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The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approx-
imate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained
combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the
initial state, so it cannot be used for problems that are difficult to find a trivial feasible solution.
For simplicity, we call them as Non-Trivial-Feasible-Solution Problems (NTFSP). In this paper, we
take the Minimum Exact Cover (MEC) problem as an example, studying how to apply QAOA+
to NTFSP. As we know, exact covering (EC) is the feasible space of MEC problem, which has no
trivial solutions. To overcome the above problem, the EC problem is divided into two steps to solve.
First, disjoint sets are obtained, which is equivalent to solving independent sets. Second, on this
basis, the sets covering all elements (i.e., EC) are solved. In other words, we transform MEC into
a multi-objective constrained optimization problem, where feasible space consists of independent
sets that are easy to find. Finally, we also verify the feasibility of the algorithm from numerical
experiments. Our method provides a feasible way for applying QAOA+ to NTFSP, and is expected
to expand its application significantly.

I. INTRODUCTION

Quantum computers have computational advantages
over classical computers by exploiting quantum effects,
providing polynomial or even exponential speedups for
specific problems, such as integer factorization [1], un-
structured data search [2], linear regression [3, 4], dimen-
sion reduction [5–8], quantum error correction [9], matrix
computation [10–13], anomaly detection [14] and crypt-
analysis [15]. However, the current quantum hardware
devices only support a limited number of physical qubits
and limited gate fidelity, which makes the above quan-
tum algorithms unable to be implemented on near-term
devices.

Recently, Quantum Approximation Optimization Al-
gorithm (QAOA) [16] is a kind of hybrid quantum-
classical algorithm, which can be implemented on Noisy
Intermediate-Scale Quantum (NISQ) device [17]. QAOA
has successfully solved many combinatorial optimization
problems, such as max cut [18, 19], minimum vertex cover
[20], and correlation clustering [21].

In 2019, Hadfield et al. presented the Quantum Al-
ternating Operator Ansatz (QAOA+) [27] to solve the
combinatorial optimization problems. The algorithm
framework is similar to QAOA, and the circuit consists
of p alternating layers of the phase-separation operator
U(HP , γ) and the mixing operator U(HM , β) applied to
an initial state |x〉. Different from QAOA, U(HM , β) of
QAOA+ will preserve the feasible space (the space com-
posed of feasible solutions), and the initial state |x〉 is
required to be a trivial feasible state (the quantum state
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corresponding to a trivial feasible solution). The algo-
rithm can limit the state of the system to the feasible
space, resulting in zero probability of obtaining invalid
solutions, which implies a prominent advantage com-
pared to QAOA. QAOA+ has been applied to many com-
binatorial optimization problems, such as graph-coloring
[28], maximum independent set [29], max-k vertex cover
[30], graph matching [31], and lattice protein folding [32].
However, the application of QAOA+ has a prerequisite
that it needs to be easy to find a trivial feasible solution
of the problem (as the initial state). QAOA+ is not suit-
able for problems which is difficult to find a trivial feasi-
ble solution. For simplicity, we call the above problems
as Non-Trivial-Feasible-Solution Problems (NTFSP). In
this paper, we will take the MEC problem as an example,
trying to apply QAOA+ to NTFSP.

The Minimum Exact Cover (MEC) is a constrained
optimization problem, with wide applications in the tail-
assignment and vehicle routing. Some scholars solved
this problem using QAOA [33–35] and achieved good re-
sults. However, because Exact Cover (EC) has no trivial
solutions, there is no relevant research to solve MEC us-
ing QAOA+.

In this paper, taking MEC problem as an example,
we study how to apply QAOA+ to NTFSP. Specifically,
according to the describe of EC problem [35], it can be
found intuitively that elements of an EC are disjoint sets,
noted as S∗ = {Sl, · · · , Sk}, 2 ≤ l, k ≤ n (n is the num-
ber of qubits), and |Sl|+ · · ·+ |Sk| = m (m is the number
of all elements) can be obtained. Therefore, to create a
trivial feasible initial state |x〉, we divide the EC prob-
lem into two steps to solve. First, inspired by [26], we
construct a graph in which each set Si(i = 1, · · · , n) is
regarded as a vertex. And, there is an edge between two
vertices Si, Sj if and only if Si ∩Sj 6= ∅. It is found that
disjoint sets are solved, which is equivalent to obtaining
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the independent sets on the graph. Second, on this basis,
the sets covering all elements (i.e., EC) are solved, which
is equivalent to maximizing |Sl| + · · · + |Sk|. In other
words, we transform MEC into a multi-objective con-
strained optimization problem, where feasible solutions
are independent sets that are easy to find. To solve the
above multi-objective constrained optimization problem,
we adopt the linear weighted sum method to construct
target Hamiltonian. Finally, we perform numerical ex-
periments with 6, 8, and 10 qubits by using MindQuan-
tum [48]. The numerical results show that the solution
can be obtained with high probability, even though level
p of the algorithm is low. Besides, to optimize quantum
circuit, we remove single qubit rotating gates RZ . It is
found that p-level optimized circuit only needs p param-
eters, which can achieve an experimental effect similar to
original circuit with 2p parameters.

We apply QAOA+ to solve NTFSP, which provides
a meaningful reference for how to use QAOA+ to solve
such problems, and might greatly expand the application
of the algorithm.

This paper is organized as follows. In Sec. II, QAOA+
is reviewed. In Sec. III, we apply QAOA+ to solve MEC
problem. In Sec. IV, numerical results and analysis are
given. Finally, the summary and prospects are given in
Sec. V.

II. REVIEW OF QAOA+

The optimization problem (F, f) is considered, where
F is the feasible set and f : F → R is the objective func-
tion to be optimized. Let F be the Hilbert space of di-
mension |F |, whose standard basis is {|x〉 : x ∈ F}. As a
kind of hybrid quantum-classical algorithm, QAOA+ [27]
is often used to solve combinatorial optimization prob-
lems. The specific process of QAOA+ is as follows.

First, we should be able to create an initial state
|x〉, x ∈ F which is a trivial feasible solution, or the uni-
form superposition state of trivial feasible solutions. Sec-
ond, the phase-separation operator U(HP , γ) = e−iγHP

which depends on the objective function f , and the mix-
ing operator U(HM , β) = e−iβHM which depends on F
and its structure are applied alternately to |x〉, where
γ and β are real parameters, and HM and HP are the
mixing Hamiltonian and the target Hamiltonian, respec-
tively. It worth noting that U(HM , β) needs to meet
two conditions: 1) preserve the feasible subspace; 2) pro-
vide transitions between all pairs of feasible spaces, see
Ref.[27] for details.

The alternating sequence continues for a total of
p times with different variational parameters −→γ =

(γ1, γ2, · · · , γp) and
−→
β = (β1, β2, · · · , βp), where γi ∈

[0, 2π], βi ∈ [0, π], such that the final variational state
becomes

|ψp(−→γ ,
−→
β )〉 = U(HM , βp)U(HP , γp) · · ·U(HP , γ1)|x〉.

(1)

The variational parameters are optimized on classical
computers. The structure of the QAOA+ is shown in
Fig. 1. The objective of the classical optimizer is to find

the optimal parameters (
−→
γ∗,
−→
β∗), which are obtained by

maximizing the expected value of the target Hamiltonian

(
−→
γ∗,
−→
β∗) = arg max

−→γ ,
−→
β

Fp(
−→γ ,
−→
β ), (2)

where Fp(
−→γ ,
−→
β ) = 〈ψp(−→γ ,

−→
β )|HP |ψp(−→γ ,

−→
β )〉.

We define the success probability as the probability of
finding the optimal solution

Psuccess = |〈xsol|ψp(−→γ ,
−→
β )〉|2, (3)

where xsol is the solution to the problem.

III. APPLY QAOA+ TO SOLVE MEC
PROBLEM

In this section, we first introduce MEC. Then, MEC
is transformed into a constrained optimization problem
with two objective functions. Finally, we solve MEC us-
ing QAOA+.

A. MEC

MEC [35] is shown as follows: the sets X =
{x1, · · · , xm} and S = {S1, · · · , Sn} are considered,
where Si ⊂ X(i = 1, · · · , n), such that

X =

n⋃
i=1

Si. (4)

A subset S∗ of S, it is called an EC of X when elements
of S∗ are disjoint sets and union of the elements of S∗ is
X. S∗ with the least number of elements is called MEC
(MEC is not unique).

MEC problem can be expressed as follows [35]

min

n∑
i=1

si, (5)

s.t.
∑

i:xj∈Si

si = 1, ∀xj ∈ X, (6)

si, sj ∈ {0, 1}, (7)

where si is the label of set Si. When Si is selected, si = 1,
otherwise si = 0. The objective function Eq. (5) is to
minimize the number of sets, subject to constraints Eq.
(6) ensuring that the elements of X are covered only once,
i.e., EC.

Some algorithms [33–35] have been proposed to solve
this problem using QAOA. The key point of QAOA is
to construct the target Hamiltonian which includes solu-
tions of the MEC problem. For constrained optimization
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FIG. 1. Schematic of the QAOA+ [33]. The quantum processor consists of three parts: initial state, phase-separation operators
U(HP , γ), and mixing-operators U(HM , β). The variational parameters are optimized on classical computers. The quantum
computer is used to evaluate the expectation value of the objective function.

problems, the common method is to incorporate hard
constraints into the target function as a penalty item,
and then convert the target function into a target Hamil-
tonian [22–26, 35]. Different from QAOA, U(HM , β) of
QAOA+ will preserve the feasible space, and the ini-
tial state |x〉 is required to be a trivial feasible state.
The algorithm can limit the state of the system to the
feasible space, resulting in zero probability of obtaining
invalid solutions, which implies a prominent advantage
compared to QAOA. However, EC is the feasible space
for the MEC problem, which has no trivial solutions.

According to the describe of EC problem [35], it can
be found intuitively that elements of an EC are disjoint
sets, noted as S∗ = {Sl, · · · , Sk}, 2 ≤ l, k ≤ n (n is
the number of qubits), and |Sl| + · · · + |Sk| = m (m is
the number of all elements) can be obtained. S∗ with
the least number of elements is called MEC. To create a
trivial feasible initial state |x〉, let ωi = |Si|, we trans-
form MEC into the following multi-objective constrained
optimization problem

min

n∑
i=1

si, (8)

max

n∑
i=1

ωisi, (9)

s.t. si + sj ≤ 1, Si ∩ Sj 6= ∅, (10)

si, sj ∈ {0, 1}, (11)

where the trivial feasible solutions are easy to find. The
objective function Eq. (8) is to minimize the number of
sets and the objective function Eq. (9) is to maximize
the sum of the weights of sets, subject to constraints
Eq. (10) ensuring that two sets Si, Sj cannot be selected
simultaneously, where Si ∩ Sj 6= ∅. Noting that Eq. (8)
needs to be optimized on the premise of meeting Eq. (9).

The linear weighted sum method [36] is the simplest
method to solve the multi-objective optimization prob-
lem. According to importance of each objective func-
tion to determine the corresponding weight, this method
transforms the multi-objective into single-objective op-
timization problem. We adopt the linear weighted sum
method to solve the above optimization problem, and
transform it into a single-objective optimization problem

max λ1f1 − λ2f2, (12)

s.t. si + sj ≤ 1, Si ∩ Sj 6= ∅, (13)

si, sj ∈ {0, 1}, (14)

where λ1 > λ2 > 0, f1 =
∑n
i=1 ωisi, f2 =

∑n
i=1 si.

B. QAOA+ FOR MEC

The QAOA+ mapping comprises phase-separation op-
erators U(HP , γ), mixing operators U(HM , β), and ini-
tial state |x〉 for MEC problem. U(HP , γ) = e−iγHP

depends on Eq. (12). U(HM , β) = e−iβHM depends on
Eq. (13) and its structure. According to Eq. (13), the
initial state |0〉

⊗
n can be chosen, which is a trivial fea-

sible solution. Next, we need to construct the mixing
Hamiltonian HM and the target Hamiltonian HP .

To construct HM , inspired by [26], we construct a
graph in which each set Si(i = 1, · · · , n) is regarded as a
vertex. There is an edge between two vertices Si, Sj if
and only if Si∩Sj 6= ∅. Therefore, the constraint Eq. (13)
is equivalent to solving independent sets on the graph.

Given an independent set S′ (si = 1 if and only if
Si ∈ S′, else si = 0), to maintain the property of the
independent set, the following rules should be met when
adding and deleting vertices [27]: 1) the neighbors of Si
are marked as Si1, Si2, · · · , Sil, adding a vertex Si /∈ S′
so that the new point set is still an independent set only
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if none of the neighbors Si1, Si2, · · · , Sil of Si are already
in S′, i.e., si1 = si2 = · · · = sil = 0; 2) removing any
vertex Sj ∈ S′ without affecting the feasibility of the
state. Hence, a bit-flip operation at a vertex, controlled
by its neighbors, suffices both to remove and add vertices
while maintaining the independence property.

The mixing Hamiltonian HM is expressed as follows

HM =

n∑
i=1

∑
mi=1

|si1si2 · · · sil〉〈si1si2 · · · sil| ⊗Xi, (15)

where mi =
∏l
k=1(1− sik).

The objective function f = λ1
∑n
i=1 ωisi− λ2

∑n
i=1 si,

and target Hamiltonian HP is obtained by replacing si

with
1−σZ

i

2

HP = λ1

n∑
i=1

ωi
1− σZi

2
− λ2

n∑
i=1

1− σZi
2

, (16)

where λ1 > λ2 > 0, σZi represents Pauli-Z operation on
ith qubit.

IV. NUMERICAL SIMULATION

We study instances for three different problem sizes of
the MEC problem given in Table I, corresponding to 6,
8, and 10 qubits, respectively.

TABLE I. Information about the MEC problem instances

|X| |S| Number of instances Number of solutions
for each instance

12 6 10 1
16 8 10 1
20 10 10 1

A. Discussion about weights

In multi-objective problems, the weight of each index
is one of the important factors that affect the accuracy
of the results. Next, we discuss the weight λi (i = 1, 2)
of MEC in two cases and fix λ1 and λ2.

The MEC is expressed as the following optimization
problem

max f, (17)

s.t. si + sj ≤ 1, Si ∩ Sj 6= ∅, (18)

si, sj ∈ {0, 1}, (19)

where λ1 > λ2 > 0, f = λ1
∑n
i=1 ωisi − λ2

∑n
i=1 si.

Suppose the set A is a MEC (solution of MEC prob-
lem), and the corresponding objective function is fA =
λ1m− λ2m′, where m = |X|, m′ = |A|. Suppose the set
B is not MEC, and its corresponding objective function

is fB = λ1t − λ2t′, where t ≤ m, t′ = |B|. Based on the
above assumptions, we can obtain fA > fB . Next, we
will consider that B is an EC or not, and discuss weight
λi in two situations.

If set B is an EC, we can obtain t = m, t′ > m′. The
inequality fA > fB is always true with λi > 0 (i = 1, 2).
If set B is not an EC, we can get t < m, and then deduce
λ1

λ2
> m′−t′

m−t .
To determine the appropriate values of λ1 and λ2, the

range of function f = λ1f1 − λ2f2 is limited to (0, 1]

0 < nλ2f1 − λ2f2 ≤ 1. (20)

Because of nf1 − f2 > 0, we can deduce 0 < λ2 ≤
1

nf1−f2 , where f1 ≤ m, f2 ≥ 2 (without regard to Si =

X). Further, 0 < λ2 ≤ 1
nm−2 can be obtained. Without

losing generality, we can make λ2 = 1
nm−2 in this paper.

And then, we make λ1

λ2
= n according to m′−t′

m−t < n (n is

number of qubits).

B. Low levels: patterns in optimal variational
parameters

The patterns in the optimal variational parameters for
MaxCut have been observed in Ref.[37], where it was
found that there is a linear relationship between the pa-
rameters and the level p. Based on observed linear pat-
terns, two heuristic optimization strategies are proposed,
which significantly speed up the classical optimization of
QAOA. The optimal parameter pattern is a useful guide
in the selection and design of heuristic strategies. Before
studying the performance of the QAOA+, we need to ob-
serve the patterns of optimal variational parameters at
low level, namely up to p = 5.

To find the optimal variational parameters for 1 ≤
p ≤ 5, the gradient-based Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [38–41] is adopted in this paper. It is
a commonly used local optimization algorithm, which is
repeated with sufficiently many random initial parame-
ters to find the global optimum.

After performing numerical simulations for 10 in-
stances of MEC problem with 6-qubit using QAOA+, we

present the optimal variational parameters (
−→
γ∗,
−→
β∗) from

p = 3 up to p = 5 as shown in Fig. 2. The optimal pa-
rameters do not follow the linear pattern as in Ref.[37] so
the interpolation optimization cannot be performed. Re-
cently, parameters fixing strategy [42], a straightforward,
yet practically effective, is proposed to improve the per-
formance of QAOA at large circuit depths. The optimal
parameters (γ∗1 , · · · , γ∗p−1, β∗1 , · · · , β∗p−1) at level p− 1 to
be further optimized as they are passed into QAOA of p-
level as the initial parameters. Hence, the initial parame-
ters at level p will be (γ∗1 , · · · , γ∗p−1, γp, β∗1 , · · · , β∗p−1, βp),
where γp and βp are random parameters. Inspired by
this, we will investigate whether this strategy can im-
prove the performance of QAOA+.
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1000 random initial variational parameters, and keep the best parameters.
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FIG. 3. (a) The mean success probability, as a function of level p averaged, is plotted using random initialization method, over
all instances for the three different problem sizes. (b) The comparison is drawn between the parameters fixing strategy and the
random initialization approach for optimizing the QAOA+, on one selected instance from each problem size.

C. Analysis of success probability

Based on the discussion of optimal variational param-
eter patterns in the previous section, we intend to use
random initialization and parameters fixing strategy to
study the performance of QAOA+. From the start-
ing point of generation, we run the BFGS optimization
method for this algorithm.

In Fig. 3(a), the mean success probability, as a func-
tion of level p, is plotted with random initialization pa-
rameters method, over all instances for the three different
problem sizes. It is observed that the mean success prob-
ability increased slowly with the increase of level p overall
in all 30 instances.

To investigate whether parameters fixing strategy can
improve the performance of QAOA+, we select an in-
stance from each problem size, and simulate them up to

p = 7 using random initialization and parameters fix-
ing strategy respectively. In Fig. 3(b), we compare the
parameters fixing strategy to the random initialization
approach for optimizing the QAOA+. For random ini-
tialization method, it is observed that for 6-qubit and
8-qubit, the solution can be obtained with a probability
close to 100% with p = 7. For parameters fixing strategy,
for 6-qubit and 8-qubit, we obtain a mean success prob-
ability close to 100% with p = 3 and p = 5, respectively.
In general, the parameters fixing strategy outperforms
the random initialization run for these three examples.

The numerical results show that the solution can be
obtained with high probability by using parameters fix-
ing strategy, even though level p of the algorithm is low.
Hence, we can conclude that the parameters fixing strat-
egy can make the algorithm have better performance, at
least true for the MEC problem instances used in our
work.
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FIG. 5. The overall 1-level quantum circuit diagram of QAOA+ mapping.

FIG. 6. The new 1-level quantum circuit after removing the single-qubit rotating gates RZ .

D. Quantum circuit optimization

The QAOA+ mapping comprises phase-separation op-
erators U(HP , γ), mixing operators U(HM , β), and ini-
tial state |x〉 for MEC problem. Based on HM and HP ,
the corresponding circuits of U(HM , β) are multiqubit-
controlled-RX(2β) gates, and the corresponding circuits
of U(HP , γ) are n single-qubit rotating gates RZ . For
example: X = {1, · · · , 12} and S = {S1, · · · , S6},
where S1 = {1, 2, 4, 5, 6, 8, 9, 10}, S2 = {1, 4, 6, 7},
S3 = {5, 8, 9, 11, 12}, S4 = {4, 7, 8, 9, 10, 11, 12}, S5 =
{2, 3, 4, 5, 6, 7, 11, 12}, S6 = {3, 10, 12}. The correspond-
ing figure is constructed, as shown in Fig. 4.

S1

S2
S3

S4

S5

S6

FIG. 4. Graph representation of the instance.
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Quantum Circuit in Figure. 5
Quantum Circuit in Figure. 6

FIG. 7. The comparison of mean success probability corre-
sponding to these two circuits.

Based on discussion about weight λi(i = 1, 2), let
λ2 = 1

nm−2 = 1/70, λ1 = nλ2 = 6/70, the overall
1-level quantum circuit diagram of QAOA+ mapping is
given, as shown in Fig. 5. Since single-qubit rotating
gate RZ only changes the phase, we consider removing
n single-qubit rotating gates RZ , as shown in Fig.
6. We find that this new p-level circuit only needs p
parameters, and the number of quantum gates is at least
reduced by np. To study the ability of these two p-level
circuits, the comparison of mean success probability is
plotted using random initialization method in Figure.
7. The results show that p-level circuit only requires p
parameters, which can achieve an experimental effect
similar to the original circuit with 2p parameters. And,
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the number of quantum gates is at least reduced by np
for p-level optimized circuit.

V. SUMMARY AND PROSPECTS

To summarize, taking MEC problem as an example, we
studied how to apply QAOA+ to NTFSP. To find a triv-
ial feasible solution, we transformed MEC into a multi-
objective constrained optimization problem, where feasi-
ble space is composed of independent sets and the trivial
solutions are easy to find. To solve the above multi-
objective constrained optimization problem, we adopted
the linear weighted sum method to construct target
Hamiltonian. Finally, inspired by the parameter fixed
strategy, we used this strategy to simulate instances with
6, 8, and 10 qubits. The numerical results show that the
solution can be obtained with a probability close to 100%
for 6 and 8 qubits, even though level p of the algorithm
is low (see Fig. 3 for details). Besides, since single-qubit
rotating gate RZ only changes the phase, we optimized
quantum circuit by removing the rotating gates RZ . For

p-level optimized circuit, the number of quantum gates
is at least reduced by np (see Fig. 6 for details). And,
p-level optimized circuit only needs p parameters, which
can achieve an experimental effect similar to original cir-
cuit with 2p parameters (see Fig. 7 for details).

In this work, we applied QAOA+ to solve the NTFSP,
which provides a meaningful reference for how to use
QAOA+ to solve such problems, and might greatly ex-
pand the application of the algorithm. In addition, our
algorithm can also solve the tail-assignment problem with
the minimum number of selected routes. See the detailed
analysis in Appendix A.
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Appendix A: The tail-assignment problem with the minimum number of selected routes

Airlines realize the optimal allocation of various production factors, through careful organization and production
planning. Aircraft route allocation is an important part of the airline’s organization and production planning. A
reasonable and effective aircraft route allocation scheme helps to ensure the core utilization of the airline’s resources,
implement the airline’s development strategy, ensure the safety of the airline’s production and operation activities,
and the realizability of the airline’s revenue and expenditure budget in the current year. For a long time, operational
research theory has been the source of innovation and development of international air transport industry, and has
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been widely used in the production and planning of various organizations of airlines, aviation revenue management and
other fields. However, the airline network is one of the most complex networks in the world, and it is still developing
rapidly. In the face of more and more complicated airline networks, the production and plans of airlines also pose
great challenges to researchers.

The tail-assignment problem [43, 44] is an essential issue in the production planning of airlines. It is also one of the
main contents in the operation control of airlines, where the goal is to decide which individual aircraft should operate
which flight. By introducing the concept of route, the problem of aircraft-to-flight assignment is transformed into the
problem of aircraft-to-route assignment. Each route starts and ends at the hub airport, and there are fixed departure
and arrival times at the hub airport, thus reducing the scale and complexity of the problem. The tail-assignment
problem is a combinatorial optimization problem essentially, which is NP-complete [47], and also a hot topic studied
by scholars.

Now, let F denote the set of flights, and R the set of all legal routes. Denote by cri the cost of route ri ∈ R. Let
afri be 1 if flight f is covered by route ri and 0 otherwise. The decision variable xri is 1 if route ri should be used in
the solution, and 0 otherwise. The tail-assignment problem [33, 34, 46] can now be formulated as

min

|R|∑
i=1

crixri , (A1)

s.t.
∑
ri∈R

afrixri = 1, ∀f ∈ F, (A2)

xri ∈ {0, 1}, ∀ri ∈ R. (A3)

The objective Eq. (A1) is to minimize the total cost of the selected routes, subject to constraints Eq. (A2) ensuring
that the set of routes in a solution should contain flight f exactly once each flight. The model is an example of an
exact cover problem, which is NP-complete [47].

According to the mathematical model of the MEC problem, the tail-assignment problem can also be expressed as
the following

min

|R|∑
i=1

crixri , (A4)

max

|R|∑
i=1

ωrixri , (A5)

s.t. xri + xrj ≤ 1, ri ∩ rj 6= ∅, (A6)

xri , xrj ∈ {0, 1}, (A7)

where cri represents the cost of ri, and ωri = |ri|. The objective Eq. (A4) is to minimize the total cost of the selected
routes, and the objective Eq. (A5) is to maximize the sum of the weights of each route, subject to constraints Eq.
(A6) ensuring that two routes with ri ∩ rj 6= ∅ cannot be selected simultaneously.

In particular, we introduce a new target: the minimum number of aircraft (i.e., the minimum number of selected
routes). The tail-assignment problem with the minimum number of selected routes can now be formulated as

min

|R|∑
i=1

crixri , (A8)

min

|R|∑
i=1

xri , (A9)

max

|R|∑
i=1

ωrixri , (A10)

s.t. xri + xrj ≤ 1, ri ∩ rj 6= ∅, (A11)

xri , xrj ∈ {0, 1}. (A12)

The objective Eq. (A8) is to minimize the total cost of the selected routes, and the objective Eq. (A9) is to minimize
the total number of the selected routes, and the objective Eq. (A10) is to maximize the sum of the weights of each
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route, subject to constraints Eq. (A11) ensuring that two routes with ri ∩ rj 6= ∅ cannot be selected simultaneously.
According to the importance of the objective function, it is arranged as Eq. (A10), Eq. (A9), and Eq. (A8) in
descending order.

The tail-assignment problem with the minimum number of selected routes is transformed into a single objective
constrained optimization problem

max λ1

|R|∑
i=1

ωrixri − λ2
|R|∑
i=1

xri − λ3
|R|∑
i=1

crixri , (A13)

s.t. xri + xrj ≤ 1, ri ∩ rj 6= ∅, (A14)

xri , xrj ∈ {0, 1}, (A15)

where λ1 > λ2 > λ3 > 0, and their values can be determined according to experience. The corresponding phase

separation Hamiltonian is obtained by replacing xri with
1−σZ

i

2

HP = λ1

|R|∑
i=1

ωri
1− σZi

2
− λ2

|R|∑
i=1

1− σZi
2

− λ3
|R|∑
i=1

cri
1− σZi

2
. (A16)

We study instances for three different problem sizes of tail-assignment problem with the minimum number of
selected routes given in Table II, corresponding to 6, 8, and 10 routes, respectively.

TABLE II. Information about the tail-assignment problem with the minimum number of selected routes instances.

|F | |R| Number of instances Number of solutions
12 6 1 1
16 8 1 1
20 10 1 1

We conducted numerical simulations for the examples in the table shown in Fig. 8. In Fig. 8, the mean success
probability as a function of level p for the three different problem sizes is plotted with random initialization method.
The numerical result shows that the mean success probability of 10 route instance is higher than that of 8 route
instance for p ≤ 6. This fact can seem counterintuitive, as one could naively think that larger instances correspond to
harder problems. In addition, we note that the mean success probability of the 10 route instance shows a downward
trend for 7 ≤ p ≤ 8. For the counterintuitive phenomena shown in Fig. 8, we will study them in future work.
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FIG. 7. Success probability for solving the tail-assignment problem with the minimum number of selected routes.
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