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The bulk-boundary correspondence relates topologically-protected edge modes to bulk topological
invariants, and is well-understood for short-range free-fermion chains. Although case studies have
considered long-range Hamiltonians whose couplings decay with a power-law exponent α, there
has been no systematic study for a free-fermion symmetry class. We introduce a technique for
solving gapped, translationally invariant models in the 1D BDI and AIII symmetry classes with
α > 1, linking together the quantized winding invariant, bulk topological string-order parameters
and a complete solution of the edge modes. The physics of these chains is elucidated by studying
a complex function determined by the couplings of the Hamiltonian: in contrast to the short-range
case where edge modes are associated to roots of this function, we find that they are now associated
to singularities. A remarkable consequence is that the finite-size splitting of the edge modes depends
on the topological winding number, which can be used as a probe of the latter. We furthermore
generalise these results by (i) identifying a family of BDI chains with α < 1 where our results
still hold, and (ii) showing that gapless symmetry-protected topological chains can have topological
invariants and edge modes when α− 1 exceeds the dynamical critical exponent.

Introduction. The bulk-boundary correspondence is
a central concept in the study of topological phases of
matter [1–17]. This relates topologically stable edge ef-
fects with topological features of the bulk Hamiltonian.
A simple manifestation of this is in certain translation-
invariant quantum chains with time-reversal symmetry,
where the Hamiltonian on a periodic chain can be used
to define a winding number which counts the number
of topologically protected Majorana zero modes localised
at the edge [1, 4, 18–21]. Research on this topic has pre-
dominantly focused on the short-range case where lattice
Hamiltonians couple sites up to some finite range. In the
past decade there has been significant interest in quan-
tum systems with long-range interactions [22, 23]. This
has been motivated by proposals for, and progress in,
experimental systems, such as Ref. [24] for effective free-
fermion chains. Here long-range typically means that
couplings decay as a power of the distance [i.e., Hamilto-
nian terms acting between sites at distance r are O(r−α)].
Interesting physical effects have been observed including
algebraically localised edge modes and the breakdown of
the entanglement area law [25] and conformal symmetry
at criticality [26].

Regarding topological edge modes in such long-range
chains, most results in the literature concern the canon-
ical Kitaev chain [27] with additional long-range hop-
ping or pairing terms [22, 28–36]. (For interacting stud-
ies see Refs. [37, 38].) The long-range Kitaev chain sits
in the BDI symmetry class of free-fermion Hamiltoni-
ans [4, 8, 18, 39], and it is straightforward to see that for
α > 1 the bulk winding number remains well defined [30].
Very recently, Ref. [40] treated the free-fermionic phase
diagram in great generality and gave a proof that the
short-range phase classification is preserved in the long-
range case with α > d (in general dimension and symme-

try class). Work on the long-range Kitaev chain showed
that topological edge modes exist, but only in particular
models. This leaves open important questions for topo-
logical Majorana zero modes in long-range chains: when
do they exist, what is their connection to the bulk in-
variant, and what are their localisation properties at the
edge?

Here, we present the first systematic study of a whole
symmetry class, giving rise to a detailed bulk-boundary
correspondence in long-range chains. We focus on the
exemplary BDI class as mentioned above, although the
results carry over for the AIII class [41] which famously
includes the Su-Schrieffer-Heeger chain [42].

We show that the bulk invariant corresponds exactly to
the number of topological edge modes and give a rigorous
method to find the edge mode wavefunctions. Addition-
ally, we find that the bulk string-order parameters for
the short-range case continue to reveal the bulk topol-
ogy. We complement these results by outlining a princi-
ple for calculating the finite-size energy splittings for the
zero modes in long-range chains, that we call singular-
ity filling. Together with our analysis of the localisation
properties of the edge modes, this brings a number of
disparate results in the literature into a coherent picture.

The methods we use are from the mathematical theory
of Toeplitz determinants (see, e.g., [43]), a key technique
in the analysis of the two-dimensional Ising model [44].
We expect this approach to long-range chains to be fruit-
ful more generally.

We use the standard notation g(n) = O(h(n)) when
g(n) ≤ const × h(n) for n sufficiently large, and g(n) =
Θ(h(n)) when g(n) = O(h(n)) and h(n) = O(g(n)).
The model. Consider the BDI class of translation

invariant spinless free-fermions with time-reversal sym-
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metry:

HBDI =
i

2

∑
m,n∈sites

tm−nγ̃nγm. (1)

Here γn = cn + c†n [γ̃n = i(c†n − cn)] are the real [imagi-
nary] Majorana fermions constructed from spinless com-
plex fermionic modes cn on each site. The real cou-
pling coefficients tn are called α-decaying [40] if tn ≤
const(1 + |n|)−α. Assuming absolute-summability of the
tn (implied by α > 1) we can solve the closed chain by a
Fourier transformation and Bogoliubov rotation (see Ap-
pendix A). This information is summarised by the con-
tinuous complex function:

f(z) =

∞∑
n=−∞

tnz
n, z = eik 0 ≤ k < 2π. (2)

The eigenmode with momentum k is defined by the phase
of f(eik) and has energy εk = |f(eik)|. Thus, the Hamil-
tonian (1) is gapped when f(z) 6= 0 on the unit circle. In
that case, the argument of f(z) is well-defined, and we
have the winding number

ω = lim
ε→0

(
arg(f(ei(2π−ε)))− arg(f(eiε))

)
∈ Z. (3)

This is the bulk topological invariant, which cannot
change without a gap-closing if we enforce the absolute-
summability condition.
Bulk-boundary correspondence and edge mode

wavefunction. We now consider the Hamiltonian (1)
with open boundary conditions (we keep only the cou-
plings that do not cross the boundary). We first consider
the limit of a half-infinite chain, where edge modes have
zero energy (later we study finite-size splitting).

In this limit, the edge mode wavefunctions are zero-
eigenvectors of a Toeplitz operator, which can be solved
using the Wiener-Hopf method. More directly, define a
real Majorana zero mode as γL =

∑∞
n=0 gnγn that satis-

fies [γL, HBDI] = 0. Evaluating the commutator gives us
a Wiener-Hopf sum equation, which is straightforwardly
solved [45] using results of McCoy and Wu [44], leading
to:

Theorem 1 (Bulk-boundary correspondence)
Take a half-infinite open chain HBDI, where the re-
lated bulk Hamiltonian has winding number ω and
absolutely-summable couplings, then there exist exactly
|ω| zero-energy edge modes.
More constructively, writing f(z) = zωb+(z)b−(z)

(here b±(z) are the Wiener-Hopf factors defined below),
then for ω > 0 we have ω linearly independent normalis-
able real edge modes given by γ(m)

L =
∑∞
n=0 g

(m)
n γn with

g
(m)
n = (b−(1/z)−1)n−m for 0 ≤ m ≤ ω − 1.
For ω < 0 the same results hold upon substituting γn →

γ̃n and b−(1/z)−1 → b+(z)−1.

Here and throughout we use the notation that (h(z))n =

(2πi)
−1 ∫

S1 h(z)z−(n+1)dz is the nth Fourier coefficient

of a function h(z). Key to our result is a canonical
form called the Wiener-Hopf decomposition. First de-
fine f0(z) = z−ωf(z), which is non-vanishing on the unit
circle and has a continuous logarithm log(f0)(z). We fix
the normalisation of HBDI such that the zeroth Fourier
coefficient (log(f0))0 = 0. Then we can always write:

f(z) = zω b+(z) b−(z), (4)

where the Wiener-Hopf factor given by b±(z) =

e
∑∞
n=1(log(f0))±nz

±n
is analytic strictly inside (outside) the

unit disk. We note that zω encodes the winding around
the unit circle and hence the topological invariant of the
system. Multiplying f(z) by zm shifts [46] the hopping
tn → tn−m, such that f0(z) defines a topologically trivial
‘version’ of the system. This is analogous to the trivial
insulator and the Kitaev chain being related by a shift.

Theorem 1 extends the bulk-boundary correspondence
from the short-range to the long-range case: the bulk
winding number counts edge modes everywhere in the
space of Hamiltonians with absolutely-summable cou-
plings [(α > 1)-decay implies absolute-summability, but
examples like the Weierstrass function [47, 48] can be
used to construct families with 0 < α ≤ 1]. Our result is
also constructive: we have the edge mode wavefunction
in terms of Fourier coefficients of a particular function.
To construct the exact edge mode, one needs to first cal-
culate the Wiener-Hopf decomposition. However, we will
see below that this can often be bypassed if one is inter-
ested only in the asymptotic edge-mode profile.

In short-range models we expect exponentially-
localised edge modes, corresponding to roots of f(z)
[21, 49] (see Appendix C 4). Based on Theorem 1 we
see that the localisation follows from analytic properties
of the Wiener-Hopf factors. If (b±(z±1))−1 is analytic to
some distance outside the unit circle, we will see expo-
nential decay (this appears consistent with previous such
observations in the long-range Kitaev chain at fine-tuned
points [33]). Exponential localisation was also observed
in Ref. [38], but for a different reason—there the short-
range (parity-odd) edge modes cannot couple to the long-
range density-density interactions in perturbation theory
due to fermion parity symmetry. In our long-range case,
the edge modes are generically algebraically-decaying and
guaranteed to be normalisable due to the Wiener-Lévy
theorem [44, 47].
Example. Consider f(z) = zωLiα(z)Liα(1/z), where

Liα(z) =
∑∞
k=1 z

k/kα is the polylogarithm of order α >
1. The couplings tn are α-decaying and moreover tn =
Θ(n−α) for n→ ±∞.

One can read off b+(z) = Liα(z)/z and b−(z) =
zLiα(1/z). Suppose ω = 1, then we have one edge mode
with:

gn =
1

2πi

∫
S1

z−n

Liα(z)
dz = − 1

ζ(α)2nα
(1 + o(1)); (5)

the second equality is derived using contour integration
and known asymptotics for Liα(z) on the real line (as-
suming α /∈ N) [50]. The analysis is given in Appendix
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f(z)=zω(2+Li2.2(e
iπ/3z)+Li2.2(e

−iπ/3z)+Li3.1(−1/z)+Li4.5(1/z))

FIG. 1. Finite-size splitting from singularities. (a) As
an example of our general results, we consider a long-range
chain whose hopping coefficients define the complex function
f(z) [Eq. (2)] with singularities of f(1/z)−1 depicted. Ac-
cording to Conjecture 1, the power-law exponents associated
to these singularities dictate the finite-size energy splitting of
the |ω|Majorana edge modes. (b) We illustrate this for ω = 4,
where we show the numerically-obtained splittings for system
size L. Their power-law decays ∼ 1/Lνi are accurately pre-
dicted by the ‘singularity-filling’ of Conjecture 1. For ω > 0
the singularities associated to branch cuts inside the unit disk
matter [i.e., Ω0 = 4.5 (blue) and Ωπ = 3.1 (red)]; for ω < 0
this is reversed (see Appendix E 3).

D and further terms in the asymptotic expansion can be
found using the same methods.

For ω = 2, we see we have two edge modes, with the
same leading order behaviour. This means we can take
the difference n−α − (n− 1)−α = Θ(n−α−1), and have a
faster decaying strictly localised mode (see Theorem 2).
Singularity-filling for wavefunctions. While the

bulk-boundary correspondence of Theorem 1 is our most
general result, we can give additional results in a broad
class of (α > 1)-decaying models. We say that 1/f(1/z)
has singularities at {ks}1≤s≤r if it has asymptotic Fourier
coefficients (1/f(1/z))n =

∑r
s=1 einksn−Ωks (as + o(1))

as n → +∞. We call Ωks > 1 the order of the singu-
larity at ks, and assume the o(1) term is ‘nice’, i.e., can
be expressed as a sum of inverse powers of n [as is the case
in Eq. (5)]. We also assume that Ωmin = mins{Ωks} /∈ Z.
This implies that 1/f(1/z) has δ0 = bΩmin − 1c continu-
ous derivatives [48, 51].

Theorem 2 (Edge mode from singularity-filling)
Consider the set-up as in Theorem 1 with ω > 0, and
suppose in addition that 1/f(1/z) has singularities as
defined above. Define ν1, . . . , νω by the ω lowest levels
Es(n) = Ωks + n over all singularities s and n ∈ Z≥0

(‘singularity filling’) and define ν? = δ0 + Ωmin − 1.
We can find a basis of mutually anticommuting edge

modes γ̂(p)
L =

∑∞
n=0 ĝ

(p)
n γn where ĝ

(p)
n = O(n−ν̃p); for

ν̃p = min{νp, ν?}.
For ω < 0 analogous results hold where we now take

γn → γ̃n and f(1/z)→ f(z).

The idea of the proof is as in the ω = 2 example following

(5): we take linear combinations of edge modes that can-
cel the dominant asymptotic term(s), and then use the
Gram-Schmidt process (with respect to the anticommu-
tator) to construct anticommuting modes [21]. We note
that if the Fourier coefficients of the Wiener-Hopf fac-
tors themselves have a ‘nice’ expansion, then singularity-
filling will hold with no limiting ν? (see Appendix C 2).
Example. The long-range Kitaev chain corresponds

to:

fLRK(z) = µ+ J (Liα(z) + Liα(1/z))

+ ∆ (Liβ(z)− Liβ(1/z)) . (6)

This model was studied for various choices of couplings
in Refs. [22, 29, 31–33, 36]. Computing (1/f(1/z))n gives
the asymptotic behaviour of the edge mode wavefunction
in the ω = 1 case: gn = O(n−Ω0) for Ω0 = min(α, β),
agreeing with results in the literature (see Appendix E).
There are no other singularities, so Theorem 2 implies
that, for 0 < δω < bΩ0c − 2, f(z) = zδωfLRK(z) will
have ω = 1 + δω edge modes with a basis decaying as
n−Ω0 , n−(Ω0+1), . . . , n−(Ω0+δω).
Singularity-filling for finite-size splitting. We

now consider finite-size energy splittings for the edge
modes. This quantity was considered in previous case
studies of long-range Kitaev chains [28, 33, 36], but has
not, to our knowledge, been explored in long-range sys-
tems with multiple edge modes (i.e., |ω| > 1).

In analogy with the singularity-filling for edge-mode
wavefunctions above, we have a conjecture for the finite-
size splittings for the edge modes. In this case the levels
associated to singularities go up in steps of two.

Conjecture 1 (Splitting from singularity-filling)
Take an open chain HBDI of size L, where the related
bulk Hamiltonian has winding number ω > 0 and
1/f(1/z) has singularities as defined above.
We conjecture that the ω finite-size edge modes have

splittings ε1 = Θ(L−ν1), . . . , εω = Θ(L−νω ) where the νk
are the ω lowest levels E ′s(n) = Ωks + 2n for n ∈ Z≥0.
For ω < 0 analogous results hold where we replace

f(1/z)→ f(z).

This conjecture is based on numerical experiments (see
Fig. 1) and theoretical results (see below). The under-
lying theory indicates that for a family f(z) = zωf0(z),
there may exist an ωmax such that this holds only for
ω < ωmax. In fact, given Ωmin > 5, and an assump-
tion on the spectrum, we can prove the conjecture up to
ωmax = 3. However, empirically we expect the conjecture
to hold more generally, as observed in Fig. 1.

The conjecture allows us to understand how finite-size
effects hybridise the edge modes. For ω = 1 we see that
the predicted splitting comes from the dominant singu-
larity ε1 = Θ(L−Ωmin). Since this has the same asymp-
totics as the edge-mode wavefunction, this agrees with
an intuitive connection between the spatial profile of the
wavefunction and the induced splitting from the bound-
aries (see Appendix F 1) that does not generically hold



4

for the higher-winding case. For ω = 2 we expect to have
two edge modes, one with ε1 = Θ(L−Ωmin) and one with
either ε2 = Θ(L−(Ωmin+2)) or ε2 = Θ(L−Ωnext), depend-
ing on which has the slower decay. In the case of higher
winding numbers, our conjecture predicts the hybridisa-
tion of the boundary modes, which is not in direct corre-
spondence to the maximally localised basis identified in
Theorem 2.

We can also make quantitative predictions without de-
tailed calculation. Suppose we know for ω = 1 that
we have an edge mode with splitting Θ(L−ν), then
for ω = 2 we infer that the second edge mode will
have splitting Θ(L−ν

′
) where ν ≤ ν′ ≤ ν + 2. For

f(z) = znfLRK(z) we have a singularity at z = 1 only,
and hence conjecture that splittings form a sequence
L−Ω0 , L−(Ω0+2), . . . , L−(Ω0+2n).

To justify the conjecture, consider models f(z) =
zωf0(z) with open boundary conditions; each such model
has a corresponding single-particle (block Toeplitz) ma-
trix, with determinant equal to

∏L
j=1(−ε2

j ), where εj are
single-particle energies. Assuming (α > 1)-decay, it can
be shown, using Toeplitz determinants, that for the triv-
ial model f0(z) this product is finite in the limit L→∞,
while for ω 6= 0, the corresponding determinant decays
to zero with L (with power depending on ω and Fourier
coefficients of 1/f(z)); see also Appendix F. Our method
is to use the scaling of this determinant to predict the
edge mode splitting. E.g., for ω = 1 we interpret:

L∏
j=1

(−ε2
j ) = const× L−ν(1 + o(1)) (7)

as predicting a single edge mode with finite-size splitting
ε1 = Θ(L−ν). For multiple edge modes (and ω > 0),
we further assume inductively that the ω−1 edge modes
shared between the models zωf0(z) and zω−1f0(z) have
the same energy splitting power-law in each model, and
hence the additional decay in the determinant for zωf0(z)
comes from the ωth edge mode [52].

This is plausible since for periodic boundaries the mod-
els defined by f(z) have spectrum independent of ω, and
we expect the system with open boundaries to differ from
the bulk only ‘near the edge’. With finite-range interac-
tions we believe this could be proved using results about
eigenvalues of banded block Toeplitz matrices [53], for
long-range chains we take it as an assumption that the
scaling to zero with L comes only from edge modes rather
than the bulk band. In an earlier work the idea ap-
peared in reverse: utilising the existence of exponentially-
localised edge modes in short-range chains to predict
asymptotics of block Toeplitz determinants [54].

We thus convert the question of finite-size edge mode
splitting to a question about asymptotics of Toeplitz de-
terminants. While there are several assumptions required
to connect this theory to the edge mode splittings, the
underlying singularity-filling picture for Toeplitz deter-
minant asymptotics is in many cases fully rigorous. We

outline some of these results in Appendix F; important
references are [43, 51, 55, 56].
Novel topological probe. A remarkable conse-

quence is that the finite-size splitting of the lowest en-
ergy mode depends on the total number of edge modes.
In fact, we can turn this into a probe of ω: by per-
turbing a short-range chain fs(z) (with winding ω) by
a long-range test function, its finite-size splitting expo-
nent will allow us to find ω (note that this is the scaling
of the lowest one-particle energy, no further information
about the spectrum is required). An example test func-
tion would be fLRK(z), with ∆ = 0. Then for the func-
tion f(z) = fs(z) + εfLRK(z), for ε small, our picture
gives a finite-size splitting L−(α+2(|ω|−1)).
String-order parameters. We now consider the pe-

riodic chain. Define the finite fermion parity string by
O0(n) =

∏n−1
m=1 iγ̃mγm. Then consider further string

operators, Oκ(n), of the form O0(n)γnγn+1 . . . γn+κ for
κ > 0 and O0(n)γ̃n . . . γ̃n+|κ|−1 for κ < 0 (up to phase
factors).

It is know that the set of Oκ(n) form order parameters
for the gapped phases in the short-range case [57]. In the
long-range case we have:

Theorem 3 (String order) Consider a gapped (α>1)-
decaying HBDI, in the thermodynamic limit with periodic
boundaries, and write f(z)/|f(z)| = zωeW (z). Then:

lim
N→∞

|〈Oκ(1)Oκ(N)〉| = δκω e
∑
k≥0 kWkW−k . (8)

Thus the Oκ act as order parameters in the long-range
case. The idea of the proof is as follows: the string-
correlation functions 〈Oκ(1)Oκ(N)〉 are Toeplitz deter-
minants generated by z−κf(z)/|f(z)|. The function
f(z)/|f(z)| generates the correlation matrix of the chain,
and it was proved in Ref. [40] that for an α-decaying chain
with α > 1, the correlation matrix is (α−ε)-decaying for
any ε > 0. This is sufficient regularity for us to use the
results of Ref. [55] to prove Theorem 3 (see Appendix G).
Gap-closing and edge modes at critical points.

For HBDI with finite-range couplings, topological edge
modes can persist at critical points [21, 58]. We give
some results in this direction for the long-range case.

Suppose we have a gapless bulk mode with dynami-
cal critical exponent zdyn. In the continuum limit, the
dimension of the long-range term in the action δS ∼∫
ψ̃(x)ψ(y)(x − y)−α dtdxdy is (zdyn + 1 − α), which is

irrelevant for α > zdyn + 1. On the lattice, we hence
expect that for gapless models of the form fcrit(z) =
(z − 1)zdynfgap(z) (which has the aforementioned low-
energy description if fgap(z) is non-vanishing on the unit
circle), the edge modes will be stable as long as f(z) is
(α > zdyn + 1)-decaying. Indeed, our Theorem 1 can be
adapted to show that this fcrit(z) has ω localised edge
modes where ω is the winding number of fgap(z). This
follows from expanding (z − 1)zdyn in fcrit(z), and inter-
preting this as a sum of (zdyn + 1) gapped Hamiltonians,
all sharing the same ω edge modes as per Theorem 1.
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The above functional form can arise by interpolating
between topologically distinct gapped Hamiltonians. For
instance, between two phases with winding numbers ω =
1 and ω = 2, there will generically be a single gap-closing
with a linearly-dispersing mode if α > 2. More precisely,
if this occurs at momentum k = 0, then fgap(z) := f(z)

z−1
should define a gapped model with ω = 1. We can then
apply the above discussion to infer the existence of the
localised edge mode at criticality. We have confirmed
this for an explicit example in Appendix H.
Outlook. We have shown how general analytic meth-

ods can be used to establish the bulk-boundary corre-
spondence in a class of long-range chains, and give in-
sights into edge mode localisation and finite-size split-
ting. This included examples with α < 1 and certain
gapless models.

Key questions remain within this class: what happens
in the general case when α < 1 and the integer winding
classification breaks down? Can we establish general sta-
bility results in critical lattice models, and do these coin-
cide with our field-theoretic analysis? We expect exten-
sions of analytic techniques used above to provide further
insights. Moreover, it is worth exploring how broadly
our results can be generalised, including to other free-
fermion classes (beyond BDI and AIII) [4, 8, 18] and
higher-dimensional models.

The extension to long-range multi-band cases would be
interesting, likely requiring block Toeplitz operators. In
the short-range BDI and AIII classes, edge modes were
constructed in Ref. [49], where the bulk topological index

is the winding of the determinant of a chiral block of the
Hamiltonian.

From the mathematical side, it would be most interest-
ing to find a proof of the singularity-filling conjecture. It
would be interesting to see if this picture generalises be-
yond the studied cases, perhaps even to interacting mod-
els with algebraically decaying edge modes, and whether
their finite-size splitting also depends on the value of the
topological invariant.
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i

2

L−1∑
m,n=0

τm−nγ̃nγm. (A1)

Take an infinite set of real coupling coefficients {tn}n∈Z; then we can straightforwardly define an open chain by putting
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tm−n+L m− n < −L/2
tm−n−L L/2 ≤ m− n,

(A2)

this choice is considered in Ref. [54]. (A less general case, where tm−n depends on |m−n| is considered in many works
on the long-range Kitaev chain, e.g., see discussion in Refs. [28, 31]). To solve this rigorously for finite L we should
impose either periodic or anti-periodic boundary conditions for the fermions and proceed. However, intuitively, in
the thermodynamic limit L → ∞, the effects of couplings that wrap around the chain will vanish algebraically with
system size. We will follow Ref. [23] and instead consider a sequence of finite-range chains, where we truncate:
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0 otherwise.
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Then we can use the usual method of solving such chains via Fourier transformation and Bogoliubov transformation
(see e.g., Ref. [21]), leading to the complex function f(z). As a consequence of the absolute-summability, in the
thermodynamic limit we can write continuous functions εk and ϕk such that on the unit circle f(eik) = εkeiϕk . Then
the Hamiltonian has the diagonal form: HBDI = −

∑
k εkd

†
kdk where εk = |f(eik)| and dk

d†k

 = eiϕkσx/2

 ck

c†−k

 . (A4)

In this expression, ck =
∑
n e−ikncn are the Fourier transformed spinless fermion operators cn = (γn + iγ̃n)/2.

Appendix B: Singularities of f(z) and related functions

1. Defining singularities via Fourier coefficients

In the main text we introduce the idea of singularity-filling, for singularities of certain functions defined on the unit
circle in the complex plane. These singularities correspond to particular momenta 0 ≤ ks < 2π, or, equivalently, to
points on the unit circle eiks . In general, we say that a function h(z) on the unit circle has singularities at {ks}1≤s≤r
if it has an asymptotic Fourier expansion of the form hn =

∑r
s=1 einksn−Ωks (as + o(1)). In the main text we suppose

that the o(1) terms are all of the form n−b for b > 0. One may consider generalisations, such as allowing terms of the
form log(n)an−b, for some a ∈ Z and b > 0. We explain below that the proof of Theorem 2 can accommodate this
particular generalisation.

This definition of singularity, based on Fourier coefficients, can be related to other notions of analytical singularity.
For example, suppose h(z) has branch point(s) on the unit circle at eiks , and that we can analytically continue the
function to the complex plane up to some branch cuts. When we compute asymptotic Fourier coefficients, we are
dominated by integrals near the branch points. Then, supposing an appropriate expansion at the singularity, using
Watson’s lemma [63, 64] we find a dominant contribution (at each singularity) of the form eiksnn−Ωks (a particular
example of this is the calculation following Eq. D3 below). Another relevant definition of singularity is a discontinuity
in some derivative of the function h(z). More precisely, we can characterise the smoothness of the function h(z)
according to the number of continuous derivatives. Then we have well-known results relating this smoothness to the
asymptotic decay of the Fourier coefficients; see, for example, Ref. [48].

Since our results in the main text depend directly on certain Fourier coefficients, we choose to use this definition of
singularity for clarity. In analysing a particular problem with a chain corresponding to a function f(z) that has some
analytical singularity, one needs to then justify how this is reflected in the asymptotic Fourier expansion. Whether
this is straightforward depends upon the particular choice of f(z), but there are many general results available [43, 48].

2. Relationship between singularities of f(z) and the Wiener-Hopf factors

Our main results depend on several different, but closely related, functions. The function f(z) =
∑∞
n=−∞ tnz

n

corresponds directly to the Hamiltonian, and the dominant asymptotic decay of the Fourier coefficients of f(z) tells
us the algebraic decay of the coupling coefficients. Note that f(z) and zkf(z) necessarily have the same singularities,
since we simply shift tn → tn−k and this does not change the asymptotic Fourier coefficients.

For ω > 0 [ω < 0] the edge mode wavefunctions depend on Fourier coefficients of the inverse Wiener-Hopf factor
b−(1/z)−1 [b+(z)−1]; where f(z) = zωf0(z) for f0(z) = b+(z)b−(z). Moreover, based on the Toeplitz determinant
theory that underlies Conjecture 1, the edge-mode splittings depend on the asymptotic Fourier coefficients of m(z) =
b+(1/z)/b−(1/z) [l(z) = b−(z)/b+(z)] (this is explained in greater detail in Appendix F). These functions are clearly
closely related, and this can be made quantitative.

Let us then consider an (α > 1)-decaying Hamiltonian, with corresponding f(z). These functions f(z) are a
subset of the class considered in Ref. [55], and we can make a corresponding analysis. Following Ref. [55], denote
the Fourier coefficients of b+(z) by rn, and the Fourier coefficients of b−(1/z)−1 by qn. Then, from the Wiener-Hopf
decomposition, we have that r0 = q0 = 1 and r−m = q−m = 0 for any m ∈ N. Moreover, rn and qn are absolutely
summable and we have:

mn =

∞∑
j=n

qjrj−n. (B1)
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Similarly denote the Fourier coefficients of f0(1/z)−1 by sn (which is in general doubly-infinite). Then we have:

qn =

∞∑
j=n

sjrj−n. (B2)

Note that this calculation is exact for 1/f0(1/z), but if we instead take 1/f(1/z) = z−ω/f0(1/z) the Fourier coefficients
are simply shifted.

Finally, b+(z)2 has the same properties as b+(z), with Fourier coefficients r̃n. We can then write

mn =

∞∑
j=n

sj r̃j−n. (B3)

Let us analyse (B2), with analogous conclusions holding in the other cases. Suppose, as in the main text, that we
have an asymptotic expansion for sn with certain singularities

sn =

r∑
s=1

ase
inksn−Ωks (1 + o(1)), (B4)

where we say the o(1) term is ‘nice’, i.e., that each term is an inverse power of n (we may also have further subdom-
inant terms that decay faster than any power of n, we will usually suppress them below). Now, using the absolute
summability of the rn, we see that qn has an asymptotic expansion with identical singularities {ks} (and corresponding
orders {Ωks}) to sn, we simply renormalise the coefficients in the expansion.

qn =

r∑
s=1

einksn−Ωks

as
 ∞∑
j=0

eiksjrj

(
n

n+ j

)Ωks

+ o(1)


=

r∑
s=1

einksn−Ωks
(
as
(
b+(eiks) + o(1)

)
+ o(1)

)
(B5)

To justify that the orders of the singularities are the same, note that since f(z) corresponds to a gapped Hamiltonian,
b+(z) cannot vanish on the unit circle.

For our purposes in Theorem 2 and Conjecture 1, we also want the o(1) terms here to have a nice dependence on
n. We now show that the expansion is in inverse powers of n up to some cut off that depends on Ωmin, the dominant
singularity. In particular, we will now show that

qn =

r∑
s=1

einksn−Ωks

as
b+(eik) +

δ0−1∑
j=1

Ajn
−j

+O(n−δ0)

 (B6)

for some known constants Aj , and δ0 = bΩmin− 1c. The same conclusion will hold for mn, by analogous calculations.
To prove this, we first recall that functions in the class Cβ have n = bβc continuous derivatives. Moreover, our

assumption on the singularities of 1/f(1/z), where Ωmin is the order of the dominant singularity, implies the following.
{f(z)±1, b+(z)±1, b−(z)±1} are all in Cδ on the unit circle for bΩmin − 1c < δ < Ωmin − 1 [51], and in particular have
δ0 continuous derivatives. Let us now revisit the crucial term in the expansion of qn:

∞∑
j=0

eiksjrj

(
n

n+ j

)Ωks

=

 ∞∑
j=0

eiksjrjn
Ωks

1

Γ(Ωks)

∫ ∞
0

e−nte−jttΩks−1dt


= nΩks

1

Γ(Ωks)

∫ ∞
0

b+(eikse−t)e−nttΩks−1dt. (B7)

This is in a form amenable to Watson’s lemma [63, 65], leading to the following asymptotic expansion:

∞∑
j=0

eiksjrj

(
n

n+ j

)Ωks

=

δ0−1∑
k=0

Akn
−k +O(n−δ0), (B8)

for some constant coefficients Ak that depend on derivatives of b+(z). This establishes (B6) above.
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Appendix C: Analysis of edge modes

1. Proof of Theorem 1

Consider the BDI Hamiltonian with open boundaries. In general [66], we can diagonalise by finding raising and
lowering operators χε =

∑L−1
n=0 anγn+ bnγ̃n that satisfy [HBDI, χε] = 2εχε. Evaluating the commutator reduces to the

mathematical problem of finding the eigenvectors of a block Toeplitz matrix, for which analytical results are available
only in special cases. Note that Toeplitz matrices are matrices that are constant along diagonals. These constants are
determined as Fourier coefficients tn of a generating function t(z). A block Toeplitz matrix has the same structure as
a (scalar) Toeplitz matrix, but the scalar constants on each diagonal are replaced by constant matrices of fixed size.

One such solvable case is that of exact zero modes; then ε = 0, and the problem reduces to finding eigenvectors in
the kernel of scalar Toeplitz matrices. There do exist a variety of results for asymptotic behaviour of eigenvectors of
scalar Toeplitz matrices [67, 68]; for a review of the field see [69]. However, for topological Majorana zero modes, the
splitting is generically exactly zero only in the infinite system size limit.

a. Wiener-Hopf sum equations

In their textbook on the Ising model [44], McCoy and Wu solve the following Wiener-Hopf sum equation:

∞∑
m=0

cn−mxm = yn n ≥ 0, (C1)

subject to the condition
∑
n∈Z |cn| <∞, and solutions are sought with bounded norm, i.e.,

∑
n∈Z |xn| <∞.

For our application, yn = 0, and we give the results for that case. Define c(z) =
∑
n∈Z cnz

n. Then, assuming c(z)
does not vanish on unit circle, we have the Wiener-Hopf decomposition c(z) = zνβ+(z)β0β−(z), and let us fix the
overall normalisation so that β0 = 1. Note this decomposition exists and each function has an absolutely convergent
Fourier series due to the Weiner-Lévy theorem [44, 47].

The general solutions of (C1) for y = 0 are as follows:

xn =

{
0 ν ≥ 0∑|ν|−1
m=0 am

(
1

β+(z)

)
n−m

ν < 0
. (C2)

We thus see that for ν ≥ 0 there are no non-trivial solutions, while for ν < 0 we have |ν| solutions. Note the fixed
chirality of this problem, it is always negative winding allowing solutions.

b. Application to edge modes

Consider the half-infinite OBC Hamiltonian HBDI = i
∑
n≥0,m≥0 tm−nγ̃nγm, assuming that

∑∞
n=−∞|tn| < ∞. For

real chiral edge modes we have γL =
∑
n≥0 αnγn. These satisfy [HBDI, γL] = 0. Calculating this commutator we find:

[HBDI, γL] = 2i
∑

n,m,r≥0

tm−nγ̃nδm,rαr

= 2i
∑
n≥0

∑
m≥0

(tm−nαm) γ̃n

= 2i
∑
n≥0

∑
m≥0

(
t̃n−mαm

)
γ̃n, (C3)

where t̃α = t−α. We thus see that if this commutator vanishes, then the αm must be solutions to (C1), for the choice
c(z) =

∑
α t̃αz

α = f(1/z). Suppose that f(z) = zωb+(z)b−(z), then we have that c(z) = z−ωb+(1/z)b−(1/z). By
considering dependence on z and 1/z we have b∓(1/z) = β±(z), we reach the first part of Theorem 1. Note that to
prove the independence of the edge modes, we use b−(1/z)−1 = e

∑∞
k=1 V−kz

k

has all negative Fourier coefficients equal
to zero [70]. The second part of Theorem 1 follows straightforwardly by considering the inverted chain. Then we take
f(z) → f(1/z) and switch γ and γ̃. Alternatively one can repeat the above Wiener-Hopf calculation after inserting
the ansatz for an imaginary chiral edge mode.
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As an aside, suppose we did not restrict to chiral zero modes, and take the following ansatz χL =
∑
n(αnγn+βnγ̃n).

Then calculating the commutator gives two independent problems of the form (C1), one for f(z) and one for f(1/z).
Hence, depending on winding number, at least one of them will have no non-trivial solutions and we are back in the
chiral case.

Note that a Majorana edge mode is normalisable if
∑
n≥0|gn|2 < ∞. The proof of Theorem 1 leads to a stronger

conclusion than stated: in fact the edge modes given are the only edge modes that exist satisfying the condition∑
n≥0|gn| < ∞. Hence, the discussion above based on results of [44] does not immediately exclude ‘accidental’

(non-topological) localised edged modes that are sufficiently delocalised that
∑
n≥0|gn| → ∞. However, appealing to

general results [43, 59, 60] on invertibility of Toeplitz operators (over the sequence space l2) leads to the conclusion
that Theorem 1 does indeed give us all of the Majorana edge modes.

2. Proof of Theorem 2

Here we prove a stronger form of Theorem 2 given in the main text. The version in the main text is simpler to
state, and follows from:

Theorem 4 Consider a model corresponding to f(z) = zωb+(z)b−(z) with open boundary conditions, and suppose
that the Fourier coefficients of b−(1/z)−1 have an expansion

gn =

r∑
s=1

 p?s∑
p=0

∑
∆p∈P

q?s∑
q=0

einksas,p,q log(n)qs−qn−Ωks−(p+∆p) + o(log(n)qsn−Ωks−p?s )

 , (C4)

where P is a finite set of non-negative reals that contains zero. Define ν1, . . . , νω by the ω lowest levels Es(n) = Ωks +n
over all singularities s and n ∈ Z≥0 (‘singularity filling’). Define also ν? = mins{Ωs + p?s}.
We can find a basis of mutually anticommuting edge modes γ̂(r)

L =
∑∞
n=0 ĝ

(r)
n γn for 1 ≤ r ≤ ω such ĝ

(r)
n =

O(log(n)qrn−ν̃r ); here ν̃r = min{νr, ν?}; while qr is equal to qs for the corresponding singularity.

Let us first do an analysis of linear combinations of asymptotic expansions. Suppose we have an expansion:

gn =

r∑
s=1

∞∑
p=0

einksas,pn
−Ωks−p (C5)

Then we have that:

gn−m =

r∑
s=1

∞∑
p=0

einkse−imksa′s,pn
−Ωks−p (C6)

where a′s,0 = as,0 and the other terms can in principle be computed from the expansion of (n−m)−Ωks−p. By taking
a linear combination g̃n = gn − Agn−m we can cancel the leading term from one (and only one) of the singularities.
Indeed, we simply choose A = eimks to cancel the leading term of the series about the sth singularity.

Now we show we can cancel terms inductively according to singularity-filling. Suppose we have a
set {g(0)

n , g
(1)
n , . . . , g

(m)
n } constructed from {gn, gn−1, . . . , gn−m+1}, such that each of the terms g

(j)
n =∑r

s=1

∑∞
p=p0(s) einksas,pn

−Ωks−p. Here p0(s) is the ‘filling’ of the singularity s. For j = 0, p0(s) = 0 for all s,
for j = 1, p0(s) = δst where Ωkt is the minimum of all of the Ωks and so on. Now, we take gn−m to add to our set,
this will be of the form (C6). We can then take a linear combination of gn−m and g(0)

n to cancel the leading term,
and get a new expansion g′n−m. A linear combination of g′n−m and g(1)

n will cancel the next leading term (according
to the singularity-filling prescription). Continuing in this way we cancel dominant terms until we reach g(m+1)

n which
decays faster than g(m)

n . Since we always cancel the dominant term we are in accordance with singularity-filling.
Now, suppose the gn−m are the wavefunction coefficients of our linearly independent zero modes γ(m)

L as given in
Theorem 1. We can take the linear combinations prescribed above and it is clear that we maintain linear independence.
For us to have a good basis of edge modes we also need them to mutually anti-commute. This can be achieved by
a Gram-Schmidt process [21]—if we do this in order of fastest decaying to slowest decaying we will preserve the
asymptotic decay rates found above.

Note that it may be the case that when taking linear combinations some a′s,p vanishes accidentally, this simply
means we can find even faster decaying modes. We also need to deal with more general asymptotic expansions that
have discrete sets of powers as well as logarithmic terms.
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First consider an expansion of the form

gn =

r∑
s=1

∑
p≥0

einksas,pn
−Ωks−p (C7)

where p is discrete. An example would be the expansion with a single singularity:

gn = n−Ω(a0 + a1/n+ a2/n
2 + . . . ) + n−Ω−α(b0 + b1/n+ b2/n

2 + . . . ), (C8)

with α > 0 (i.e., P = {0, α} in Theorem 4). If we take a linear combination to cancel a0 it will necessarily also cancel
b0, so we indeed restrict to the series Ω + n and ignore α, consistent with the claim in Theorem 4.

Consider now logarithmic terms in the asymptotic expansion. Suppose then:

gn =

r∑
s=1

∑
p≥0

∞∑
q=0

einksas,p,q log(n)qs−qn−Ωks−p. (C9)

Note that now gn = Θ(log(n)qsn−Ωks ), where s minimises Ωks . Using that log(n −m) =
(

log(n)−
∑∞
j=1

1
j

(
m
n

)j),
we have that:

gn−m =

r∑
s=1

∑
p≥0

∞∑
q=0

einkse−imksa′s,p,q log(n)qs−qn−Ωks−p, (C10)

where a′s,0,q = as,0,q. We can then fill singularities inductively as above, where the decay associated to each singularity
will be O(log(n)qsn−Ωks−m) for m ∈ Z≥0.

To complete the proof, we need to consider the restriction on the sums by p?s and q?s . The key point is the error
term o(log(n)qsn−Ωks−p?s ), where we do not know the explicit n dependence, and hence the behaviour on taking linear
combinations. We can apply singularity filling as described above up to the point this term is no longer subdominant.
This leads to the ν? in Theorem 4.

Having Theorem 4, we can deduce Theorem 2 of the main text using the connection between singu-
larities of 1/f(1/z) and b−(1/z)−1. In particular, suppose that 1/f(1/z) has an expansion of the form∑r
s=1 einksn−Ωks

(∑
p≥0 as,pn

−p
)
. Then we can use the discussion in the previous section to see b−(1/z) has an

expansion
∑r
s=1 einksn−Ωks

(∑bΩminc−2
p=0 a′s,pn

−p +O(n−bΩminc−1)
)
; thus ν? = Ωmin + bΩminc− 2, recovering Theorem

2 of the main text.

3. Weierstrass chains

Here we present an example of a chain where we establish the bulk-boundary correspondence for tn that decay slower
than 1/n. This is perhaps surprising based on previous literature on long-range chains [30], but is straightforward
given our condition of absolute-summability.

Take an integer b > 1, and a real number β > 0. The corresponding Weierstrass chain has couplings

tn =


µ n = 0

b−mβ n = ±bm m ∈ N
0 otherwise.

(C11)

For µ > 1/(bβ − 1), the corresponding f(z = eik) = µ +
∑
n≥1 b

−nβ cos(bnk) is gapped and has winding number
zero. The series converges absolutely [47, 48], and one can see that tn ≤ C/(1 + |n|)β ; i.e., the tn are β-decaying.
Hence, we have examples of β-decaying chains for any β > 0. We can then use Theorem 1 to find edge modes for the
shifted Weierstrass chains f(z)→ zωf(z). Note that for 0 < β < 1, f(z) is nowhere differentiable [47]. So long as we
maintain the gap, we can add couplings tn corresponding to another absolutely-summable chain; this means we can
find further (β > 0)-decaying chains that are not restricted to the special case studied here where many tn = 0.
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4. Short-range chains

Here we connect Theorem 1 to the known results in the finite-range case [1, 20, 21]. Indeed, in this case, the results
reduce to those given in Ref. [21].

If the tn are non-zero for only a finite range, then we have that:

f(z) = ρ
1

zNp

Nz∏
j=1

(z − zj)
NZ∏
k=1

(z − Zk) ρ ∈ R \ {0}. (C12)

The zj are inside the unit circle, and Zk are outside the unit circle. We can read off ω = Nz −Np, and for ω > 0 we
have that there are ω edge modes and there is a basis where the localisation lengths are set by the ω zeros closest to
the unit circle. A proof is given in Ref. [21].

We can get the same result using our Theorem 1. First, up to a factor eV0 that we fix by rescaling the Hamiltonian,
we have:

f(z) = zω
Nz∏
j=1

(1− zj/z)︸ ︷︷ ︸
b−(z)

NZ∏
k=1

(1− z/Zk)︸ ︷︷ ︸
b+(z)

. (C13)

For ω > 0 we then use Theorem 1 to identify ω edge modes with wavefunctions given by the Fourier coefficients:

g(m)
n =

1

2πi

∫
S1

1∏Nz
j=1(1− zzj)

zm−n−1dz =

Nz∑
j=1

ajz
n−m
j , (C14)

for n sufficiently large and where a−1
j =

∏
k 6=j(1−zk/zj). As in the proof of Theorem 2 (and in corresponding analysis

in [21]) we can then take appropriate linear combinations to get the claimed localisation lengths.
An analogous discussion holds for ω < 0 and zeros outside the unit circle appearing in b+(z). Moreover, we can

use the analysis of gapless models given in the main text (see also below) to see that short-range gapless models have
edge modes with localisation lengths determined by zeros of f(z).

One may consider long-range chains as a limiting case of short-range chains, where the interaction range tends to
infinity. Then, the degree of the pole and/or the number of zeros on the unit circle increases without bound. The
results in this paper apply to fixed Hamiltonians. This means that short-range chains (even with arbitrarily large but
finite range) have edge-modes with exponentially-decaying wavefunctions for sufficiently large site index. On the other
hand, long-range chains, even with very weak long-range couplings (e.g., α-decaying models with arbitrarily large α),
will typically have an algebraically-decaying wavefunction for sufficiently large site-index. Physically we expect that
these cases should behave similarly; the starkly different behaviours for a fixed Hamiltonian are a consequence of
the particular sequence of limits that we are working in. For short-range chains with a large finite range, the edge
mode will have a wavefunction corresponding to (C14), and for a certain values of n (depending on the range of the
Hamiltonian) this will approximate the algebraic decay of a long-range chain. Hence, by considering a sequence of
finite-range Hamiltonians converging to a long-range model, we expect to see agreement. This is comparable to the
approximation of the ground-states of critical spin chains using a sequence of matrix-product states of increasing bond
dimension [71].

Appendix D: Calculations for first example

1. Set up

We will consider f(z) = zωLiβ(z)Liγ(1/z), the case studied in the main text follows by putting β = γ = α. This
f(z) corresponds to Hamiltonian couplings of the form

tn =

{∑∞
k=n+1

1
kβ(k−n)γ

n ≥ 0∑∞
k=|n|+1

1
(k−|n|)βkγ n < 0.

(D1)

We assume that β > 1, γ > 1, and, in order to compute the edge mode asymptotics, that they are non-integer.
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2. Decay of couplings

We first show that tn are α0-decaying with α0 = min(β, γ) as follows. First, for n ≥ 0:

tn =

∞∑
k=n+1

1

kβ(k − n)γ
=

1

(n+ 1)β

∞∑
k=n+1

(
n+ 1

k

)β
1

(k − n)γ
≤ 1

(1 + n)β

∞∑
k=1+n

1

(k − n)γ
=

ζ(γ)

(n+ 1)β
. (D2)

The analogous calculation for n < 0 gives tn ≤ ζ(β)/(1 + |n|)γ . Hence, we have an upper bound for all n of
tn ≤ ζ(α0)/(1 + |n|)α0 . Since we also have tn ≥ (1 + n)−β for n ≥ 0 and tn ≥ (1 + |n|)−γ for n < 0 we have for large
and positive [negative] n, tn = Θ(n−β) [tn = Θ(n−γ)].

3. Asymptotics of edge mode

Now we calculate the asymptotic form of the edge mode wavefunction.

gn =
1

2πi

∫
S1

z−n

Liγ(z)
dz. (D3)

First, Liγ(z) has a branch point singularity at z = 1, and we analytically continue to the plane with a branch cut
z ∈ [1,∞). Note that Liγ(z) is non-zero for z 6= 0, so Liγ(z)−1 has no poles for z 6= 0 [72]. Using the integral
representation of Liγ(z) [50, Eq. 25.12.11] we have that Liγ(ex − iε) = Liγ(ex + iε) for x ≥ 0 and as ε → 0. Now,
assuming γ is not an integer, we have the expansion [50, Eq. 25.12.12]:

lim
ε→0

Liγ(ex − iε) = Γ(1− γ)eiπ(γ−1)xγ−1 +

∞∑
n=0

ζ(γ − n)
xn

n!
|x| < 2π. (D4)

Deforming the contour in (D3) out to infinity leaves us with a branch cut contribution:

gn = lim
ε→0

1

2πi

(∫ ∞
0

e−nx

Liγ(ex + iε)
dx−

∫ ∞
0

e−nx

Liγ(ex − iε)
dx

)
(D5)

= lim
ε→0

1

2πi

(∫ ∞
0

e−nx

Liγ(ex − iε)
dx−

∫ ∞
0

e−nx

Liγ(ex − iε)
dx

)
(D6)

=
1

π
lim
ε→0

Im

∫ ∞
0

Liγ(ex − iε)e−nx

|Liγ(ex − iε)|2
dx. (D7)

Then, we can insert the expansion (D4), valid in the region near the end of the branch cut, and conclude that:

gn = − 1

π

Γ(1− γ) sin(π(1− γ))

nγζ(γ)2

∫ ∞
0

xγ−1e−x(1 + o(1))dx (D8)

= − 1

nγζ(γ)2
(1 + o(1)). (D9)

To get the next algebraic correction we simply take the next term in the expansion of |Liγ(ex/n − iε)|−2 using (D4).

Appendix E: The long-range Kitaev chain

1. Edge mode wavefunctions

Recall that the long-range Kitaev chain is of the form:

fLRK(z) = µ+ J (Liα(z) + Liα(1/z)) + ∆ (Liβ(z)− Liβ(1/z)) . (E1)

We assume here that the parameters are chosen so that fLRK(z) has ω = 1.
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Aside from certain special cases, we do not have a closed-form for the Wiener-Hopf decomposition (see the next
subsection for an example of such a special case), as would be needed to find the exact edge-mode as given in Theorem
1. However, as discussed above, the asymptotic Fourier coefficents of 1/fLRK(1/z) and the corresponding 1/b−(1/z)
have the same singularities. Hence, for the topological phase, we can find the asymptotic decay of the wavefunction
by calculating large Fourier coefficients, Gn, of 1/fLRK(1/z) (one could also use the statement of Theorem 2 directly).

The calculation of these large Fourier coefficients is similar to that given in the previous section and goes as follows.
By definition,

Gn =
1

2πi

∫
S1

z−n−1

µ+ J (Liα(z) + Liα(1/z))−∆ (Liβ(z)− Liβ(1/z))
dz. (E2)

The integrand is analytic in the same cut-plane as fLRK(z), excluding isolated poles at z = 0 and z = 1/zj where zj
are the zeros of fLRK. We deform the contour out to infinity, and the contour gets snagged on the branch cut and at
the poles outside the unit circle. The contribution from these poles will decay exponentially as Θ(znj n

k−1) for some
k ∈ N, corresponding to the degree of the pole.

Using that Liα(e−x) is real for x > 0 [50, Eq. 25.12.11], and continuous across the branch cut, the integral along
the branch cut is:

lim
ε→0

1

π

∫ ∞
0

e−(n+1)x Im[J Liα(ex − iε)−∆Liβ(ex − iε)]∣∣µ+ J (Liα(ex − iε) + Liα(e−x))−∆ (Liβ(ex − iε)− Liβ(e−x))
∣∣2 dx. (E3)

Using the expansion (D4), and that all other contributions are exponentially decaying, we have that:

Gn = − 1

(µ+ 2Jζ(α))2

(
Jn−α(1 + o(1))−∆n−β(1 + o(1))

)
+O(zn0 n

k−1) (E4)

where z0 is the zero of fLRK inside of and closest to the unit circle, k ∈ N, and to evaluate the branch cut contribution
we also use the expansion [50, Eq. 25.12.12]:

Liγ(e−x) = Γ(1− γ)xγ−1 +

∞∑
n=0

ζ(γ − n)
(−x)n

n!
|x| < 2π. (E5)

We hence see that in general, the edge mode decays as n−min(α,β). For the case where J = ∆ and α = β, the branch
cut integral vanishes, and we have exponentially localised modes, with localisation length ξ−1 = − log(|z0|). We
can take further terms in the expansion of the denominator in (E3) to derive subdominant terms in the asymptotic
expansion, noting that they decay as inverse powers of n and so we have a nice expansion for these Fourier coefficients.

With different justifications, two closely related integrals to (E2) were analysed in Refs. [33, 36], leading to the same
conclusion: a single edge mode decays as n−min(α,β). This result was moreover in agreement with previous numerical
results [28, 29, 31].

Our method not only gives an analytic approach to finding the asymptotic decay of the single edge mode in this
model, it also allows us to predict the decay of the edge modes for higher winding numbers, as discussed in the main
text (although we note that finite-size effects can hybridise the edge modes and so the energy eigenbasis in a finite
chain may not have the same form as the basis given in Theorem 2).

2. Finite-size splittings

Let us consider a case of the long-range Kitaev chain (E1) when α = β and J = ∆, and consider |a| = |2J/µ| <
ζ(α)−1, we are then in the trivial phase. We will use the rigorous methods explained in the next section (Rigorous
Underpinnings for Conjecture 1) to calculate the relevant Toeplitz determinant that we believe gives us the edge mode
splittings. After an overall renormalisation:

f0(z) = 1 + aLiα(z) = b+(z). (E6)

In this case, we have that 1/f0(z) has no negative Fourier coefficients. We can then use Theorem 6 (given below) to
see that the splitting is exactly zero if we take f(z)→ zωf0(z) for ω > 0. This is trivial to observe at the Hamiltonian
level, we have decoupled Majorana modes for this choice of f(z). More interesting is that for ω < 0 the same theorem
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FIG. 2. (a), (b) Finite-size splittings for the model (E8) for ω = 5 and ω = −4 respectively. We see singularity-filling (dashed
lines) correctly predicting the splittings. Note that (b) features oscillatory behaviour corresponding to the complex singularities.

leads us to predict edge mode splittings as in Proposition 2. In particular l(z) = 1
1+aLiα(z) , and we can calculate (as

in the previous section):

lN = − a

(1 + aζ(α))2
N−α(1 + . . . ) (E7)

where the further terms in the expansion come from the same branch-cut integral and do not oscillate. Note that
the asymptotic result DN [zωf0(z)] = Θ(N−|ω|(|ω|−1)−|ω|α) is rigorous (see the following section, and in particular
Theorem 6).

Thus we expect based on the singularity-filling picture that the model f(z) = zω(1 + aLiα(z)) for ω < 0 has edge
modes with single-particle energies L−α, L−α−2, . . . L−α−2(|ω|−1).

3. Further numerical results:

A generalisation of the long-range Kitaev chain, defined by

f(z) = zω
(

2 + Li2.2(eiπ/3z) + Li2.2(e−iπ/3z) + Li4.5(1/z) + Li3.1(−1/z)
)

︸ ︷︷ ︸
f0(z)

(E8)

is considered in the main text. The singularities are depicted in Fig. 1, and the singularity-filling picture for finite-size
splitting is confirmed there for ω = 4. For ω = 5 we expect the same behaviour for the four splittings ε1, . . . ε4 (this
is our inductive assumption in the main text), and an additional ε5 = Θ(L−7.1).

For ω < 0 the branch-cuts inside the circle do not contribute, and the branch-cuts outside the circle are relevant. For
ω = −4 we hence expect ε1, ε2 = Θ(L−2.2) and ε3, ε4 = Θ(L−4.2). We also have singularities at momentum θ = ±π/3,
so we expect oscillations eiLmπ/3 for integer m (see also the next section where we observe that the oscillations appear
in the Toeplitz determinant). All of these expectations are confirmed in Fig. 2(a) and (b).

Appendix F: Rigorous underpinnings for Conjecture 1

1. An upper bound on the finite-size splitting

Here we prove the following proposition regarding the finite-size splitting.

Proposition 1 Suppose that the Hamiltonian HBDI is (α > 2)-decaying, and has ω ≥ 1. Consider the fastest-decaying
edge mode on a half-infinite system γ? =

∑∞
n=0 bnγn, with wavefunction asymptotics bn = const×n−ν(1+o(1)). Then

for the corresponding system of size (L+ 1) with open boundaries, the finite-size splitting, ε, is O(L−ν).
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This is a weak form of Conjecture 1, for the case ω = 1 (and for ω = −1 with the usual replacements), since we
conjecture the splitting is Θ(L−ν), and the proposition is restricted to (α > 2)-decay. The result applies also for
|ω| > 1, giving an even weaker form of Conjecture 1 in such cases, since we conjecture the splitting is Θ(L−ν

′
) where

ν′ ≥ ν, where the inequality is strict if any singularity is filled more than once.
To prove this result, we split the half-infinite edge mode into a mode supported on a region A, consisting of the

sites 0 up to L, and the region B consisting of the remaining sites.

γ? =
1

ZL

∞∑
n=0

bnγn =
1

ZL

L∑
n=0

bnγn︸ ︷︷ ︸
γA

+
1

ZL

∞∑
n=L+1

bnγn︸ ︷︷ ︸
γB

. (F1)

We choose the normalisation ZL so that γ2
A = 1. In the large L limit, ZL tends to a constant; we suppress this from

the notation below. Similarly we split the Hamiltonian HBDI = i
∑
n≥0,m≥0 tm−nγ̃nγm on a half-infinite chain as:

HBDI = i
∑

0≤n,m≤L
tm−nγ̃nγm︸ ︷︷ ︸

HAA

+ i

∞∑
m=L+1

L∑
n=0

tm−nγ̃nγm︸ ︷︷ ︸
HAB

+ i

∞∑
n=L+1

L∑
m=0

tm−nγ̃nγm︸ ︷︷ ︸
HBA

+ i
∑

m,n>L

tm−nγ̃nγm︸ ︷︷ ︸
HBB

. (F2)

Notice that HAA is the Hamiltonian for a finite chain of size L+ 1 with open boundaries. Let |ψ〉 be the ground state
for the half-infinite chain with Hamiltonian HAA +

∑∞
n=L+1 c

†
ncn. The state γA |ψ〉 is orthogonal to the ground state,

and we can consider the variational energy in this parity sector relative to the ground state:

ε̃ = 〈ψ| [γA, HAA]γA |ψ〉 = 〈ψ| [γ?, HAA]γA |ψ〉
= 〈ψ| [γ?, H −HAB −HBA −HBB ]γA |ψ〉 . (F3)

Since γA has support only on γn for n ∈ A, and |ψ〉 has no correlations between A and B, this reduces to:

ε̃ = −〈ψ| [γ?, HAB ]γA |ψ〉 . (F4)

Now:

[γ?, HAB ] = i

∞∑
k=0

∞∑
m=0

L∑
n=0

bktm+L+1−n[γk, γ̃nγm+L+1] (F5)

= −2i

∞∑
m=0

L∑
n=0

bm+L+1tm+L+1−nγ̃n (F6)

Hence,

ε̃ = 2i

L∑
k=0

∞∑
m=0

L∑
n=0

bkbm+L+1tm+L+1−n 〈ψ| γ̃nγk |ψ〉 . (F7)

Two-point correlations are upper bounded by |i〈γ̃nγm〉| ≤ 1. Hence:

|ε̃| ≤ 2

L∑
k=0

∞∑
m=0

L∑
n=0

|bk||bm+L+1||tm+L+1−n| = 2

(
L∑
k=0

|bk|

)( ∞∑
m=0

L∑
n=0

|bm+L+1||tm+L+1−n|

)
. (F8)

Since we have that the bk form an absolutely convergent Fourier series (of the function 1/b−(1/z)), the first term is
upper bounded by a constant. I.e.,

ε̃ ≤ const×

( ∞∑
m=0

L∑
n=0

|bm+L+1||tm+L+1−n|

)
= const×

( ∞∑
m=0

L∑
n=0

|bm+1+L||tm+1+n|

)
. (F9)

Now, suppose that for large n, |bn| ∝ n−ν(1 + o(1)), then:

ε̃ ≤ const× L−ν(1 + o(1))

( ∞∑
m=0

L∑
n=0

|tm+1+n|

)
≤ const× L−ν(1 + o(1))

(
lim
M→∞

2M+1∑
n=1

n|tn|+ o(1)

)
. (F10)

Since we assume that the tn are (α > 2)-decaying, this last expression is summable, and so we have that ε̃ = O(L−ν).
Hence by the variational method, the finite-size splitting ε = O(L−ν).
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2. Notation

Denote the L × L Toeplitz determinant generated by t(z) by DL[t(z)]. In the main text we make the connection
between the decay of the product

∏L
j=1(−ε2

j ) and the edge mode splitting. The first thing to note is that the
single-particle Hamiltonian for our chain is a block Toeplitz matrix generated by:

Φ(z) =

 0 f(z)

−f(1/z) 0

 . (F11)

Then
∏L
j=1(−ε2

j ) = DL[Φ(z)] = (−1)LDL[f(z)]DL[f(1/z)] = (−1)LDL[f(z)]2. Hence, we have that:

L∏
j=1

εj = |DL[f(z)]| = |DL[zωf0(z)]|. (F12)

By calculating DL[zωf0(z)] we can estimate the edge mode decays with the assumptions made in the main text. Note
that it if we rescale f(z) → cf(z), this product will be rescaled by cL. There is a natural overall normalisation that
we use implictly throughout (in particular we fix V0 = 0 below).

Notational remark: for clarity in various formulae, in this section we use θ ∈ [0, 2π) to denote momenta on the unit
circle, rather than k, and the finite number of singularities on the unit circle are denoted by θs rather than ks.

3. Toeplitz determinants

a. Definitions.

Suppose that f(z) corresponds to a gapped, α-decaying Hamiltonian with α > 1. Then we can write f(z) = zωf0(z),
where f0(z) 6= 0 on the unit circle. There exists a V (z) that is a continuous logarithm of f0(z), i.e., f0(z) = eV (z).

Then by the Wiener-Lévy theorem, we have that the following Fourier series converges absolutely:

V (z) =

∞∑
n=−∞

Vnz
n. (F13)

We can then define:

b+(z) = e
∑∞
n=1 Vnz

n

(F14)

b−(z) = e
∑∞
n=1 V−nz

−n
(F15)

so that

f(z) = b+(z)eV0b−(z). (F16)

We fix V0 = 0 by a rescaling. Note that b+(0) = b−(∞) = 1, b+(z) is analytic inside the disk |z| < 1, and b−(z) is
analytic for |z| > 1.

We can then define the functions:

l(z) =
b−(z)

b+(z)
m(z) =

b+(1/z)

b−(1/z)
; (F17)

these functions also have an absolutely convergent Fourier expansion.

b. Szegő’s theorem

Under the previous assumptions, we can evaluate the asymptotics of DN [f0(z)] as:

DN [f0(z)] = eV0Ne
∑∞
k=1 kVkV−k(1 + o(1)), (F18)

note that our conditions guarantee that e
∑∞
k=1 kVkV−k 6= 0, as claimed in the main text.
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c. Some results on shifted determinants

Our method for calculating the edge mode splittings requires the asymptotics of DN [zωf0(z)]. These determinants
are related to the functions l(z) and m(z); analysis and a general result can be found in Ref. [55]. Roughly speaking,
for ω = 1 the edge mode splitting decays like mN , while for ω = 2 the product of edge mode splittings behaves like
m2
N −mN−1mN+1, this has some cancellations and behaves like a discrete derivative, leading to the singularity-filling

picture. In general this statement holds only up to some error terms that depend on the analytic properties of f0(z).
To give a sharper statement, we will use the following theorem from Ref. [51]:

Theorem 5 (Fisher, Hartwig, Silbermann et al.) Suppose that f0(z) belongs to Cβ for β > 1/2 and β /∈ Z.

DN [zωf0(z)] = (−1)NωDN+|ω|[f0(z)]
(
det(M(N)) +O(N−3β)

) (
1 +O(N1−2β)

)
(F19)

where M(N) is an |ω| × |ω| matrix with matrix elements:

M(N)j−k =

{
lN+j−k ω < 0

mN+j−k ω > 0.
(F20)

Functions in the class Cβ have n = bβc continuous derivatives and the nth derivative satisfies a Hölder condition

|f (n)
0 (eiθ1)− f (n)

0 (eiθ2)| ≤Mf0 |eiθ1 − eiθ2 |β0 ∀θ1, θ2 ∈ [0, 2π), (F21)

where β = n + β0. As we will see below, the asymptotics of det(M(N)) will decay faster as |ω| increases. Hence,
Theorem 5 is limited when looking at large values of ω, where det(M(N)) can be of the same order as the unspecified
error term (this motivates the ωmax in Conjecture 1). We can evaluate the asymptotics of det(M(N)) using Proposition
2 (corresponding to singularity-filling, see below) if we have an appropriate asymptotic expansion for l(z) or m(z).

For the models considered in the main text, we have that 1/f(1/z) ∈ Cβ−1 for β = Ωmin − ε where ε > 0. Using
Proposition 2 below, we have that the decay of det(M(N)) is at most N−γ where ωΩmin ≤ γ ≤ ωΩmin + ω(ω − 1).
We are then justified in using the singularity filling picture [73] as long as γ < 3(β−1) < 3(Ωmin−1). This inequality
is violated for ω = 3, while it is satisfied for ω = 2 as long as Ωmin > 5. (Note: we also need a nice expansion for mn

(or ln), and as proved above we can use the nice expansion for 1/f(1/z) to infer this up to the first subleading term
whenever Ωmin > 3.)

Note that this is a conservative estimate for the applicability of Conjecture 1, since it is based on the possibility
of the subleading term in Theorem 5 becoming relevant. Numerics such as Figure 1 in the main text and Figure 2
indicate that, in those models, the singularity filling continues to apply for higher winding numbers.

The following result from [43] is useful in certain special cases, including when we have f(z) depending only on z:

Theorem 6 (Boettcher and Silbermann) Suppose f0(z) satisfies the conditions f0(z) 6= 0 on the unit circle, has
winding number zero and has absolutely convergent Fourier series [59, 74]. Furthermore, suppose that the nth Fourier
coefficient of 1/f0(z) is zero for n < −n0 ≤ 0. Then for N ≥ n0:

DN [zωf0(z)] = (−1)NωDN+|ω|[f0(z)]D|ω|[z
−N l(z)] ω < 0

DN [zωf0(z)] = 0 ω > 0 (F22)

Now suppose that the nth Fourier coefficient of 1/f0(z) is zero for n > n0 ≥ 0. Then for N ≥ n0:

DN [zωf0(z)] = 0 ω < 0

DN [zωf0(z)] = (−1)NωDN+|ω|[f0(z)]D|ω|[z
−Nm(z)] ω > 0. (F23)

This exact formula on the right-hand-side means we can analyse the asymptotics without limits on the winding. We
do this analysis in the next subsection. The conclusion is that:

Proposition 2 Suppose that l(z) has an asymptotic expansion of the form:

lN =

m∑
n=1

∑
p≥Ωθn

eiNθnan,pN
−p an,Ωθn = Gn (F24)

then for ω < 0:

D|ω|[z
−N l(z)] = N−e

∑
k1...km

((−1)
∑m
n=1 kn(kn−1)/2ck1,...km

m∏
n=1

(
Gknn eiNθnkn

)
)(1 + o(1)) (F25)
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where ck1,...km > 0,

e = min{
∑
n

(kn(kn − 1) + Ωθnkn) for kn ∈ Z+,
∑

kn = |ω|}, (F26)

and the sum over k1, . . . km is over all choices where this minimum is achieved. If the minimum is unique then we
are guaranteed that this is the dominant term for all N , otherwise the sum may contain cancellations.

The proof relies on a truncation of (F24), so we can also consider cases where we have a nice expansion of ln up
to some power. Note that an identical proposition can be written for ω > 0 and where the parameters correspond
to the asymptotic expansion of mN (note that these will in general be different to the parameters corresponding to
lN ). Using this proposition, we can evaluate the asymptotics of Theorem 6. The decay of this determinant N−e is
consistent with the singularity-filling picture [indeed, one can think of the formula (F26) for e as singularity-filling,
it is in this sense that we say singularity-filling is rigorous for certain Toeplitz determinants; however our Conjecture
1 also supposes that we can identify the individual eigenvalues that go to zero, going beyond the determinant]. The
proof of this proposition follows closely parts of the proof of Widom’s theorem that we turn to now.

d. Widom’s theorem

In Ref. [56], the asymptotics of Toeplitz determinants of zωf0(z) where f0(z) is continuous and piecewise C∞ but
not C∞ are analysed. This means that there are finitely many points (singularities) zh = eiθh , and at each such point
there is a finite αh ∈ N where the αhth derivative is discontinuous (and for all integers k < αh the derivatives are
continuous). This is a different definition of singularity compared to the one used in the main text (based on certain
asymptotic expansions), but is related, and indeed the same picture emerges.

Theorem 7 (Widom) Suppose we have f(z) = zωf0(z), where f0(z) is continous, non-zero and piecewise C∞ but
not C∞ on the unit circle, and has winding number zero. Suppose that f0(z) has m singularities at z1 = eiθ1 , . . . , zm =
eiθm with corresponding α1, . . . , αm. Then:

DN [zωf0(z)] = (−1)NωDN [f0(z)]

N−e ∑
k1,...km

ck1,...km

m∏
h=1

(
Gkhh z

Nkh
h

)
+O(N−e−1Log(N))

 . (F27)

The decay e is given by e = min{
∑m
h=1 k

2
h + αhkh : kh ∈ Z+,

∑
kh = |ω|}. The sum is taken over all k1 . . . km where

this minimum is achieved, the ck1,...km are non-zero constants and

Gh = eisign(ω)Log(f0(zh) lim
ε→0

f
(αh)
0 (ei(θh+ε))− f (αh)

0 (ei(θh−ε))
f0(zh)

. (F28)

Defining Ωθh = αh+1, the formula for e is consistent with the singularity-filling picture as discussed in the main text;
and in the case the minimum is unique will give the leading term (with non-zero coefficient for all N) as a rigorous
result for the Toeplitz determinant.

4. Determinants of asymptotic expansions—Proof of Proposition 2

In this section we find the asymptotics of Toeplitz determinants Dn[z−N l(z)] based on the asymptotic expansion
of lN . The key ideas are all based on Widom’s proof of Theorem 7. Let us first recall a lemma [75]:

Lemma 1 (Widom 1990) Suppose we have a finite set of measures dµn(s, t) and functions ϕn(s), ψn(t) such that
ϕn(s)jψn(t)k ∈ L1(dµn(s, t)). Define the matrix M by:

Mjk =
∑
n

∫
ϕn(s)jψn(t)kdµn(s, t) j, k = 0, . . . , r − 1, (F29)

then:

det(M) =
1

r!

∑
n0,...nr−1

∫ ∏
j>k

( (
ϕnj (sj)− ϕnk(sk)

) (
ψnj (tj)− ψnk(tk)

) ) r−1∏
l=0

dµnl(sl, tl), (F30)

where the sum is over all r-tuples (n0, . . . nr−1).
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a. One singularity

Suppose that we have a function l(z) with a single singularity at z = 1. By that, we mean that there is an asymptotic
expansion of the form:

lN =
∑

p≥α+1

apN
−p. (F31)

Recall that for winding number ω < 0 we are interested in the determinant of the matrix M̃ , where:

M̃jk = lN+j−k j, k = 1, . . . , |ω|. (F32)

Following Widom, to determine the asymptotics of this determinant to order O(N−N0) we can keep only finitely many
terms of (F31) (e.g. take up to p = N0). Then we can write the matrix elements of Mjk as the finite sum:

lN+j−k =
∑

p≥α+1

ap(N + j − k)−p =
∑

p≥α+1

ap
Γ(p)

∫ ∞
0

e−Nte(k−j)ttp−1dt. (F33)

This is of the form (F29), with a sum over p and

ϕp(t) = e−t ψp(t) = et

dµp(s, t) = δ(s− t) ap
Γ(p)

e−Nttp−1dsdt. (F34)

Hence, defining r = |ω|, we can write:

det(M̃) =
1

r!

∑
p0,...pr−1

∫ ∏
j>k

( (
e−tj − e−tk

) (
etj − etk

) )
e−N

∑r−1
l=0 tl

r−1∏
l=0

apl
Γ(pl)

tpl−1
l dtl. (F35)

Let us then rescale tj → tj/N .

det(M̃) =
N−

∑
l pl

r!

∑
p0,...,pr−1

∫ ∏
j>k

((
e−tj/N − e−tk/N

)(
etj/N − etk/N

))
e−

∑r−1
l=0 tl

r−1∏
l=0

apl
Γ(pl)

tpl−1
l dtl (F36)

=
N−

∑
l pl

r!

∑
p0,...,pr−1

∫ ∏
j>k

(
−N−2(tk − tj +O(1/N))2

)
e−

∑r−1
l=0 tl

r−1∏
l=0

apl
Γ(pl)

tpl−1
l dtl (F37)

=
(−1)

r2−r
2 N−r

2+r−∑l pl

r!

∑
p0,...,pr−1

∫ ∏
j>k

(
(tk − tj +O(1/N))2

)
e−

∑r−1
l=0 tl

r−1∏
l=0

apl
Γ(pl)

tpl−1
l dtl. (F38)

The leading order term is given by:

det(M̃) =
(−1)

r2−r
2 N−r

2+r−r(α+1)

r!

∫ ∏
j>k

(tk − tj)2e−
∑r−1
l=0 tl

r−1∏
l=0

aα+1

Γ(α+ 1)
tαl dtl(1 + o(1)) (F39)

= arα+1(−1)
r2−r

2 N−r
2−rα det(M0)(1 + o(1)) (F40)

where M0 is independent of N and given by:

(M0)j,k =

j+k−1∏
l=0

(α+ 1 + l) j, k = 0, . . . , r − 1. (F41)

In the last step, following [56], we take the integral in (F39) and use Lemma 1 to write it as the determinant of M0.
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b. Multiple singularities

Now suppose that we have:

lN =

m∑
n=1

∑
p≥αn+1

eiNθnan,pN
−p (F42)

lN+j−k =
∑
(n,p)

ei(N+j−k)θn
a(n,p)

Γ(p)

∫ ∞
0

e−Nte(k−j)ttp−1dt (F43)

where n labels the m singularities on the unit circle. As before, we can keep only finitely many of the terms in the
sum over p, so we have a finite sum over pairs (n, p) with p ≥ αn + 1. This is of the form (F29) with

ϕ(n,p)(t) = eiθne−t ψ(n,p)(t) = e−iθnet

dµ(n,p)(s, t) = δ(s− t)
a(n,p)

Γ(p)
eiNθne−Nttp−1dsdt. (F44)

Hence, defining r = |ω|, we can write:

det(M̃) =
1

r!

∑
(n0,p0),...,(nr−1,pr−1)

∫ ∏
j>k

((
eiθnj e−tj − eiθnk e−tk

)(
e−iθnj etj − e−iθnk etk

))

× e−N
∑r−1
l=0 tl

r−1∏
l=0

eiNθnla(nl,pl)

Γ(pl)
tpl−1
l dtl. (F45)

As before we rescale tj → tj/N . Note that for nj = nk we have:(
eiθnj e−tj/N − eiθnk e−tk/N

)(
e−iθnj etj/N − e−iθnk etk/N

)
= −N−2 ((tk − tj) +O(1/N))

2 (F46)

while for nj 6= nk:(
eiθnj e−tj/N − eiθnk e−tk/N

)(
e−iθnj etj/N − e−iθnk etk/N

)
= (eiθnj − eiθnk )(e−iθnj − e−iθnk ) +O(1/N)

=

(
2 sin

(
θnj − θnk

2

))2

︸ ︷︷ ︸
s(nj ,nk)>0

+O(1/N). (F47)

Then, for each choice of {nj} we have a dominant term:

N−
∑r−1
l=0 (αnl+1)eiN

∑r−1
l=0 θnl

r!

∫ ∏
j>k,nj=nk

(
−N−2(tk − tj)2

) ∏
j>k,nj 6=nk

s(nj , nk)e−
∑r−1
l=0 tl

r−1∏
l=0

a(nl,αnl+1)

Γ(αnl + 1)
t
αnl
l dtl

(F48)

= (−1)x
N−

∑r−1
l=0 (αnl+1)−2xeiN

∑r−1
l=0 θnl

r!

(
r−1∏
l=0

a(nl,αnl+1)

)

×
∫ ∏

j>k,nj=nk

(tk − tj)2 ×
∏

j>k,nj 6=nk
s(nj , nk)e−

∑r−1
l=0 tl

r−1∏
l=0

t
αnl
l

Γ(αnl + 1)
dtl︸ ︷︷ ︸

c({nl})>0

. (F49)

where we define x to be the number of pairs (j, k) such that j > k and nj = nk, and the integral c({nl}) is positive.
Now, let us find the dominant term(s) among these choices of {nj}. Recall that n0, . . . nr−1 will correspond to r
choices of the m singularities. Let us suppose that the the singularity corresponding to αn has filling kn, then overall
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we have
∑
n kn = r. We also have that the number of (j, k) such that nj = nk = n is given by kn(kn − 1)/2. Hence,

2x =
∑
n kn(kn − 1), and moreover:

N−
∑r−1
l=0 (αnl+1)−2x = N−(

∑m
n=1 k

2
n+knαn). (F50)

Hence, we have that the dominant terms have asymptotic behaviour N−e where:

e = min{
m∑
n=1

k2
n + αnkn for kn ∈ Z+,

m∑
n=1

kn = r = |ω|}. (F51)

Note that we can write c({nl}) = ck1,...km since we can order the tk as we like. As in Widom’s result, it is possible
that the different dominant contributions could cancel, so that the dominant asymptotic term is not N−e. We have
the correct asymptotics if the minimum is unique, for example. This analysis for l(z) could be repeated identically
for m(z), now the behaviour will depend on αn that characterise the singularities of m(z). If either l(z) or m(z) is
analytic on an annulus containing the unit circle, then we should include in the expansion those terms coming from
the nearest singularity to the unit circle.

Finally, putting Ωθn = αn+1 we have Proposition 2, and this agrees with the singularity-filling picture of Conjecture
1.

Appendix G: Proof of Theorem 3

Recall that 〈Oκ(1)Oκ(N)〉 is a Toeplitz determinant generated by Fκ(z) = z−κf(z)/|f(z)| (see [57] for details). This
means that Fω(z) has winding number zero, and has a continuous logarithm W (z). We assume f(z) is α-decaying,
and write α = 1 + β. Using the result of Ref. [40], we have that f(z)/|f(z)| is (α − ε)-decaying for any ε > 0, so
put ε = β/2. Then Fω(z) is γ-decaying for some γ > 1. This in turn means that if we define Fn = (Fω(z))n, then∑∞
n=−∞ |n||Fn|2 <∞. Hence Szegö’s theorem (as stated in [55]) applies to Fω(z) = eW (z), giving us that:

〈Oω(1)Oω(N)〉 = DN−1[Fω(z)] = eiπs(N−1)e
∑∞
k=0 kWkW−k(1 + o(1)). (G1)

The sign of Fω(1) is equal to (−1)s. Theorem 1 The condition that Fω(z) is γ-decaying for γ > 1 also implies that
if we write F̃n = maxm≥n{|Fm|, |F−m|}, then

∑∞
n=−∞ F̃n < ∞. Then we can use Theorem 4 of Hartwig and Fisher

[55]: this gives us that for all 0 6= δ ∈ Z, the correlator 〈Oω+δ(1)Oω+δ(N)〉 = DN−1[z−δFω(z)] = o(1) as N → ∞.
This completes the proof of Theorem 3.

Appendix H: Gapless models

1. Comments

We first note that the argument given in the main text showing that f(z) = (z − 1)fg(z) (a direct transition
between models with non-trivial winding) has edge mode(s), is consistent with the general picture that we expect
that non-trivial boundary physics can occur at transitions between non-trivial models (i.e., where the critical point
cannot be perturbed into the trivial phase) [21, 58, 76].

We claim that gapless short-range models are generically of a form similar to the one analysed in the main text:
i.e., a polynomial with zeros on the unit circle, multiplied by a function that corresponds to a gapped Hamiltonian.
Then we can use Theorem 1 to prove the existence of edge modes. By short-range we include both the finite-range
case and the case where fc(z) is meromorphic with no poles on the unit circle (and hence has exponentially decaying
Fourier coefficients). To see this is a general form we use the Fundamental Theorem of Algebra, and the Weierstrass
Factorisation Theorem [77]. Note also that degenerate zeros are straightforwardly accounted for, but we no longer
have linearly dispersing critical modes.

2. Example

We can consider direct transitions between two of the chains (E6); corresponding to models with f(z) = zκ(1 +
aLiα(z)) for different constants a and values of α > 2. For κ = 0 (and appropriate a), these models have ω = 0 and
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we can write an interpolation between ω = 1 and ω = 0 by:

f(z) = λz(1 + aLiβ(z))− (1− λ) (1 + bLiγ(z)) , (H1)

where we fix b = a ζ(β)
ζ(γ) . We see that there is a gapless mode at k = 0 for λ = 1/2; indeed, f(z = 1) 6= 0, except at

this critical point. We now show that, for λ = 1/2, f(z) = (z − 1)fg(z) for a gapped model fg(z) that is α-decaying
with α > 1.

Firstly, f(z) and (1− z)−1 are analytic inside the unit circle, hence, for |z| < 1, we can write:

fg(z) = −f(z)(1− z)−1 = 1− a
∞∑
n=1

(
H(β)
n zn+1 − ζ(β)

ζ(γ)
H(γ)
n zn

)
= 1− a

∞∑
n=1

(
H

(β)
n−1 −

ζ(β)

ζ(γ)
H(γ)
n

)
︸ ︷︷ ︸

an

zn, (H2)

where H(α)
n =

∑n
m=1m

−α is the nth harmonic number of order r. Using the Euler-Maclaurin formula [50, Eq. 2.10.7]
we have the following expansion for this harmonic number:

H(α)
n = ζ(α)− 1

α− 1
n−(α−1)

∞∑
s=0

 1− α

s

 Bs
ns
, (H3)

where Bs is the sth Bernoulli number. Thus

an =
ζ(β)

ζ(γ)

1

γ − 1
n−(γ−1)

∞∑
s=0

 1− γ

s

 Bs
ns
− 1

β − 1
n−(β−1)

∞∑
s=0

 1− β

s

 Bs
ns
. (H4)

For large enough s, truncating the sums give us a remainder that is approximated by the first neglected term [50],
and so we conclude that fg(z) is δ-decaying, for δ = min(β− 1, γ− 1). This implies the absolute convergence of fg(z)
on the unit circle. Hence, we have some finite range of a where fg(z) = 1 + h(z) such that |h(z)| < 1, and so fg(z)
has winding number zero, and moreover is non-vanishing on the unit circle.

We can then use the reasoning as in the main text to argue that we have edge modes at critical points of the
form fc(z) = zκf(z) for different values of κ. For κ > 0, by considering the Hamiltonian directly, we can see that
f(z) = (z− 1)zκfg(z) has κ exactly-localised edge modes. For κ < −2 we see non-trivial critical edge modes. Indeed,
we have the Wiener-Hopf decomposition b+(z) = fg(z), and b−(z) = 1. The model f(z) = (1−1/z)z−(|κ|−1)fg(z) will
have |κ| − 1 edge modes that are shared by the gapped models z−(|κ|−1)fg(z) and z−(|κ|−2)fg(z); so by linearity we
have these edge modes also for the critical Hamiltonian. Using Theorem 1, we can compute the non-trivial localisation
of these edge modes by taking the Fourier coefficients of 1/fg(z).

Appendix I: The AIII class

Throughout this work we have focused on the translation-invariant BDI class of free-fermion chains with integer
topological invariant, with Hamiltonian given in the main text. Another such tenfold way class is AIII [8, 39], which
has a realisation in a model with number-conserving complex fermions on two sublattices A and B [49, 61]. The
model has a sublattice symmetry forbidding hopping on the same lattice and is given by:

HAIII =
∑
n,α

ταc
†
B,ncA,n+α + ταc

†
A,ncB,n−α. (I1)

Similar to BDI we can solve by Fourier transform followed by a rotation, summarised by f(z) =
∑
n τnz

n, where now
τn ∈ C. The model is gapped when f(z) does not vanish on the unit circle, and in that case the winding number is well
defined for absolutely-summable τn. Moreover, the absolute-summability again implies the existence of a well-behaved
Wiener-Hopf decomposition f(z) = zωb+(z)b−(z) (as before, we fix V0 = 0). For a complex function h(z) =

∑
α hαz

α

we also define the notation h(z) =
∑
α hαz

α. The results for the BDI class carry over straightforwardly, the main
difference is in the physical interpretation. We will sketch the key points in this section.
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1. Edge modes

An edge mode in AIII on the A-sublattice is a complex fermion of the form c†A,L =
∑
n≥0 gnc

†
A,n, that satisfies

[HAIII, c
†
A,L] = 0. Evaluating this commutator as in the proof of Theorem 1 we reach∑

n,m≥0

τm−ngmc
†
B,n = 0, (I2)

which is equivalent to
∑
m≥0 τ̃n−mgm = 0 for all n, where we define τ̃n−m = τm−n. Using the Wiener-Hopf sum

equation results, we thus have ν > 0 A-sublattice edge modes if c(z) =
∑
α τ̃αz

α = f(1/z) has winding number −ν.
This is equivalent to f(z) having winding number ω = ν > 0. The coefficients gn of the wavefunction are Fourier
coefficients of b−(1/z)−1.

If f(z) has ω < 0 then, through the same steps, we will have |ω| B-sublattice edge modes of the form c†B,L =∑
n≥0 gnc

†
B,n. The relevant function in the Wiener-Hopf sum equation is c(z) = f(z), which has the same winding as

f(z). However, this complex conjugation of the coefficients means the gn are given by Fourier coefficients of b+(z)−1.

2. Splittings

In this class the single-particle Hamiltonian is the block Toeplitz matrix generated by

Φ(z) =

 0 f(z)

−f(1/z) 0

 . (I3)

Then
∏L
j=1(−ε2

j ) = DL[Φ(z)] = (−1)LDL[f(z)]DL[f(1/z)] = (−1)L|DL[f(z)]|2.
The same Toeplitz determinant theory will apply here. Hence, given the various assumptions as discussed in the

BDI case, we will have a singularity-filling picture for finite-size splitting as before.

3. String-order parameters

As proved in Ref. [78], there are string correlators Õκ in the finite-range AIII class that can be evaluated as the
Toeplitz determinant

〈Õκ(1)Õκ(N)〉 =
∣∣∣DN−1

[
z−κf(z)/|f(z)|

] ∣∣∣2. (I4)

Õκ are decorated parity strings:

Õ0(n) = exp

(
n−1∑
m=1

iπ
(
c†A,mcA,m + c†B,mcB,m

))
(I5)

Õκ(n) = exp

(
n−1∑
m=1

iπ
(
c†A,mcA,m + c†B,mcB,m

)) n+κ−1∏
j=n

(1− 2c†A,jcA,j) for κ > 0

Õκ(n) = exp

(
n−1∑
m=1

iπ
(
c†A,mcA,m + c†B,mcB,m

)) n+|κ|−1∏
j=n

(1− 2c†B,jcB,j) for κ < 0.

Thus, assuming α-decaying τn, the proof of Theorem 3 carries over (again, this relies on the clustering result of
Ref. [40]). Hence, the string-orders continue to act as order-parameters even in the long-range (α > 1-decaying) AIII
class.
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