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Matter-wave interferometers have fundamental applications for gravity experiments such as testing
the equivalence principle and the quantum nature of gravity. In addition, matter-wave interferom-
eters can be used as quantum sensors to measure the local gravitational acceleration caused by
external massive moving objects, thus lending itself for technological applications. In this paper,
we will establish a three dimensional model to describe the gravity gradient signal from an external
moving object, and theoretically investigate the achievable sensitivities using the matter-wave in-
terferometer based on the Stern-Gerlach set-up. As an application we will consider the Mesoscopic
Interference for Metric and Curvature (MIMAC) and Gravitational wave detection scheme [New
J. Phys. 22, 083012 (2020)] and quantify its sensitivity to gravity gradients using frequency-space
analysis. We will consider objects near Earth-based experiments and space debris in proximity of
satellites and estimate the minimum detectable mass of the object as a function of their distance,
velocity, and orientation.

1. INTRODUCTION

Interferometry has many salient applications [1] in
gravity experiments such as testing the equivalence prin-
ciple [2–4] and measuring the Earth’s gravitational ac-
celeration [5–14]. The seminal works on neutron inter-
ferometry [15–17] motivated a series of matter-wave in-
terferometers [18–21] as well as led to more recent devel-
opments in photon interferometry [22–27].

One of the latest quests is to build a matter-wave inter-
ferometer with nanoparticles to test the quantum nature
of gravity in a laboratory [28, 29] (for a related work
see [30]). The scheme relies on two masses, each pre-
pared in a spatial superposition, and placed at distances
where they couple gravitationally, but still sufficiently far
apart that all other interactions remain suppressed. If
gravity is a bonafide quantum entity, and not a classical
real-valued field, then the two masses will entangle [31–
34]. To test the quantum nature of gravity we will need
particles of mass ∼ 10−14 − 10−15 kg, an interferometric
scheme for preparing large superposition sizes ∼ 100µm,
and exquisite experimental control to guarantee coher-
ence times of ∼ 1 s [28, 35–41].

One of the most promising approaches towards in-
terferometry with nanoparticles is based on the Stern-
Gerlach (SG) apparatus [42]. SG interferometers have
been already experimentally realized using an atom chip
[43], with the half-loop [44] and full-loop [45] configu-
rations achieving the superposition size of 3.93µm and
0.38µm in the experimental time of 21.45ms and 7ms,
respectively [45]. This basic SG scheme can be adapted
to the mass range of nanoparticles using nanodiamond
like materials with embedded nitrogen vacancy (NV) cen-
ters. Such a system has an internal spin degree of freedom
and can thus be placed in a large spatial superposition
using the SG setup [28, 46–49].

One of the main challenges of nanocrystal matter-wave
interferometry is to tame the numerous decoherence and

noise sources. Common sources for the loss of visibility,
such as the ones arising from residual gas collisions and
environmental photons, can be attenuated by vacuum
and low-temperature technologies [35–41]. In addition,
the spin decoherence should also been taken into account,
i.e., the Humpty-Dumpty effect [47, 50–53], with meth-
ods to extend the spin coherence time, as well as tackle
the Majorana spin-flip, under development [46, 47, 54].
Moreover, there are also a series of gravitational chan-
nels for decoherence; the emission of gravitons is negligi-
ble [55], decoherence induced by the gravitational inter-
action with the experimental apparatus can be reduced
using a hierarchy of distances [56], and gravity gradi-
ent noise (GGN) can be mitigated with an exclusion
zone [37]. GGN is equally important for the gravita-
tional wave observatories [57, 58] such as LIGO [59–61],
Virgo [62, 63], KAGRA [64], LISA [65–68] and Einstein
Telescope[69], in particular at the low frequencies.

In this work, we will investigate the possibility of using
the nanoparticle matter-wave interferometer as a gravity
gradient quantum sensor. We will estimate the required
sensitivities to detect the motion of external objects fly-
ing at small and large impact parameters and with vary-
ing velocities. Such a device can be regarded as a quan-
tum sensor, such as accelerometers, gravimeters and gra-
diometers [70–74].

We will first make a brief review about sensing with
matter-wave interferometers in the language of Feyn-
man’s path integral approach (Sec. 2). As will be shown,
the phase fluctuation density in the frequency space can
be factorized into a noise part (described by the cor-
responding power spectrum density) multiplied by the
trajectory part (described by the so-called transfer func-
tion). Then, we will establish a three dimensional model
for the GGN as a signal caused by moving the external
objects, in particular, obtaining the relation between the
local acceleration noise and phase fluctuation (Sec. 4).
We will also show that it recovers the two-dimensional
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model of Ref. [75] in a specific limit (see Appendix A).
We will apply our model to evaluate the possibility of
tracking slow moving matter in an earth-based labora-
tories and space debris in the proximity of satellites us-
ing the Mesoscopic Interference for Metric and Curva-
ture (MIMAC) and Gravitational wave interferometer [6]
(Sec. 5), and give a comparison to the quantum gravity
induced-entanglement of masses (QGEM) which involves
dual interferometer [28, 29, 37] (see Appendix B).

2. NOISES IN THE MATTER-WAVE
INTERFEROMETRY

In this section, we will give a brief pedagogical intro-
duction to the matter-wave sensing with a nanoparticles.
According to Feynman’s path integral method, the quan-
tum phase along each path can be obtained from the ac-
tion, and the signal in the experiment is described by the
phase difference [76]:

ϕ0 = ϕR − ϕL

=
1

ℏ

∫ tf

ti

LR [xR, ẋR]− LL [xL, ẋL] dt,
(1)

where ti and tf are the time of splitting and recombi-
nation of the two beams, LL,R is the Lagrangian of the
left and right arm which is a functional of the coordinate
xL,R ≡ xL,R(t) and the velocity ẋL,R ≡ xL,R(t). Sup-
posing that the Lagrangian can be expanded as a Taylor
series in xL,R, and that the noises can be described as
the fluctuation of the coefficients, we find:

LL,R [xL,R, ẋL,R] =
1

2
m0ẋ

2
L,R

−m0a0;L,RxL,R − 1

2
m0ω

2
0;L,Rx

2
L,R

−m0anoisexL,R − 1

2
m0ω

2
noisex

2
L,R

+O(x3
L,R),

(2)

where m0 is the mass of the interferometer, a0;L,R and
ω2
0;L,R are controlled by the experiment, and anoise ≡

anoise(t) and ω2
noise ≡ ω2

noise(t) are time-varying stochas-
tic quantities. In particular, the GGN will be described
by the quadratic term, so we will focus on ω2

noise in the
rest of this section. In principle, anoise and noises cou-
pling higher order terms O(x3

L,R) can be studied in the
same way. Since the noise can be modelled as a fluctua-
tion in the Lagrangian, it will contribute to a fluctuation
in the phase difference ϕ0 = ϕR − ϕL, given by

δϕ0 =
m0

2ℏ

∫ tf

ti

ω2
noise(x

2
R − x2

L)dt. (3)

Experimentally measurable statistical quantities are

obtained by taking the average value E[ · ] 1. The
mean value of the noise E[ω2

noise(t)] can be assumed
to be zero by adding an offset on the baseline of the
signal in experiments 2. The autocorrelation function
E[ω2

noise(t1)ω
2
noise(t2)] can be related to the Fourier trans-

formation of the corresponding power spectrum den-
sity (PSD) of the noise, denoted as Snoise(ω, t), using
the Wiener-Khinchin theorem. We further suppose the
noise is stationary (i.e., its properties do not change
over time), such that the PSD becomes time-independent
Snoise(ω, t) = Snoise(ω) (see for example [78]).
Summarizing, the noise ω2

noise(t) is characterised by the
following statistical quantities:

E[ω2
noise(t)] = 0,

E[ω2
noise(t1)ω

2
noise(t2)] =

1

2π

∫ ∞

ωmin

Snoise(ω)e
iω(t1−t2)dω.

(4)
Here, we have introduced a lower bound on the integral
as ωmin as a cut-off to avoid possible divergence in the
integral. This lower bound can be assumed to be deter-
mined by the total experiment time texp = tf − ti, i.e.
ωmin = 2π/texp, which physically means that the interfer-
ometer is not sensitive to the frequencies with a period
longer than the total experimental time. This infrared
dependency on the cut-off relies also on a specific PSD.
For our purpose, as we shall see we can take ωmin ≈ 0.
By using Eqs. (3) and (4), we can find the average value

of the phase fluctuation vanishes, while the variance is
given by

Γnoise ≡ E[(δϕ0)
2] =

1

2π

(m0

2ℏ

)2
∫ ∞

ωmin

Snoise(ω)F (ω)dω,

(5)
where F (ω) is defined by

F (ω) =

∫
dt1

∫
dt2

(
x2
R(t2)− x2

L(t2)
)

(
x2
R(t1)− x2

L(t1)
)
eiω(t1−t2). (6)

Since F (ω) only depends on the trajectories of the
two arms, we will call it the transfer function of the

1 The symbol E[ · ] represents the statistical average of a stochastic
quantity, i.e., the average over different realizations of the noise.
However, for a time-varying ergodic noise, the averaging can be
also performed in time using a single realization of the noise. For
example, the average of a time-varying stochastic quantity δϕ(t)
can be formulated as

E[δϕ] =
1

T

∫ T

0
δϕ(t)dt,

where T should be much longer than any time scale characteriz-
ing the statistical properties of the noise. More pedagogic mate-
rials can be found in [77].

2 The baseline (i.e., the zero-point) of the phase has to be cali-
brated before the experiment starts, so the contribution of the
mean value of every noise will be taken into account in the offset
of the baseline. Therefore, the mean value of a noise E[ω2

noise(t)]
can be always assumed to be zero.
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interferometer[79], which means it transfers the PSD of
the noise into the phase fluctuation of the interferome-
ter. Mathematically, the double integral in t1 and t2 in
Eq. (6) can be transformed to a product of two single in-
tegrals, so the transfer function F (ω) can be simplified
as

F (ω) =

∣∣∣∣∫ eiωt(x2
R(t)− x2

L(t))dt

∣∣∣∣2 (7)

According to expression Eq. (7), the transfer function
F (ω) is the modulus square of a complex number in-
tegration, so it is always a real valued function.

In the low-frequency regime, ω ≪ 2π/texp (although
this region is negligible according to the lower cut-off of
the Fourier transformation), the factor eiωt in the first
expression approximately equals one, then F (ω) approx-

imately equals
(∫

(x2
R(t)− x2

L(t))dt
)2
, which is indepen-

dent of the frequency ω.

For the high-frequency noise, we can write the inte-
grand x2

R(t) − x2
L(t) into a polynomial series of t, i.e.,

x2
R(t) − x2

L(t) =
∑∞

n cnt
n of which each term will con-

tribute a factor ω−n after the integration in Eq. (7).
So, F (ω) decreases in the high-frequency region as ω−k,
where k depends on the leading order n of the polynomial
expansion of x2

R(t)− x2
L(t).

Therefore, the total phase fluctuation, Γnoise, is dom-
inated by the lower frequency region, and sensitive to
the lower bound ωmin = 2π/texp of the integration, see
Eq.(5). In particular, the shorter experimental time texp
is, the larger the integral bound ωmin is, and hence the
smaller will be the total phase fluctuation, Γnoise.

We consider the specific configuration shown in Fig. 1
[6]. The interferometer is set to freely fall, and the cre-
ation and recombination stages control the superposition
along the x-axis. For simplicity, the acceleration during
the splitting and recombining parts is assumed to be con-
stant, which can be achieved in a Stern-Gerlach appara-
tus with constant magnetic field gradient. The absolute
value of the acceleration is given by, see [28, 37].

am =
gµB

m0
|∇B|, (8)

where g = 2 is the Lande g-factor, µB = 9 × 10−24 J/T
is the Bohr magneton, m0 is the mass of the interferom-
eter and ∇B = 104 T/m [46, 80, 81] is the gradient of
the magnetic field. The direction of the acceleration am
depends on the gradient of the magnetic field, and the
value of the spin in each arm. The magnetic field gradi-
ent makes the system on the right path accelerate during
[0, ta] and [2ta + te, 3ta + te], decelerate during [ta, 2ta]
and [3ta + te, 4ta + te], while in the intermediate interval
[2ta, 2ta + te] it is vanishingly small, while the part of
the system on the left path is in free-fall. The transfer

x

t

∆x

2ta

te

2ta

creation

free flight

recombination

FIG. 1: The figures is the illustration of the paths of the
two arms of the interferometer. The acceleration direction of
the right arm is along ”+” direction of the x-axis during the
time range [0, ta] and [3ta + te, 4ta + te], while it is along ”-”

direction during [ta, 2ta] and [2ta + te, 3ta + te]. In the
interval [2ta, 2ta + te] the right paths follow geodesic motion,
while the motion of the left arm is purely geodesic. A single
interferometer must be asymmetric to be sensitive to the
GGN as one can always choose the origin of the harmonic
trap generated by the GGN to be at the center of the two
paths (a single symmetric interferometer would thus acquire
only a global phase from any harmonic perturbation as the
two paths would acquire exactly the same phase). We also

assume that the setup is freely falling under gravity.

function for such an interferometer is given by 3:

F (ω) =16
a4m
ω10

(
− t2aω

2 sin (ω(ta + te/2))

+
(
t2aω

2 + 3
)
sin (teω/2)− 3 sin (ω(2ta + te/2))

+ 6taω cos (ω(ta + te/2))

)2

. (9)

The transfer function F (ω) is plotted in Fig. 2 with dif-
ferent values for the splitting time ta, the free-falling time
te, and the interferometer mass m0.

As we have shown in sub-figures (a) and (b) of Fig. 2,
the splitting time, ta, and the free-falling time, te, signif-
icantly affect on the behaviour of the transfer function
F (ω). The splitting time has a greater impact on the
absolute value of F (ω), while the free-falling time has a
greater impact on the oscillatory behaviour of F (ω).

3 A similar form of the transfer function has been obtained also
in [37] for two symmetric interferometers located at distance
±d/2 from the origin (i.e., a dual two matter-wave interferome-
ters). Each interferometer is located asymmetrically with respect
to the origin (i.e., either left or right of the origin). As the origin
coincides with the center of the harmonic trap, each individual
interferometer acquires different GGN induced phases on the two
arms, leading to a GGN as a sensor in the combined dual two
matter-wave interferometer. For more details, see Appendix B.
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(a) (b) (c)

FIG. 2: We have shown the transfer function for the interferometer shown in Fig. 1 for different experimental parameters.
The fixed parameters is ∇B = 104 T/m in all the figures. The other parameters are set to be: m0 = 10−17 kg (corresponds to
am = 1.8× 10−2 m/s2) and te = 1 s in the sub-figure (a), m0 = 10−17 kg and ta = 0.5 s in the sub-figure (b), and ta = 0.5 s and
te = 1 s in the sub-figure (c). As we have shown in all the figures, the transfer function F (ω) approaches a constant value in
the low-frequency range, and decreases as a polynomial of ω in the high-frequency rregime. By comparing the sub-figures (a)
with (b), we can find that the transfer function F (ω) is more sensitive to the value of the splitting time ta, than the free-falling

time te, especially in the low-frequency range. As we can see from the sub-figure (c), the transfer function F (ω) ∝ m−4
0 .

At low frequency, ω ≪ 2π/(4ta+ te), one can find that
F (ω) reaches the constant value 4 ∆x4(23ta+15te)

2/225,
which is much more sensitive to the value of ta than to
the value of te. Setting te = 0, we find a simple formula
for the transfer function in the low frequency regime:

F̄ ≡ lim
ω→0

F (ω) =
529

225
∆x4t2a. (10)

In the high-frequency region, ω ≫ 2π/(4ta + te), the
transfer function F (ω) decreases rapidly as ∝ ω−6.

As we have shown in Fig. 2 (c), the influence of the
mass on the transfer function is a simple rescaling as
F (ω) ∝ m−4

0 according to Eqs. (8) and (9). However,
an interesting result is that for the configuration dis-
cussed in Appendix B, the corresponding transfer func-
tion F (ω) ∝ m−2

0 , which leads to Γnoise ∝ m2
0F (ω), a

mass-independent phase fluctuation.

3. GGN IN MATTER-WAVE
INTERFEROMETERS

In this section, we will analyse the phase fluctuation
density due to the GGN. In the Fermi normal coordi-
nate system, constructed near the worldline of the labo-
ratory [82], the Lagrangian in a non-relativistic limit is
given by [37]

Lfree−falling =
1

2
m0v

2 −m0a0x− 1

2
m0 R0101c

2︸ ︷︷ ︸
≡ω2

gg(t)

x2, (11)

4 Using sinu ≈ u − 1/6u3, and cosu ≈ 1 − 1/2u2, for u ≪ 1 in
Eq. (9), and introducing ∆x = amt2a, which is the size of the
superposition during the free-falling period.

where the superposition direction is defined along the
x-axis as shown in Fig. 1. The first term on the right-
hand side of Eq. (11) corresponds to a free-falling parti-
cle in a flat spacetime, and the other terms m0a0x and
1
2m0R0101c

2x2 can be regarded as the acceleration noise
and the GGN caused by the fluctuations in the metric,
respectively [37].

For a free-falling experiment, the acceleration term a0
will vanish according to the properties of the Fermi nor-
mal coordinates (in line with Einstein’s equivalence prin-
ciple), so this noise will be neglected in this paper. There-
fore, we will solely focus on the noise ω2

gg(t) in Eq. (11),

which corresponds to the noise ω2
noise in Sec. 2. As dis-

cussed, we characterize such a stochastic quantity by the
noise PSD (see Eq. (4)). In particular, we introduce the
GGN PSD, Sgg(ω), by the inverse-Fourier transforma-
tion, that is

Sgg(ω) =

∫
E[ω2

gg(t)ω
2
gg(t+ τ)]eiωτdτ∫

E[R0101(t)R0101(t+ τ)]c4eiωτdτ, (12)

which has units of [Hz4/Hz] 5. There are many sources of
GGN as noted in[57, 59, 60, 62], but in this paper we will
focus on one particular source of GGN due to the smooth
motion of external objects. In the next section we first
adapt the two-dimensional classical analysis from [75] to
matter-wave interferometry in three-spatial dimensions.

5 Sgg(ω) ∼ ω4
gg/ω, where ωgg describes the spacetime curvature

noise and ω is the Fourier transformation frequency, so we write
the unit as [Hz4/Hz] rather than [Hz3].
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y

z

x

m0

b

α

(x, y, z)

v⃗

vx

β

FIG. 3: Three-dimensional GGN caused by the smooth
motion of an external object. The external object is located
at a point (x, y, z) at time t, and moves with a constant

velocity v⃗ = (vx, vy, vz), while the interferometer of mass m0

is located at the origin, with the superposition along the
x-axis. The impact parameter is denoted here as b, and the

projection angles are defined as cosα = x0/b and
cosβ = vx/v, where x0 is the x-coordinate at t = 0 and vx is

the x-component of the constant velocity v⃗.

4. THREE DIMENSIONAL GGN

To quantify the achievable sensitivity for measuring
the GGN in three spatial dimensions, we first compute
the corresponding PSD Sgg(ω). Consider the model
shown in Fig. 3, and suppose that the external object
whose coordinate is denoted by r⃗ = (x, y, z) moves with
a uniform velocity v⃗ = (vx, vy, vz), and with an impact
parameter b. Then the local acceleration of the interfer-
ometer caused by the external mass at a given time, t,
will be given by:

a⃗(t) =
GM

r2(t)

r⃗(t)

r(t)

=
GM

r3(t)
x(t)e⃗x +

GM

r3(t)
y(t)e⃗y +

GM

r3(t)
z(t)e⃗z,

(13)

where e⃗j (j = x, y, z) are the unit basis vectors. Since the
external mass is assumed to be moving with a uniform
velocity, one can write down r2(t) = b2+v2t2 and x(t) =
x0 + vxt if t = 0 is defined as the time when the external
object is at the closest point. Further, if we introduce
the projection angles

cosα = x0/b, cosβ = vx/v, (14)

FIG. 4: We have shown the PSD of the GGN for several
sources, including human walking, vehicles moving, and
space debris according to Eq. (20). The masses are set as
50 kg, 103 kg and 103 kg in respect, the speeds are 1m/s,
10m/s and 5× 104 m/s respectively, and the impact

parameter is set as 1m, 10m and 105 m in respect. As
shown in the gravitational-wave literature [57, 63, 69], the

GGN usually has a dominant contribution in the
low-frequency range. The PSD for the GGN is usually
smaller than 10−20 Hz4/Hz [63, 69], while it can reach

10−15 Hz4/Hz level for the human walking, and this is the
reason why an ultra-sensitive experiment requires an

exclusion zone for human activities [37, 60, 75]. In this work,
we, however, propose to detect such a tiny GGN as a signal
by designing a suitable interferometer, i.e., by optimising the
transfer function in Eq. (9). As we discuss in the text, by
tuning the interferometric times, we can obtain a transfer
function which can induce a detectable phase fluctuation,

Γgg, in the specific frequency range.

then the x-direction component of the acceleration a⃗ can
be written as

ax(t) =
GM

b2
x0/b+ vxt/b

(1 + v2t2/b2)3/2

=
GM

b2
cosα+ (vt/b) cosβ

(1 + v2t2/b2)3/2
.

(15)

Then in the frequency space, the Fourier transform of
ax(t) is given by 6

ax(ω) =
GM

b2

(
ωb

v

)[
x0

v
K1

(
ωb

v

)
+ i

b

v

vx
v
K0

(
ωb

v

)]
=
aloc
ω

u2
ω [cosαK1 (uω) + i cosβK0 (uω)] ,

(16)

where K0( · ) and K1( · ) are the modified Bessel func-
tions. In the second line of Eq. (16) we have introduced
the local acceleration, aloc, and the frequency-dependent
dimensionless ratio, uω, defined as

aloc ≡ GM/b2, uω ≡ ωb/v, (17)

6 Note that the superposition of the interferometer is along the
x-axis and hence we project the acceleration vector along this
direction.
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which, as we will see, control the behaviour of the GGN.

The PSD of the acceleration noise on ax(ω) can be
computed as 7

Saa(ω) =
|ax(ω)|2

T
, (18)

where T is the scattering time between the external mass
and the interferometer (in this context, playing the role of
the signal and sensor, respectively). A rough estimation
of T ∼ b/v, because the moving object is at a distance,

(r(t) =
√
v2t2 + b2), that the interaction becomes neg-

ligible after T ≥ b/v. An exact estimation of T ∼ b/v
was also made in Ref. [75]. We have particularly chosen
the same estimation to match those results for two and
three dimensions, discussed in the Appendix A. By com-
bining Eqs. (16) and (18), we can obtain the PSD for the
acceleration noise,

Saa(ω) =
a2loc
ω

u3
ω

[
cos2 αK2

1 (uω)+cos2 βK2
0 (uω)

]
. (19)

Since the local acceleration aloc is caused by the fluctua-
tion of the local spacetime curvature, one may have the
relation aloc ∼ R0101c

2b 8, then the PSD for the local ac-
celeration satisfies Saa(ω) ∼ Sgg(ω)b

2. Finally, the PSD
of the GGN is given by

Sgg(ω) =
a2loc
ωb2

u3
ω

[
cos2 αK2

1 (uω) + cos2 βK2
0 (uω)

]
.

(20)

For example, the PSD of several sources such as human
walking, vehicles moving, and space debris moving with
a constant velocity is shown in Fig. 4. In gravitational-
wave interferometers, Sgg(ω) is regarded as a source of
noise, and is mitigated from 10−15 Hz4/Hz down to about
10−20 Hz4/Hz for human walking by setting a suitable
exclusion zones[37, 60, 63, 69, 75].

7 According to the Wiener-Khinchin theorem, the PSD of ax(ω)
is given by Saa(ω) =

∫
E[a(t)a(t + τ)]eiωτdτ . The statisti-

cal average E[a(t)a(t + τ)] can be calculated by time average
E[a(t)a(t + τ)] = 1

T

∫
a(t)a(t + τ)dt. Then one can obtain the

formula of PSD as

Saa(ω) =
1

T

∫ ∫
a(t)a(t+ τ)eiωτdτdt

=
1

T

∫ ∫
a(t1)a(t2)e

iω(t1−t2)dt1dt2

=
1

T

∣∣∣∣∫ a(t)eiωtdt

∣∣∣∣2 =
|ax(ω)|2

T
.

8 Consider the Newtonian potential, VG = GMextm
b+δr

, caused by

an external mass Mext, where δr is the fluctuation of the
distance b. We can expand up to the second order, VG ∼
GMextm

b
− GMextm

b2
δr + GMextm

b3
(δr)2. By comparing the La-

grangian of a freely-falling system, (11), we can obtain that

GMext
b3

∼ 1
2
R0101c2. Since, the local acceleration is caused by

Mext, and aloc = GMext
b2

, then we have aloc ∼ R0101c2b.

We want to devise an interferometer that is capa-
ble of detecting weak GGN as signals in the low-
frequency range by optimising the interferometric param-
eters. From Eqs. (5) and (20), we find that the the cor-
responding phase fluctuation is given by

Γgg =

(
2m0aloc

ℏb

)2 ∫
u3
ωF (ω)

ω[
cos2 αK2

1 (uω) + cos2 βK2
0 (uω)

]
dω. (21)

Note that the PSD for the GGN Sgg(ω) approximately
converges to zero in the low-frequency limit ω → 0+,
while the transfer function F (ω) converges to a non-zero
constant, so the lower bound ωmin = 2π/texp of the inte-
gration is not so relavant for the total phase fluctuation,
Γgg. However, it still matters for some other sources of
noise which diverges in the low frequency region, see [37].
In experiments, the minimum measurable value of Γgg

will be determined by the the overall phase sensitivity.
In the following we will assume Γgg = 0.01 as a threshold
value below which we can no longer reliably measure the
phase fluctuations. Given such a threshold value for Γgg

we can then ask what should be the characteristic of the
interferometer, such that it can discern a particular GGN
as a signal. The interferometer mass, m0, and the the
superposition size, ∆x, control the overall amplitude of
the signal, while the beam-splitting time, ta, and the
free-fall time, te, control the sensitivity in a particular
frequency range.
From Eq. (21) we can find the local gravitational ac-

celeration

aloc(M) =
ℏb
√
Γgg

2m0

(∫
u3
ωF (ω)

ω

(
cos2 αK2

1 (uω)

+ cos2 βK2
0 (uω)

)
dω

)−1/2

, (22)

where the right-hand side fixes all the parameters, except
the massM of the external object. Eq. (22) thus provides
a simple expression to estimate the minimum acceleration
that one can sense given the threshold phase sensitivity
Γgg. Since the impact parameter, b is also fixed on the
right-hand side of Eq. (22) we find from Eq. (17) that
the minimum detectable mass M of the external object
with impact factor b (moving with velocity v, and with
its direction parametrised by the angles α and β), is given
by M = alocb

2/G.

5. SENSING GGN SOURCES IN AN
EARTH-BASED LABORATORIES AND
SPACE-DEBRIS IN THE VICINITY OF

SATELLITES

We now apply the model developed in the previous sec-
tions to sense GGN from two different types of sources.
For simplicity we will set the free-fall time to te = 0
and vary only the beam-splitting time ta. We will focus
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(a) (b)
(c)

FIG. 5: (a) The left-most panel shows the plot of the minimum detectable local acceleration, aloc = GM/b2 (left
vertical-axis), or equivalently, the minimum detectable mass of the GGN source (right vertical-axis). The GGN source has an
impact parameter b = 10m and velocity v (horizontal-axis). The GGN sensitivity increases by increasing the beam-splitting

time ta (the free-falling time te = 0 s for simplicity such that the total interferometric time is 4ta. The beam-splitting
acceleration am is set as 1.8× 10−2 m/s2 (the corresponding magnetic field gradient we have used here is ∇B = 104 T/m),

and the mass of the interferometer is m0 = 10−17 kg. (b) The middle panel shows similar to (a) but with the impact
parameter set to b = 1000m, requiring longer beam-splitting times ta to achieve the same sensitivity for the minimum

detectable mass (corresponding to a better sensitivity of the minimum detectable local acceleration). (c) The right most panel
shows the colour map for the minimum detectable local acceleration as a function of the projection angles α (horizontal-axis)

and β (vertical-axis) quantifying the relative orientation of the interferometer and the motion of the external object (see
Fig. 3). The impact factor has been set to b = 10m and the velocity to v = 10m/s. The optimal sensitivity is achieved when

the motion of the external object is aligned with the axis of the interferometer (α = 0 and β = 0).

on sensing GGN in the vicinity of Earth-based laborato-
ries and sensing space-debris in the vicinity of satellites
(Sec. 5). The goal of this section is to check the fea-
sibility of tracking the motion of the objects, ideally in
real-time, and hence we consider the total experimental
time to be the smallest possible, i.e., texp = 4ta. To make
a statistically significant number of experimental runs we
would thus need to consider an array of interferometers
operating simultaneously.

Now we quantify the sensitivity to GGN signals caused
by the motion of small objects in the proximity of exper-
iments. As we will see, unknown light objects, even if
moving at slow speeds, can be a significant source of GGN
for state-of-the-art experiments, which become sensitive
to tiny local accelerations.

We first focus on GGN sources that could be present
inside earth-based laboratories. In particular, we will
consider external objects in the velocity range (10−2 −
102)m/s, and with masses in the range from (10−5 −
103) kg. We will further assume that the external object,
acting as the GGN source, has an impact factor b = 10m.

As discussed in Sec. 4 we will set the GGN phase to the
value Γgg ≥ 0.01 9. If one fixes also the beam-splitting
time ta one can then evaluate the local acceleration aloc.
Using Eq. (17) one can then readily determine also the
minimum detectable mass M of the GGN source.

As shown in Fig. 5 (a), when v → 0 or v → ∞, the

9 In a concrete experimental setup one has to estimate the
achievable phase sensitivity by characterising various background
noises. Here we have used the value Γgg ≥ 0.01 is chosen as a
concrete example (see comment below Eq. (21)).

local acceleration aloc tends to infinity and the minimum
detectable mass M becomes extremely large. Indeed,
when the external object moves too slowly or too fast,
its GGN signal decreases as the frequency range of the
interferometer ∼ t−1

a is no longer compatible with the
characteristic frequency of the GGN source given by v/b.
The interferometer performs optimally as a GGN sensor
when ta is comparable to b/v.
A similar analysis as discussed above can be also

adapted for sensing space debris in the vicinity of satel-
lites [83, 84]. For illustration, we will consider the de-
bris at impact factor b = 1000m and with velocity in
the range (100 − 104)m/s. We consider the same beam-
splitting times as in the previous section, although the
beam-splitting time could be significantly extended in
space [85, 86]. In Fig. 5 (b) we show the measurable lo-
cal acceleration, or equivalently, the minimum detectable
mass of the GGN source.
In Fig. 5 (c) we also show the minimum detectable mass

as a function of the projection, cosα and cosβ, defined
in Eq. (14) evaluated for a fixed beam-splitting time ta,
fixed velocity v = 10m/s, and fixed impact factor b =
10m. The optimal sensitivity is achieved for cosα =
cosβ = 1 corresponding the external object moving along
the x-axis.

6. SUMMARY

In this paper, we first made a brief review of frequency-
space analysis for matter-wave interferometry. We
pointed out that the spectral density of the phase fluctu-
ation caused by a noise can be always factorized into the
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noise part (described by the corresponding PSD) and the
trajectory part (described by the so-called transfer func-
tion defined by Eq. (6)). Although we have primarily fo-
cused on a SG scheme with nanoparticles, a similar anal-
ysis could be readily adapted to other types of matter-
wave interferometers, such as those based on ultra-cold
atom Bose-Einstein Condensate (BEC)[2, 3, 5, 87, 88].

We have developed a 3D model for the GGN signal of a
moving external object, and obtained the corresponding
PSD in Eq. (20), generalizing the two dimensional model
in [75]. Based on the PSD of gravity gradient signal,
we then derived the expression Eq. (22) and Eq. (A4),
which quantifies the local gravitational acceleration, or
equivalently, the minimum detectable mass of the GGN
source.

Finally, we applied the developed model to investigate
two distinct GGN sources, namely, slow moving objects
in Earth-based laboratories and space debris near satel-
lites, and studied how the GGN signal varies with the
velocity, distance, and orientation.

Of course, there are numerous challenges to be met be-
fore we can realize experimentally such a quantum sensor.
Creating large spatial superpositions and achieving the
required coherence time with large masses is a formidable
challenge. Nonetheless, we foresee that a nanoparticle
matter-wave interferometer can have many novel tech-
nological applications, complementing the fundamental
tests of Newton’s law or detecting the quantum gravity
induced entanglement.
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Appendix A: Three Dimensional GGN and
Reduction to two Dimensions

The model established in Sec. 4 is a generalisation of
a well-known model discussed in Ref. [75]. In this ap-
pendix, we will discuss the special cases of the 3 dimen-
sional model, and show how it reduces to the results of
1-dimensional model of Ref. [75].

1. Three dimensional model

When ωb/v ≫ 1, we can make some approximations
which are useful to investigate the slowly moving external
objects (see Sec. 5). In this latter regime, the modified

Bessel functions can be approximated as

K0 (uω) ≈ K1 (uω) ≈
√

π

2

e−uω

√
uω

. (A1)

Then the PSD for the GGN in Eq. (20) can be reduced
to:

Sgg(ω) =
a2loc
ωb2

u2
ω(cos

2 α+ cos2 β)e−2uω . (A2)

Note that when, α = 0, and, β = π/2, the PSD can be
further reduced to

Sgg(ω) =
a2loc
ωb2

u2
ωe

−2uω , (A3)

which is the same result in Ref. [75]. Based on the re-
duced PSD in Eq. (A2), the local acceleration, Eq. (22),
can be simplified to

aloc =
ℏv
2m0

√
Γgg

(cos2 α+ cos2 β)
∫
ωF (ω)e−2uωdω

. (A4)

Physically, the condition, ωb/v ≥ 1, gives, b/v ≥
1/ωmin ∼ texp, which constrains the interaction time,
T ∼ b/v, to be longer than the interferometric times,
ta, te. For example, a walking person who is mov-
ing with the speed ∼ 1m/s, at a distance, ∼ 1m, so
the corresponding ratio b/v ∼ 1 s satisfies the condition
b/v ≥ te, ta ∼ 1 s.
However, the approximation in Eq. (A4) gives reason-

able values as long as we are in the regime ω̃jb/v ≫ 1,
where ω̃j = 2π/tj (j = a, e) denotes the characteristic
frequencies of the interferometer. The latter regime has
the following hierarchy of times:

ta, te ≪ b/v ≪ texp, (A5)

where we recall that texp is the total experimental time,
b/v can be interpreted as the interaction time, and ta, te
are the beam-splitting time and free-evolution time of a
single interferometric loop, respectively. In such a regime
we can make the approximation F (ω) ≈ F̄ , where F̄ is
defined in Eq. (10). The integrations in Eq. (22) then
reduce to ∫ ∞

0

u2
ωK

2
0 (uω) duω =

π2

32
≈ 0.31, (A6)∫ ∞

0

u2
ωK

2
1 (uω) duω =

3π2

32
≈ 0.93, (A7)

where we have changed the integration variable to uω =
bω/v defined in Eq. (17). On the other hand, using the
approximation in Eq. (A1), the relevant integration in
Eq. (22) evaluates to:∫ ∞

0

uω

(√
π

2

e−uω

√
uω

)2

duω =
π

8
≈ 0.40. (A8)

which is of the same order of magnitude as the results
obtained in Eqs. (A6) and (A7). Since in this work we are
primarily interested in the order of magnitude estimates,
we will thus use the approximation in Eq. (A4) also for
the regime given in Eq. (A5).



9

x

b

m0 θ0

(r, θ)

v

FIG. 6: The two dimensional model for the GGN caused by
a smooth motion. The external object is originally located

at point (b, θ0), and moves with a constant speed v.

2. GGN in two dimensions

Now we will show how the three dimensional model
developed in Sec. 4 reduces to a two-dimensional model
when the external object and the quantum sensor are
confined to a plane (see Fig. 6). Comparing to the three
dimensional model from the main text, we only need one
polar angle θ to describe the motion of the external object
moving at impact factor b. As we will see below, if we
further set the angle to θ0 = 0, then the two dimensional
model reduces to the original model proposed in [75].
The acceleration caused by the Newtonian force in the
x-direction is given by:

ax(t) =
GM

b2
1

(1 + (vt/b)2)3/2
(cos θ0 + (vt/b) sin θ0),

(A9)
so in the frequency space, the local acceleration is

ax(ω) =
GM

b2ω
u2
ω (cos θ0K1 (uω) + i sin θ0K0 (uω)) ,

(A10)
where Kα( · ) is the modified Bessel function, and we
have introduced uω = bω/v (see Eq. (17) in the main
text). Comparing to the three dimensional result in
Eq. (16), the projection angle α and β becomes θ0 and
π/2− θ0, respectively.

According to Saa(ω) = |ax(ω)|2/T , T = b/v, and
Sgg(ω) = Saa(ω)/b

2, the PSD for the GGN in the two
dimensional case is given by:

Sgg(ω) =
a2locu

3
ω

ωb2
[
cos2 θ0K

2
1 (uω) + sin2 θ0K

2
0 (uω)

]
,

(A11)
where we have introduced, aloc = GM/b2 (see Eq. (17)
in the main text). The corresponding phase fluctuation

is given by:

Γgg =

(
2m0aloc

ℏb

)2 ∫
u3
ωF (ω)

ω[
cos2 θ0K

2
1 (uω) + sin2 θ0K

2
0 (uω)

]
dω. (A12)

From Eq. (A12) we then readily find the local accelera-
tion:

aloc(M) =
ℏb
√

Γgg

2m0

(∫
u3
ωF (ω)

ω

(
cos2 θ0K

2
1 (uω)

+ sin2 θ0K
2
0 (uω)

)
dω

)−1/2

.

(A13)

If we now set θ0 = 0, we recover the result presented
in [75]. In the regime, uω ≫ 1, the modified Bessel’s
function can be approximated as K0(uω) ∼ K1(uω) ∼
e−uω/u

1/2
ω (see Eq. (A1)). In this regime, the PSD for

the GGN in Eq. (A11) reduces to

Sgg(ω) =
a2loc
b2ω

u2
ωe

−2ωb/v. (A14)

The GGN formula Eq. (A14) remains a decent approxi-
mation even when uω ∼ 1 which is the regime considered
in [75] where they have omitted the dimensionless pref-
actor u2

ω. Besides, as is seen in (A14), the choice of T
should be b/v to match the result in [75], otherwise there
will be an additional factor. Finally, using Eq. (A14) we
find that the local acceleration simplifies to the simple
expression:

aloc =
ℏv
2m0

√
Γgg∫

ωF (ω)e−2uωdω
, (A15)

which matches Eq. (A4) for α = 0 and β = π/2.

Appendix B: GGN with two symmetric
interferometers

For completeness we discuss the dual QGEM interfer-
ometer depicted in Fig. 7. Each individual interferometer
(the left one or the right one) has the paths located asym-
metrically with respect to the origin – as such, the two
paths of an individual interferometer acquire a nonzero
phase difference from the harmonic trap generated by a
GGN signal centered at the origin. In case, one is looking
at joint properties of the two interferometers, such as an
entanglement witness, the dual interferometer becomes
sensitive to GGN [37].
The transfer function for symmetric interferometer is

given by [37]:

F (ω) = 64d2a2m
sin4(ωta

2 ) sin2( 12ω(2ta + te))

ω6
. (B1)
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x

t
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d

FIG. 7: Illustration of the paths of the dual interferometer.
A single symmetric interferometer is by itself not susceptible
to sense GGN, because one can always choose the origin of
the coordinate system, corresponding to the origin of the

harmonic GGN metric perturbation, such that the paths are
located symmetrically on each side (for example, the paths
of the right interferometer are symmetric with respect to

x = d/2 and the phases on each arm would become
proportional to ∝ (±∆x/2)2 – one only generates an

undetectable global phase on an individual interferometer).
However, if one is considering joint observables of multiple
interferometers placed along the x-axis, one can no longer

make the phases on an individual interferometer ∝ x2 equal,
leading to a nonzero GGN signal. Indeed, in the picture the
phases on the two arms of the left (right) interferometer are

given by ∝ (−d/2±∆x/2)2 (∝ (d/2±∆x/2)2). More
generally, two or more adjacent symmetric interferometers
can become sensitive to GGN when the two arms of an

individual individual interferometer are placed
asymmetrically with respect to the origin of the local GGN
metric pertubation [37]. d is the distance between the two
interferometers, and ∆x is the superposition size, assumed

equal for both interferometers.

where d denotes the distance between the centers of two
interferometers (the rest of the parameters have the same
meaning to the ones defined in the main text).

An interesting observation is that the transfer func-
tion for this configuration is proportional to m−2

0 rather
than m−4

0 in Eq. (9). As a consequence the correspond-
ing phase fluctuation density Γnoise will be independent
of m0, according to Eq. (5). Thus, the mass of the su-
perposition can be chosen arbitrarily for this configura-
tion, which is an advantage. We have discussed the min-
imum local acceleration, or equivalently, the minimum
detectable mass, from sensing GGN in Fig. 8. We note
that the dual QGEM interferometer is less sensitive to
sense the GGN in comparison to the asymmetric MIMAC
interferometer.
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in Physics and Chemistry: From Otto Stern’s Pioneer-
ing Exploits to Present-Day Feats. Springer International
Publishing, 2021.

[43] Mark Keil, Shimon Machluf, Yair Margalit, Zhifan Zhou,
Omer Amit, Or Dobkowski, Yonathan Japha, Samuel
Moukouri, Daniel Rohrlich, Zina Binstock, Yaniv Bar-
Haim, Menachem Givon, David Groswasser, Yigal Meir,
and Ron Folman. Stern-Gerlach Interferometry with the
Atom Chip, pages 263–301. Springer International Pub-
lishing, Cham, 2021.

[44] Shimon Machluf, Yonathan Japha, and Ron Folman. Co-
herent stern–gerlach momentum splitting on an atom
chip. Nature Communications, 4(1):2424, Sep 2013.

[45] Yair Margalit, Or Dobkowski, Zhifan Zhou, Omer Amit,
Yonathan Japha, Samuel Moukouri, Daniel Rohrlich,
Anupam Mazumdar, Sougato Bose, Carsten Henkel, and
Ron Folman. Realization of a complete stern-gerlach in-
terferometer: Toward a test of quantum gravity. Science

Advances, 7(22):eabg2879, 2021.
[46] Ryan J. Marshman, Anupam Mazumdar, Ron Folman,

and Sougato Bose. Constructing nano-object quan-
tum superpositions with a Stern-Gerlach interferometer.
Phys. Rev. Res., 4(2):023087, 2022.

[47] Run Zhou, Ryan J. Marshman, Sougato Bose, and Anu-
pam Mazumdar. Catapulting towards massive and large
spatial quantum superposition. 6 2022.

[48] Run Zhou, Ryan J. Marshman, Sougato Bose, and Anu-
pam Mazumdar. Mass Independent Scheme for Large
Spatial Quantum Superpositions. 10 2022.

[49] Run Zhou, Ryan J. Marshman, Sougato Bose, and Anu-
pam Mazumdar. Gravito-diamagnetic forces for mass in-
dependent large spatial quantum superpositions. 11 2022.

[50] Berthold-Georg Englert, Julian Schwinger, and Mar-
lan O. Scully. Is spin coherence like humpty-
dumpty? i. simplified treatment. Foundations of Physics,
18(10):1045–1056, Oct 1988.

[51] J. Schwinger, M. O. Scully, and B.-G. Englert. Is spin
coherence like humpty-dumpty? Zeitschrift für Physik D
Atoms, Molecules and Clusters, 10(2):135–144, Jun 1988.

[52] MO Scully, BG Englert, and J Schwinger. Spin coher-
ence and humpty-dumpty. iii. the effects of observation.
Physical review. A, General physics, 40(4):1775—1784,
August 1989.

[53] Yonathan Japha and Ron Folman. Role of rotations
in Stern-Gerlach interferometry with massive objects. 2
2022.

[54] Massimo Inguscio. Majorana ”spin-flip” and ultra-low
temperature atomic physics. PoS, EMC2006:008, 2007.
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