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The relationship between genotype and phenotype plays a crucial role in determining the function
and robustness of biological systems. Here the evolution progresses through the change in genotype,
whereas the selection is based on the phenotype, and genotype-phenotype relation also evolves.
Theory for such phenotypic evolution remains poorly-developed, in contrast to evolution under the
fitness landscape determined by genotypes. Here we provide statistical-physics formulation of this
problem by introducing replicas for genotype and phenotype. We apply it to an evolution model,
in which phenotypes are given by spin configurations; genotypes are interaction matrix for spins
to give the Hamiltonian, and the fitness depends only on the configuration of a subset of spins
called target. We describe the interplay between the genetic variations and phenotypic variances
by noise in this model by our new approach that extends the replica theory for spin-glasses to
include spin-replica for phenotypes and coupling-replica for genotypes. Within this framework we
obtain a phase diagram of the evolved phenotypes against the noise and selection pressure, where
each phase is distinguished by the fitness and overlaps for genotypes and phenotypes. Among the
phases, robust fitted phase, relevant to biological evolution, is achieved under the intermediate level
of noise (temperature), where robustness to noise and to genetic mutation are correlated, as a result
of replica symmetry. We also find a trade-off between maintaining a high fitness level of phenotype
and acquiring a robust pattern of genes as well as the dependence of this trade-off on the ratio
between the size of the functional (target) part to that of the remaining non-functional (non-target)
one. The selection pressure needed to achieve high fitness increases with the fraction of target spins.

INTRODUCTION

Over decades, evolution under given fitness landscape,
determined as a function of genes (genotypes), has been
studied extensively [1, 2]. Here genotypes are changed
(mutated) in the reproduction process, and those that
produce higher function, called phenotypes, are selected.
These phenotypes determine fitness, the rate of offsprings
that survive. However, the evolution of phenotypes
whose configurations are shaped by the genetic evolution
remains poorly explored. Here, phenotypes are a result
of dynamics whose rule is determined by genotypes. Such
dynamics are stochastic in general. Cells involve stochas-
tic gene expression dynamics, whereas protein folding dy-
namics to give the protein shape is under thermal noise
[3–6]. Phenotypes hence are variable under noise, while
fitted phenotypic states are better to be preserved un-
der noise, i.e., to keep robustness to noise. In addition,
they can also be varied by genetic mutation during the
evolution of genotypes, and the robustness to mutation
will also be required. The achievement of robustness of
phenotypes to noise and to mutation is important to the
evolution, as has been discussed recently [7–10]. Now
considering stochastic dynamics of phenotypes, a general
formulation of the evolution of such genotype-phenotype
mapping and phenotypic robustness is hence wanted.

Underlying such stochastic dynamics are the interac-
tions among a vast number of elements that constitute
a biological system. A cell consists of a huge variety of

interacting molecules and its constitute polymers (pro-
teins) are composed of many monomers (residues). Now
the states of such interacting elements that shape the
evolution of phenotypes can be properly described by
statistical physics [11, 12]. To this kind of study, use of
spin models is relevant, where phenotypes are spin con-
figurations that are updated by Hamiltonian with spin-
spin interactions under thermal noise, whereas genotypes
specify such spin-spin interactions, and fitness is given by
a function of configuration of a subset of spins, termed
as target spins. It is then important to identify possible
phases with regards to genotypes and phenotypes, using
the set of order parameters, a concept rooted in statisti-
cal physics.

In the present paper, to address these problems in
a systematic way, we formulate double replica methods
both for spins (phenotypes) and couplings (genotypes),
as well as both for target and nontarget parts. Even
though we adopted spin-coupling representation here our
formulation can generally be applied to other problems,
in which the interactions among many degrees of freedom
are also dynamical variables with their own dynamics.
For the sake of demonstration, however, we here explain
this approach by using specifically a spin-glass Hamilto-
nian model developed in [13–15]. These works uncovered
the transitions between different regimes with regards to
the fitness and robustness upon changing the strength of
thermal noise for phenotype and selection pressure for
genotype. In particular, within an intermediate range
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of phenotypic noise, the evolved spin-systems could at-
tain high fitness and robustness to noise and mutation. A
systematic way to elucidate the condition to achieve such
robust fitted states with regards to the noise strength, se-
lection pressure, and relative size of target spins, and to
understand possible relationship between robustness to
mutation and to noise, however, has not been developed
yet.

One might expect an application of mean-field methods
for disordered systems [16] in this model since a spin-glass
Hamiltonian formulation was adopted by replacing ran-
dom couplings among spins (phenotypes) by genotypes
that are evolving [13–15]. Gradual change in the cou-
plings might fit with partial annealing approach based
on a finite number of replicas n. However, the study is
restricted to the case in which the coupling dynamics are
affected by a spin-spin correlation term [17–21], and is
not directly applicable for our purpose, in which the cou-
pling dynamics depend on the fitness determined by the
spin configurations. Another theoretical method assumes
the quench limit (n → 0) for a replicated spin system
[22]. However, this means that the couplings are treated
effectively as ‘static’ (but with a modified distribution),
and hence is not suitable to investigate the evolution of
both genotypes (couplings) and phenotypes (spin config-
urations). Using this approach, it thus remains elusive to
see how robustness emerges from the interplay between
the ordering of spins and that of the couplings.

In this paper we develop a new mean-field approach
that we term as double replica theory. It describes the
evolution of both genotypes and phenotypes by consider-
ing spins and links as two different replica species. With
this formulation, we obtain fitness and replica overlaps
for spins and couplings, which work as the order param-
eters. Using these order parameters we identify five re-
gions in the temperature vs selection pressure phase di-
agram: two non-fitted paramagnetic phases, fitted- and
non-fitted spin glass phases, and a robust fitted phase.
The last phase is the most biologically important, which
can only be achieved under intermediate noise level (tem-
perature) and sufficient selection pressure, whereas ro-
bustness can only arrive at the cost of lowering the fit-
ness from its maximal value. Dependence of the robust
fitted phase on the ratio of functional to non-functional
parts has been analyzed in depth. As the former ratio is
increased, the selection pressure to achieve this phase is
drastically increased, whereas, if achieved, it can persist
for slightly higher noise. This suggests the relevance of
having sufficient non-functional parts in biological sys-
tems. In addition, correlation between robustness to
noise and to mutation are formulated as a proportionality
between susceptibilities to external field and to coupling
change.

DOUBLE REPLICA THEORY

Following [14, 15] we study the evolution of the rela-
tionship between phenotype and genotype by represent-
ing phenotypes as spin configurations, and genotypes as
interaction matrix for spins. In a system of N spins, each
spin i can take values si ∈ {−1, 1} and is linked to exactly
N − 1 other spins, thus forming a fully-connected net-
work. Here the evolution progresses through the change
in genotype, whereas the selection is based on the pheno-
type, resulting in an evolution of the genotype-phenotype
relation. Moreover, fitness is determined by a subset of
target spins denoted by T . Those spins that do not con-
tribute to the fitness are called non-target. In general,
the fitness Ψ is some field that acts on Jij but whose value
depends only on si, i ∈ T . How such dependence is ex-
plicitly described is model-specific and will not limit the
use of our approach. See SM Eq. (14) for an example of
Ψ given by the target spin configurations at equilibrium
[14, 15].

Stochastic dynamics of phenotypes are considered as
the evolution of spin configurations at a temperature
Ts according to a Hamiltonian HS = −

∑
i<j Jijsisj

[23]. Here the couplings Jij are regarded as fixed over
the course of the spin evolution that follows a Glauber
update because they are assumed to evolve on much
slower timescale than that of the spins. Furtheremore,
the couplings are symmetric, i.e. Jij = Jji, and, ini-
tially, are independently and identically distributed by
a Gaussian distribution with zero mean and the vari-
ance J2 := var(Jij) = N−1. The coupling matrix J

includes interactions between target spins J
(tt)
ij for i ∈ T

and j ∈ T ; those between non-target spins J
(oo)
ij for i 6∈ T

and j 6∈ T ; and those between target spin and non-target

spin J
(to)
ij for i ∈ T and j 6∈ T . Let ST and SO denote the

subsystem of target spins (with their interactions J(tt))
and the subsystem of non-target spins (with the couplings
J(oo) among them), respectively. The Hamiltonian of the
full system denoted by S can be decomposed into

HS = −
∑
i<j∈T

J
(tt)
ij sisj︸ ︷︷ ︸

HT

−
∑
i<j 6∈T

J
(oo)
ij sisj︸ ︷︷ ︸

HO

−
∑
i∈T
j 6∈T

J
(to)
ij sisj

︸ ︷︷ ︸
HTO

,

(1)
where HT and HO are the Hamiltonian of the subsys-
tems ST and SO, respectively, while HT O describes the
interactions between these subsystems.

Now we introduce the effective potential to obtain the
distribution of J [24]. For it, we consider a continuous
Langevin-type dynamics for the couplings

dJij
dτ

= − 1

N

∂ V

∂Jij
+

1√
N
ξij(τ) , (2)

where V = V
(
J
)

is the potential of all the couplings and



3

ξij is the white noise whose intensity equal to the tem-

perature TJ . The factors 1/N and 1/
√
N in front of the

potential and the noise term, respectively, ensure a cor-
rect relationship between the drift and diffusive parts of
the Langevin equation. If the couplings were indepen-
dent from each other, the potential would simply take
the form of the potential of a free Brownian particle

V0 =
N

2
·
∑
i<j

J2
ij . (3)

However, in the presence of fitness we need an additional
term. Here we assume that the fitness would be max-
imised if a global alignment is established among target
spins, so that we introduce

Ψ =
1

Nt

∣∣∣∑
i∈T

si

∣∣∣ , (4)

where Nt is the size of T . Under this fitness that favors
the alignment of target spins, the couplings are necessar-
ily subjected to a fitness field K [25]:

K =
1

βJ

∂

∂Jij
ln
(∑
{si}

exp
{βJ
Nt

∑
i<j∈T

Jij

∣∣∣∑
i∈T

si

∣∣∣}) (5)

or equivalently, V needs to be modified from V0 into

V = V0 −
1

βJ
ln
(∑
{si}

exp
{βJ
Nt

∑
i<j∈T

Jij

∣∣∣∑
i∈T

si

∣∣∣}) .
Without the evolution of genotypes, the Hamiltonians
HT , HO and HT O dictate the spins to adapt to a set of
fixed couplings J in order to minimise each term of Eq.
(1) through the spin dynamics. Such adaptation results

in an accordance between the state of J
(tt)
ij and sisj for

i, j ∈ T ; that between the state of J
(oo)
ij and sisj for

i, j 6∈ T and that between the state of J
(to)
ij and sisj for

i ∈ T , j 6∈ T . As long as this kind of accordance exits,
it is insufficient to consider the evolving couplings with
selection force given in Eq. (5) only. A link between two
spins hence necessarily needs to adapt to the joint state
of these spins. Due to the time scale separation between
the phenotype- and the genotype dynamics, the direction
of change of genotypes is determined by the equilibrium
correlation of the phenotypes, and since Jij is symmetric,
it needs to be:

dJij/dτ ∝ 〈sisj〉Ts .

This is equivalent to have a potential of the form [26]

Va = V − 1

βs
ln
(∑
{si}

exp
{
βs
∑
i<j

Jijsisj

})
(6)

The stochastic process induced by Eq. (2) under this po-
tential admits an equilibrium-like stationary joint distri-
bution P(J(tt),J(oo),J(to)) of Boltzmann-form (with as-
sociated temperature TJ), i.e.,

P(J(tt),J(oo),J(to)) = e−βJVa/Ztotal ,

where Ztotal =
∑
{J} e

−βJVa . Instead of calculating this
distribution, we introduce our approximate approach, in

which J
(to)
ij are assumed to always attain equilibrium

well before J
(tt)
ij and J

(oo)
ij and hence can be adiabati-

cally eliminated. As a consequence, only the weights of
equilibrium configurations of J(to) contribute to the sta-
tionary distributions

PT (J(tt)) = lim
τ→∞

PT (J(tt), τ)

PO(J(oo)) = lim
τ→∞

PO(J(oo), τ)

where PT (J(tt), τ) and PO(J(oo)) are the time-dependent
solutions of the corresponding Forrker-Planck equations
with the effective potentials Vtt for J(tt) and Voo for and
J(oo), respectively [27]. To obtain the distribution only
of J(tt) and J(oo), we first replace J(to) as given matrix
by that obtained self-consistenly from equilibrium distri-
bution. For it we need to modify Va in such a way that
the influence of J(to) on J(tt) (J(oo)) can be taken into
account in the effective potential Vtt (Voo). The joint
effect of HT O and HT on the dynamics of target spins

suggests that the dependence of J
(tt)
ij and J

(to)
ik on each

other arises from any triad formed between (i, j) ∈ T
and k 6∈ T , i.e., via J

(tt)
ij J

(to)
ik J

(to)
jk . This influence is rep-

resented by the frustration [16] which implies that an
optimal spin configuration (s∗i , s

∗
j , s
∗
k) can only be estab-

lished if the relation J
(tt)
ij J

(to)
ik J

(to)
jk > 0 holds (optimality

in this context means that HT O and HT can be lowered
simultaneously by (s∗i , s

∗
j , s
∗
k)). Since for any given pair

of (i, j) ∈ T there are N −Nt triads ∆k formed between
it and a non-target spin k 6∈ T , the total effect of frus-
tration is given by

F
(t−o−t)
ij = (N −Nt)−1

N−Nt∑
k=1

J
(to)
ik J

(to)
jk . (7)

Likewise, frustration among all Nt triads ∆̃k formed be-
tween a given pair of non-target spins i 6∈ T and j 6∈ T
with k ∈ T induces a force F(o−t−o) on the state of J

(oo)
ij :

F
(o−t−o)
ij = N−1

t

Nt∑
k=1

J
(to)
ik J

(to)
jk . (8)

The proposed scheme just allows us to define the effective
potential Vtt for J(tt) and Voo for and J(oo) as

Vtt = Va −
1

βJ
ln
( ∑
{J(to)
ij }

exp
{
βJ

∑
i<j∈T

J
(tt)
ij F

(t−o−t)
ij

})

Voo = Va −
1

βJ
ln
( ∑
{J(to)
ij }

exp
{
βJ

∑
i<j 6∈T

J
(oo)
ij F

(o−t−o)
ij

})
The stationary distributions induced by the diffusion
process in Eq. (2) with these effective potentials
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have a Boltzmann-form PT (J(tt)) = e−βJVtt/ZT and
PO(J(oo)) = e−βJVoo/ZO where ZT and ZO are the parti-
tion function of the genotypes J(tt) and that of the geno-
types J(oo), respectively [28]. Here we replace J(to) by

the replica matrix σki := J
(to)
ik , to be obtained. (This

stepwise scheme is valid, as we are concerned with the
equilibrium property). Denoting n := Ts/TJ , we can
compute ZT and ZO as

ZT =

∫ ∏
i<j∈T

dJ
(tt)
ij

∑{
si;sαi ;σki

}
i∈T

exp

βJ
∑
i<j

[
− Nt

2

(
J

(tt)
ij

)2

+ J
(tt)
ij

( 1

Nt

∣∣∣∑
i∈T

si

∣∣∣+
1

n

n∑
a=1

sai s
a
j︸ ︷︷ ︸

s−replicas

+
1

N −Nt

N−Nt∑
k=1

σki σ
k
j︸ ︷︷ ︸

σ−replicas

)]


ZO =

∫ ∏
i<j 6∈T

dJ
(oo)
ij

∑{
sαi ;σki

}
i6∈T

exp

βJ
∑
i<j

[
− N −Nt

2

(
J

(oo)
ij

)2

+ J
(oo)
ij

(
K̃ +

1

n

n∑
a=1

sai s
a
j︸ ︷︷ ︸

s−replicas

+
1

Nt

Nt∑
k=1

σki σ
k
j︸ ︷︷ ︸

σ−replicas

)]


In writing these equations, we assume that the fitness

acts only on J
(tt)
ij [29] and hence in ZO we replace the

fitness field K by a constant K̃, which eventually will be
set to 0 by virtue of calculations of the observables for
non-target spins. Although neglecting the fitness’s effect

on J
(oo)
ij does not follow exactly the above-mentioned im-

plementation of the model, we expect that this holds true
in the long times limit because otherwise both target- and
non-target configurations at equilibrium would determine
the fitness. This restriction hence corresponds to a first-
order approximation of the fitness’s effect, while a term

that affects the dynamics of J
(oo)
ij and J

(to)
ij is considered

to be of higher order.

We here propose to interpret σki as the k-th replica of
another variable σi ∈ {−1, 1} that is also located at the
site i of the graph (generally σi 6= si). To distinguish
these different types of replica from each other, we call
sai spin-replica and σki coupling-replicas. Following this
interpretation, apart from n that appears as the number
of spin-replicas sai , a = {1, · · · , n}, in ZT and ZO [30],
we thus have N −Nt coupling-replicas, σki , for i ∈ T and
k = {1, · · · , N − Nt} and Nt coupling-replicas, σki , for
i 6∈ T and k = {1, · · · , Nt} respectively. As in general,
none of these numbers are zero, our double-replica ap-
proach does not correspond to the conventional quenched
limit in spin-glass models [16]. Once setting K = 0
and neglecting the terms corresponding to F (t−o−t) and
F (o−t−o), we recover Coolen et. al. model for neural
systems with dynamic synapses [18]. In contrast to the

use of a Hamiltonian for the couplings adopted in [22],
here, we have introduced the effective potential for cou-
plings that, by using the time-scale separation between
the dynamics of genotypes and that of phenotypes, al-
lows for the integration of the spin dynamics specified by
the Hamiltonian Eq. (1) into the Langevin dynamics of
the couplings through the second term in Eq. (6).

Here we characterise the equilibrium behaviour of the
model by the average fitness, m, the overlap between dif-
ferent spin replicas a and b, qab, and the correlation be-
tween adjacent links Q. Additionally, we want to quan-
tify the mean value of the couplings among the target
spins only Φ . Let E[·] and Ẽ[·] denote ensemble average
over PT (J(tt)) and PO(J(oo)), respectively. These order
parameters are given by

ma = E
[
sai

]
i∈T

, qab = E
[
sai s

b
i

]
i∈T

(9a)

Qkk′ = E
[
J

(to)
ik J

(to)
ik′

]
i∈T

k,k′ 6∈T
(9b)

Φ = E
[
J

(tt)
ij

]
i,j∈T

(9c)

Similarly, for the non-target spins we have

m̃a = Ẽ
[
sai

]
i6∈T

, q̃ab = Ẽ
[
sai s

b
i

]
i6∈T

(10a)

Q̃kk′ = Ẽ
[
J

(to)
ik J

(to)
ik′

]
i6∈T

k,k′∈T
(10b)

Φ̃ = Ẽ
[
J

(oo)
ik

]
i,j 6∈T

(10c)
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In the thermodynamics limit, N → ∞ and Nt → ∞,
while keeping p = Nt/N fixed, using a replica sym-
metric ansatz for the variables ma = m, qab = q and
Qkk′ = Q, m̃a = m̃; q̃ab = q̃ and Q̃kk′ = Q̃, as well as,

Mak = M and M̃ak = M̃ , where Mak = E
[
sai J

(to)
ik

]
i∈T
k6∈T

and M̃ak = Ẽ
[
sai J

(to)
ik

]
i6∈T
k∈T

, we obtain the following free

energy densities:

fRS
T =

1

2

{
q

n
+

Q

N −Nt
+

(n− 1)q2

2n
+
Q2

2
+M2

}
− 1

βJ
ln

[
Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)
Ikz

]
(11a)

fRS
O =

1

2

{
q̃

n
+
Q̃

Nt
+

(n− 1)q̃2

2n
+
Q̃2

2
+ M̃2

}

− 1

βJ
ln

{
Nt∑
k=0

(
Nt
k

)
Ĩk

}
(11b)

From the extremum condition of these free energies we
can compute all the model order parameters via a set
of self-consistency equations. These equations as well as
the functions Ikz and Ĩk are given in the SM [31]. The
use of the replica symmetric is justified in most part of
the (Ts, TJ) parameter space from the stability analysis
[32]. At low Ts and TJ the replica symmetry is broken,
which, we will not explore fully. Nevertheless we will
discuss later how robustness of phenotypes, postulated
for biological systems that reproduce similar offspring, is
lost in that scenario. The replica-symmetric free energy
densities allow us to derive

Φ =
1

Nt

[
Ψ +m2 + r2

]
(12a)

Φ̃ =
m̃2 + r̃2

N −Nt
. (12b)

where r and r̃ are defined and computed in the SM.

PHASE DIAGRAM

In Fig. 1 we depict the order parameters as function
of the temperature Ts and TJ for a particular choice of
N = 100 and Nt = 10. Here for each point (Ts, TJ) of
the phase diagram, we solve numerically the set of mean-
field equations for m, q,Q, while computing Φ from the
knowledge of these quantities. In terms of only the mag-
netisation m and the overlap between spin-replicas q for
target spins, we observe three distinct phases that are
typical for spin-glass systems, namely, m = q = 0 (para-
magnet phase); m = 0, q > 0 (spin-glass phase), and
m > 0, q > 0 with

√
q > m, ( target-ferromagnet phase,

’t-ferro’ in short). The transitions between the phases
are second-order at small Ts/TJ , but become discontinu-
ous (first-order) at large Ts/TJ . At a much lower value of
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FIG. 1. Magnetisation for target spins m (A). Overlap be-
tween different replicas for target spins q (B). Averaged cor-
relation of a pair of couplings between a target and a non-
target spin that share a common non-target spin Q (C). Av-
eraged frustration among target spins Φ (D). Here Nt = 10,
N = 100. Note the y-axis is on logarithmic scale.

TJ there is a region where, apart from having a non-zero
magnetisation of target spins, the order parameter Q =
〈J (to)J (to)〉 starts to become non-zero. As can be antici-

pated from Eq. (12a), the mean value of J
(tt)
ij also varies

from region to region in accordance to the change of m
and that of Q. Note that on sharp contrary to the tran-
sition between paramagnet and spin-glass which is simi-
lar to that of the Sherrington-Kirpatrick (SK) model, the
phenotype-genotype coupling results in a repositioning of
the boundary between spin-glass and t-ferro. Such dif-
ference arises from the non-zero correlation of the geno-
types. Expanding the free energy fRS

T for small m and
q, the transition between paramagnet and t-ferro occurs
at TP→F

s = κ, where κ = 2−Nt
∑Nt
z=0

(
Nt
z

)
|Nt − 2z|/Nt,

while the spin-glass to t-ferro transition occurs at
[
1 +

(n − 1)q(βSP→F
s )

]
·
(
βSP→F
s κ

)
= 1. We also check that

both the magnetisation m̃ of the non-target spins and the

average value Φ̃ of J
(oo)
ij are always zero as the non-target

spin subsystem remains frustrated all the time, while the
spin overlap q̃ can undergo a transition from paramagnet
to spin-glass, in the same way as the SK model. The
phase diagrams of these quantities are given in the SM.

Combining the behaviour of the order parameters alto-
gether, we obtain the model phase structure in Fig. 2. It
contains five distinct regions. At low genotypic selection
pressure TJ ≥ e−1, only the first spin-glass SP1 and the
paramagnet P1 phases with zero fitness are observed.
However, as the genotypic selection pressure increases
other phases emerge. At sufficiently low TJ , a robust
fitted phase denoted by R (m, q,Q > 0) emerges in an
intermediate range of Ts (here m̃ = q̃ = Q̃ = 0). Adja-
cent to this phase on the side of high phenotypic noise
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FIG. 2. The model phase diagram. Here SP1 denotes the
spin-glass phase with m = m̃ = Q = Q̃ = 0 and q, q̃ > 0; SP2
denotes the spin-glass phase with m̃ = Q = 0 and q,m > 0
(within this region, both q̃ and Q̃ can be either zero or non-
zero, see SM); P1 denotes the paramagnet phase with m =

m̃ = q = q̃ = Q = Q̃ = 0; P2 denotes the paramagnet phase
with m = m̃ = q = q̃ = Q̃ = 0 but Q > 0; R denotes the
robust fitted phase with m̃ = q̃ = Q̃ = 0 but m, q,Q > 0.
Here Nt = 10, N = 100. Note the y-axis is on logarithmic
scale.

is the second paramagnet phase P2 where the fitness
value is low (m = q = 0) but there exists some struc-
ture in the genotypes such that Q > 0. On the other
hand, for lower Ts, the system is in the second spin-glass
phase SP2 with high fitness but non-robust genoptypes
(m ' q ' 1, Q = 0). In particular, the transition from
R to SP2 is marked by a replica symmetry breaking
(RSB) which indicates the loss of stability of the replica
symmetric (RS) solutions [33]. The broad distribution
of gene-gene correlations in the RSB phase implies that
the genotype of offsprings is not preserved, in contrast to
the RS phase. In the biological context, this means that
replication is no longer stable so that genotypes are not
conserved over generations.

In overall, the phase diagram agrees with what was
observed numerically in [14, 15]. However, thanks to the
explicit account of the coupling-replicas, so that Q can be
treated as an order parameter upon which the free energy
density depends, we discover the existence of the second
paramagnet phase P2 that was not reported before. This
phase can be interpreted as a precusor region, in which
genotypes are structured in such a way that supports fer-
romagnetic ordering among target spins, and hence have
potentiality to acquire a high fitness, but due to the high
fluctuation induced by Ts, this fitness cannot be main-
tained. Furthermore, by considering separately the effec-
tive dynamics of the target and non-target subsystems,
ST and SO, our approach can differentiate the phase SP1
from SP2. The previous approach [22] only stressed the
distinct arrangement of target spins in the SP2 region,
where the subsystem of target spins becomes ferromag-
netic whereas that of non-target ones remains spin-glass.
Our present approach shows that this is no longer true
for a high value of TJ . Upon increasing TJ , this ferro-
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FIG. 3. The phase diagrams obtained by combining the be-
haviour of m as function of Ts and TJ with that of Q for
different values of p, at sufficiently low TJ . Here N = 100.

magnetic ordering is destroyed by genotypic fluctuations.
In addition, the present analysis allows one to obtain

quantitative dependence of genotypic and phenotypic ro-
bustness on the fraction of targets. The phase diagram
in Fig. 2 includes global information of the system in-
cluding weak selection region without achieving nonzero
fitness, m of target, whereas, of biological interest is if
the fitted state is evolved robustly by the selection. To
this end we focus on the low TJ region of the phase dia-
gram to explore the dependence of the system behaviour
on the fraction p = Nt/N of target spins. While overall,
the phase structure is similar for different p in Fig. 3,
in particular, the robust fitted (yellow) region seems to
change slightly with increasing p, the relative size and
exact location of all the other phases vary with p. This
suggests that a more quantitative analysis is needed to
understand the genotype-phenotype relationship as func-
tion of p. We carry on this analysis in the next section.

STRUCTURE OF THE ROBUST FITTED PHASE

The most relevant region in the phase diagram is ro-
bust fitted phase R, which is characterized by both the
high fitness (m > 0) and robustness (Q > 0). For a suf-
ficiently low given TJ (i.e. high selection pressure), the

phase is bounded by Ts ∈ [T
(1)
c , T

(2)
c ]. Below T

(1)
c , Q goes

to zero, and above T
(2)
c , m goes to zero, whereas these

transition points depend on TJ . We first investigate the
dependence on p of the R region by fixing TJ . In Fig.
4 (A) and (B) we fixed TJ = 0.005. First, for a wide

range of p ∈ [0.04, 0.5], the temperature T
(1)
c of the latter

transition in (B) does not depend on p (see SM for the
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FIG. 4. (A) Magnetisation of target spins m as function
of Ts at fixed TJ = 0.005 for various number of target spins
p = 0.04, 0.1, 0.2, 0.3, 0.4, 0.5. (B) The same for genetic over-
lap Q. (C) Frustration defined as 1 − Q as function of
the number of non-target spins in the robust fitted phase

(i.e. Ts ∈ [T
(1)
c , T

(2)
c ]) at fixed TJ = 0.005. (D) The

highest value of TJ at which Q remains non-zero as func-
tion of p. (E) Magnetisation of target spins m as function
of TJ at fixed Ts = 1.3 for various fraction of target spins
p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. (F) The value of TJ at
which the magnetisation of target spins m drops to zero at
fixed Ts = 1.3 for different p from (E). Similar behaviour to

(E) and (F) is observed for others Ts ∈ [T
(1)
c , T

(2)
c ]. Here

N = 100.

zoom-in of a small dip of m at this point). On the other

hand, T
(2)
c slightly increases with increasing p in (A),

indicating that the fitness of the high p case is relatively
more robust to noise than the low p case.

In Fig. 4 (C) 1 − Q is almost constant against Ts in
the R phase. This constant value was found to increase
with the number of non-target spins. Note that Q ∼ 1
implies that the offspring of genotypes are preserved. The
increase in 1−Q, thus means the increase in redundancy
of genotypes, as is supported by a larger number of non-
targets. Such a redundancy has another meaning in the
context of spin-glass systems, where it is indeed equal to
the local frustration (in the (t−o−t) triads with positive
J (tt)).

In contrast, apart from the two critical points T
(1)
c and

T
(2)
c , the fitness m does not depend on p. It follows

a unique curve, independent of p. Even though the in-

crease in genetic heterogeneity 1−Q for more non-targets
may perturb the target spin configuration, the fitness m
remains unchanged even for smaller p.

Then, we estimate the critical value of TJ below which
the R phase can exist. While this critical value denoted

by T
(Q)
J can depend on Ts, as see in Fig 2 and 3, it can

be approximately identified with the upper part of the

P2 phase from the phase diagram. In Fig. 4 (D) T
(Q)
J

is shown to decrease with p. This result together with
that in Fig. 4 (A) mean that the higher p is, the higher
selection pressure is needed to achieve robustness, but
once it is achieved, a system with larger p is more robust
with respect to phenotypic noise than one with smaller
p.

Finally, we examine the fitness as function of TJ at
fixed Ts = 1.3 for various p in Fig. 4 (E). While fitness
decreases with TJ , its behaviour with the increase in p is
non-monotonic. This behavior is further shown in Fig.

4 (F) where the critical genotypic noise T
(m)
J at which

the fitness becomes non-zero is plotted versus p. Similar

behavior is observed for others Ts ∈ [T
(1)
c , T

(2)
c ]. The

result supports p = 0.5 as the maximal value of T
(m)
J ,

suggesting the existence of an optimal fraction of target
spins to acquire high fitness in this intermediate range of
Ts [34].

MUTATIONAL SUSCEPTIBILITY AND
PHENOTYPIC SUSCEPTIBILITY IN THE

ROBUST FITTED PHASE

Correlation between variances of phenotypes due to
genetic changes and to noise has been discussed both in
experiments and simulations, and relationships to robust-
ness have been discussed both theoretically [9, 13, 35–38]
and experimentally [39–42]. In statistical physics, this
issue can be analyzed in terms of susceptibility, as it is
proportional to the variance. Then, we need to study the
susceptibility due to genetic mutation, in addition to the
standard susceptibility.

In the context of this model, mutations are defined
as those change of the genotypes Jij that might hap-
pen spontaneously and independently from the dynam-
ics specified previously. Let δΨi(δJjk) denote the change
of the average local magnetisation of a target spin i [43]
upon mutating a genotype Jjk → Jjk + δJjk. The muta-
tional susceptibility of this target spin w.r.t such a change
Mi,jk then can be defined as

Mi,jk = lim
δJjk→0

δΨi(δJjk)/δJjk =
〈
sisjsk

〉
−
〈
si
〉〈
sjsk

〉
.

In general, Jjk ∈ J = J(tt) ∪ J(oo) ∪ J(to). However, since
fitness is determined solely by the configurations of target
spins at equilibrium, we consider only Jjk ∈ J(tt) and
show that the average of this mutational susceptibility
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over all triples (i, j, k) ∈ T is equal to

M :=
1(
Nt
3

) ∑
(i,j,k)

Mi,jk = 2β2
Jmχm − βJ

∂3f

∂h3

∣∣∣
h=0

(13)

where χm := − limh→0 ∂
2f/∂h2 is the susceptibility of

target spins. The quantities M and χm correspond to
the susceptibility to mutation of the genotypes and sus-
ceptibility to perturbation by an external field, h, re-
spectively. We can expect that in the robust fitted phase
there exists a relation between M and χm [44]. In fact,
let X := limh→0 ∂

3fT /∂h
3. For L given in the SM Eq.

(18a) (L/βJ has the meaning of an effective Hamilto-
nian that is defined in the combined space {sai , σki } of
s-replicas and J-replicas), according to the definitions

X ∝
n∑

a,b,c=1

Tr (sasbsceL)/Tr (eL) ,

m := 〈sa〉 =
1

n

n∑
a=1

Tr (saeL)/Tr (eL) ,

χm := lim
h→0

∂m

∂h
=
βs
n

n∑
a,b=1

Tr (sasbeL)/Tr (eL) ,

the symmetry between different replicas in the robust
fitted phase implies that the third moment XRS is pro-
portional to the product of the first and second moments
mRSχRS

m . Therefore, approximately, M ∝ χRS
m . This pro-

portionality between the two susceptibilities, implying a
correlation between phenotypic changes due to genetic
variation and those in response to environmental pertur-
bations [45], does not exist in the RSB phase, as the
second term in Eq. (13) is no longer proportional to χm.

DISCUSSION

In the paper we propose a new approach towards bi-
ological evolution due to the interrelationship between
genotype and phenotype where fitness is determined
solely by the latter but not by the former. Though the
emergence of structured genotypes from initially random
couplings under this relation has been numerically re-
ported, apart from a study which imposed a specific con-
dition on the couplings [22], this has not been studied
analytically yet. We here are able to tackle this problem
thanks to what we termed double-replica theory. Within
this framework we obtain the phase diagram, that is clas-
sified not only by the fitness but also by the overlap in
dual replicas. The diagram is not only in good agreement
with previous studies (including paramagnet, t-ferro and
robust fitted phases, all existing at sufficiently low TJ),
but also contains previously undiscovered phases. These
include the first spin-glass phase SP1 and the second
paramagnet phase P2. The former corresponds to a sys-
tem with both target and non-target spins residing in a

spin-glass phase (at low selection pressure), while the lat-
ter corresponds to a paramagnetic phase for all spins but
with retaining genetic correlations encoding target- and
non-target couplings (at high selection pressure and high
Ts). Here even though the genotypes favor a high value
of fitness, due to large fluctuations induced by Ts, such
value can not be maintained over generations. The exis-
tence of the phase suggests that even though the average
fitness is zero due to large noise, there exists genetic pre-
cursor to generate individuals with non-zero fitness. The
relevance of this scenario to evolutionary biology, needs
to be explored in future, though.

The system can only acquire high fitness at some Ts ≤
T

(2)
c , where the fitness increases discontinuously. If Ts

is too low, then RSB will happen, to a phase without
genetic overlap, where biologically required robustness

of genotypes is lost. Hence a lower bound of Ts ≥ T (1)
c is

necessary to have RS and robustness, accordingly.

From this approach, the target-fraction dependence of
genotypic and phenotypic robustness can also be under-
stood quantitatively. Such dependence is quantified via
the behaviour of the fitness m and genetic redundancy

1−Q in the robust region bounded by T
(1)
c and T 2

c . Here
we find that a genetically homogeneous population can
only be robustly reproduced under a sufficiently high se-
lection pressure and under a sufficient level of phenotypic
noise (temperature). As the fraction of target spins is in-
creased, the robust fitted phase is slightly expanded to a
higher temperature, whereas higher selection pressure is
needed to achieve it. The existence of an optimal fraction
for attaining high fitness under intermediate phenotypic
noise is suggested. This may explain why, in biological
systems, such as in proteins, the fraction of units that are
responsible for function is generally limited, and a suffi-
cient fraction of non-functional units is needed, providing
redundancy.

In the present theory, the proportionality between the
standard thermodynamic susceptibility and mutational
susceptibility is derived in the robust fitted phase. As
the susceptibility measures the change of fitness due to
varying conditions, a correlation between responses to en-
vironmental perturbations and that by genetic changes is
suggested. Such correlation, or evolutionary fluctuation-
response relationship [9, 13, 35–38] has been observed
in experimental data from the evolution of protein dy-
namics and bacterial protein expressions, whereas we
can derive it here under replica symmetry assumption.
As argued in [13], such correlation can only be achieved
in the replica symmetric region where the original high-
dimensional dynamics of the phenotypes are reduced to
a low-dimensional manifold due to evolution towards ro-
bustness. The variation of fitness due to noise and that
due to mutation then happen to occur along the same
low-dimensional manifold, resulting in a correlation be-
tween them. If RSB occurs, such restriction of the phe-
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notypic dynamics no longer exits, because in this case,
changes of fitness upon varying the environmental condi-
tions will vary arbitrarily from realisation to realisation
of the Jij ’s dynamics. As a result, the system will have
random, uncorrelated responses to noise and to muta-
tions.

In our formulation by assuming that the entire system
reaches an equilibrium, we approximate the effect of the
slowly-evolving J(to) that couple the subsystem ST to SO
on these subsystems’ own dynamics by the equilibrium
correlations 〈J (to)J (to)〉. Such correlations are then in-
corporated separately into each of the dynamics of the
J(tt) and J(oo) couplings by modifying the effective po-
tentials of these dynamics, thus making the dynamics of
these two different sets of coupling independent of each
other. In an equilibrium statistical physics formulation,
this leads to the necessity of introducing another type
of replica, so-called coupling-replicas into the partition
functions, besides the first (standard) spin-replicas that
take care of the effect of the phenotypes on the evo-
lution of genotypes. This scheme hence allows us to
treat the model in a standard mean-field manner. On
one hand, being of mean-field nature, our approach can
not provide a formal argument to support the hypothesis
of [13] about the emergent dimensional reduction from
phenotype-genotype co-evolution. On the other hand,
the correlation between the mutational- and environmen-
tal susceptibility in the robust fitted phase suggests the
existence of a funnel-like landscape [46, 47] that rein-
forces the dynamics to reside in a low-dimensional man-
ifold by a global attraction.

The current choice of fitness for the sake of simplicity,
however, limits the possibility of having different global
maxima in the fitness landscape. One can enrich the
model behavior by determining fitness either by a com-
bination of Nfit different target spin configurations or by
a set of gauge-equivalent configurations.

In the present framework, since the couplings are sym-
metric, we constructed the effective potential of the cou-
pling dynamics based partly on the existence of an energy
landscape. For those models in other contexts [48, 49]
having such a landscape picture, we expect a straight-
forward application of our approach. Furthermore, the
present double-replica theory can be extended to those
stochastic dynamical systems that are not governed by
Hamiltonian dynamics as well. In this case, instead of the
effective potential and its associated partition function,
one would need to charaterize the ensemble of trajecto-
ries in the combined space of phenotypes and genotypes,
using the moment generating function [50, 51]. While
we so far have solely used phenotypes and genotypes as
the main example of our approach, such an extension
would allow for the applications to co-evolution of gene-
expression patterns and the gene-regulatory networks [9],
that of species abundances and their ecological networks
[52], and that of neuronal activities and network shaped

by neural dynamics (learning) [53, 54].

We acknowledge support from Novo Nordisk Foun-
dation and would like to thank Ayaka Sakata, Koji
Hukushima and Yoshiyuki Kabashima for stimulating
discussion.
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SUPPLEMENTAL MATERIAL

A. Details of the SHK model

In the following we call the model originally introduced in [14, 15] as the SHK model. In this model, phenotypes
are spin configurations, and genotypes are the interaction matrix for spins. In a system of N spins, each spin i can
take values si ∈ {−1, 1} and is linked to exactly N −1 other spins, thus forming a fully-connected network. Moreover,
fitness is determined by a subset of target spins denoted by T . Those spins that do not contribute to the fitness are
called non-target. The fitness Ψ at a noise level Ts is determined by the spin configurations at equilibrium as

Ψ(s) =
1

Nt

〈∣∣∣∑
i∈T

si

∣∣∣〉
Ts

, (14)

where 〈·〉Ts is the thermal average according to an equilibrium distribution over spin configurations only. Such
distribution is computed from the partition function of a spin-glass Hamiltonian HS = −

∑
i<j Jijsisj [23] in

which the couplings Jij are regarded as fixed over the course of the spin dynamics because they are assumed
to evolve on much slower timescale than that of the spins. Here the couplings are symmetric, i.e. Jij = Jji,
and are independently and identically distributed by a Gaussian distribution with zero mean and the variance
J2 := var(Jij) = N−1. The model Hamiltonian of the full system is given by

HS = −
∑
i<j

Jijsisj (15)

Once the spins have relaxed to an equilibrium at a temperature Ts via a Glauber update specified by HS , the
couplings are next updated with probability Pr

[
J→ J̃

]
= min

{
1, eβJ∆Ψ

}
, where ∆Ψ = Ψ(J̃)−Ψ(J) and βJ ≡ 1/TJ

is the genotypic selection pressure. These two dynamics are implemented consecutively one after another until the
entire system equilibrates. Implementing this way, the model captures the evolution of feedback process between
the phenotype and genotype, where the phenotype dynamics are represented by the stochastic dynamics of spins
(s) according to the energy landscape HS for given genotype (J), whereas the evolution of genotype is given by the
stochastic change of (J) according to the fitness Ψ(s) determined by the phenotype. On the contrary to more common
theories of evolution, this model hence explicitly considers the co-evolution of these coupled landscapes.

B. Replica symmetric ansatz solution and the expression of Ikz and Ĩk

The partition functions are given in terms of the target and the non-target free energy densities, fT (m,q, r,Q,M)
and fO(m̃, q̃, r̃, Q̃, M̃), respectively, by

ZT =

∫
DmDqDrDQDM e−βJNpfT (m,q,r,Q,M) (16a)

ZO =

∫
Dm̃Dq̃Dr̃DQ̃DM̃ e−βJN(1−p)fO(m̃,q̃,̃r,Q̃,M̃) (16b)

where

fT =
1

2

{∑
a<b

q2
ab

n2
+
∑
k<k′

Q2
k,k′

(N − t)2
+

1

n(N − t)
∑
a,k

M2
ak

}
− 1

βJ
ln

∑{
si;sα;σk

}
i∈T

eL (17a)

fO =
1

2

{
K̃
∑
a

m̃2
a

n
+ K̃

∑
k

r̃2
k

t
+
∑
a<b

q̃2
ab

n2
+
∑
k<k′

Q̃2
k,k′

t2
+

1

nt

∑
a,k

M̃2
ak

}
− 1

βJ
ln

∑{
sα;σk

} eL̃ (17b)
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L =
βJ
4Nt

∣∣∣∑
i∈T

si

∣∣∣2 − βJ
2

∣∣∣∑
i∈T

si

∣∣∣ [ n∑
a=1

m2
a

n
+

N−Nt∑
k

r2
k

N −Nt

]

+ βJ

 1

Nt

∣∣∣∑
i∈T

si

∣∣∣ [ n∑
a=1

mas
a

n
+

N−Nt∑
k

rkσ
k

N −Nt

]
+

n∑
a<b

qabs
asb

n2
+

N−Nt∑
k<k′

Qkk′σ
kσk

′

(N −Nt)2
+
∑
a,k

Maks
aσk

n(N −Nt)

 (18a)

L̃ = βJ

K̃
n

n∑
a=1

m̃as
a +

K̃

Nt

Nt∑
k

r̃kσ
k +

1

n2

n∑
a<b

q̃abs
asb +

1

N2
t

Nt∑
k<k′

Q̃kk′σ
kσk

′
+

1

nNt

∑
a,k

M̃aks
aσk

 (18b)

Denoting DxDy = e−(x2+y2)/2

2π dxdy and Az(m, r) = βJ
4

(Nt−2z)2

N2
t
− βJ

2
|Nt−2z|
Nt

(
m2 + r2

)
we have

Ik,z =

∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJr

|1− 2z|
Nt

)}
×
[
cosh

(
βsm

|Nt − 2z|
Nt

+ x

√
βJq

n
+
βJM

n

N −Nt − 2k

N −Nt

)]n
(19a)

Ĩk =

∫
DxDy exp

{
Nt − 2k

Nt

(
y

√
βJQ̃+ βJK̃r̃

)} [
cosh

(
βsK̃m̃+ x

√
βJ q̃

n
+
βJM̃

n

Nt − 2k

Nt

)]n
(19b)

The argument of the cosh(·) function will be denoted by

Ω = βsm
|Nt − 2z|

Nt
+ x

√
βJq

n
+
βJM

n

N −Nt − 2k

N −Nt
, Ω̃ = βsK̃m̃+ x

√
βJ q̃

n
+
βJM̃

n

Nt − 2k

Nt
(20)

The replica symmetric free energy densities given in the main text yield the extremum condition after setting K̃ = 0

m =

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω)

]n
tanh(Ω)

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω(x, q,M))

]n

q =

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω)

]n[
tanh(Ω)

]2
Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω)

]n

Q = − 1

N −Nt
+

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)(
N −Nt − 2k

N −Nt

)2

Ik,z

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)
Ik,z

, r =

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)
N −Nt − 2k

N −Nt
Ik,z

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)
Ik,z

M =

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)
N −Nt − 2k

N −Nt

∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω

]n
tanh(Ω)

Nt∑
z=0

(
Nt
z

)N−Nt∑
k=0

(
N −Nt

k

)∫
DxDy exp

{
Az +

N −Nt − 2k

N −Nt

(
y
√
βJQ+ βJrθz

)} [
cosh(Ω)

]n
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m̃ =

Nt∑
k=0

(
Nt
k

)∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n
tanh(Ω(x, m̃, q̃, M̃))

Nt∑
k=0

(
Nt
k

)∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n

q̃ =

Nt∑
k=0

(
Nt
k

)∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n[
tanh(Ω(x, m̃, q̃, M̃))

]2
Nt∑
k=0

(
Nt
k

)∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n

Q̃ = − 1

Nt
+

Nt∑
k=0

(
Nt
k

)(
Nt − 2k

Nt

)2

Ĩk

Nt∑
k=0

(
Nt
k

)
Ĩk

, r̃ =

Nt∑
k=0

(
Nt
k

)
Nt − 2k

Nt
Ĩk

Nt∑
k=0

(
Nt
k

)
Ĩk

M̃ =

Nt∑
k=0

(
Nt
k

)
Nt − 2k

Nt

∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n
tanh(Ω(x, m̃, q̃, M̃))

Nt∑
k=0

(
Nt
k

)∫
DxDy exp

{
Nt − 2k

Nt
y
√
βJQ

} [
cosh(Ω(x, m̃, q̃, M̃))

]n

C. Phase diagram of the order parameters of the non-target spins and that of the eigenvalue of the Hessian

Here we support the main text with the phase diagram for the order parameters of the non-target spins in Fig. 5
and that for the third-largest eigenvalue of the Hessian Λ3 in Fig. 6. We also depict the dependence of the drop in

fitness at T
(1)
c denoted by ∆m = 1−m on the fraction of non-target spins in Fig. 7. At the critical number of target

spins N
(c)
t this change has a minimal value ∆mmin. Once subtracted ∆m from ∆mmin, we find a linear relationship

exists between ∆m−∆mmin and 1−Q. Such relationship is demonstrated Fig. 7 (C). We finally measure how much

fitness changes under a transition from robust to paramagnet phase at T
(2)
c . We denote this kind of drop by m∗ in

Fig. 7 (D), where we find a decrease of m∗ with increasing p, implying that fitness is more robust at higher p.
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FIG. 5. Magnetisation for non-target spins m̃ (A). Overlap between different replicas for non-target spins q̃ (B). Averaged

correlation of a pair of couplings between a target and a non-target spin that share a common target spin Q̃ (C). Averaged

value of the link J(oo) among non-target spins Φ̃ (D). Here Nt = 10, N = 100. Note the y-axis is on logarithmic scale.
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the transition between Q = 0 and Q > 0. Here Nt = 10 and N = 100. Note the y-axis is on logarithmic scale.
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FIG. 7. (A). A zoom-in of Fig. 4 (A) in the region nearby T
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c . (B). The drop of fitness subtracted from the minimal value

∆mmin as a function of the fraction of non-target spins. Here ∆mmin is defined as the drop of magnetisation at the critical
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)
is the drop of of fitness at T
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c . (C). Linear

relationship between the frustration 1−Q and ∆m−∆mmin at T
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c . (D) The drop m∗ of fitness at T

(2)
c . Here N = 100.
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