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Single active particle in a harmonic potential: non-existence of the Jarzynski relation
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The interest in active matter stimulates the need to generalize thermodynamic description and
relations to active matter systems, which are intrinsically out of equilibrium. One important example
is the Jarzynski relation, which links the exponential average of work done in an arbitrary process
connecting two equilibrium states with the difference of the free energies of these states. Using a
simple model system, a single thermal active Ornstein-Uhlenbeck particle in a harmonic potential,
we show that if the standard stochastic thermodynamics definition of work is used, the Jarzynski
relation is not generally valid for processes between stationary states of active matter systems.

I. INTRODUCTION

Active matter systems [1–6] consist of particles that
consume energy from their environment to propel them-
selves. These systems are intrinsically out of equilibrium
and therefore, as a matter of principle, standard rela-
tions derived for equilibrium systems do not apply to
them. Some of these relations can be generalized by in-
troducing effective thermodynamic parameters, but, at
least for now, there is no general framework for doing
this and thus the validity of such procedures has to be
checked on a case by case basis.
The Jarzynski relation [7] applies to processes connect-

ing equilibrium states of a system connected to a heat
reservoir at temperature T (here and in the following we
set Boltzmann constant kB = 1). The Jarzynski relation
states that the exponential average of the work w done
on the system while driving it between two equilibrium
states is related to the difference of the free energies of
these states,

〈exp (−w/T )〉 = exp (−∆F/T ) . (1)

The beauty of relation (1) is that it is valid for an ar-
bitrary process connecting two given equilibrium states.
Its usefulness is in that it allows to extract the free energy
difference, i.e. equilibrium information, from an ensem-
ble of non-equilibrium trajectories of the system [8].
If one tries to generalize the Jarzynski relation to pro-

cesses involving active matter systems, in principle one
needs to generalize the notion of the free energy. One
can avoid this task by noticing that in the limit of in-
finitely slow processes one expects the work to become a
non-fluctuating quantity. This allows one to replace ∆F
by work done in an infinitely slow, i.e. quasistatic, pro-
cess, wqs. The generalized Jarzynski relation would then
connect the exponential average of the work done while
driving an active matter system between two stationary
states to the work done in a quasistatic process,

〈exp (−w/T )〉 = exp (−wqs/T ) . (2)

Here we investigate the existence of such a relation for a
small active matter system using the standard stochastic
thermodynamics definition of work.

The problem with using the generalized Jarzynski rela-
tion to describe active matter systems is whether and how
to generalize the temperature that prominently features
in relation (2). Different effective temperatures have been
introduced for active matter systems [9–13] and it is a

priori not clear which one should be used if Eq. (2) were
to be extended to active matter systems.
We study probably the simplest active matter system

that can be externally manipulated, a single thermal ac-
tive Ornstein-Uhlenbeck particle (AOUP) [12, 14, 15] in
a harmonic potential. We consider two different classes
of processes. In the first class we change the position of
the minimum of the potential. In this case no work is
done in the quasistatic process and the right-hand-side
of the Jarzynski equality becomes equal to 1. We show
that in the limit of infinitely fast and slow but finite speed
processes two different effective temperatures have to be
used to keep the exponential average of the work equal
to 1.
In the second class of processes we change the force

constant of the harmonic potential. In this case, the qua-
sistatic work is non-zero. We show that for both infinitely
fast and slow but finite speed processes there is no effec-
tive temperature that makes the generalized Jarzynski
relation valid.
Our results demonstrate that at least with the stan-

dard definition of work the Jarzynski relation is not gen-
erally valid for processes connecting stationary states of
active matter systems.

II. A THERMAL AOUP IN A HARMONIC

POTENTIAL

We consider a single active particle moving in a har-
monic potential. The particle is endowed with a self-
propulsion force that evolves according to the Ornstein-
Uhlenbeck stochastic process. It also experiences the
standard thermal noise. The equations of motion read

γẋ = −k (x− x0) + f + ζ 〈ζ(t)ζ(t′)〉 = 2γT δ(t− t′),
(3)

τpḟ = −f + η 〈η(t)η(t′)〉 = 2γTaδ(t− t′).
(4)
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In Eq. (3) γ is the friction coefficient, k is the force
constant, x0 is the location of the potential minimum,
f is the self-propulsion and ζ is the thermal noise char-
acterized by temperature T . In Eq. (4) τp is the per-
sistence time of the self-propulsion and η is the noise of
the reservoir coupled to the self-propulsion, character-
ized by active temperature Ta. Equivalently, the parti-
cle can be described by the Fokker-Planck equation for
a joint probability distribution of the position and the
self-propulsion, P (x, f ; t),

∂tP (x, f ; t) = ΩP (x, f ; t) (5)

where evolution operator Ω reads,

Ω =− γ−1∂x [−k (x− x0) + f − T∂x]

− ∂f
[

−f/τp −
(

γTa/τ
2
p

)

∂f
]

. (6)

We note that the so-called drift coefficients [16] in evolu-
tion operator (6) are linear in x and f and therefore the
stationary solution of Eq. (5) has a Gaussian form. In
particular, the position distribution reads

pss(x) ∝ exp

[

−
(1/2)k (x− x0)

2

T + Ta/ (kτp/γ + 1)

]

. (7)

We follow standard stochastic thermodynamics [17, 18]
and define the work done while changing parameter α of
the potential U(x) = (1/2)k(x− x0)

2 as

w =

∫ τ

0

dt α̇ ∂αU(x). (8)

We consider two classes of processes, with α = x0 and
α = k.

III. WORK DONE BY SHIFTING THE

POTENTIAL MINIMUM

In the case of moving the potential minimum, x0 →
x0 + ∆x0, the work done in an infinitely slow (quasi-
static) process vanishes, wqs = 0, and, as stated earlier,
the right-hand-side of generalized Jarzynski relation, Eq.
(2), is equal to 1.
The work done in an instantaneous process is equal to

wins = (1/2)k
(

−2∆x0(x − x0) + ∆x20
)

and its distribu-
tion reads

pins(w) =
〈

δ
(

w − (1/2)k
(

−2∆x0(x− x0) + ∆x20
))〉ss

(9)
where here and in the following 〈. . .〉

ss
denotes averag-

ing over the stationary distribution. Explicit calculation
shows that in this case the generalized Jarzynski relation
is satisfied with Teff1 = T + Ta/ (kτp/γ + 1),

〈exp (−w/Teff1)〉
ins

= 1, Teff1 = T+Ta/ (kτp/γ + 1) ,
(10)

where 〈. . .〉
ins

denotes averaging over distribution of work
done in an instantaneous process. We note that ef-
fective temperature (10) is the temperature that is ob-
tained if stationary state distribution of particle posi-
tions, (7), is interpreted as the Gibbs measure, pss(x) ∝
exp (−U(x)/Teff1). Furthermore, Eq. (10) is consistent
with the result of Paneru et al. [19] who considered work
extracted from an active information engine.
For finite-speed processes it is convenient to follow Ma-

zonka and Jarzynski [20] and write a Fokker-Planck equa-
tion for a joint probability distribution for the position,
self-propulsion and work, p(x, f, w; t),

∂tp(x, f, w; t) = [Ω + ẋ0k(x− x0)∂w] p(x, f, w; t). (11)

Assuming that at the start of driving the particle is in
the stationary state we get the following initial condi-
tion for Eq. (11), p(x, f, w; t = 0) = pss(x, f)δ(w).
Once again we note that drift coefficients in Eq. (11)
are linear. This fact and a Gaussian (albeit singular)
initial condition p(x, f, w; t = 0) imply that distribu-
tion p(x, f, w; t) is a Gaussian distribution with time-
dependent coefficients. It follows that work distribution
p(w; t) =

∫

dxdf p(x, f, w; t) is also a Gaussian and there-
fore it is fully characterized by the first two cumulants of
the work. To calculate these cumulants we use Eq. (11)
and for slow but finite speed driving we get the following
result (see Appendix A for details of the calculation)

〈w〉sl = ẋ0γ∆x0, (12)

σ2
w =

〈

w2
〉sl

−
(

〈w〉
sl
)2

= 2ẋ0γ∆x0 (T + Ta) , (13)

where 〈. . .〉
sl
denotes averaging over the work distribution

for slow but finite speed driving. In the limit of infinitely
slow driving, i.e. in the quasi-static limit ẋ0 → 0, the
variance of the work vanishes, i.e. the work does not
fluctuate, and the average work vanishes as well.
For a Gaussian distribution of work generalized

Jarzynski relation (2) is satisfied with T replaced by ef-
fective temperature Teff if [20]

〈w〉 = wqs + σ2
w/ (2Teff) . (14)

Thus, results (12-13) imply that for slow but finite speed
driving the generalized Jarzynski relation is satisfied with
Teff2 = T + Ta,

〈exp (−w/Teff2)〉
sl
= 1, Teff2 = T + Ta (15)

(recall that wqs = 0 for moving the potential mini-
mum). We note that the effective temperature that en-
ters into the generalized Jarzynski relation for slow but
finite speed driving is the same as the effective tempera-
ture obtained from the fluctuation-dissipation ratio in the
limit of small frequencies (see Appendix B for details).
We emphasize that the fact that two different effec-

tive temperatures are required to make the generalized
Jarzynski relation valid for this very simple class of pro-
cesses implies that even for a thermal AOUP in a har-
monic potential effective temperature is a non-unique no-
tion and there is no “the effective temperature”.
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IV. WORK DONE BY CHANGING THE FORCE

CONSTANT

Next, we consider work done by increasing the force
constant of the potential, k → k + ∆k. To simplify the
notation in this section we set the potential minimum at
x0 = 0. For the increase of the force constant, the work
done in an infinitely slow (quasistatic) process is non-
zero. The quasistatic work can be calculated by rewriting
Eq. (8) with α = k as an integration over k of ∂kU(x) =
x2

2 averaged over stationary state distribution, Eq. (7),

wqs =

∫ k+∆k

k

dk1

〈

x2

2

〉ss

. (16)

The result reads

wqs =
T + Ta

2
ln
k +∆k

k
−
Ta
2

ln
(k +∆k)τp/γ + 1

kτp/γ + 1
.

(17)

The work done in an instantaneous process is equal to
wins = (1/2)∆kx2 and its distribution reads

pins(w) =
〈

δ
(

w − (1/2)∆kx2
)〉ss

(18)

=

√

k

πw∆kTeff1
e
−

kw
∆kTeff1 ,

where Teff1 is defined in Eq. (10). Explicit calculation
shows that for instantaneous changes of the force con-
stant Teff1 cannot be used in the generalized Jarzynski
relation,

〈exp (−w/Teff1)〉
ins

=

√

k +∆k

k
6= exp (−wqs/Teff1) .

(19)
In fact, there is no effective temperature that is indepen-
dent of the change of the force constant and that leads to
the generalized Jarzynski relation for work distribution
(18).

To investigate the existence of the generalized Jarzyn-
ski relation for a slow but finite rate increase of the force
constant we derive an approximate distribution of work
done in this process. To this end we follow Speck [21]
who derived the analogous distribution for work done on
a Brownian particle in a harmonic potential. The cal-
culation is somewhat tedious but straightforward; it is
presented in Appendix C. The approximate distribution
of work for a slow but finite speed change of the force
constant is a Gaussian with cumulants that are given by

the following, rather complicated expressions,

〈w〉
sl
= wqs + k̇

∫ k+∆k

k

dk1

[

γT

4k31

+
γTa

(

4 (k1τp/γ)
2
+ 3k1τp/γ + 1

)

4k31 (k1τp/γ + 1)
3



 (20)

σ2
w = 2k̇

∫ k+∆k

k

dk1

[

γT 2

4k31
+
γTTa (2k1τp/γ + 1)

2k31 (k1τp/γ + 1)
2

+
γT 2

a

(

(k1τp/γ)
2
+ 3k1τp/γ + 1

)

4k31 (k1τp/γ + 1)
3



 (21)

Cumulants (20-21) do not satisfy relation (14) and there-
fore, again, there is no effective temperature that leads
to the generalized Jarzynski relation for a slow but finite
speed process in which the force constant is increased.

V. DISCUSSION

Our results imply that if one uses the standard defini-
tion of work, Jarzynski relation (1) generally cannot be
extended to active matter systems. For some classes of
processes, depending on the speed of driving different ef-
fective temperatures have to be used to make generalized
Jarzynski relation (2) valid. For other classes of processes
there is no effective temperature that would lead to the
generalized Jarzynski relation.

We emphasize that this result follows if one uses the
definition of work utilized in standard stochastic thermo-
dynamics, Eq. (8). It is possible that other definitions of
work, e.g. excess work defined by Hatano and Sasa [22],
could lead to a generalized Jarzynski relation. This may
seem plausible since although in this work we showed
that the Jarzynski relation generally cannot be extended
to active matter systems, elsewhere [23] we showed that
fluctuation theorems for different kinds of entropy are in
general satisfied for active matter systems [24]. On the
other hand, we recall that fluctuation theorems for en-
tropy do not involve the temperature and thus the issue
that makes the generalized Jarzynski relation invalid does
not occur. This subject is left for a future investigation.

Our finding is consistent with the fact that in out-of-
equilibrium systems if one uses relations that give ther-
modynamic temperature for equilibrium systems, one
generally gets different effective temperatures. Simply
speaking, there is no “the effective temperature”. Only
in certain cases, e.g. for glassy systems under shear, a
priori different effective temperatures turn out to have
the same value [25, 26]. This result follows from a well
understood theoretical argument involving the separa-
tion of time scales of different relaxation processes.
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Appendix A: Work done while shifting the potential

minimum

Our calculation of the first two moments of the dis-
tribution of the work done while shifting the potential
minimum follows a similar calculation presented in Ref.
[20], which was concerned with a (passive) Brownian par-
ticle.
We consider a thermal AOUP in a harmonic poten-

tial. To simplify the notation in this appendix we set the
initial potential minimum at x0(t = 0) = 0.
We assume that at time t = 0 the potential minimum

starts moving with constant velocity ẋ0. Using Eq. (8)
we obtain the following equation of motion for the work
done while shifting the potential minimum,

∂tw = −ẋ0k (x− ẋ0t) . (A1)

Following Ref. [20] we switch to the reference frame
of the moving potential minimum and introduce a new
variable, y = x − ẋ0t. Next, we re-write Fokker-Planck
equation (11) of the main text as an equation describing
the joint probability distribution for the particle’s posi-
tion (in the reference frame of the moving potential min-
imum), self-propulsion and work accumulated between
the initial time and time t,

∂tp(y, f, w; t) =
{

−γ−1∂y [−ky − γẋ0 + f − T∂y]

−∂f
[

−f/τp −
(

γTa/τ
2
p

)

∂f
]

+ ẋ0ky∂w
}

p(y, f, w; t).

(A2)

The initial condition for Eq. (A2) reads p(y, f, w; t =
0) = pss(y, f)δ(w).
Starting from Eq. (A2) we can derive the following

equations for the averages of w and y, and f ,

∂t 〈w〉 =− ẋ0k 〈y〉 , (A3)

∂t 〈y〉 =− ẋ0 − (k/γ) 〈y〉+ γ−1 〈f〉 , (A4)

∂t 〈f〉 =− τ−1
p k 〈f〉 . (A5)

Initial conditions for these equation are 〈w〉 (t = 0) = 0,
〈y〉 (t = 0) = 0 and 〈f〉 (t = 0) = 0.
Solving Eqs. (A3-A5) we get 〈w〉 (t) = ẋ20γt +

(

ẋ20/k
)

(exp (−kt/γ)− 1). Recalling that the change of
the potential minimum over time τ is ∆x0 ≡ ẋ0τ , we
obtain

〈w〉 = ẋ0γ∆x0 +
(

ẋ20/k
)

(exp (−k∆x/γẋ0)− 1) . (A6)

In the limit of slow but finite driving Eq. (A6) leads
to Eq. (12). Incidentally, in the limit of infinitely fast

process Eq. (A6) reproduces 〈w〉
ins

= k∆x20/2.

To evaluate the variance of the work we need to derive
equations of motions for the second cumulants. We follow
the notation of Ref. [20],

σ2
w =

〈

w2
〉

− 〈w〉
2
, (A7)

cyw = 〈yw〉 − 〈y〉 〈w〉 , (A8)

etc. The derivation of equations of motion is straightfor-
ward but somewhat lengthy. The result is

∂tσ
2
w = −2ẋ0kcyw, (A9)

∂tcyw = − (k/γ) cyw + γ−1cfw − ẋ0kσ
2
y , (A10)

∂tσ
2
y = − (2k/γ)σ2

y + (2/γ) cyf , (A11)

∂tcyf = − (k/γ + 1/γ) cyf + γ−1σ2
f , (A12)

∂tσ
2
f = − (2/τp)σ

2
f +

(

2γTa/τ
2
p

)

, (A13)

∂tcfw = −τ−1
p cfw − ẋ0kcyf . (A14)

We note that Eqs. (A11-A13) do no couple to the other
equations; since initial conditions for Eqs. (A11-A13) are
stationary state averages, σ2

y , cyf and σ2
f will not change,

σ2
y = T/k + Ta/ (k (kτp/γ + 1)) , (A15)

cyf = Ta/ (kτp/γ + 1) , (A16)

σ2
f = γTa/τp. (A17)

The remaining equations can be integrated, starting from
Eq. (A14), then moving to (A10) and finally (A9). Then
we again recall that the change of the potential minimum
over time τ is ∆x0 ≡ ẋ0τ and we get

σ2
w = 2ẋ0k∆x0

(

γσ2
y + τpcyf

)

+ 2ẋ20

(

γ2σ2
y +

γτp
kτp/γ − 1

cyf

)

(exp (−k∆x/γẋ0)− 1)

+ 2ẋ20
k2τ3p

γ (kτp/γ − 1)
(exp (−∆x/τpẋ0)− 1) (A18)

In the limit of slow but finite driving Eq. (A18) gives Eq.
(13). Once again, it can be shown that in the limit of
infinitely fast process Eq. (A18) reproduces the variance
of distribution pins, Eq. (9).

Appendix B: Fluctutation-dissipation ratio-based

effective temperature

The calculation outlined in this Appendix generalizes
that presented in Sec. IV of Ref. [12] for a single athermal

AOUP in a harmonic potential. To simplify the notation,
in this appendix we set the potential minimum at x0 = 0.
Following Ref. [27] we define a frequency-dependent

fluctuation-dissipation ratio-based effective temperature

TFDR
eff (ω) =

ωReC(ω)

χ′′(ω)
, (B1)
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where ReC(ω) is the real part of the one-sided Fourier
transform of the particle’s position auto-correlation func-
tion, ReC(ω) = Re

∫

∞

0 eiωt 〈x(t)x(0)〉, and χ′′(ω) is the
imaginary part of the one-sided Fourier transform of the
response function, χ′′(ω) = Im

∫

∞

0 eiωtR(t), where R(t)
describes the change of the particle’s position due to an
external force.
To calculate the position auto-correlation function we

start from equations of motion (3-4) and derive the
following set of coupled equations for 〈x(t)x(0)〉 and
〈f(t)x(0)〉,

γ∂t 〈x(t)x(0)〉 = −k 〈x(t)x(0)〉 + 〈f(t)x(0)〉 (B2)

τp∂t 〈f(t)x(0)〉 = −〈f(t)x(0)〉 . (B3)

Since thermal noise in uncorrelated with the initial po-
sition of the particle, the above equations have the same
form as those in Sec. IVB of Ref. [12].
The presence of the thermal noise influences the initial

conditions for Eqs. (B2-B3),

〈x(0)x(0)〉 ≡
〈

x2
〉

=
T

k
+

Ta
k (kτp/γ + 1)

, (B4)

〈f(0)x(0)〉 ≡ 〈fx〉 = k
〈

x2
〉

− T =
Ta

kτp/γ + 1
. (B5)

Equations of motion (B2-B3) with initial conditions
(B4-B5) lead to the following expression for the position
auto-correlation function,

〈x(t)x(0)〉 =
Ta/k

(kτp/γ)
2
− 1

(

(kτp/γ) e
−t/τp − e−kt/γ

)

+ (T/k) e−kt/γ . (B6)

To evaluate the response function we add to Eq. (3) a
weak, time-dependent external force F ext(t) and then de-
rive coupled equations of motion for the resulting change
of the average position of the particle and of the self-
propulsion

γ∂tδ 〈x(t)〉 = δ 〈f(t)〉 − kδ 〈x(t)〉+ F ext(t) (B7)

τp∂tδ 〈f(t)〉 = −δ 〈f(t)〉 . (B8)

The initial conditions for these equations are
δ 〈x(t = 0)〉 = 0 = δ 〈f(t = 0)〉.
Solving Eqs. (B7-B8) we get δ 〈f(t)〉 ≡ 0 and

δ 〈x(t)〉 =
1

γ

∫ t

0

dt′e−k(t−t′)/γF ext(t′). (B9)

The response function thus is given by

R(t) = (1/γ) e−kt/γ . (B10)

Response function (B10) is the same as that derived in
Ref. [12] for an athermal AOUP.
Using Eqs. (B6) and (B10) we get from Eq. (B1)

TFDR
eff (ω) =

Ta
1 + τ2pω

2
+ T (B11)

In the small frequency limit TFDR
eff (ω) becomes Ta + T

and thus it coincides with the effective temperature that
makes Jarzynski relation valid for the work distribution
in a slow but finite shift of the potential minimum. We
note that Ta + T is also the effective temperature that is
obtained from the long-time diffusion coefficient of a free
thermal AOUP.

Appendix C: Work distribution for slow but finite

increase of the force constant

Our calculation of the approximate distribution of the
work done while increasing the force constant follows a
similar calculation presented in Ref. [21], which was con-
cerned with a (passive) Brownian particle.
We consider a thermal AOUP in a harmonic poten-

tial. To simplify the notation in this appendix we set the
potential minimum at x0 = 0.
We assume that at time t = 0 the force constant starts

increasing with constant velocity k̇. Using Eq. (8) we
obtain the following equation of motion for the work done
while increasing the force constant,

∂tw =
k̇

2
x2. (C1)

Next, we write a evolution equation that is similar to
Eq. (11), which describes the time dependence of the
joint probability distribution for the particle’s position,
self-propulsion and work accumulated between the initial
time and time t,

∂tp(x, f, w; t) =
{

−γ−1∂x [−kx+ f − T∂x] (C2)

−∂f
[

−f/τp −
(

γTa/τ
2
p

)

∂f
]

−
(

k̇x2/2
)

∂w

}

p(x, f, w; t).

The initial condition for Eq. (C2) is p(x, f, w; t = 0) =
pss(x, f)δ(w).
We note that one of the drift coefficients in Eq.

(C2) is quadratic and thus the time-dependent distri-
bution p(x, f, w; t) does not have Gaussian form. In
fact, since for a process in which the force increases the
time derivative of the work, Eq. (C1), is always posi-
tive, p(x, f, w; t) = 0 for w < 0 and thus distribution
p(x, f, w; t) cannot be a Gaussian.
However, if we introduce characteristic function [16],

ρ(x, f, λ; t) =

∫

dweiλwp(x, f, w; t), (C3)

we note that the equation of motion for ρ(x, f, λ; t)

∂tρ(x, f, λ; t) =
{

−γ−1∂x [−kx+ f − T∂x] (C4)

−∂f
[

−f/τp −
(

γTa/τ
2
p

)

∂f
]

+ iλk̇x2/2
}

ρ(x, f, λ; t)

allows for a solution that has a Gaussian form [21]. This
fact allows us to derive a closed set of equations describ-
ing the time dependence of the characteristic function of
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the work distribution,

ψ(λ; t) =

∫

dxdfρ(x, f, λ; t). (C5)

The first equation expresses the time derivative of ψ(λ; t)
in terms of the generalized second moment,

∂tψ(λ; t) = iλk̇φx2(λ; t)/2 (C6)

where the generalized second moment φx2(λ; t) reads

φx2(λ; t) =

∫

dxdf x2ρ(x, f, λ; t). (C7)

The generalized second moment satisfies the following
equation

∂tφx2(λ; t) =
2

γ
(φxf (λ; t) − kφx2(λ; t)) +

2T

γ
ψ(λ; t)

+
iλk̇

2

∫

dxdf x4ρ(x, f, λ; t), (C8)

where φxf (λ; t) denotes the mixed generalized second mo-
ment,

φxf (λ; t) =

∫

dxdf xfρ(x, f, λ; t). (C9)

To close the equations of motion we will also need
φf2(λ; t),

φf2(λ; t) =

∫

dxdf f2ρ(x, f, λ; t) (C10)

Equations of motion for φxf (λ; t) and φf2(λ; t) read

∂tφxf (λ; t) =
1

γ
φf2(λ; t)−

(

k

γ
+

1

τp

)

φxf (λ; t)

+
iλk̇

2

∫

dxdf x3fρ(x, f, λ; t), (C11)

∂tφf2(λ; t) = −
2

τp
φf2(λ; t) +

2γTa
τ2p

ψ(λ; t)

+
iλk̇

2

∫

dxdfx2f2ρ(x, f, λ; t). (C12)

As noted above, equation of motion for ρ(x, f, λ; t) al-
lows for a solution that has a Gaussian form. However,
due to the last term at the right-hand-side of Eq. (C4),
this Gaussian distribution is not normalized. The un-
normalized Gaussian form of ρ(x, f, λ; t) allows us to ex-
press higher-order moments in terms of generalized sec-
ond moments,

∫

dxdf x4ρ(x, f, λ; t) =
3φ2x2(λ; t)

ψ(λ; t)
(C13)

∫

dxdf x3fρ(x, f, λ; t) =
3φx2(λ; t)φxf (λ; t)

ψ(λ; t)
(C14)

∫

dxdf x2f2ρ(x, f, λ; t) =
φx2(λ; t)φf2 (λ; t)

ψ(λ; t)
+

2φ2xf (λ; t)

ψ(λ; t)
(C15)

Using closures (C13-C15) in the equations of motion for
the generalized moments we get the following closed set
of equations,

∂tφx2(λ; t) =
2

γ
(φxf (λ; t) − kφx2(λ; t)) +

2T

γ
ψ(λ; t)

+
3iλk̇

2

φ2x2(λ; t)

ψ(λ; t)
, (C16)

∂tφxf (λ; t) =
1

γ
φf2(λ; t)−

(

k

γ
+

1

τp

)

φxf (λ; t)

+
3iλk̇

2

φxf (λ; t)φx2(λ; t)

ψ(λ; t)
, (C17)

∂tφf2(λ; t) = −
2

τp
φf2(λ; t) +

2γTa
τ2p

ψ(λ; t)

+
iλk̇

2

φx2(λ; t)φf2 (λ; t)

ψ(λ; t)
+ iλk̇

φ2xf (λ; t)

ψ(λ; t)
(C18)

Next, following Ref. [21] we assume constant rate of

change of the force constant, k̇ = const. and expand gen-
eralized second moments in powers of k̇,

φx2(λ; t) = φ
(0)
x2 (λ; t) + k̇φ

(1)
x2 (λ; t) + . . . , (C19)

φxf (λ; t) = φ
(0)
xf (λ; t) + k̇φ

(1)
xf (λ; t) + . . . , (C20)

φx2(λ; t) = φ
(0)
f2 (λ; t) + k̇φ

(1)
f2 (λ; t) + . . . . (C21)

We substitute expansions (C19-C21) into the equations of
motion. We also assume that the time derivatives are of
order k̇. In this way we get the following set of equations
for the zeroth order terms,

0 =
2

γ

(

φ
(0)
xf (λ; t)− kφ

(0)
x2 (λ; t)

)

+
2T

γ
ψ(λ; t), (C22)

0 =
1

γ
φ
(0)
f2 (λ; t)−

(

k

γ
+

1

τp

)

φ
(0)
xf (λ; t), (C23)

0 = −
2

τp
φ
(0)
f2 (λ; t) +

2γTa
τ2p

ψ(λ; t). (C24)

Solving these equations we get the following result for

φ
(0)
x2 (λ; t),

φ
(0)
x2 (λ; t) =

T

k
ψ(λ; t) +

Ta
k (kτp/γ + 1)

ψ(λ; t). (C25)

We use result (C25) in Eq. (C6) and get the following
result for ψ(λ; t),

ψ(λ; t) = exp

{

iλ

2

[

(T + Ta) ln
k(t)

k(0)

−Ta ln
k(t)τp/γ + 1

k(0)τp/γ + 1

]}

. (C26)
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Equation (C26) means that the work distribution is a
delta function centered at the quasistatic work given by
Eq. (17).

Next, we consider terms of order k̇ in the equations of

motion. After some manipulations we get

φ
(1)
x2 (λ; t) =

[

γT

2k3

+
γTa

(

2 (kτp/γ)
2 + 3kτp/γ + 1

)

2k3 (kτp/γ + 1)
3



ψ(λ; t)

+ iλ

[

γT 2

2k3
+
γTTa (2kτp/γ + 1)

k3 (kτp/γ + 1)
2

+
γT 2

a

(

(kτp/γ)
2 + 3kτp/γ + 1

)

2k3 (kτp/γ + 1)
3



ψ(λ; t)

(C27)

Using the right-hand-side of Eq. (C27) in Eq. (C6) we

see that at the first order in k̇ the work distribution is
a Gaussian with the first cumulants given by expressions
(20-21).
In closing we note that the Gaussian form of the work

distribution is only an approximation, since the true dis-
tribution vanishes for w < 0 and therefore cannot have
Gaussian form.
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G. Volpe and G. Volpe, “Active particles in complex
and crowded environments”, Rev. Mod. Phys. 88, 045006
(2016).

[5] S. Ramaswamy, “Active matter”, J. Stat. Mech. 054002
(2017).

[6] E. Fodor and M.C. Marchetti, “The statistical physics of
active matter: From self-catalytic colloids to living cells”,
Physica A 504, 106 (2018).

[7] C. Jarzynski, “Nonequilibrium Equality for Free Energy
Differences”, Phys. Rev. Lett. 78, 2690 (1997).

[8] J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco and C.
Bustamante, “Equilibrium Information from Nonequilib-
rium Measurements in an Experimental Test of Jarzyn-
ski’s Equality”, Science 296, 1832 (2002).

[9] D. Loi, S. Mossa, L.F. Cugliandolo, “Effective tempera-
ture of active matter”, Phys. Rev. E 77, 051111 (2008).

[10] S. Wang and P. Wolynes, “Effective temperature and
glassy dynamics of active matter”, J. Chem. Phys. 135,
051101 (2011).

[11] L. Berthier and J. Kurchan, “Non-equilibrium glass tran-
sitions in driven and active matter”, Nature Physics 9,
310 (2013).

[12] G. Szamel, “A self-propelled particle in an external po-
tential: Existence of an effective temperature”, Phys.
Rev. E 90, 012111 (2014).

[13] D. Levis and L. Berthier, “From single-particle to col-
lective effective temperatures in an active fluid of self-
propelled particles”, Europhys. Lett. 111, 60006 (2015).

[14] C. Maggi, U.M.B. Marconi, N. Gnan, and R. Di
Leonardo, “Multidimensional stationary probability dis-
tribution for interacting active particles”, Sci. Rep. 5,
10742 (2015).

[15] D. Martin, J. O’Byrne, M.E. Cates, E. Fodor, C Nardini,
J. Tailleur, and F. van Wijland, “Statistical Mechanics
of Active Ornstein Uhlenbeck Particles”, Phys. Rev. E
103, 032607 (2021).

[16] N.G Van Kampen, Stochastic Processes in Physics and

Chemistry (Elsevier, Amsterdam, 1992).
[17] K. Sekimoto, Prog. Theor. Phys. Suppl., “Langevin

Equation and Thermodynamics”, 130 (1998) 17.
[18] U. Seifert, “Stochastic thermodynamics, fluctuation the-

orems and molecular machines”, Rep. Prog. Phys., 75

(2012) 126001.
[19] G. Paneru, S. Datta and H.K Pak, “Colossal power

extraction from active cyclic Brownian information en-
gines”, arXiv:2203.13538.

[20] O. Mazonka and C. Jarzynski, “Exactly solvable
model illustrating far-from-equilibrium predictions”,
arXiv:9912121.

[21] T. Speck, “Work distribution for the driven harmonic
oscillator with time-dependent strength: exact solution
and slow driving”, J. Phys. A: Math. Theor. 44, 305001
(2011).

[22] T. Hatano and S.-i. Sasa, “Steady-state thermodynamics
of Langevin systems”, Phys. Rev. Lett. 86, 3463 (2001).

http://arxiv.org/abs/2203.13538


8

[23] G. Szamel, “Stochastic thermodynamics for self-
propelled particles”, Phys. Rev. E 100, 050603(R)
(2019).

[24] We should also mention papers by D. Chaudhuri and col-
laborators, who derived fluctuation theorems for entropy
for a different model of active matter, in which activity
originates from a nonlinear velocity-dependent force. See,
e.g., C. Ganguly and D. Chaudhuri, “Stochastic thermo-
dynamics of active Brownian particles”, Phys. Rev. E
88, 032102 (2013) and D. Chaudhuri, “Active Brownian
particles: Entropy production and fluctuation response”,

Phys. Rev. E 90, 022131 (2014).
[25] L. Berthier and J.-L. Barrat, “Shearing a Glassy Mate-

rial: Numerical Tests of Nonequilibrium Mode-Coupling
Approaches and Experimental Proposals”, Phys. Rev.
Lett. 89, 095702 (2002).

[26] L. Berthier and J.-L. Barrat, “Nonequilibrium dynamics
and fluctuation-dissipation relation in a sheared fluid”,
J. Chem. Phys. 116, 6228 (2002).

[27] L.F. Cugliandolo, “The effective temperature”, J. Phys.
A: Math. Theor. 44, 483001 (2011).


