

γ†q(−k) =
4MN∑

p=1

ψ†
p(−k)

(
PU(k)P−1R

)
pq

=

4MN∑

r,s,t=1

ψr(k)U∗
rs(k)(τx)stRtq

=
4MN∑

r,s=1

ψr(k)U∗
rs(k)δ4MN−s+1,q

=
4MN∑

r=1

ψr(k)U∗
r,4MN−q+1(k) = γ4MN−q+1(k)

(8)

where we have used that (τxR)sq = (A4MN×4MN )sq = δ4MN−s+1,q. Consequently, the creation operators at −k are
annihilation operators at k.

II. MEAN-FIELD GROUNDSTATE

Writing the mean-field Hamiltonian in terms of the BdG eigenoperators, we have

HMF =
1

2

∑

k

4MN∑

q=1

Eq(k)γ
†
q(k)γq(k) +

1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

=
1

2

∑

k∈HBZ

(
2MN∑

q=1

Eq(k)γ
†
q(k)γq(k) +

4MN∑

q=2MN+1

Eq(k)γ
†
q(k)γq(k) +

2MN∑

q=1

Eq(−k)γ†q(−k)γq(−k)

+

4MN∑

q=2MN+1

Eq(−k)γ†q(−k)γq(−k)

)
+

1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

=
∑

k∈HBZ

(
4MN∑

q=2MN+1

Eq(k)γ
†
q(k)γq(k) +

4MN∑

q=2MN+1

Eq(−k)γ†q(−k)γq(−k)− 1

2

4MN∑

q=2MN+1

Eq(k)−
1

2

4MN∑

q=2MN+1

Eq(−k)

)

+
1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

=
∑

k

(
4MN∑

q=2MN+1

Eq(k)γ
†
q(k)γq(k)−

1

2

4MN∑

q=2MN+1

Eq(k)

)
+

1

2

∑

k

Tr
[
h(k)

]
+
∑

j

|∆j |2
U

(9)

That is, only the operators γq(k) which correspond to the “top half” of the BdG spectrum appear in the Hamiltonian
and, consequently, we can work exclusively with those to construct the mean-field groundstate. The others can be
obtained by conjugation using (8), if needed.

The mean-field groundstate is defined as the eigenstate of HMF with minimum energy. From (9), we see that such
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a state can be constructed by filling the Dirac sea of BdG quasiparticles

|Γ⟩ =
(∏

k

4MN∏

q s.t.
Eq(k)<0

γ†q(k)

)
|0⟩

=
∏

k

(
4MN∏

q=2MN+1
s.t.

Eq(k)<0

γ†q(k)
4MN∏

q=2MN+1
s.t.

Eq(−k)>0

γq(−k)

)
|0⟩

=
∏

k

(
4MN∏

q=2MN+1
s.t.

Eq(k)<0

γ†q(k)
4MN∏

q=2MN+1
s.t.

Eq(k)>0

γq(k)

)
|0⟩,

(10)

where we have used the particle-hole redundancy of the γ’s to write the groundstate in terms of the “top half” of the
BdG quasiparticle operators. If there is an Eq(k) = 0, then there is a groundstate degeneracy and we may use the
corresponding γ and γ† acting on the expression above to construct the groundstate subspace.

Alternatively, if we wish to work only in the HBZ, we may write (10) as

|Γ⟩ =
∏

k∈HBZ

(
4MN∏

q=1
s.t.

Eq(k)<0

γ†q(k)
4MN∏

q=1
s.t.

Eq(k)>0

γq(k)

)
|0⟩ (11)

III. GOR’KOV GREEN’S FUNCTION

We define the Gor’kov Green’s function at momentum k as

Gpq(k) = ⟨ψ†
p(k)ψq(k)⟩ =

4MN∑

m,n=1

U†
mp(k)⟨γ†m(k)γn(k)⟩Uqn(k)

=
4MN∑

m=1

U†
mp(k)Uqm(k)f(βEm(k))

=

(
U(k)F

(
E(k)

)
U†(k)

)T

pq

(12)

where F
(
E(k)

)
mn

= f(βEm(k))δmn, the expectation value is with respect to |Γ⟩ and f(βE) = 1
exp(βE)+1 is the

Fermi-Dirac distribution function. The indices p and q run over both spin and particle-hole labels. We have written
ψ†
p(k) =

∑
m γ†m(k)U†

mp(k) and ψq(k) =
∑

n γn(k)Uqn(k)
The matrix Gpq(k) contains all the correlation functions of interest:

G(k) =




⟨c†↑(k)c↑(k)⟩ ⟨c†↑(k)c↓(k)⟩ ⟨c†↑(k)c
†
↑(−k)⟩ ⟨c†↑(k)c

†
↓(−k)⟩

⟨c†↓(k)c↑(k)⟩ ⟨c†↓(k)c↓(k)⟩ ⟨c†↓(k)c
†
↑(−k)⟩ ⟨c†↓(k)c

†
↓(−k)⟩

⟨c↑(−k)c↑(k)⟩ ⟨c↑(−k)c↓(k)⟩ ⟨c↑(−k)c†↑(−k)⟩ ⟨c↑(−k)c†↓(−k)⟩
⟨c↓(−k)c↑(k)⟩ ⟨c↓(−k)c↓(k)⟩ ⟨c↓(−k)c†↑(−k)⟩ ⟨c↓(−k)c†↓(−k)⟩


 (13)

The correlation function which is relevant for the self-consistency equation is

∆j = U⟨cj,↓cj,↑⟩ =
U

L2

∑

k,k′

ei(k+k′)·Rj ⟨cj̃,↓(k′)cj̃,↑(k)⟩︸ ︷︷ ︸
δk′,−kGj̃+3MN,j̃(k)

=
U

L2

∑

k

Gj̃+3MN,j̃(k) (14)
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It may also be useful to examine other angular momentum components of the order parameter, for example p-wave.
This is obtained in a similar fashion as above

⟨cj,↑cj+δ,↑⟩ =
1

L2

∑

k,k′

ei(k·Rj+k′·Rj+δ) ⟨cj̃,↑(k′)cj̃+δ,↑(k)⟩︸ ︷︷ ︸
δk′,−kGj̃+2MN,j̃+δ(k)

=
1

L2

∑

k

eik·(Rj−Rj+δ)Gj̃+2MN,j̃+δ(k) (15)

IV. CURRENT OPERATOR

We give a derivation of the current operator by varying the Hamiltonian with respect to the hopping phases. To
motivate this procedure, consider the Hamiltonian of N interacting particles

H =
1

2m

N∑

i=1

(pi − qA(ri))
2 + V (r1, . . . , rN )

⇒ − δH
δ
(
qA(r)

)

=
1

m

N∑

i=1

δ(ri − r)
(
pi − qA(r)

)
= J(r),

(16)

which is the velocity flow operator. We then have

∫
dDr J(r) =

1

m

N∑

i=1

(pi − qA(ri)), (17)

which is evidently the net particle current of the system.
We will use this result to find the current in our lattice model, where the hopping phases Aδ(ri) ↔ qA(r). From

the hopping part of the lattice Hamiltonian, we obtain the usual expression

− ∂H0

∂Aϵ(ri)
= i
∑

σ

(
eiAϵ(ri)c†i+ϵ,σci,σ − e−iAϵ(ri)c†i,σci+ϵ,σ

)
. (18)

The spin-orbit coupling also contributes, however:

− ∂HSO

∂Ax(ri)
= iVSO

(
eiAx(ri)

(
c†i+x̂,↓ci,↑ − c†i+x̂,↑ci,↓

)
− e−iAx(ri)

(
c†i,↑ci+x̂,↓ − c†i,↓ci+x̂,↑

))

− ∂HSO

∂Ay(ri)
= −VSO

(
eiAy(ri)

(
c†i+ŷ,↓ci,↑ + c†i+ŷ,↑ci,↓

)
+ e−iAy(ri)

(
c†i,↑ci+ŷ,↓ + c†i,↓ci+ŷ,↑

)) (19)

The interaction term and pairing terms contribute nothing to the current operator, since they do not involve the
hopping phases Aδ(ri). So the average current is

⟨Jx(ri)⟩ =i
∑

σ

(
eiAx(ri)⟨c†i+x̂,σci,σ⟩ − e−iAx(ri)⟨c†i,σci+x̂,σ⟩

)

+ iVSO

(
eiAx(ri)

(
⟨c†i+x̂,↓ci,↑⟩ − ⟨c†i+x̂,↑ci,↓⟩

)
− e−iAx(ri)

(
⟨c†i,↑ci+x̂,↓⟩ − ⟨c†i,↓ci+x̂,↑⟩

))

⟨Jy(ri)⟩ =i
∑

σ

(
eiAy(ri)⟨c†i+ŷ,σci,σ⟩ − e−iAy(ri)⟨c†i,σci+ŷ,σ⟩

)

− VSO

(
eiAy(ri)

(
⟨c†i+ŷ,↓ci,↑⟩+ ⟨c†i+ŷ,↑ci,↓⟩

)
+ e−iAy(ri)

(
⟨c†i,↑ci+ŷ,↓⟩+ ⟨c†i,↓ci+ŷ,↑⟩

))
.

(20)

The expectation values in the above expression are components of the Gor’kov Green’s function G(k) (cf. Eq. (13)):

⟨c†i+ϵ,σci,σ′⟩ = 1

L2

∑

k

eik·(Ri−Ri+ϵ)G̃i+ϵ,σ;i,σ′(k), (21)
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where

G̃i+ϵ,σ;i,σ′(k) =

(
Gi+ϵ;i(k) Gi+ϵ;i+MN (k)

Gi+ϵ+MN ;i(k) Gi+ϵ+MN ;i+MN (k).

)
(22)

It will also be useful to write the expression for the boosted current J̄(ri) = U†
B(Q)J(ri)UB(Q). We have

J̄x(ri) =i
∑

σ

(
eiAx(ri)−iQ·x̂c†i+x̂,σci,σ − e−iAx(ri)+iQ·x̂c†i,σci+x̂,σ

)

+ iVSO

(
eiAx(ri)−iQ·x̂(c†i+x̂,↓ci,↑ − c†i+x̂,↑ci,↓

)
− e−iAx(ri)+iQ·x̂(c†i,↑ci+x̂,↓ − c†i,↓ci+x̂,↑

))

J̄y(ri) =i
∑

σ

(
eiAy(ri)−iQ·ŷc†i+ŷ,σci,σ − e−iAy(ri)+iQ·ŷc†i,σci+ŷ,σ

)

− VSO

(
eiAy(ri)−iQ·ŷ(c†i+ŷ,↓ci,↑ + c†i+ŷ,↑ci,↓

)
+ e−iAy(ri)+iQ·ŷ(c†i,↑ci+ŷ,↓ + c†i,↓ci+ŷ,↑

))

(23)

V. DERIVATION OF THE LATTICE SPIN-ORBIT COUPLING HAMILTONIAN

In this section, we will derive the form of HSO used in this work, namely

HSO = VSO
∑

j

(
eiAx̂(rj)

(
c†j+x̂,↓cj,↑ − c†j+x̂,↑cj,↓

)

+ ieiAŷ(rj)
(
c†j+ŷ,↓cj,↑ + c†j+ŷ,↑cj,↓

))
+ h.c.

(24)

from the continuum form for Rashba spin-orbit coupling HR = αẑ · (σ×π). To do this, we will first derive it without
the presence of a gauge field A, then we will include the gauge field at the last step by inserting Peierls phases to
achieve a gauge invariant Hamiltonian. Thus we start with HR = αẑ · (σ × p) = α(σxpy − σypx). To go from the
continuum to the lattice, we make the replacement pα/ℏ → sin(pα/ℏ) (α = x, y). Note that we have set the lattice
constant equal to unity (and therefore pα and ℏ have the same units). The action of sin(pα/ℏ) on states in the position
basis is determined by

ℏ sin(pα/ℏ)|i, s⟩ =
ℏ
2i

(
|i+ α̂, s⟩ − |i− α̂, s⟩

)
(25)

were s =↑, ↓. Therefore

⟨i, s|HR|j, s′⟩ = ℏα⟨i, s|(σy sin(px/ℏ)− σx sin(py/ℏ)|j, s′⟩

=
ℏα
2

[
δs,−s′ζ(s)

(
δi+x̂,j − δi−x̂,j

)

+ iδs,−s′
(
δi+ŷ,j − δi−ŷ,j

)]
(26)

where −s′ is the opposite spin of s′, ζ(↑) = −1 and ζ(↓) = 1. Using these matrix elements, we construct the second
quantized Hamiltonian

HSO =
∑

s,s′

∑

i,j

(
⟨i, s|HR|j, s′⟩c†i,scj,s′

)

=
ℏα
2

∑

j

((
c†j+x̂,↓cj,↑ − c†j+x̂,↑cj,↓

)
+ i
(
c†j+ŷ,↓cj,↑ + c†j+ŷ,↑cj,↓

)
−
(
c†j,↓cj+x̂,↑ − c†j,↑cj+x̂,↓

)
− i
(
c†j,↓cj+ŷ,↑ + c†j,↑cj+ŷ,↓

))

(27)

Finally, to include the effect of the magnetic field, we multiply operators of the form c†
i+δ̂,s

ci,s′ by the phase factors

eiAδ̂(ri), which yields Eq. (24) with VSO = ℏα/2.
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VI. TOPOLOGICAL PHASE TRANSITIONS

As seen in Figs. 4 (c) of the main text, there is an abundance of topological phase transitions, i.e. points where
the Chern number changes. In this section, we give details about the nature of these transitions. We find two
categories of topological phase transitions: (1) gap-closing transitions, where the BdG spectral gap closes across
the transitions and (2) first-order transitions, where the BdG gap remains open, and the vortex lattice undergoes a
structural reconfiguration. Due to the first-order structural transition of the second type, the electron gap can be
jump from the positive value to negative value and thus we will not see the BdG spectral gap to close during the
transition, which has been discussed in the early literature [1]. In this section, we will examine an example of both
categories from the data in the right panel of Fig. 4 of the main manuscript. The green arrows in the figure indicate
points where a gap-closing transition occurs and the black arrows indicate points where a first-order transition occurs.
We discuss the transitions at these points in detail below.

1. Gap-Closing Transition

It is usually expected that a change in Chern number is associated with a closing of the spectral gap. Here we
discuss an example where the gap closes and reopens, and the Chern number changes. In Fig. S1, we show the BdG
spectrum for a topological phase transition from C = 4 to C = 5 upon a small change in the chemical potential from
µ = −3.7 to µ = −3.68 (other parameters are U = 3.34, VSO = 0.1, and Vsp = 0.2). The points are indicated with
green arrows in the right panel of Fig. 4 of the main text. Fig. S1(a) shows the spectrum at µ = −3.7. There is
clearly a spectral gap. As the chemical potential is increased, we find that the spectral gap closes at µ = −3.685. This
is shown in Fig. S1(b). Note that the Chern number is not well-defined at this point since the spectral gap is zero.
Finally, the gap reopens at µ = −3.8, and the Chern number changes from C = 4 to C = 5. Meanwhile, the vortex
lattice structure remains the same throughout this process. In both cases, the structure is a lattice of giant vortices.

2. First-Order Transition

We also find that the Chern number may change without a BdG spectral gap closing [1]. This happens when there
is a structural transition of the vortex lattice. We give an example of a giant vortex lattice at µ = −3.8 with C = 3
transitioning to a dimer vortex lattice at µ = −3.78 with C = 1. The corresponding points are indicated with black
arrows in the right panel of Fig. 4 in the main text and the vortex configurations are shown in Figs. S2(a) and
S2(b). Fig. S2(c) shows the condensation energy Ec as a function of µ for giant vortex lattice and dimer lattice
configurations. For −3.8 ≤ µ ≤ −3.797, only the giant vortex lattice is found to be a solution of the self-consistency
equations – the dimer vortex configuration is not a solution in this range. At µ = −3.796, however, the dimer vortex
configuration appears as a solution, and it has slightly lower energy than the giant vortex lattice. The giant vortex
lattice and the dimer vortex lattice configurations coexist as solutions in the range −3.796 ≤ µ ≤ −3.794, with the
dimer vortex lattice having lower energy. The coexistence of these configurations suggests that this is a first-order
phase transition. For −3.793 ≤ µ ≤ −3.8 the giant vortex lattice disappears as a solution to the self-consistency
equations, and only the dimer vortex lattice remains. Fig. S2(d) shows the BdG spectral gap across the transition,
which occurs at µ ≈ −3.796. The gap remains open across the transition, despite the Chern number changing.

[1] M. Ezawa, Y. Tanaka, and N. Nagaosa, Scientific reports 3, 1 (2013).
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FIG. S1. (a) The BdG spectrum (two panels, showing different perspectives) for U = 3.34, µ = −3.7, VSO = 0.1, and Vsp = 0.2.
The Chern number is C = 4. (b) The BdG spectrum (two panels, showing different perspectives) for µ = −3.685, with all other
parameters the same, at the gap-closing (and thus the phase transition) point. The Chern number is undefined here since the
BdG spectral gap is zero. (c) The BdG spectrum (two panels, showing different perspectives) for µ = −3.68, with all other
parameters the same. The Chern number has changed to C = 5.



9

FIG. S2. (a) The vortex lattice configuration is a lattice of giant vortices at µ = −3.8 with Chern number C = 3. (b) The
vortex lattice configuration is a lattice of vortex dimers at µ = −3.78 with Chern number C = 1. (c) As the chemical potential
is tuned from µ = −3.8 to µ = −3.78, there is a first-order transition from the giant vortex lattice with C = 3 to the dimer
vortex lattice with C = 1. The condensation energies Ec for the giant vortex lattice (blue points) and the dimer vortex lattice
(orange points) are shown in the range −3.8 ≤ µ ≤ −3.794. The lines are guides to the eye. The absence of orange points for
−3.8 ≤ µ ≤ −3.797 indicates that the dimer vortex lattice does not solve the self-consistency equations in that range. (d) The
BdG spectral gap in the range −3.8 ≤ µ ≤ −3.794.


