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We propose a universal quantum computer based on a chain of carbon nanotube rotators where one metallic
plate is attached to each rotator. The dynamical variable is the rotational angle φ. The attached plate connected
to ground electrostatically interacts with two fixed plates. Two angle positions φ = 0, π are made stable by
applying a voltage difference between the attached plate and the two fixed plates. We assign φ = 0 and π to the
qubit states |0〉 and |1〉. Then, considering a chain of rotators, we construct the arbitrary phase-shift gate, the
NOT gate and the Ising gate, which constitute a set of universal quantum gates. They are executed by controlling
the voltage between various plates.

I. INTRODUCTION

The Moor law is a fundamental roadmap of integrated cir-
cuits, which dictates that the number of elements increases
exponentially as a function of year. It also means that the
size of an element must become exponentially small. How-
ever, there is an intrinsic limit of an element, which is the
size of atoms of the order of 1nm. It gives a limit to
the Moor law. The quantum computer is expected to be
a solution to overcome it[1–3]. Quantum computers are
based on qubits, where the superposition of the quantum
states |0〉 and |1〉 is used. Various methods have been pro-
posed such as superconductors[4], photonic systems[5], ion
trap[6], nuclear magnetic resonance[7, 8], quantum dots[9],
skyrmions[10, 11] and merons[12]. Nanomechanical systems
are also applicable to quantum computers[13–16].

Quantum algorithm is decomposed into a sequential appli-
cation of quantum gates. The Solovay-Kitaev theorem assures
that only three quantum gates, the π/4 phase-shift gate, the
Hadamard gates and the CNOT gate, are enough for univer-
sal quantum computations[17–19]. Alternatively, the arbitrary
phase-shift gate, the NOT gate and the Ising gate constitute a
set of universal quantum gates as well.

Nano-electromechanical systems (NEMS)[20, 21] have
various industrial applications. A nanorotator based on
a carbon nanotube has been experimentally realized[22–
25]. Especially, a double-wall nanotube structure acts as a
nanomotor[23–30]. A carbon nanotube can be metallic de-
pending on the chirality of a nanotube[31]. In addition, it
is possible to attach a metallic plate to a nanotube[22, 27].
Quantum effects are experimentally observed in NEMS[32–
34].

In this paper, we propose a universal quantum computer
by constructing a set of universal quantum gates. We pre-
pare a rotator based on a double-wall nanotube as illustrated
in Fig.1(a). We attach one metallic plate to the inner nan-
otube. It is possible to materialize such a nanorotator by using
the present techniques[22, 27]. Then, we align these rotators
along a line with equal spacing, which is the main config-
uration of our proposal. We explicitly design the arbitrary
phase-shift gate, the NOT gate and the Ising gate. They are
controlled by the voltage between two plates.
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FIG. 1. (a) Illustration of a nanotube rotator suspended by the
double-wall nanotube structures at the top and the bottom. One
metallic plate (in orange) is attached to the nanotube. Two metallic
plates (in blue) are fixed to the outer system. We connect the inner
plate to ground. When we give a voltage to the two outer plates, the
cos 2φ potential is induced. When we give a voltage to one of the
two outer plates, the cosφ potential is induced. On the other hand,
when we give a voltage between the two plates attached to two nan-
otubes, the Ising interaction is induced. (b) The configuration of a
rotator with φ = 0, representing the qubit state |0〉. (c) The config-
uration of a rotator with φ = π, representing the qubit state |1〉. (d)
The configuration of a rotator with a generic angle φ. Dotted circles
denote the rotator parts.

II. MODEL

A. Carbon nanotube rotator

We consider a rotator whose dynamical variable is the rota-
tional angle φ with the potential energy given by[27]

W2(φ) = −A cos 2φ. (1)

There are two stable angles φ = 0 and π, which we regard to
form one-qubit states {|0〉, |1〉}. In addition, we introduce a
potential term given by[27]

W1(φ) = −B cosφ, (2)

which resolves the degeneracy between the states |0〉 and |1〉.
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The Schrödinger equation for one rotator reads

i~
d

dt
ψ (t) = Hψ (t) , (3)

with the Hamiltonian given by

H = − ~2

2µr2
∂

∂φ2
−A cos 2φ−B cosφ, (4)

where µ is the inertia of the rotator and r is the radius of the
rotator. The eigenequation reads

Hψ = Eψ. (5)

The Hamiltonian (4) may be materialized by a rotator,
which is made of a nanotube (in green) supported by the
double-wall nanotube structures at the top and the bottom, as
illustrated in Fig.1(a). We attach one metal plate (in orange)
to the nanotube, which we call the inner plate. Then, we in-
troduce two metal plates (in blue) fixed to an outer system,
which we call the outer plates.

1) We connect the inner plate to ground. It materializes
the potential energy (1) when we give a voltage ∝ V2 to the
two outer plates. There are two stable angles φ = 0 and π,
as illustrated in Fig.1(b1) and (c1). We also illustrate a rotor
with a generic angle φ in Fig.1(d1).

2) We connect the inner plate to ground. It materializes the
potential energy (2) when we give a voltage ∝ V1 to one of the
two outer plates. There is one stable angle φ = 0, as illustrated
in Fig.1(b2). We also illustrate a rotor with a generic angle φ
in Fig.1(d2).

B. Whittaker–Hill Equation

The Schrödinger equation (3) may be rewritten in a dimen-
sionless form as

i
d

dτ
ψ (φ, τ) = Hψ (φ, τ) , (6)

with the dimensionless Hamiltonian,

H =− d2

dφ2
+ V(φ), (7)

and the dimensionless potential,

V(φ) =− V2 cos 2φ− V1 cosφ, (8)

where

τ =
~

2µr2
t, ε =

2µr2

~2
E,

V2 =
2µr2

~2
A, V1 =

2µr2

~2
B. (9)

The dimensionless quantity V2 (V1) is given in terms of the
voltage difference V1(V2) between the inner plate and the two
(one) outer plates,

Vi =
1

2
CV 2

i , (10)
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FIG. 2. (a1) Potential energy as a function of φ, where there are
two minima at φ = 0 and π; (a2) wave functions as a function of
φ, where the magenta curve indicates the symmetric ground state
ψ+ and the cyan curve indicates the antisymmetric first-excited state
ψ−. Here, we have set V1 = 0 and V2 = 20. (a2) Potential energy
as a function of φ, where there is only one minimum at φ = 0; (b2)
wave functions as a function of φ, where the magenta curve indicates
the eigenfunction ψ0 of the state |0〉 and the cyan curve indicates ψ1

of |1〉. Here, we have set V1 = 1 and V2 = 20.

where C is the capacitance of the inner-outer plate system, as
indicated by cos 2φ (cosφ) in Fig.1(a). We show the potential
V(φ) for V1 = 0 in Fig.2(a1) and for V1 = 1 in Fig.2(b1) by
setting V2 = 20.

The eigenequationHψ = εψ reads[
d2

dφ2
+ V2 cos 2φ+ V1 cosφ

]
ψ = −εψ. (11)

This is the Whittaker–Hill equation, which is reduced to the
Mathieu equation for V1 = 0.

C. Strong potential limit

As the basic picture of the present model, we require the
dominant role of the cosine potential cos 2φ to generate two-
fold degenerated ground states at φ = 0 and π, which we re-
gard to form one-qubit states {|0〉, |1〉}. On the other hand, we
use the cosine potential cosφ to make gate operations. Hence,
we consider the regime where V2 � V1 ≥ 0. It is possi-
ble to derive the analytical solutions around these two points
for sufficiently large V2. The Whittaker-Hill equation (11) is
approximated as[

d2

dφ2
+ (V2 + (−1)

q V1)−
(

2V2 + (−1)
q V1

2

)
φ2q

]
ψq

= εqψq, (12)

where φq = φ− qπ with q = 0, 1.
By solving Eq.(12), the wave function ψq is given by

ψq (φq) =

(
2a

π

)1/4

e−αqφ
2
q , (13)
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with

αq =

√
V2
2

+ (−1)
q V1

8
. (14)

The energy of the state (13) is

εq = − (V2 + (−1)
q V1) +

√
2V2 + (−1)

q V1
2
. (15)

When V1 > 0, the ground state is given by ψ0, and the first
excited state by ψ1. The wave function ψq describes the one-
qubit state |q〉 with the qubit variable q = 0, 1.

When V1 = 0, these two states are degenerate. However,
an energy splitting occurs due to the difference between the
Whittaker-Hill equation (11) and the approximated equation
(12). Then, due to the mixing, the ground state and the first-
excited state wave functions turn out to be the symmetric func-
tion ψ+ and the antisymmetric function ψ−,

ψ+ =
ψ0 + ψ1√

2
, |ψ−〉 ≡

ψ0 − ψ1√
2

, (16)

however small the energy splitting is.

D. Numerical analysis

The Whittaker–Hill equation is solved by making a Fourier
series expansion,

ψ =

∞∑
n=−∞

αne
inφ. (17)

The coefficient αn is determined by solving a set of
eigenequations,

−n2αn +
V2
2

(αn+2 + αn−2) +
V1
2

(αn+1 + αn−1) = εαn.

(18)
This is summarized in the matrix form,∑

m

Mnmαm = εαn. (19)

We have numerically solved this matrix equation by introduc-
ing a cut off as in

ψ =

N∑
n=−N

αne
inφ, (20)

with a certain integer N . We have checked that it is enough to
take N = 8. Here we use N = 12.

We show the energy spectrum as a function of V2 by setting
V1 = 0 in Fig.3(a). We are concerned about the lowest two
energy levels indicated in red, which are well separated from
all the other. The energy is two-fold degenerated in the limit
of V2 →∞. Their wave functions are given by the symmetric
function ψ+ and the antisymmetric function ψ−, as shown in
Fig.2(a2).
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FIG. 3. (a) Eigenenergy ε as a function of V2 by setting V1 = 0. (b)
Eigenenergy ε as a function of V1 by setting V2 = 20. The lowest
two energy levels are colored in red, while the other energy levels are
colored in blue.

We show the energy spectrum as a function of V1 by setting
V2 = 20 in Fig.3(b). The almost two-fold degenerated energy
levels split linearly as a function of V1. The ground state and
the first-excited state wave functions are ψ0 and ψ1, which are
localized at φ = 0 and π, as shown in Fig.2(b2) for the case
of V2 = 20 and V1 = 1.

E. Quantum tunneling

We use the two states |0〉 and |1〉 as the one-qubit states.
Because these two states are degenerate when V1 = 0, one
may wonder if they are naturally mixed by quantum tunneling.
Then, the life time of a qubit state is too short. However, this
is not the case. During gate operations we keep V2 quite large
to keeps the cosine potential well defined, as generates a quite
large barrier between these two states.

Quantum tunneling is estimated by means of the WKB ap-
proximation. The tunneling rate Γ is given by

Γ = e−2γ , γ ≡ 1

~

∫ π

0

dφ
∣∣∣√2µr2 (V2 + V2 (φ))

∣∣∣ . (21)

By setting V2 (φ) = −V2 cos 2φ, we find

γ =
4
√
µr2V2
~

. (22)

Hence, the quantum tunneling is exponentially small as a
function of the applied voltage V2. It is estimated that γ =
106 ∼ 108 for V2 =1mV∼100mV, where we have used that
the inertia µr2 is 10−30kgm2[38]. See Sec.IV with respect to
these parameters.

III. QUBIT OPERATIONS

A. Initialization

The present system is composed of a chain of nanotube ro-
tators, each of which is subject to the cosine potential cos 2φn
as in Fig.2(a1) by requiring V1 = 0. The ground states are N -
qubit states |q1q2 · · · qN 〉 with qn = 0, 1 for n = 1, 2, · · · , N .
The initialization to the state |00 · · · 0〉 is necessary for quan-
tum computations. It is done by the annealing method. First,
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we start with a high temperature, where the rotational angle is
random. Then, we cool down the sample slowly by applying
a voltage V1 to all the outer plates in the right-hand side of
the rotators. The rotators tend to the angle φn = 0 in order
to minimize the electrostatic energy. As a result, all of the ro-
tators have the angle φn = 0, which corresponds to the state
|00 · · · 0〉.

B. One-qubit gates

We construct quantum gates for universal quantum compu-
tations. It is enough to design the arbitrary phase-shift gate
and the NOT gate with respect to one-qubit gates. These gates
are realized by varying the parameters V1 and V2 in the po-
tential (8). We investigate the quantum dynamics governed
by

i
d

dτ
ψ (φ, τ) = H (τ)ψ (φ, τ) , (23)

or equivalently,

i
d

dτ
αn (τ) =

∑
m

Mnm (τ)αm (τ) , (24)

in terms of the coefficients αn in Eq.(17). We numerically
solve these differential equations in the following.

In the present instance, we assume that either V1 or V2 is
time dependent during a gate operation. We consider a quan-
tum gate operation satisfying

H(τfinal) = H(τinitial). (25)

Namely, we tune so that V2(τfinal) = V2(τinitial) and
V1(τfinal) = V1(τinitial). Then, the wave function after the gate
operation is expanded by the superposition of the two gaussian
functions (13), which enables us to determine the coefficients
of |0〉 and |1〉.

This process is represented by a unitary matrix U from the
initial state (|0〉initial , |1〉initial) to the final state (|0〉final , |1〉final)
defined by (

|0〉final
|1〉final

)
= U

(
|0〉initial
|1〉initial

)
. (26)

This unitary matrix defines a one-qubit gate.

C. Phase-shift gate

We construct the arbitrary phase-shift gate defined by

UZ(θ) ≡ diag.(1, eiθ), (27)

whose action is

UZ(θ) |0〉 = |0〉 , UZ(θ) |1〉 = eiθ |1〉 . (28)

As is well known, time evolution generates a phase to a state
according to the Schrödinger equation. Hence, the two states

FIG. 4. (a) Time evolution of phase modulation. We have set τ1 = 4
and τ2 − τ1 = 0.41p with p = 0, 1, · · · , 8. (b) Phase modulation as
a function of τ2, where 4 ≤ τ2 ≤ 8. We have set V2 = 20, V1 = 1,
T = 2 and T = 10.

|0〉 and |1〉 acquire different phases as time evolves, provided
their energies are made different by the presence of V1. This
is the basic idea of the phase-shift gate.

We temporary control V1 by tuning an applied voltage dif-
ference according to the formula

V1 (τ) =
V̄1
2

[
tanh

τ − τ2
T

− tanh
τ − τ1
T

+ 2

]
, (29)

with τ2 � τ1, while we fix V2 6= 0. We start either from the
state |0〉 or |1〉. The absolute value of the wave function does
not change its form but only the phase rotation is modulated
because the state remains in the bottom of the cosine potential.
We show the phase modulation as a function of time for var-
ious τ2 in Fig.4(a). The phase difference between the initial
state and the final state is shown in Fig.4(b), which is linear as
a function of τ2− τ1. The phase modulations between the two
states |0〉 and |1〉 are opposite as in

Uθ ≡ diag.(e−iθ/2, eiθ/2), (30)

because the energy splitting is opposite between them. Here,

θ/2π = V̄1f(V2)(τ2 − τ1). (31)

We find f(V2) = −0.3 in the case of V2 = 20 by fitting
the line in Fig.4(b). This is equivalent to the phase-shift gate
(27), because the overall phase is irrelevant to quantum gate
operations.

D. π/4 phase-shift gate

The π/4 phase-shift gate

UT ≡ diag.(1, eiπ/4) (32)

is realized by setting θ = π/4 in the generic phase-shift gate
(27).

E. Pauli-Z gate

The Pauli-Z gate is realized by the z rotation with the angle
π as

UZ = −iUZ (π) (33)

in the generic phase-shift gate (27).
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F. NOT gate

We construct the NOT gate defined by

UNOT ≡
(

0 1
1 0

)
. (34)

This gate exchanges the two states |0〉 and |1〉. It is impossi-
ble to keep the potential V2 finite since it prohibits quantum
tunneling.

For this purpose we temporary control V2 by tuning the ap-
plied voltage to the rotator in such a way that

V2 (τ) =
V̄2
2

[
tanh

τ − τ2
T

− tanh
τ − τ1
T

+ 2

]
, (35)

with τ2 � τ1, while we set V1 = 0. The gate operation re-
quires that the initial state |0〉 is transferred to the final state
|1〉 as in Fig.5(c). We explain how to obtain this time evolu-
tion. Let its time evolution be described by the wave func-
tion ψ(φ, τ). The initial condition implies that it satisfies
ψ(0, τ) = ψmax and ψ(π, τ) = 0 at τ = 0, where ψmax is
the maximum value of |ψ(φ, τ)|. The final state should satis-
fies ψ(0, τ) = 0 and ψ(π, τ) = ψmax at τ = T � τ2, because
|0〉 is transformed to the state |1〉.

This is a nontrivial problem depending on the parameters
τ2 in the applied voltage V2 (τ). We fix τ1 arbitrarily and
solve the Schrödinger equation for ψ(φ, T ) as a function of
τ2, whose result we show in Fig.5(a). There is a certain value
of τ2 where |ψ(0, T )| = 0 and |ψ(π, T )| = ψmax, as is clear
in Fig.5(b). Then, we show the dynamics of |ψ(φ, τ)| with the
use of this value of τ2 in Fig.5(c) and (d), where it is seen that
the initial state |0〉 localized at φ = 0 is transformed to the
final state |1〉 localized at φ = ±π. This is the action of the
NOT gate.

G. Hadamard gate

The Hadamard gate is defined by

UH ≡
1√
2

(
1 1
1 −1

)
. (36)

It is realized by a sequential application of the Pauli Z gates
and the NOT gate [35] as

UH = −iUZUNOTUZ . (37)

H. Two-qubit gates

A two-qubit system is made of two rotators put along the
x axis as in Fig.1. The two-qubit state is expressed as |q1q2〉
with qn = 0, 1. An example of the state |01〉 is given in the
system made of Fig.1(b3) and (c3). A two-qubit gate oper-
ation transforms the initial state |q1q2〉initial to the final state

FIG. 5. Time evolution of the NOT gate operation. (a) Bird’s eye’s
view of the final state |ψ(φ, T )| as a function of φ and τ2, where
−π ≤ φ < π and 4 ≤ τ2 ≤ 16. (b) The final state |ψ(0, T )| colored
in red and |ψ(π, T )| colored in blue as a function of τ2, where 4 ≤
τ2 ≤ 16. (c) Bird’s eye’s view of |ψ(φ, τ)|, where −π ≤ φ < π
and 0 ≤ τ < T . (d) Top view of |ψ(φ, τ)|. We have set V̄2 = 20,
V1 = 0, τ1 = 4, T = 2 and T = 20 in (a) and (b). We have
additionally set τ2 = 12.6 in (c) and (d).

|q1q2〉final as  |00〉final
|01〉final
|10〉final
|11〉final

 = U

 |00〉initial
|01〉initial
|10〉initial
|11〉initial

 , (38)

which defines the two-qubit gate operation U .

I. Two-qubit phase-shift gate

We apply the voltage difference V12 between the two rota-
tors as in Fig.1(b3) and (c3). The potential energy is given
by

W (φ1, φ2) ≡W2 (φ1) +W2 (φ2) +
C (φ1, φ2)

2
V 2
12, (39)

where W2 (φ) is the potential energy given by Eq.(1), and
C(x1, x2) is the capacitance between the rotators,

C(φ1, φ2) =
ε0S

L (φ1, φ2)
. (40)

Here, ε0 and S are the permittivity and the area of the plates,
while L (φ1, φ2) is the distance between the two plates at-
tached to the rotator.
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When we apply the Ising gate, the absolute values of the
wave functions do not change but only the phases are modu-
lated. The wave functions are |0〉 or |1〉, and hence we concen-
trate on the parallel case φ1, φ2 = 0, π. There are relations,

L (0, 0) = L (π, π) = `, (41)
L (0, π) = 2R+ `, L (π, 0) = −2R+ `, (42)

where R is the radius of the rotation of the rotator, and ` is the
length between the supporting points of two adjacent rotators:
See Fig.1(b3) and (c3).

We calculate

W (0, 0) = W (π, π) =
ε0S

`

V 2
12

2
≡ E0, (43)

W (0, π) =
ε0S

`+ 2R

V 2
12

2
≡ E+, (44)

W (π, 0) =
ε0S

`− 2R

V 2
12

2
≡ E−. (45)

We show that the potential energy (39) may be written in
the form of the Ising model with field Bj ,

HIsing =

N−1∑
j=1

Jjsjsj+1 +

N∑
j=1

Bjsj + E0, (46)

where sj = ±1. We rewrite Eq.(46) as

HIsing =

N−1∑
j=1

Hj (sj , sj+1) +
B1

2
s1 +

BN
2
sN , (47)

with

Hj (sj , sj+1) = Jjsjsj+1 +
Bj
2
sj +

Bj+1

2
sj+1 +

E0

N − 1
.

(48)
We realize the term (48) by a system made of two adjacent
buckled plates j and j + 1. There are relations

Hj (1, 1) = W (0, 0) , Hj (−1,−1) = W (π, π) ,
(49)

Hj (1,−1) = W (0, π) , Hj (−1, 1) = W (π, 0) . (50)

The coefficients in the Ising model are given by

Jj =
2E0 − E+ − E−

4
, (51)

Bj = −Bj+1 =
E+ − E−

4
, (52)

E0 =
2E0 + E+ + E−

4
. (53)

We start with the Gaussian state Ψσ1σ2
(x1, x2) ≡

ψσ1
(x1)ψσ2

(x2) with Eq.(13) localized at four points x1 =
σ1R and x2 = σ2R, where σ1 = ±, σ2 = ±. The absolute
value of this wave function almost remains as it is, but a phase
shift occurs. The unitary evolution is given by

U (t) = exp[−i (E0/~ + ω) t] (54)

for σ1 = σ2 = + and σ1 = σ2 = −,

U (t) = exp[−i (E+/~ + ω) t] (55)

for σ1 = + and σ2 = −,

U (t) = exp[−i (E−/~ + ω) t] (56)

for σ1 = − and σ2 = +, where we have added the zero-point
energy.

It corresponds to the two-qubit phase-shift gate operation,

U2-phase (t) = diag.
(
e−i

E0
~ t, e−i

E−
~ t, e−i

E+
~ t, e−i

E0
~ t
)

= e−i
E0
~ tdiag.

(
1, e−i

EX
~ t, ei

EX
~ t, 1

)
, (57)

by identifying the qubit state (|00〉 , |01〉 , |10〉 , |11〉)t =

(|++〉 , |+−〉 , |−+〉 , |−−〉)t.

J. Ising gate

The Ising gate is defined by UZZ ≡diag.(1,−1,−1, 1), and
realized by setting EXt/~ = π in Eq.(57) up to the global
phase exp [−iE0t/~].

K. CZ gate

The controlled-Z (CZ) gate is defined by
UCZ =diag.(1, 1, 1,−1). It is constructed by a sequen-
tial application of the Ising gate and the one-qubit phase-shift
gates as[36]

UCZ = eiπ/4UZ

(π
2

)
UZ

(π
2

)
UZZ . (58)

L. CNOT gate

The CNOT is defined by

U1→2
CNOT ≡

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (59)

and is constructed by a sequential application of the CZ gate
(58) and the Hadamard gate U (2)

H in Eq.(37) acting on the sec-
ond qubit as U1→2

CNOT = U
(2)
H UCZU

(2)
H .

M. Readout process

The readout of the plate angle φn can be done for all ro-
tators by using the fact that the capacitance depends on the
relative angle of the two plates[27]. By applying a tiny volt-
age and by measuring the induced current, we can readout the
capacitance, which is directly related to the angle φn.
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IV. DISCUSSION

We have proposed a universal quantum computer with the
use of a chain of carbon nanotubes together with metal plates
attached to them. One-qubit gate operations are controlled
electrically by giving voltage difference between the attached
plate and other plates fixed to the outer system. Two-qubit
operations are controlled electrically by given voltage differ-
ence between the two attached plates belonging to two ad-
jacent nanotubes. We now discuss the feasibility of such a
quantum computer.

We mention experimentally obtained material parameters

of a double-wall nanotube structure[29]. Nanotube length is
10nm and the intertube gap length is 0.3nm. The diameter of
a nanotube is 10nm[22]. Q factor[37] is of the order of 100.
The inertia µr2 is 10−30kgm2[38]. The rotational frequency
is from 1MHz[37] to 100GHz[29].

If we use a plate with 10nm square with the distance L =
100nm, the capacitance C = ε0S/L is 10−21F. If we apply
1mV to the plate, the electrostatic energy CV 2/2 is 10−26Nm
and the operating time is of the order of 10µs. If we apply
100mV to the plates, the electrostatic energy is 10−22Nm and
the operating time is of the order of 1ns. These values are
experimentally feasible.

This work is supported by CREST, JST (Grants No. JP-
MJCR20T2).
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