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Synchronization transition of the second-order Kuramoto model on lattices
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The second-order Kuramoto equation describes synchronization of coupled oscillators with iner-
tia, which occur in power grids for example. Contrary to the first-order Kuramoto equation it’s
synchronization transition behavior is much less known. In case of Gaussian self-frequencies it is
discontinuous, in contrast to the continuous transition for the first-order Kuramoto equation. Here
we investigate this transition on large 2d and 3d lattices and provide numerical evidence of hybrid
phase transitions, that the oscillator phases θi, exhibit a crossover, while the frequency spread a
real phase transition in 3d. Thus a lower critical dimension dOl = 2 is expected for the frequencies
and dRl = 4 for the phases like in the massless case. We provide numerical estimates for the critical
exponents, finding that the frequency spread decays as ∼ t−d/2 in case of aligned initial state of the
phases in agreement with the linear approximation. However in 3d, in the case of initially random
distribution of θi, we find a faster decay, characterized by ∼ t−1.8(1) as the consequence of enhanced
nonlinearities which appear by the random phase fluctuations.

I. INTRODUCTION

Synchronization within interacting systems is an ubiq-
uitous phenomenon in nature. It has been observed in
biological, chemical, physical, and sociological systems.
Much effort has been dedicated for theoretical under-
standing of its general features [1–3]. A paradigmatic
model of N globally coupled oscillators was introduced
and solved in the stationary state in the limit N → ∞ by
Kuramoto [4] and later the macroscopic evolution of the
system was shown to be governed by a finite set of non-
linear ordinary differential equations [5]. An interesting
property of the so-called first-order Kuramoto model is
that it has a continuous phase transition, with a diverg-
ing correlation size, separating a synchronized phase from
an unsynchronized one. Due to the chaoticity, emerging
from nonlinearity, it obeys a scaling theory, analogous to
stochastic systems at the critical point and the whole set
of critical exponents are known [4–7]. The corresponding
universality class is termed as mean-field since, due to
the all-to-all coupling, the individual oscillators interact
with a mean-field of the rest of the oscillators. A chal-
lenging research direction aims at studying the possibil-
ity and nature of synchronization transitions in extended
systems, where oscillators are fixed at regular lattice sites
of finite dimension d and the interaction, in the extreme
case, is restricted to nearest-neighbors [6, 8–10].
The so-called second-order Kuramoto model was pro-

posed to describe power grids, analogous to the swing
equation of AC circuits [11]. This is the generalization
of the Kuramoto model [4] with inertia. One of the
main consequences of this inertia is that the second-order
phase synchronization transition, observed in the mean-
field models of the massless first-order Kuramoto models
turns into a first-order one [12].
However, in lower dimensions this has not been studied

systematically. In [13] numerical integration on 2d lat-
tices suggested crossover transitions, with hysteresis in
case of the phase order parameter. Note, that due to the

inherent heterogeneity of the quenched self-frequencies
ωi(0) of the nodes, rare-region effects may occur, leading
to frustrated synchronization and chimera states [13–16].

As real power grids are connected via complex net-
works, topological heterogeneity are also present, which
can smear a phase transition, strengthening possible rare-
region effects. However, even if topological heterogeneity
are not present, it is still not proven yet whether the
massive model exhibit real phase transitions at low di-
mensions. Only conjectures, that the massive model has
the same lower and upper critical dimensions as the first-
order Kuramoto model 1, are available. Accordingly,
mean-field phase transition for d ≥ 4 of the phase or-
der parameter and a crossover below it [2] should occur
2. Thus, the upper and lower critical dimensions may be
identical: dc = dl = 4.

For the frequency entrainment of the massless model
the lower critical dimension is expected to be at dOl = 2
similar to the Mermin-Wagner theorem [17] for the pla-
nar XY spin model and is supported by finite size scaling
analysis [9]. Thus, for intermediate dimensions 2 < d <
4, real, nontrivial continuous phase transition should oc-
cur. Analogously, for the massive case [13, 16, 18], en-
trainment phase transition is also expected for dimen-
sions 2 < d < 4, as a very recent power-grid study [16]
has indicated it for networks with graphs dimensions
2 < d < 3.

This has recently been published for the high voltage
power-grid networks of the USA and Europe and now we
shall investigate it in case of pure 2d and 3d lattices, using
finite size scaling. In that work the linear approximation,
which is expected to be valid for large couplings, provided
a frequency spread decay law Ω ∼ t−d/2 [16]. Now we

1 in case of single peaked self-frequency distribution
2 However, even the dc = 4 conjecture is debated, some studies
concluded dc = 5 or higher [9].
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test the applicability of this approximation at the phase
transition points.
Besides the dynamical scaling the frequency order pa-

rameter exhibited a hysteresis and a discontinuity [16],
which is known in statistical physics [19], termed as
hybrid or mixed type of phase transition, for example
at tricriticality [20, 21], or in other nonequilibrium sys-
tems [22–24]. Now we investigate in detail this transition,
which arises by the inertia in the Kuramoto model and re-
sults in hysteresis as we change the synchronization level
of the initial states.

II. MODELS AND METHODS

A. The second-order Kuramoto model

Time evolution of power grids synchronization is de-
scribed by the swing equations [25], set up for mechani-
cal elements with inertia. It is formally equivalent to the
second-order Kuramoto equation [11], for a network of N
oscillators with phases θi(t):

θ̇i(t) = ωi(t) (1)

ω̇i(t) = ωi(0)− αθ̇i(t) +K

N
∑

j=1

Aij sin[θj(t)− θi(t)] .

Here α is the damping parameter, which describes the
power dissipation, or an instantaneous feedback [18], K
is the global coupling, related to the maximum transmit-
ted power between nodes and Aij , which is the adjacency
matrix of the network, containing admittance elements.
The quenched self-frequency of the i-th oscillator is ωi(0),
which describes the power in/out of a given node when
Eq. (1) is considered to be the swing equation of a cou-
pled AC circuit, but here we have chosen it zero centered
Gaussian random variable as rescaling invariance of the
equation allows to transform it within a rotating frame.
In our present study the following parameter settings

were used: the dissipation factor α, is chosen to be equal
to 0.4 to meet expectations for power-grids, with the [1/s]
inverse time physical dimension assumption. For model-
ing instantaneous feedback, or increased damping param-
eter we also investigated the α = 3.0 [1/s] case, similarly
as in [16, 18].
To solve the differential equations in general we used

the adaptive Bulirsch-Stoer stepper [26], which provides
more precise results for large K coupling values than
the Runge-Kutta method. The solutions depend on the
ωi(0) values and become chaotic, especially at the syn-
chronization transition, and thus to obtain reasonable
statistics, we needed strong computing resources, using
parallel codes running on GPU clusters. The correspond-
ing CUDA code allowed us to achieve ∼ 100× speedup
on GeForce GTX 1080 cards as compared to Intel(R)
Core(TM) i7-4930K CPU @ 3.40GHz cores. The details
of the GPU implementation will be discussed in a sepa-
rate publication [27].

We obtain larger synchronization if the initial state
is set to be fully synchronized, with phases: θi(0) = 0,
but due to the hysteresis one can also investigate other
uniform random distributions like: θi(0) ∈ (0, 2π). The

initial frequencies were set as: θ̇i(0) = ωi(0).
To characterize the phase transition properties, both

the phase order parameter R(t) and the frequency spread
Ω(t), termed the frequency order parameter, will be stud-
ied. We measured the Kuramoto phase order parameter:

z(tk) = r(tk) exp iθ(tk) = 1/N
∑

j

exp [iθj(tk)] , (2)

by increasing the sampling time steps exponentially:

tk = 1 + 1.08k , (3)

where 0 ≤ r(tk) ≤ 1 gauges the overall coherence and
θ(tk) is the average phase. The set of equations (1) were
solved numerically for 103−104 independent initial condi-
tions, initialized by different ωi(0)-s and different θi(0)-s
if a disordered initial phases were invoked. Then sample
averages for the phases

R(tk) = 〈r(tk)〉 (4)

and for the variance of the frequencies

Ω(tk, N) =
1

N

N
∑

j=1

(ω − ωj)
2 (5)

were determined, where ω(tk) denotes the mean fre-
quency within each respective sample.
In the steady state, which we determined by visual

inspection of the mean values R(tk), we measured the
standard deviations σ(R) of the order parameters R(tk)
in order to locate the transition point by fluctuation max-
ima. While the transition point for Ω(tk, N) is charac-
terized by a sudden drop of the Ω(t → ∞, N) or by an
emergence of an algebraic decay of Ω(t) as we increase
K. In case of the first-order Kuramoto equation the fluc-
tuations of both order parameters show a maximum at
the respective transition points [28]. For the second-order
Kuramoto, only the σ(R(tk)) seems to have a peak at K ′

c,
while for Ω(tk, N) we located a different transition point
Kc, where the saturation to steady state value changed
to a decay in the t → ∞ limit.

B. Linear approximation for the the frequency

entrainment

In Ref. [16], we showed that, similar to the first-order
Kuramoto model, the frequency order parameter (5) de-
cays as Ω ∝ t−d/2 on a d-dimensional lattice in the large
system size and large coupling constant limit [9]. By ap-
plying the linear approximation sin(x) ∝ x and casting
the continuum second-order Kuramoto equations into the
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momentum space, the phase velocity [ω(x, t) ≡ θ̇(x, t)] is
obtained [16]

ω(k, t) =e−
1

2
t(α+∆)

[

ω(k, 0)
(

(∆ + 2− α)e∆t

+ α+∆− 2
)

− 2Kk2θ(k, 0)
(

e∆t − 1
)

]

/2∆ ,

(6)

where ∆ =
√
α2 − 4Kk2. When initial disordered con-

dition is considered, say θ(x, 0) is uniformly distributed
over (0, θmax), one has 〈θ(x)θ(x′)〉 = θ2max/4, suggest-
ing that 〈θ(k, 0)θ(k′, 0)〉 = δd(k)δd(k′). Hence, in
the linear approximation, disorder from the initial con-
dition doesn’t affect the frequency spread (note that
〈ω(k, 0)θ(k, 0)〉 = 0) and we have (the same as in
Ref. [16]):

Ω(t) =
1

Ld

∫

ddx〈[ω(x, t)− ω̄(t)]2〉

=Cd

∫ π/a

2π/L

dkkd−1 e
−t(α+∆)

4∆2

[

α+∆− 2

+ (∆− α+ 2)e∆t
]2

, (7)

where ω̄(t) denotes the spatial average of ω(x, t), while a
and Cd are the lattice spacing and the geometric factor,
respectively.
As shown in Ref. [16], Eq. (7) gives rise to the t−d/2

law that manifests a rapid cutoff for large couplings in
a typical finite system, whereas in the regime where a
linear approximation is invalid, weak couplings fail to
maintain a narrow frequency entrainment and Ω is bound
to be stationary after some time. Hence, a frequency
entrainment phase transition, from finite stationary Ω
value to infinitely decaying Ω is expected.

III. SYNCHRONIZATION TRANSITION IN 2D

We solved the system of equations (1) on large square
lattices with periodic boundary conditions for linear
sizes: L = 200, 400, 1000, 2000. The self-frequencies
were chosen randomly from a zero centered Gaussian dis-
tribution with unit variance. The order parameters were
calculated by ensemble averages over many samples.

A. Frequency entrainment phase transition

It is known that the frequency order parameter (5) de-
cays as Ω ∝ t−d/2 in case of the first-order Kuramoto
model in the large coupling limit if we start from a ran-
dom initial state [9]. We have also shown that the same
is true for the second-order Kuramoto model in the lin-
ear approximation in [16]. Now we investigate this at the
neighborhood of frequency entrainment transition point.
As Fig. 1 shows the density decays as Ω ∝ t−1 at the

critical coupling strength: Kc = 3.4(1) in the case of

ordered phase initial conditions, for α = 3 damping fac-
tor. The decay behavior follows the same power law for
K ≥ Kc before the finite size cutoff can take effect, and
we see a saturation to finite values for K < Kc.
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FIG. 1: The frequency spread in 2d at α = 3 for different
K values, shown by the legends, for L = 2000, in case of
ordered initial conditions. The dashed line marks a numerical
fit at the critical point Kc = 3.4(1) with t−d/2. Inset: finite
size scaling of the frequency entrainment transition point Kc

for various system sizes in 2d (black asterisks) and 3d (red
boxes), for α = 3 and ordered initial conditions. One can see
a logarithmic growth in 2d and a convergence to Kc = 1.15(5)
constant value in 3d.

The same is true for α = 0.4: following a longer initial
transient we can see a decay at Kc = 3.5(5) characterized
by Ω ∝ t−1. as shown by Fig. 2. An exponential finite
size cutoff occurs already for t > 1000 in contrast to the
α = 3 case, where this happened above t > 104.
For smaller system sizes the Kc-s do not move a lot,

as we can see from the inset of Fig. 1. The available
data precision restricts finite size scaling, but still we
attempted it as shown in the inset of Fig. 1. Assuming
a logarithmic growth dependence, which is expected at
the lower critical dimension [9] we obtained Kc(1/L) ∝
−1.7(1) ln(1/L).
In the case of fully disordered initial conditions, θi(t =

0) ∈ (0, 2π), we found the same behavior as in case of the
fully phase synchronized starts, as one can see on Fig. 3
for α = 3 and Fig. 9 for α = 0.4 shown in the Appendix.
The steady state values, appearing for t > 104 near

the critical point of the α = 0.4 damping factor case are
also determined and plotted in the inset of Fig. 2 for
L = 200. We can see two branches, depending on the
initial conditions. The upper branch corresponds to the
disordered, the lower to the fully ordered initial states.
Thus we can see a hysteresis like behavior near the phase
transition. But the approach of Ω(K → Kc) is rather
smooth, which is not surprising at a crossover point.
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FIG. 2: The frequency spread in 2d at α = 0.4 for different
K values, shown by the legends, for L = 2000, using ordered
initial conditions. The dashed line marks a numerical fit at
the critical point Kc = 3.5(5) with t−1.03(3). Inset: Steady
state values obtained by starting from ordered (black bullets)
and disordered (red boxes) initial conditions.
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dered initial conditions. The dashed line marks a numerical
fit at the critical point at Kc = 8.0(5) with t−1.09(5). Inset:
Part of the hysteresis loop of R in 2d obtained by ordered
(black bullets) and disordered (red boxes) initial conditions
for α = 3 and L = 200.

B. Phase order parameter transition

We determined the steady state values of R(t, L) by
starting the systems from fully phase coherent states up
to tmax = 104–5 × 104 followed by a visual inspection.

For a certain system size L, we obtain the dependence of
the stationary phase order parameter R∞ on K. Fig. 4
shows one such example for L = 200 and α = 3 in
2d. The transition point K ′

c then could either be lo-
cated by the peaks of σ(R) as chaoticity take maximum
value at K ′

c [16, 28, 29], or be estimated by the half value
R(L,K ′

c) ≃ 0.5. However, this transition point did not
coincide with the critical point Kc determined by the or-
der parameter Ω.
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FIG. 4: Steady state Kuramoto order parameter in 2d and
its variance at α = 3 at different K values for L = 200. Inset:
R(t, L = 200) for K = 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14,
20, 25, 35, 45 (bottom to top curves).

As remarked in the Introduction section, we conjecture
that the Kuramoto order parameter R exhibits a real
discontinuous transition above dRl > 4, while for d ≤ dRl a
crossover transition ensues. To verify this conjecture, we
estimate the transition point K ′

c and check if it diverges
in an infinite system. The crossover transition nature
(rather than a real transition) is immediately clear as
demonstrated by Fig. 5, in which we see an evident shift
of the transition point as the system size is varied. The
σ(R) also become wider and wider as we increase the size.

Particularly, the inset suggest that the transition point
shifts linearly with L in 2d [K ′

c(L) ∝ L]. Hence the tran-
sition points exhibit a power-law growth with exponents,
suggesting that K ′

c(L) → 0 as L → 0 and K ′

c(L) → ∞ as
L → ∞.

For disordered initial conditions we can find much
lower steady state values indicated by the inset of Fig.3.
The hysteresis loop closes at very large K values only, as
was also demonstrated in [16] for power-grid networks.
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FIG. 5: Finite-size behavior of R in 2d for α = 3 and ordered
initial conditions, shows a crossover. Inset: finite-size scaling
of K′

c as estimated by the half values of R (black boxes) and
by the σ(R) peaks (red bullets) exhibit a linear growth.

IV. SYNCHRONIZATION TRANSITION IN 3D

In 3d, following the results of the first-order Kuramoto
model we expect a real phase transition of the frequency
order parameter, but a crossover for the phases. Simi-
larly to 2d we solved the system of equations (1) on large
cubic lattices with periodic boundary conditions for lin-
ear sizes: L = 50, 100, 150, 200, 250 in order to perform
finite size analysis.

A. Frequency entrainment phase transition

In case of phase ordered initial states the frequency
spread decays with the law Ω(t) ∝ t−d/2 above Kc ≃ 1.1,
followed by a finite-size cutoff as shown on Fig. 6 for L =
200. Doing the finite-size scaling of the transition point,
we find that Kc does not change within error margins for
L ≥ 150 and we estimate a finite value: Kc = 1.15(5) as
shown in the inset of Fig. 1.
However, in case of the fully random phase initial con-

dition the decay at the critical point seems to deviate
from the t−d/2 law. It can be be fitted by Ω(t) ∝ t−1.8(1)

at K = Kc ≃ 7 as shown on Fig. 7. Note, that around
criticality, in the t > 103 region, where finite-size ef-
fects emerge, the slope of curves increases, suggesting
a nontrivial correction like in case of the first-order Ku-
ramoto model [10]. Due to the limited computing power,
this excludes the possibility to see a crossover towards a
Ω(t) ∝ t−d/2 asymptotic behavior obtained by the lin-
ear approximation. We have investigated this behav-
ior for other levels of randomness in the initial state
θmax = 1, 1.75, 1.9, but found it only at the fully random
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FIG. 6: The frequency spread in 3d at α = 3 for K = 0.1,
0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.1, 2 (top to bottom
curves) for L = 200 linear sized lattices and phase ordered
initial conditions. The dashed line marks a numerical fit at
the critical point Kc = 1.02(2) with t−d/2. Inset: Steady state
values obtained by starting from ordered (black bullets) and
disordered (red boxes) initial conditions.

phase case.
In the case with disordered initial conditions, the level-

off of Ω(t), thus Kc also occurs at a much higher cou-
plings, than in the ordered initialization case as the con-
sequence of the phase transition. Therefore, we conjec-
ture a possible different scaling behavior, if any, at the
higher Kc value. The steady state behavior of Ω is also
shown in the inset of Fig. 6. At first sight it may not sug-
gest a discontinuous transition, but as we applied log-log
scales, to observe the rapid changes two branches emerge
and we can see the occurrence of a wide hysteresis loop
as the consequence of different initial conditions.

B. Phase order parameter transition

We determined the Kuramoto order parameter val-
ues in the steady state for cubes with linear sizes L =
50, 100, 150, 200, 150, using α = 3 and ordered initial con-
ditions. We display the results for L = 100 in the Ap-
pendix; see Fig. 10. We attempted a finite size scaling
analysis as in 2d, as shown on Fig. 8. The σ(R) dis-
tributions are getting very smeared as L → ∞, making
it difficult to locate the peaks. But still, a reasonable
power-law fit could be obtained, in agreement with the
half value method described in Sec. III B: K ′

c ∝ L0.42(1),
as one can see in the inset of Fig. 1. Thus, we still find
a crossover behavior in 3d, with a lower K ′

c growth ex-
ponent than in 2d, which is expected to decrease as we
increase the dimension approaching the lower critical di-
mension.
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0 1 2 3 4 5
K’

0

0.2

0.4

0.6

0.8

1

R

L=50
L=100
L=150
L=200
L=250

100

L

1K
’ c

Half values, L
0.42(1)

σ(R) peaks

FIG. 8: Finite-size behavior of R in 3d for α = 3 and ordered
initial conditions, shows a crossover. Inset: finite-size scaling
of K′

c as estimated by the half values of R (black bullets) as
well as by the σ(R) peaks (red boxes) exhibit a power-law
growth.

V. CONCLUSIONS

We have performed an extensive numerical study of the
synchronization transition of the second-order Kuramoto
model in 2 and 3 dimensions. We provided numerical
evidence that while the phase order parameter exhibits
crossover transition, which diverges with the system size
in a power-law manner, the frequency spread order pa-

rameter exhibits real phase transition in 3d. In the lat-
ter case the finite size dependence of the critical point
is negligible on the system sizes we investigated and the
transition point for an infinite system, estimated through
extrapolation is also very close to those measured in fi-
nite systems, except for a logarithmic correction in 2d.
The transition of both order parameters exhibit hystere-
sis behavior though, with the steady state values, which
depend on the initial conditions.

However, the variance of R, representing chaoticity
over initial self frequency choices, has a smeared peak
around the crossover point, with growing spread as we in-
crease L. This makes the location of the crossover point
hard to determine, but we used an alternative method,
using half values of R, consistent with the peak locations,
as a reliable way to obtain it. While the K ′

c(L) grows lin-
early with L in 2d, in 3d we found a nontrivial power-law
dependence: K ′

c(L) ∝ L0.42(1).

For the Ω order parameter we did not find a peak at the
critical point, in contrast with the case of the massless
Kuramoto model, in agreement with a first-order type
phase transition behavior. However, we found asymp-
totic power-law decay: Ω(t) ∝ t−d/2 for K ≥ Kc, which
agrees with the linear approximation result. This allowed
us to perform a crude finite size scaling of Kc, which ex-
hibits a logarithmic growth of Kc in 2d and a saturation
in 3d. Thus, similarly to the massless Kuramoto [9] we
claim dOl = 2 for the lower critical dimension.

We also found a deviation from the linear approxima-
tion law in d = 3 in case of disordered initial states:
Ω(t) ∝ t−1.8. This behavior might be the consequence of
a slow crossover in time or the nonlinearities due to the
phase fluctuations on the upper branch of the frequency
order hysteresis curve. This behavior may be observable
in real-power grid situations, as we found in [16], in case
of larger damping factors. For α = 0.4 this anomalous
power-law region is less extended, but this is true for all
PL-s we see: the damping factor elongates the scaling
regions in agreement with the rescaling invariance of the
differential equation, shown in [16].

The coexistence of power-law dynamics of Ω and the
hysteresis in the steady sates thus classifies this as a hy-
brid or mixed type of phase transition, which would be
interesting to study further.
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Appendix

In this appendix we show results in 2d for the Ω(t)
decay solution in case of disordered initial conditions at
α = 0.4.
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the critical point at Kc = 9.5(5) with t−0.96(5).

Furthermore, we also plot the steady state behavior
of R in 3d, for α = 3, at L = 100 and ordered initial
conditions. One can observe a peak in σ(R) at K ≃ 0.85,
where R ≃ 0.5.
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FIG. 10: Steady state Kuramoto order parameter and its vari-
ance at α = 3 for different K values for L = 100. Inset:
R(t, L = 100).
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