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Scrambling is a key concept in the analysis of nonequilibrium properties of quantum many-body
systems. Most studies focus on its characterization via out-of-time-ordered correlation functions
(OTOCs), particularly through the early-time decay of the OTOC. However, scrambling is a complex
process which involves operator spreading and operator entanglement, and a full characterization
requires one to access more refined information on the operator dynamics at several timescales. In
this work we analyze operator scrambling by expanding the target operator in a complete basis
and studying the structure of the expansion coefficients treated as a coarse-grained probability
distribution in the space of operators. We study different features of this distribution, such as its
mean, variance, and participation ratio, for the Ising model with longitudinal and transverse fields,
kicked collective spin models, and random circuit models. We show that the long-time properties
of the operator distribution display common features across these cases, and discuss how these
properties can be used as a proxy for the onset of quantum chaos. Finally, we discuss the connection
with OTOCs and analyze the cost of probing the operator distribution experimentally using these
correlation functions.

I. INTRODUCTION

Scrambling refers to the spreading of initially localized
information to the rest of the degrees of freedom in a many-
body system [1–5]. It plays an important role in describing
diverse phenomena such as closed-system thermalization
[6, 7], dynamical phase transitions [8–10], sampling hard-
ness in random quantum circuits [11, 12], and information
retrieval in black holes [1, 2, 13]. One of the most promi-
nent quantifiers of scrambling is the out-of-time-ordered
correlator (OTOC), which is a four-point correlation func-
tion of the form 〈W †(t)V †(0)W (t)V (0)〉, together with
the closely related square commutator 〈|[W (t), V (0)]|2〉
[14–16].

OTOCs and scrambling have become important actors
in the dynamical characterization of chaos in many-body
quantum systems [17–19]. Quantum chaos is typically
defined in terms of kinematic features like statistical prop-
erties of energy spectra and their connection to random
matrix theory [20–23]. However, a unifying dynamical
description of chaos in general quantum systems remains
an outstanding challenge. Many studies of scrambling
in quantum systems have focused on understanding its
early-time behavior, particularly through the decay of
OTOCs, and have sought to define a quantum analogue
of the Lyapunov exponent. Nevertheless, there are cases
of quantum systems whose kinematic properties follow
random matrix theory predictions (and are thus ‘quantum
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chaotic’), for which the OTOC does not decay exponen-
tially [24–28]. Conversely, some quantum systems with
classically integrable counterparts showing unstable fixed
points can lead to exponential decay of OTOCs [29–31].

More generally, scrambling is a complex process which
can be described by the way an initially simple operator
evolves into a complicated superposition of configura-
tions belonging to an exponentially large operator space
[32, 33]. As such, it is bound to require methods to
characterize it that go beyond the short-time behavior of
a single correlation function. Indeed, recent studies on
operator growth have developed a more thorough char-
acterization of scrambling by analyzing the dynamics
of operators in operator space, most notably using the
Krylov representation [33, 34]. Moreover, some studies
have found important links between quantum chaos and
the long-time behavior of the OTOC [24], rather than
its initial decay. In this context it is useful to further
probe the connection between the long-time properties
of evolving operators and quantum chaos, and to explore
other objects of interest beside the OTOC which allow
us to construct diagnostics of scrambling in the long-
time regime. An additional motivation is the inherent
complexity of accessing OTOCs experimentally: even
with the extraordinary control and isolation capabilities
found in state-of-the-art quantum simulation experiments
[35–37], accessing OTOCs require costly resources such
as use of auxiliary systems or time-reversal operations
[5, 38–40], among others, and thus require considerably
more effort when compared to the usual quench-dynamics
experiments (with notable exceptions, see [41–43]).
In this work we purposely steer away from OTOCs

and focus on studying scrambling in quantum systems by
analyzing directly the dynamical properties of a suitably-
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defined probability distribution {Pk(t)} over a coarse-
grained operator basis. This distribution can be defined
for arbitrary quantum systems, and here we focus on
the cases of models of many spin-1/2 particles (includ-
ing quantum circuits on qubits) and models of collective
spins, which are effectively described by a single large
spin J [44]. The dynamical transition from ‘simple’ to
‘complex’ operators is then encoded in different proper-
ties of the distribution such as its mean, variance, and
(de)localization, which signify the growth and spreading of
operators over the degrees of freedom of the system. We
apply this framework to paradigmatic models of quantum
chaos such as the ‘tilted’-field Ising model [45] and the
quantum kicked top [46], and show that analysis of the
long-time averages of the distribution properties and their
temporal fluctuations are good indicators of the onset
of chaos in these systems. Furthermore, we discuss how
some of these features can distinguish different properties
of the nonergodic regimes, and show that both models can
show very similar behavior in this picture even though
their physical properties are quite different. We also ap-
ply these tools to the study of random quantum circuits
[47–50] with a tunable number of T -gates, and analyze
how the properties of scrambling change as just a small
fraction of non-Clifford gates are included in the dynamics.
Finally the connection between averages of OTOCs and
the moments of the distribution {Pk(t)} is analyzed and
we discuss the number of OTOC measurements needed
to reconstruct the different measures we study.

Our work extends previous studies that have focused on
the properties of the operator distribution in the study of
scrambling [4, 51–53]. Notably, these also include NMR
experiments which routinely analyze the size of active
clusters of spins, a quantity that is closely related to the
mean operator size in the Heisenberg picture [54, 55]. It
also complements the approach of Ref. [24], which studied
the connection between quantum chaos and the long-time
properties of OTOCs by considering the properties of the
operator distribution directly in a similar regime.

The rest of the work is organized as follows. In Sec. II
we discuss scrambling for general quantum systems, and
define the coarse-grained probability distribution as the
object that characterizes it. In Sec. III the tilted-field
Ising model is studied via numerical simulations, and we
analyze the evolution of the probability distribution in
its integrable and chaotic regimes. In Sec. IV we study
the quantum kicked top, which is a collective spin model
with a well-defined classical limit, and use it to relate
the long-time properties of scrambling with the chaotic
properties of the model. Then, in Sec. V we study a model
of random Clifford circuits perturbed by a tunable number
of T -gates, and study how the properties of the operator
distribution change as the number of non-Clifford gates
increases. Section VI discusses the connection between
the operator distribution {Pk(t)} and averages of OTOCs.
Finally, we give an outlook and discuss potential future
work in Sec. VII.

Figure 1. Schematic picture of scrambling diagnosed via a
coarse-grained operator distribution. An operator basis, typi-
cally containing exponentially many elements, is divided into
sets with common characteristics C1, C2, etc. A typical exam-
ple of this is the size or weight of a multibody Pauli operator
in the case of spin-1/2 particles. From this grouping, a proba-
bility distribution is defined for the evolution of an operator
Ô(t). At t = 0, the distribution is localized at low complexity
index. The scrambling process generated by U(t) spreads the
distribution and shifts it towards higher complexity.

II. OPERATOR EVOLUTION AND MEASURES
OF SCRAMBLING

Consider a quantum system on a finite-dimensional
Hilbert space of dimension d, with evolution from t = 0
to some arbitrary time t described by an unitary operator
Û(t). We will focus on the dynamics of a generic hermitian
operator Ô, which can be expressed as

Ô(t) = Û†(t)ÔÛ(t) =

D∑
j=0

f [Λ̂j ; Ô(t)]Λ̂j , (1)

where {Λ̂j}, j = 0, 1, . . . , d2 − 1 ≡ D is an operator
basis which we take to be orthonormal, i.e. tr

(
Λ̂†i Λ̂j

)
=

δij . We also take Λ̂0 = I/
√
d throughout, and consider

tr Ô = 0. The scalar coefficients {f [Λ̂j , Ô(t)]} describe
the dynamics of Ô(t) in the chosen basis, and at all times
satisfy the normalization condition∑

j

∣∣∣f [Λ̂j , Ô(t)]
∣∣∣2 = tr

(
Ô(t)2

)
= tr

(
Ô2
)

(2)

Equation (2) allows us to treat the set of squared co-
efficient amplitudes as a probability distribution (after
normalization) [56]. Additionally, in many situations of
interest the operator basis admits a natural ordering re-
lated to some notion of complexity of the operator, which
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we schematically depict in Fig. 1. Qualitatively, we con-
sider this ordering to induce a natural grouping of the
basis, which has the form

{Λ̂j} → {{Λ̂j}C1 , {Λ̂j}C2 , . . . , {Λ̂j}Ck , . . . , {Λ̂j}Ckmax
}
(3)

where the complexity of operators is considered to grow as
the index k = 1, 2, . . . , kmax increases and

∑
k dim(Ck) =

D. For instance, this structure could correspond to a
multibody Pauli basis where k corresponds to the weight
or size of each operator, as we will discuss in Sect. IIA.
Leveraging this structure we define the following coarse-
grained probability distribution for the operator Ô(t)

Pk(t) =
1

tr
(
Ô2
) ∑

Λj∈Ck

∣∣∣f [Λ̂j , Ô(t)]
∣∣∣2 , (4)

which naturally satisfies
∑
k Pk(t) = 1. We are interested

in situations where the initial operator Ô is included
within one of the groups of low complexity (say k = 1),
and our goal is to characterize the scrambling process
in the system via the evolution of the distribution Pk(t)
over time, as depicted in Fig. 1. To characterize the
distribution we will consider the first two cumulants of
the distribution,

µ(t) = k(t) =
∑
k=1

kPk(t) (5)

σ(t) =

√
k(t)2 − µ(t)2 (6)

as well as its inverse participation ratio (IPR),

ηIPR(t) =
∑
j

Pj(t)
2. (7)

Here ηIPR ' 1 indicates a very localized distribution (“low
participation”), while ηIPR ' 1/kmax shows a delocalized
distribution (“high participation”). The IPR has been
extensively used to measure delocalization of eigenstates
in quantum chaos [57], and a similar object has been used
in the context of resource theories of Magic [58]. Here
we will use it to assess the delocalization of the operator
distribution in the scrambling process. We point out
that higher-order cumulants of the full distribution in the
Krylov basis have been studied recently in [59].

In Appendix A we show that for Haar-random evolution
the operator Ô(t) will be uniformly spread in any operator
basis. The resulting distribution thus has the form

Pk →
dim(Ck)

d2 − 1
, (8)

and it is straightforward to compute the indicators in-
troduced once the sets {Ck} are defined. This limiting
case will be helpful in order to study the onset of chaos
as dictated by the randomization of the evolution. In the
following subsections we investigate two cases of interest:
systems of N spin- 1

2 particles or qubits, and collective
spin systems described by a single large collective spin
J = N/2.

Many spin-1/2 Collective spins
Mean µ 3

4
N 2

3
N

Variance σ2 3
16
N 1

18
N2

IPR ηIPR ∼ N−1/2 3
8
N−1

Table I. Asymptotic behavior of properties of the operator dis-
tribution {Pk}. Detailed expressions are found in Appendix A.

A. Systems of many spin-1/2 particles

Consider a system of N spin-1/2 particles (with d = 2N )
and the basis of multibody Pauli operators P⊗N , where
P = {I,X, Y, Z} = {I, σx, σy, σz}/

√
2. This scenario en-

compasses many relevant models for the study of quantum
chaos and scrambling, like the Ising model with a lon-
gitudinal and transverse field [45], random circuits on
qubits [47–49], and models spin chains with impurities or
interactions beyond nearest-neighbors [60–62]. Each ele-
ment of the Pauli basis can be assigned a size (or weight)
1 ≤ s(Q̂) ≤ N , which corresponds to the number of sites
the operator acts non-trivially on. For instance, forN = 3,
s(IXY ) = 2, while s(IZI) = 1. We will consider s(Q̂)
to be the measure of complexity of the basis elements in
these systems. With this, the grouping of Eq. (3) takes
the form

{Q̂j} → {{Q̂j}s=1, {Q̂j}s=2, . . . , {Q̂j}s=N} (9)

where we have introduced the collective index j corre-
sponding to the length-N Pauli string that describes each
operator, i.e. Q̂(021) = IY X. The dimension of each
weight group is given by

dim
(
{Q̂j}s=k

)
=

(
N

k

)
3k. (10)

We are interested in situations where the initial operator
is a single-site Pauli operator Ô, for which Eq. (4) takes
the form

Pk(t) =
∑

s(Qj)=k

∣∣∣f [Q̂j, Ô(t)]
∣∣∣2 . (11)

Using Eqs. (8) and (10) we can evaluate the mean, vari-
ance and IPR of this probability distribution for the case
of Haar-random evolution. Full expressions are shown in
Appendix A, and their asymptotic behavior is shown in
Table I.

B. Collective spin systems or singe large spins

A special case of interest in systems of N spin- 1
2

particles is when the Hamiltonian is written solely in
terms of the collective spin operators Ĵα = 1

2

∑N
i=1 σ̂

α
i ,

with α = x, y, z. This describes a scenario where
the particles show homogeneous all-to-all interactions
among themselves, and collective couplings to external
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fields. Such Hamiltonians preserve the total angular
momentum Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , and states which are fully
symmetric under permutation of particles (corresponding
to J = N/2) remain so throughout the evolution.
Many important models related to quantum chaos and
dynamical criticality belong to this class, for instance
the Lipkin-Meshkov-Glick model [63, 64], the quantum
kicked top [46], and the p-spin models [65, 66].

The Hilbert space associated with evolution in the
symmetric manifold has dimension d = 2J + 1 = N + 1
and can be spanned by the Dicke states {|J,m〉}, m =

−J,−J + 1, . . . , J , which are the eigenstates of Ĵz. This
space is thus formally equivalent to that of a single particle
of spin J . While products of angular momentum operators
can be used to span any operator in this space, a more
convenient choice is given by the spherical tensor operators
T̂LM , which for an arbitrary J have the form [67]

T̂LM =

√
2L+ 1

2J + 1

J∑
m,m′=−J

CJmJm′,LM |Jm〉〈Jm′| (12)

where CJmJm′,LM = 〈Jm′, LM |Jm〉 is the Clebsch-Gordan
coefficient which couple two representations of spin J
(projection m′) and L (projection M) to a total spin J .
The usual selection rules indicate that m = M +m′, and
so the sum above is restricted tom−m′ = M . The indices
of T̂LM are typically referred to as the rank L, which is
such that L − J ≤ J ≤ L + J and hence 0 ≤ L ≤ 2J ,
and the projection M = −L,−L + 1, . . . , L. Spherical
tensor operators form the basis for the spin coherent state
Wigner function, a generalization of the Wigner function
for the harmonic oscillator [68].
The spherical tensor operators form an orthonormal

operator basis tr
(
T †L1M1

TL2M2

)
= δL1,L2

δM1,M2
, and

they are in general non-Hermitian with the property
T †L,M = (−1)MTL,−M . The low-rank elements are readily
associated with familiar operators

T̂1,1 = α1,1Ĵ+; T̂1,0 = α1,0Ĵz; T̂1,−1 = α1,−1Ĵ−, (13)

where we have omitted the positive normalization con-
stants αLM to lighten the notation. Higher-rank elements
correspond to higher-order products of collective spin
operators, and can be constructed (see for instance Ap-
pendix C of [69]) by noting that T̂L,L = (−1)LαL,LĴ

L
+

and using the commutation relations [70] (we set ~ = 1
throughout the paper)

[Ĵz, T̂LM ] = M T̂LM (14)

[Ĵ±, T̂LM ] =
√

(L∓M)(L±M + 1)T̂L,M±1 (15)

Physical Hamiltonians are typically written only in
terms of low-rank operators (such that L � N , say),
a fact that applies both to actual many-body collective
systems and single multi-level atoms [71] [72]. Following
the discussion of the previous section, we will take the

rank as the index defining a notion of complexity of any
basis operator, where rank(T̂LM ) = L. This leads to a
grouping of the basis set as

{T̂LM} → {{T̂L=1,M}, {T̂L=2,M}, {T̂L=3,M}, . . .}. (16)

We will consider our initial operator to be rank-1, e.g.
Ô(0) = Ĵz, and so the probability distribution in Eq. (3)
takes the form

Pk(t) =
1

tr
(
Ĵ2
z

) k∑
M=−k

∣∣∣f [T̂L=k,M , Ĵz(t)]
∣∣∣2 . (17)

As before, we can use that the dimension of each subset
Ck = {TL=k,M} is dim(Ck) = 2k + 1 to compute the
properties of Pk for the case where the evolution is Haar-
random. Full expressions are given in Appendix A, and
their asymptotic behavior with N is indicated in Table I.
Note that these results admit a direct comparison to the
many-body case if one recalls that J = N/2. Moreover,
rank(T̂LM ) = L implies that T̂LM contains up to the
Lth powers of the angular momentum operators Ĵα =
1
2

∑N
i=1 σ̂

α
i , and is thus composed by up to size-L Pauli

operators. The results in Table I show that, under random
evolution, collective spin systems reach smaller operator
sizes on average, but lead to broader distributions with
variance scaling as N2 instead of N .

III. SCRAMBLING AND CHAOS IN THE
TILTED-FIELD ISING MODEL

We begin by studying the properties of the operator
distribution {Pk(t)} in the different regimes of the Ising
model, a standard paradigm in the study of many-body
quantum systems [73–75]. This model describes a set of
N spin- 1

2 particles interacting in 1D via nearest-neighbor
interactions and in the presence of an external magnetic
field with a transverse and a longitudinal component. The
Hamiltonian can be written as

HIsing(θ) = J

N−1∑
n=1

σznσ
z
n+1 +B

N∑
n=1

(σxn cos θ + σzn sin θ),

(18)
where we take 0 ≤ θ ≤ π

2 . Here σαn are the usual Pauli
operators on site n with α = x, y, z. For θ = 0 Eq. (18)
is the transverse-field Ising model (TIM), whose equilib-
rium and nonequilibrium properties have been studied
extensively [76]. This model is integrable since it can be
mapped to a noninteracting system of fermions via the
Jordan-Wigner transformation [76, 77]. The case of pure
longitudinal field θ = π

2 is diagonal in the computational
basis and thus also trivially integrable. For other val-
ues of θ (and generic choices of B/J), this “tilted-field”
Ising model is quantum chaotic as revealed by several of
the usual metrics, which have been studied in previous
works [45, 78, 79]. For completeness, we revisit some of
those results here. First, the eigenenergies of HIsing in
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this chaotic regime display level repulsion as predicted
by random matrix theory, and this can be quantified by
the average adjacent spacing ratio r, the details of which
we present in Appendix B. We plot a normalized version
of this quantity, rnorm, as a function of θ in Fig. 2 (a).
Values close to 1 indicate agreement with the Gaussian
Orthogonal Ensemble (GOE) predictions and thus quan-
tum chaotic behavior, while deviations towards 0 indicate
uncorrelated level statistics typical of integrable systems.
As an additional metric, we also consider the average
entanglement entropy of the excited states of HIsing for
an equal bipartition of the chain [45]. This is defined as

S

(
N

2

)
=
∑
{|φi〉}

S
(
ρ

(i)
N
2

)
(19)

where ρ(i)
N
2

is the state resulting from tracing out half of
the particles from |φi〉〈φi|, |φi〉 is an eigenstate of HIsing,
and the sum is carried out over the bulk the spectrum
(i.e. avoiding the ground and low energy states of HIsing

and −HIsing). Regimes of maximum average bipartite
entanglement are then associated with quantum chaos, as
can be verified from the results shown in Fig. 2 (b).
We now study the scrambling process in the different

regimes of the Ising model by analyzing the probability
distribution Pk(t) defined in Eq. (11). In Fig. 2 (c)
and (d) we display exact numerical results of the time-
dependent distribution corresponding to a chain of N =
6 particles where the initial operator sits either (c) in
middle of the chain Ô(0) = σ̂

(N/2)
y /

√
2, or (d) at the edge

Ô(0) = σ̂
(1)
y /
√

2. In both cases, the initial distribution
is initially concentrated in P1(0) = 1 and then evolves
in time displaying different features depending on the
system parameters. All cases with 0 ≤ θ . π

4 show a
rapid decrease of the initial component P1 as the operator
spreads into a superposition of larger-size configurations.
Crucially, however, the chaotic case θ = π/6 shows a fast
equilibration to the values corresponding to the random
distribution shown as dashed lines, cf. Eq. (8). As θ → 0
and the model becomes integrable, the distribution shows
further oscillations and fails to equilibrate completely in
the timescale shown. The deviations from ergodicity are
enhanced when the initial operator sits at the edge of
the chain, a situation in which the initial configuration
has less options to equilibrate to since the site has a
single neighbor instead of two due to the open boundary
conditions.
The other integrable regime, occurring at θ = π/2

but already noticeable for θ = π/3, corresponds to a
very different type of evolution. In the diagonal case the
external field commutes with the interaction, and thus
a single site operator like σ̂(l)

y evolves to only two- and
three- site operators, independent of the length of the
chain. The distribution then shows very little spreading as
most of the elements are never populated. The situation
remains roughly the same even in the presence of a small
transverse field, as can be seen in the cases corresponding

to θ = 0.45π shown in Fig. 2.
While the operator probability distribution {Pk(t)}

already reduces the description of observable evolution
from the exponentially large basis to a set of only N
numbers, it is still helpful to analyze measures which
describe particular aspects of the distribution at each
time. We thus turn to study the quantities introduced
in Sec. II, namely the mean µ(t), variance σ(t), and
IPR ηIPR(t) of the distribution. Figure 3 (a) shows the
evolution of these three quantities for different values
of θ for the initial operator located in the middle of the
N = 6 particle chain (for completeness, the case where the
initial operator sits at the edge is shown in Appendix C).
The evolution of the mean µ(t) shows a increase from
µ(0) = 1 towards ∼ N with different features depending
on the value of θ. The most chaotic case, θ = π/6, grows
until reaching the random value 3N/4 (see Table I), while
most other cases show oscillations. Note that the TIM
case (θ = 0) grows beyond the random value, meaning
that during certain periods, the integrable model leads to
mean operator sizes which are larger than those found for
Haar-random evolution. Finally, as the other integrable
limit is approached for θ ∼ π/2, the distribution stops
shifting beyond N = 3, as discussed before, and shows
indefinite large-amplitude oscillations.
For the evolution of the variance of the distribution

σ2(t), we observe that cases far from the diagonal case (i.e.
θ � π/2) show an initial increase from σ2(0) = 0 which
shoots up significantly above the Haar-random prediction
∼ 3N/16. Then, most cases equilibrate to that value,
albeit in different timescales. Interestingly, as θ reaches
π/3 the variances become consistently larger than the
Haar prediction. This indicates a nontrivial behavior in
which not necessarily the most chaotic evolution leads to
the largest width of the operator distribution. A similar
trend is observed in the IPR of the distribution, ηIPR(t),
shown also in Fig. 3 (a). We point out that µ(t) and σ(t)
as a function of time for the chaotic case θ = π/6 show a
remarkable similarity to the ones observed for the SYK
model by Roberts et al. in Ref. [52].
In order to obtain a more general picture of how the

different regimes of the Ising model with varying θ are
reflected in the properties of operator-size distribution, we
analyze the long-time behavior of these measures X(t) ∈
{µ(t), σ(t), ηIPR(t)} by computing both the time-averaged
value

X(t) ≡ 1

tf

tf∫
t0

X(t′)dt′ (20)

and the time-averaged temporal fluctuations,

∆2
X ≡

1

tf

tf∫
t0

(
X(t′)−X(t)

)2

dt′. (21)

For all numerical calculations we integrate the quantities
from t0 6= 0 such that the initial transient does not con-
tribute, and take tf � t0 to estimate the infinite-time
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Figure 2. Scrambling from operator evolution and quantum chaos indicators in the tilted field Ising model defined in Eq. (18),
as a function of the external field angle θ. All cases use B = J . (a) Normalized mean adjacent level spacing ratio, a standard
measure of quantum chaos discussed in Appendix B, computed for two instances of the Ising Hamiltonian with different system
size N . (b) Alternative proxy for quantum chaos given by the averaged entanglement entropy of the eigenstates of HIsing located
in the bulk of the spectrum. (c) and (d) Short-time evolution of the coarse-grained operator distribution Pk(t), defined in
Eq. (11), for different values of θ and with N = 6. Cases shown correspond to (c) Ô(0) = σ̂

(N/2)
y /

√
2 and (d) Ô(0) = σ̂

(1)
y /
√

2.
thin faint lines indicate the values of the Haar-random evolution, given in Eq. (8) and Eq. (10). From left to right, cases
corresponding to different values of θ ∈ [0, π/2) are shown.

average in each case. In Fig. 3 (b) we show the time-
averaged value and time-averaged temporal fluctuations
for each of the three measures as a function of θ and for
initial operators in both the middle and at the edge of the
chain. The results are for N = 6, Jt0 = 5 and Jtf = 40,
but they do not depend significantly on these choices.
There are two overarching features that stand out clearly
in all cases shown. First, the quantum chaotic regime
spanning roughly the θ ∈ (0, π/3), as seen in Fig. 2 (a)
and (b), yields i) long-time equilibration of all the distri-
bution measures to the Haar-random predictions, as can
be seen from the agreement between the time-averaged
values in the first row with with the Haar predictions
from Table I, and ii) suppression of temporal fluctuations
∆X ' 0 for all cases. Second, the ‘trivially’ integrable
regime, which is reached as θ → π/2, can be clearly dis-
tinguished from the features of the distribution, since the
mean and the spread are greatly reduced as the distri-
bution tends to be confined to k = 1, 2, 3 independent
of system size. Moreover, this highly nonergodic case
leads to greatly enhanced temporal fluctuations, as seen
in particular from the behavior of ∆µ and ∆IPR.

On the other hand, we observe that the studied proper-
ties of the distribution have a harder time distinguishing
the integrable model at θ → 0 from the ergodic case. For
instance, the time-averaged values of the mean, variance,
and IPR stay very close to the random predictions as
θ → 0, indicating that the integrable transverse Ising
model leads to significant, random-like operator spread-
ing at long times. This is true for most choices of the

initial operator; however, we find that choosing Ô(0) at
the edge leads to somewhat different features, particularly
in the θ ' 0 regime. For this regime and choice of initial
operator, we see that the time-averaged mean drops and
the time-averaged variance rises, signaling a clear devia-
tion from ergodicity. Interestingly, while the behavior of
the mean is similar to the other integrable limit, the case
of the variance is opposite – the width of the distribution
increases above the chaotic case in the transverse-field
regime.

More generally we observe that the integrability of the
model at θ = 0 consistently leads to increased long-time
temporal fluctuations in all quantities, independent of the
choice of the initial operator. Enhanced oscillations in
the mean, variance, and IPR are seen in both integrable
regimes as compared to the chaotic case. We thus find
that these temporal fluctuations can be used to distinguish
chaotic and nonchaotic regimes of the model. These re-
sults are aligned with the findings of Ref. [24], who showed
that the long-time behavior (particularly the properties
of the frequency spectra) of OTOCs serves as a good
indicator to distinguish quantum chaos for integrability
in various models, including the Ising model considered
here. In Sec. VI we will further discuss the connection
between the quantities studied here and OTOCs.

Finally, we point out that the results shown here for a
fixed system size ofN = 6 are representative of other cases,
which we show in Appendix C. In particular we show in
Fig. 9 that cases with N = 5, 6, 7 behave very similarly
and essentially coincide (when properly normalized) in



7

Figure 3. Measures of the probability distribution {Pk} for
the tilted field Ising model with N = 6 and B/J = 1. (a)
Mean µ(t), variance σ2(t), and IPR ηIPR(t) of the operator
distribution are shown as a function of time for the four values
of θ displayed in Fig. 2. Dotted lines correspond to the pre-
dictions for Haar-random evolution shown in Table I. Results
shown here correspond to Ô(0) = σ̂

(N/2)
y /

√
2. (b) Long-time

properties of the aforementioned measures, as calculated by
the time-averaged value, cf. Eq. (20), and the time-averaged
temporal fluctuations, cf. Eq. (21). Plots are shown as a
function of the parameter θ of the Ising model, and for choices
of the initial operator on the middle site (dark lines) and at
the edge (light lines) of the chain.

the chaotic regime. We also observe that the magnitude
of temporal fluctuations decay with increasing system
size, a behavior typical of ergodic systems.

IV. SCRAMBLING AND CHAOS IN THE
QUANTUM KICKED TOP

We now turn our attention to the study of operator
spreading and scrambling in collective spin systems, which
we introduced in Sec. II B. We will consider the dynamics
of a quantum kicked top (QKT), a paradigmatic model
of quantum chaos first introduced by Haake, Kuś, and
Scharf [46], which has been the subject of many theoretical
[57, 80, 81] and experimental [82–84] studies. The QKT
time evolution operator of interest for this study can be
written as

ÛQKT = ÛzÛyÛx, with Ûµ = e−i(αµĴµ+
γµ
2J Ĵ

2
µ), (22)

where µ = x, y, z and the total angular momentum is
J = 2N . The model in Eq. (22) is constructed in such a
way as to avoid parity and time-reversal symmetry, which
are present in the original QKT of Ref. [46]; see also [85]
for the study of similar models. Each of the unitaries Ûµ
can be regarded as generated by a “twisting and turning”
collective Hamiltonian [57], composed of a rotation term
Ĵµ and a twisting or interaction term Ĵ2

µ =
∑
ij σ̂

(µ)
i σ̂

(µ)
i /4.

Since the symmetric subspace dimension scales linearly
with the number of particles d = N + 1, large values of
N can be accessed numerically in these types of systems.

The quantum chaotic properties of the QKT can be fully
understood by studying the associated classical kicked
top, which can be recovered as the mean-field limit of the
map generated by Eq. (22) [46]. The resulting classical
area-preserving map acts on a spherical phase space whose
coordinates are R ≡ (X,Y, Z) = limJ→∞〈Ĵ〉/J . In Fig. 4
(a) we show the Poincaré sections corresponding to this
map, where we have chosen the system parameters to be
αx = 1.7, αy = 1, αz = 0.8 and γx = 0.85γ, γy = 0.9γ
and γz = γ. For γ = 0 the system is trivially integrable
as ÛQKT generates only rotations, and as γ is increased
the classical phase space becomes mixed, with islands of
regular motion separated by areas of chaos. For γ & 2,
most of the phase space becomes chaotic. This transition
to chaos can be clearly observed from the normalized
average adjacent spacing ratio rnorm, introduced in the
previous section (see also Appendix B), which we show
in Fig. 4 (b).

Being able to access large system sizes also means that,
even when coarse grained, it can be hard to visualize the
evolution of each component of the probability distribu-
tion {Pk(t)} defined in Eq. (17) in a manner similiar to
what was done for a small instance of the Ising model
in Fig. 2. In Fig. 5 (a) we present density plots of the
distribution at short times for four representative values
of γ and an initial choice of operator Ô(0) = Ĵz. Each hor-
izontal slice corresponds to a snapshot of the distribution
at a given time, while vertical slices show the evolution
of individual components. The plots illustrate how the
distribution, which is concentrated at rank k = 1 at t = 0,
spreads onto higher ranks faster as γ is increased. In
order to capture the long-time properties of this evolu-
tion, we display in Fig. 5 (b) the mean µ(t), variance
σ(t), and IPR ηIPR(t) of the operator distribution as a
function of time. As expected, we observe how the values
predicted for Haar-random evolution (dashed lines) are
readily attained as γ increases and the QKT becomes
chaotic. We also observe an interesting similarity between
the behavior of both the mean and the variance when
compared to the Ising case, cf. Fig. 6 (a). In the ergodic
cases the mean µ(t) increases steadily and saturates at
the prediction from Table I, but the variance temporar-
ily ‘shoots up’ before it equilibrates. We emphasize that
this same behavior has been observed for the SYK model
in a previous work [52]. The fact that the QKT, which
is essentially a quantized classical system, also displays
similar features is indicative of the presence of unifying
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Figure 4. Quantum and classical chaos in the kicked top model
of Eq. (22), with parameters αx = 1.7, αy = 1, αz = 0.8 and
γx = 0.85γ, γy = 0.9γ and γz = γ. (a) Phase space portraits
(Poincaré sections) of the classical kicked top for different
values of the nonlinearity parameter γ. The system transitions
from a regular regime at small γ, to a mixed phase space for
γ ∼ 1 to a full chaotic regime for γ & 2. (b) Normalized mean
adjacent level spacing ratio for two instances of the QKT with
different N = 2J . Note that due to the lack of time-reversal
symmetry of this model, the measure is normalized to give 1
when the Circular Unitary Ensemble (CUE) value is achieved.
See Appendix B for more details.

features in the evolution of the operator distribution, even
when considering quantum chaotic models of very differ-
ent natures. Interestingly, we observe in both the QKT
and the Ising model that the variance of the distribution
can be systematically larger in the non-chaotic regime
with respect to the chaotic case.

Finally, we study the long-time averages Eq. (20) and
time-fluctuations Eq. (21) of the different measures of the
operator probability distribution as a function of the γ
parameter in the QKT, analogous to the results presented
for the Ising model in Fig. 3 (b). Results for the QKT are
shown in Fig. 6 for two choices of operators: Ô(0) = Ĵz
(dark lines) and Ô(0) = Ĵy (light lines). Similar to the
results obtained for the Ising model, in the chaotic regime
of the QKT the time-averaged mean, variance, and IPR
closely match the predictions from Haar-random evolution,
with vanishing temporal fluctuations. In the opposite
(integrable) regime, the trivial dynamics at γ ∼ 0 shows
mostly localized distributions and little spreading (and,
correspondingly, small fluctuations), akin to the regime
of θ ∼ π/2 of the Ising model.

In the transition to chaos, for 0 . γ . 2, the properties
of the distribution show some unifying features, but is
overall operator-dependent. We observe that the initial
operator Ô(0) = Ĵz shows significantly more spreading
than Ĵy. Analyzing the classical phase spaces in Fig. 4
(a), one readily observes that stable islands tend to be

Figure 5. Dynamics of the operator distribution for the QKT
of Eq. (22). Results were obtained using parameter values for
{αi, γi} identical to Fig. 4, N = 2J = 49, and the initial oper-
ator Ô(O) = Ĵz. (a) Density plots of the operator distribution
Pk(t), shown in logarithmic scale for clarity – the quantity
plotted is log (Pk(t) + ε), with ε = 10−10. (b) Measures of the
distributions shown in (a), calculated as a function of time.

localized on the equator of the spherical phase space, with
unstable areas around the poles. Around these unstable
fixed points is where chaos first appears already at γ = 1.0
[86, 87]. We attribute the enhanced growth of Ĵz to
these instabilities, in a phenomenon closely related to the
previously studied saddle-point scrambling [29]. Aside
from this we find for both operators that the transition
to chaos is characterized by an enhanced variance of the
distribution. Interestingly, the shape of σ(t)2 for the
QKT in the regime 0 ≤ γ ≤ 2 is very similar to that of
the Ising model in the equivalent regime π/4 . θ ≤ π/2.
This similarity once again hints at a unified behavior of
the operator growth in the transition from nonergodic to
ergodic behavior.

Finally, we find that temporal fluctuations (bottom row
of Fig. 6) in the QKT are a good proxy for quantum chaos
in the model, similar to what we observed earlier for the
Ising model. However, in this case the correspondence
does not extend to very small values of γ, since the trivial
dynamics of the QKT leads to a roughly constant operator
distribution. As in the Ising model we find for the chaotic
case of the QKT that the temporal fluctuations decrease
with system size while the time-averaged measures are
roughly independent of the values of N (see Appendix C).
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Figure 6. Long-time averages (top row), cf. Eq. (20) and
averaged temporal flucutations (bottom row), cf. Eq. (21),
for the mean, variance, and IPR of the operator distribution
for the QKT. Results are shown for N = 2J = 49 using
identical parameter values for {αi, γi} as Fig. 4, and for two
distinct initial operators Ô(0) = Ĵz (dark lines in all plots),
and Ô(0) = Ĵy (light lines). All dashed lines correspond to
the predictions for Haar-random evolution shown in Table I.

V. SCRAMBLING IN A QUANTUM CIRCUIT
MODEL

As a final case study, we analyze how the operator
distribution {Pk(t)} behaves for a quantum circuit akin
to the ones studied in quantum computing [88, 89]. We
consider circuits formed by gates in the universal set
{H,T, S, CX}, where

H =
1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
,

T =

(
1 0

0
√
i

)
, CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (23)

It is known that combinations of {H,S,CX} create a
Clifford circuit [90], the action of which takes a Pauli
operator to another Pauli operator. However, the T gate
is not a Clifford gate and thus transforms a Pauli operator
to a sum of Pauli operators. From the Gottesman-Knill
theorem, the evolution of a Clifford circuit can be sim-
ulated efficiently on a classical computer [90], whereas
the presence of T gates make the simulation of the non-
Clifford circuit inefficient [90–92]. Universal quantum
computing requires non-Clifford operations such as the
T gates, and the role of these operations in information
scrambling has been studied in recent works [93].

Here we focus on how the probability distribution Pk(t)
changes as one considers Clifford versus non-Clifford cir-
cuits. We study a random circuit model where each layer

has a random arrangement of Clifford gates as in Fig. 7
(a), and where, with probability pT , a T gate is applied
in the layer. The numerical results are obtained after
randomly sampling 40 instances of the circuit for an ini-
tial operator σ(1)

z for N = 6 qubits. In Fig. 7 (c) each
probability Pk(t) is plotted as a function of the circuit
depth for different values of pT . From our analysis it
is clear that if the probability pT is not too small, the
operator distribution becomes the one predicted from the
Haar-random evolution after some depth of the circuit,
and the required depth gets lower as we increase the pT .
This behavior is in line with the fact that including the
non-Clifford gates makes the gate set universal, and thus
random circuit instances are able to explore uniformly
the space of unitaries. On the other hand it is interesting
to analyze the behavior at small pT , where the system
behaves (roughly) as a Clifford circuit. As can be seen
from the evolution of the probabilities Pk(t), this does not
preclude the spreading of operators into higher weights.
However, since Pauli operators are approximately mapped
into Pauli operators, the distribution is very localized at
all times. This is the signature of quasi-scrambling (as
opposed to genuine scrambling [32]), also termed operator
spreading (as opposed to operator entanglement) [37].
Finally, in Fig. 7 (d), we analyze the mean, variance,

and IPR of the operator distribution for this random
circuit model, similarly to the analysis of tilted field Ising
model and QKT in the previous sections. For sufficiently
large T gate probabilities pT , yielding a large number
of T gates, the behavior of these are identical in nature
to the one found for other models in the chaotic regime,
see Fig. 5 (b) and tilted field Ising model in Fig. 3 (a):
a sharp increase of the mean and variance and quick
equilibration to the random predictions, including the
shoot-up of the variance at intermediate times before also
equilibrating. For small pT , the quasi-scrambling behavior
is clearly seen in these measures: while the mean of the
distribution increases in a manner very similar to the
other cases (albeit with enhanced temporal fluctuations),
the variance and IPR show very different behaviors as the
distributions localize when pT → 0. This analysis shows
how the breaking down of classical tractability at pT 6= 0
can be witnessed, dynamically, by the early-time growth
of the operator distribution variance (or, conversely, the
decay of its IPR).

VI. CONNECTION TO OTOCS

In Sec. II we argued that the properties of scrambling,
understood as delocalization of quantum information
along the degrees of freedom of a system, are encoded
in the coarse-grained operator distribution {Pk(t)} de-
fined over a particular partitioning of the operator basis,
cf. Eqs. (3) and (4). Studies of scrambling in the lit-
erature, however, are often focused on the analysis of
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Figure 7. Scrambling and operator growth in a random quantum circuit. (a) One instance of a random circuit composed only of
the Clifford gates H, S and CX (pT = 0). (b) Same instance with non-Clifford T gates interleaved in random locations. (c)
Evolution of the operator distribution probabilities Pk(t) for different values of the T -gate probability pT . From the left to right
the “non-Cliffordness” of the circuit increases with pT . Results shown for pT > 0 are averages over 40 random instances. (d)
Evolution of the mean µ(t), variance σ2(t), and IPR of the operator distribution ηIPR(t) as a function of time, and for the same
values of pT as used in (c). The initial operator is Ô(0) = σ

(1)
z /
√

2.

out-of-time-ordered correlators (OTOCs) of the form

C
(
Ŵ (t), V̂

)
=

1

d
tr
(
Ŵ †(t) V̂ †(0) Ŵ (t) V̂ (0)

)
, (24)

where here we consider the OTOC to be evaluated for a
thermal state at infinite temperature. In this section we
discuss the mathematical connection between the oper-
ator distribution and the OTOC by summarizing some
previous results in the literature [51, 52] and showing
novel relations.
We focus our attention on the case of systems of spin-

1/2 particles for simplicity (see Ref. [32] for a detailed
study of systems of qudits using a generalized Pauli basis,
and Ref. [94] for the case of collective systems and kicked
tops). We take the operators Ŵ and V̂ in Eq. (24) to
be in the N -qubit Pauli set P, and for our purposes
it suffices to think of Ŵ (0) as a single site operator, i.e.
Ŵ (0) ∈ C1 using the notation used in Sec. II A. To discuss
the connection between this family of OTOCs and the
operator size distribution {Pk}, we define the nth moment
of the latter as

µn(t) =

N∑
k=1

knPk(t). (25)

where µ1 ≡ µ to be consistent with our choice of notation
in previous sections. We then consider the average of
OTOCs over the subspace Cn of n-body Pauli operators

Mn(t) =
1

dim(Cn)

∑
R̂∈Cn

C(Ŵ (t), R̂). (26)

The simplest connection between this quantities is that

µ1(t) =
3N

4
(1−M1(t) ) (27)

which has been studied in many previous works [4, 51,
52] (for completeness we provide a proof of this relation
in Appendix D). We point out that a closely related
connection can be drawn between the OTOCs and the
average cluster size via the spectrum of multiple quantum
coherences in an NMR setting [38, 54, 55]. Equation (26)
shows that the mean operator size can be obtained by
measuring dim(C1) = 3N OTOCs, one per each single
site operator R̂ ∈ C1. A perhaps less known relation is
that

µ2(t) =
9

16
N(N − 1) (M2(t)− 1) +

3N − 1

2
µ1(t), (28)

indicating that in order to determine the variance of
the operator distribution σ2(t) = µ2(t)− µ1(t)2 one now
requires additional access to ∼ N2 OTOCs on two-body
operators R̂ ∈ C2. In Appendix D we show the following
general relation

Mn(t) =

n∑
i=0

α(i)
n µi(t) + α(0)

n (29)

which highlights that, in general, reconstructing the nth
moment of the operator distribution requires us to access
averages of OTOCs involving up to n bodies. Moreover,
the connection is not straightforward, as the coefficients
α

(i)
n for larger i take exponentially small values as n and
N increase. This implies that reconstructing the complete
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operator probability distribution {Pk} via OTOCs is an
unfeasible task, even if one were able to easily access
OTOCs experimentally.
However, one might argue that for many situations of

interest, merely obtaining lower order moments like µ1

and µ2 would be sufficient. In an experimental setup,
one is then confronted with the fact that OTOCs are
intrinsically hard to access and typically require auxiliary
systems [35], time-reversal operations [5, 38, 39], or sta-
tistical correlations through randomized measurements
[41, 42], and clearly measuring ∼ N2 hard objects is un-
desirable. Notice that one might also invoke arguments
of self-averaging, i.e., measuring a single choice of R̂ in
Eq. (27) might give a satisfactory indicator of the behav-
ior of the averaged OTOC (and thus of the mean operator
size) if the system is sufficiently ergodic. However, as we
have shown in this work, the properties of the operator
distribution are able to distinguish interesting features of
the behavior of the system even in nonergodic regimes,
where self-averaging might not work. For instance, both
the variance ‘shoot-up’ at short times and the enhanced
time-averaged spreading of the distribution observed in
Figs. 2 and 5 are only noticeable beyond the chaotic
regime.
The present discussion thus shows that while OTOCs

allow access to some aspects of the operator distribu-
tion, the quantitative connection between the two is not
straightforward in practice and might become hard to
probe even at the level of the first moments. It is thus
desirable to think about other potential methods to probe
the distribution more directly, a subject which has at-
tracted considerable attention recently [51, 53] and which
will be the focus of an upcoming work by the authors [95].

VII. CONCLUSIONS AND FUTURE WORK

In this work we studied scrambling in quantum systems
by analyzing the spreading of initially simple operators on
a coarse-grained basis, a process which we describe via the
operator distribution {Pk(t)}. We considered systems of
spin-1/2 particles (qubits) in the basis of Pauli operators
ordered by size, and kicked collective spin systems in the
basis of spherical tensor operators ordered by rank.

We presented a numerical analysis of two paradigmatic
models of quantum chaos in both the many-body and
few-body setting: the ‘tilted-field’ Ising model and the
quantum kicked top. For both cases we computed the
evolution of the operator distribution and studied its
properties via computing standard distribution measures
such as the mean, variance, and localization. Focusing
on long-time properties, we showed that in the chaotic
regimes both models evolve to spread-out distributions
whose properties match the predictions for Haar-random
evolution. In particular, the mean operator size (rank)
in these cases is proportional to the system size N while
temporal fluctuations are suppressed with increasing sys-
tem size, and thus the dynamics essentially equilibrates

to the random distribution. In the different nonergodic
regimes of these models the behavior becomes nongeneric
as expected. However, several interesting unifying fea-
tures are observed, like the enhancement of temporal
fluctuations and the increase of the distribution variance
to values above the random prediction. In the trivially
integrable regimes, the distributions remain localized and
show long-lived oscillations. In all the studied models we
have seen that the long-time properties of the operator
distribution allows one to reconstruct the integrability-to-
chaos transition in the studied models. Chaotic regimes
are characterized by i) the distribution mean and vari-
ance matching with Haar-random predictions and ii) the
suppression of temporal oscillations. We have found that
deviations from one of these two conditions indicate some
degree of nonergodicity.
We also applied the operator distribution framework

to a random circuit model and showed how the different
properties of the operator distribution change as a Clif-
ford circuit is turned into a universal circuit containing
non-Clifford gates. Finally, we studied the connection of
the different properties of the distribution to averages of
out-of-time-ordered correlators (OTOCs). The ideas and
results presented in this work build on previous works
and set a path where scrambling could be studied directly
from the operator distribution, which can be more physi-
cally transparent than OTOCs. An important challenge is
to devise experimental protocols that allow one to probe
these distributions without resorting to the experimen-
tally challenging OTOCs. Another important aspect that
we leave for future work is the study of the short-time
behavior of the operator distribution. In several cases, it
has been observed that single-site OTOCs show exponen-
tial decay, and the corresponding exponent is associated
with a quantum Lyapunov exponent. The connection
discussed in Sec. VI entails that, if all single-site OTOCs
behave in this way (or rather, if the average single-site
OTOC does so), then we expect an exponential increase
of the mean operator size. Interestingly, this does not say
anything about the behavior of other properties of the
operator distribution, and it is in principle possible to
devise models in which the timescale associated with, e.g.
the distribution variance is different than that given by
the Lyapunov exponent.

Along these lines, an important path forward is to study
how to apply the picture presented in Fig. 1 to systems
beyond spin-1/2 particles. The analysis of collective spin
models studied in this work represents an advance in
this direction, since these collective models are completely
equivalent to single particles of a fixed total spin J . There
is thus a notion of scrambling in a single particle for any
J > 1/2 , similar to the manner in which scrambling can
be defined for a single bosonic mode [32] (note that the
maximum rank for J = 1/2 is N = 1 and so the operator
distribution is trivial). When considering, for instance,
chains of spin-1 particles (i.e. circuits on qutrits [36]) or
systems of interacting bosons in lattices [96], one should
think about defining a coarse-graining of the operator
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basis that takes into account operator spreading within
one subsystem, as well as among different subsystems.
Finally, the analysis presented in this work highlights

that interesting features about the nonergodic regimes of
many-body systems may be studied from the operator
distribution. While this work has studied a system which
is integrable by mapping to noninteracting particles, there
are other systems which are integrable by other mecha-
nisms, like the Heisenberg model [61]. More generally,
some many-body systems show dynamical phase transi-
tions defined from their out-of-equilibrium properties [97].
An exciting path forward is to elucidate whether some of
these dynamical transitions can be viewed as a transition
in the operator distribution, which in turn is initial-state
independent.
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Appendix A: Operator distributions for
Haar-random evolution

Consider the evolution of operator Ô given by

Ô(t)→ Û†ÔÛ =
∑
j

f
[
Λ̂j ; Û

†ÔÛ
]

Λ̂j (A1)

where Û is taken from the uniform Haar distribution in
SU(d). We are interested in

E
[∣∣∣f [Λ̂j ; Û†ÔÛ]∣∣∣2] = E

[∣∣∣tr(Û†ÔÛ Λ̂j

)∣∣∣2] , (A2)

where E[·] indicates the average over the Haar measure.
The result of this averaging should be independent of j,

and thus from Eq. (4) we have

E[Pk] =
dim(Ck)

tr Ô2
E
[∣∣∣tr(Û†ÔÛ Λ̂j

)∣∣∣2] . (A3)

The evaluation of Eq. (A2) can be performed directly
by first noting that

tr
(
Û†ÔÛ Λ̂j

)
=
∑
lmnr

UnrU
∗
mlOmnΛ

(j)
rl . (A4)

Applying standard techniques (see Ref. [98]) to integrate
a degree-2 monomial in the elements {Uij}, we get

E
[∣∣∣tr(Û†ÔÛ Λ̂j

)∣∣∣2] =
1

d2 − 1

{
tr
(
Ô2
)(

tr
(

Λ̂jΛ̂
†
j

)
− 1

d

∣∣∣tr(Λ̂j

)∣∣∣2)+ tr
(
Ô
)2
(∣∣∣tr(Λ̂j

)∣∣∣2 − 1

d
tr
(

Λ̂jΛ̂
†
j

))}
.

(A5)

Using the orthonormality of the operator basis and the
fact that Ô is traceless, we then arrive to the simpler
result

E[Pk] =
dim(Ck)

d2 − 1
. (A6)

For systems of spin-1/2 particles, we have d = 2N and

dim (Ck) =

(
N

k

)
3k. (A7)

Then,

µ = k =
3

4
N

d2

d2 − 1
∼ 3

4
N, (A8)

and

k2 =
3

16
N(3N + 1)

d2

d2 − 1
, (A9)

leading to

σ2 ' 3

16
N. (A10)

For collective spin models d = N + 1 and dimCk =
2k + 1. We then get

k =
1

6
(4N + 5)

N + 1

N + 2
(A11)

k2 =
1

6
(N(3N + 5) + 1)

N + 1

N + 2
, (A12)

which lead to σ2 ∼ N2/18.
The calculation of the averaged IPR requires knowing

E[P 2
k ]. This can be obtained by treating Pk as coming

from a Porter-Thomas distribution in a space of dimension
D = d2 − 1 [11], in which case E[P 2

k ] = 2/D(D + 1). We
then have that

ηIPR =
1

(d2 − 1)2

∑
j

dim(Cj)
2 +

d2 − 2

(d2 − 1)d2
(A13)

Neglecting the second term, we obtain for the Pauli case
(d = 2N )

ηIPR =
1

(d2 − 1)2
(2F1 (−N,−N ; 1; 9)− 1) ∼ (2.35N)−1/2,

(A14)
where 2F1 is a hypergeometric function and the scaling
was obtained numerically. For collective spins (d = N+1),
we have

ηIPR =
1

3

4d3 − d− 3

(d2 − 1)2
∼ 4

3N
. (A15)

Appendix B: Averaged level spacing ratio as
quantum chaos indicator

The average adjacent level spacing ratio measures cor-
relations in the eigenspectrum of hermitian or unitary
operators and is routinely taken as a standard measure of
quantum chaos [99]. Given a set of eigenvalues {ej}j=1,...,d

(if considering a unitary, take the real phases φj associated
with each eigenvalue eiφj ), the average adjacent spacing
ratio is defined as

r =
1

d

d−2∑
j=1

rj , where rj =
max(sj , sj+1)

min(sj , sj+1)
, (B1)
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Figure 8. Measures of the probability distribution {Pk} for
the tilted field Ising model with N = 6 and B/J = 1 and
Ô(0) = σ̂

(1)
y /
√

2

where sj = ej+1 − ej . In chaotic systems, level spacing
distributions {sj} show level repulsion following predic-
tions from random matrix theory (RMT), and thus r
takes specific values depending on the appropriate RMT
ensemble. For the case of the Ising model this is the
Gaussian orthogonal ensemble (GOE) and rGOE ' 0.535
[99]. For the QKT considered in this work, the appropiate
ensemble is the circular unitary ensemble (CUE) for which
rCUE ' 0.599. Regular (integrable) systems have spectra
in which the eigenvalues tend to be uncorrelated, and so
the spacing distribution is instead Poissonian [46], with
associated rPOI = 0.386 [99]. As a normalized measure of
chaos, we define the normalized quantity

rnorm =
r − rPOI

rRMT − rPOI
, (B2)

where RMT corresponds to GOE or CUE depending on
the system under study. The normalized measure then
approaches 1 in the chaotic regime, and 0 in the nonchaotic
regime.

Appendix C: Additional results on Ising and QKT
models

In Sec. III we introduced the analysis of different mea-
sures of the operator probability distribution, like the
mean µ(t), variance σ2(t), and IPR ηIPR(t). In Fig. 3 we
presented the evolution of these quantities for the Ising
model in the case where the initial operator sits in the
middle of the chain. In Fig. 8 we display the evolution of
these properties for the situation where initial operator
sits at the edge of the chain.

In the main text we developed our analysis of the Ising
and QKT models with fixed systems sizes of N = 6 and
N = 50 respectively. Here we show additional numerical
results showing that those results are representative of
other cases. In Fig. 9 we illustrate the time-averaged
mean of the distribution µ(t) normalized by the system
size for both models and different choices of N , together
with the associated temporal fluctuations ∆µ (computed
over the normalized measure µ(t)/N). We observe that
for sufficiently large system size the normalized time-

Figure 9. System size analysis for the time-averaged mean
µ(t) and associated temporal fluctuations ∆µ for both the
Ising (a) and QKT (b) models considered in the main text.
Quantities are plotted as a function of the relevant parameters
for each model: the angle θ between the longitudinal and
transverse field for the Ising model (a) and the nonlinearity
strength parameter γ for the QKT (b). Dotted lines indicate
the predictions from Haar-random evolution, cf. Table I and
Appendix A.

averages become independent of N in the chaotic regime,
as expected from the predictions of Table I. The temporal
fluctuations approach zero in this regime for both models,
and actually decrease with increasing system sizeN . Away
from the chaotic regime, the behavior is quite different:
the time-averaged mean shows deviations (albeit small
for large N), and the fluctuations are actually become
system-size-independent.

Appendix D: Proofs related to the connection
between OTOCs and moments of the operator

distribution

In Sec. VI we postulated that the average of OTOCs
over the subspace Cn of n-body Pauli operatorsMn(t),
as defined in Eq. (26), may be written as a linear combi-
nation of moments µi(t) of the probability distribution
up to i = n on the form of Eq. (29). In this appendix we
prove this postulate, thus highlighting the connection be-
tween averages over OTOCs and moments of the operator
distribution.

We start by inserting the operator expansion Eq. (1)
into the expression for the average of OTOCs Eq. (26) to
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obtain

Mn(t) =
1

dim(Cn)

∑
Q̂

|f [Q̂; Ŵ (t)]|2
∑
R̂∈Cn

1

d
Tr(Q̂R̂Q̂R̂)

=
1

dim(Cn)

∑
Q̂

|f [Q̂; Ŵ (t)]|2
 ∑
R̂∈Cn

eiφQ̂R̂

 ,

(D1)

where in the first equality we have used that
Tr(Q̂R̂Q̂′R̂) = 0 unless Q̂ = Q̂′, and in the second equal-
ity that Q̂R̂ = eiφQ̂R̂R̂Q̂. The phase factor eiφQ̂R̂ may be
unpacked by writing the operator product Q̂R̂ as

Q̂R̂ =

N⊗
i=1

qiri, where q̂i, r̂i ∈ {1, X, Y, Z}. (D2)

We note that q̂i and r̂i commute if q̂i = r̂i or if q̂i = 1 or
r̂i = 1, and otherwise anticommute. Thus Q̂R̂ = ±R̂Q̂ =
eiφQ̂R̂R̂Q̂ and so φQ̂R̂ ∈ {0, π}.
From Eq. (D1) we note that moments of the prob-

ability distribution µi appear in Eq. (29) due to the
corresponding powers ki of k = s(Q̂) appearing in the
sum

∑
R̂∈Cn e

iφQ̂R̂ of Eq. (D1). To prove the validity of
Eq. (29) we thus show in the following that for any n ∈ N,
n ≤ N the sum

∑
R̂∈Cn e

iφQ̂R̂ contains powers of k = s(Q̂)

up to (and including) the nth power.
Let n ∈ N, n ≤ N be given. For any R̂ ∈ Cn we have

n = s(R̂) sites labeled i1, i2, . . . , in on which r̂ij 6= 1

(j = 1, 2, . . . , n), while the remaining N − s(R̂) sites are
identities r̂ij = 1 (for j = n + 1, . . . , N). For a given
operator Q̂, there are now n+ 1 possible cases that occur
as we sum over R̂ ∈ Cn:

0. q̂ij = 1 for all j = 1, 2, . . . , n.

1. One q̂ij 6= 1 for some j1, and the remaining q̂ij = 1

for j 6= j1, j ≤ n.

2. Two q̂ij 6= 1 for some (j1, j2), and the remaining
q̂ij = 1 for j 6= j1, j2, j ≤ n.

...

n. q̂ij 6= 1 for all j = 1, 2, . . . , n.

We let m be the number of non-identity q̂ij in a given
case, which also serves to label the above n+ 1 cases. For
each of these cases we need to determine their occurrence
Onm(Q̂) and value V nm(Q̂) such that we may calculate∑
R̂∈Cn e

iφQ̂R̂ =
∑
mO

n
m(Q̂)V nm(Q̂).

The occurrence of each case is straightforward to de-
termine as

Onm(Q̂) =

(
N − s(Q̂)

n−m

)(
s(Q̂)

m

)
, (D3)

where the first binomial coefficient is the number of unique
ways to choose the sites on which q̂ij = 1, whereas the
second binomial coefficient is the number of unique ways
to choose the non-identity sites. For the value V nm(Q̂) of a
given case m, each site with q̂ij = 1 simply yields a factor
3 to the number of outcomes eiφQ̂R̂ = +1 and eiφQ̂R̂ = −1
(for a total factor 3n−m). The m non-identity sites yield
eiφQ̂R̂ = +1 only if the number of sites for which q̂ij 6= r̂ij
is even. We are thus looking for the number of pairs,
quadruplets, sextuplets, and higher order even tuplets of
sites that one can create. Pairs provide 22 = 4 different
combinations of operators on the two sites, quadruplets
24 = 16 different combinations, and so on. The remaining
combinations must yield eiφQ̂R̂ = −1, and as there are 3n

different combinations of operators, the value of V nm(Q̂)
for case m takes the form

V nm(Q̂) = −3n + 2 · 3n−m
floor(m/2)∑

i=0

(
m

2i

)
22i (D4)

which only depends on the number of non-identity sites
m and not on the operator Q̂. We may thus omit the
explicit dependence on Q̂ and write V nm.

We are now ready to evaluate the sum
∑
R̂∈Cn e

iφQ̂R̂ =∑
mO

n
m(Q̂)V nm. We immediately note that Onm(Q̂) con-

tains all powers s(Q̂)j up to j = n due to the product
of the two binomial coefficients in Eq. (D3), and hence∑
R̂∈Cn e

iφQ̂R̂ is a sum over different nth order polynomi-
als in s(Q̂) with coefficients V nm. Since the sum of two nth
order polynomials is at most nth order itself, we conclude
that∑
R̂∈Cn

eiφQ̂R̂ = polynomial in s(Q̂) of order ≤ n. (D5)

To establish the result of Eq. (29), we need to show that
amplitude of the nth order term in the polynomial is
non-zero. The amplitude reads

An =

n∑
m=0

(−1)n−mV nm
(n−m)!m!

, (D6)

where the alternating sign and the denominator are due
to the form of Eq. (D3). Although we have not been suc-
cessful in showing that this amplitude is non-zero for all n,
Eq. (D6) is readily evaluated numerically for n of modest
size, limited only by the two factorials in the denomina-
tor. In Fig. (10) the absolute value of the amplitude is
displayed for 1 ≤ n ≤ 50, and we see that the amplitude,
although decreasing super-exponentially, is non-zero for
all ns considered. The non-vanishing amplitude of the
s(Q̂)n term ensures that the average of OTOCs over the
subspace Cn of Pauli operators is a linear combination of
all moments up to and including the nth moment 〈s(t)n〉,
confirming Eq. (D3) for all n that we have been able to
access numerically.
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Figure 10. The amplitude An of the s(Q̂)n term, as defined
in Eq. (D6), visualized as a function of n. We observe that
the amplitude is non-zero for all n considered here, albeit
exponentially decreasing. This demonstrates numerically that
the polynomial Eq. (D5) is indeed order n as desired for
n = 1, 2, . . . , 50.
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