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Solid-state electrolytes (SSE) with high ion
conductivity are pivotal for the development
and large-scale adoption of green-energy con-
version and storage technologies such as fuel
cells, electrocatalysts and solid-state batteries.
Yet, SSE are extremely complex materials for
which general rational design principles remain
indeterminate. Here, we unite first-principles
materials modelling, computational power and
modern data analysis techniques to advance
towards the solution of such a fundamental
and technologically pressing problem. Our
data-driven survey reveals that the correlations
between ion diffusivity and other materials de-
scriptors in general are monotonic, although not
necessarily linear, and largest when the latter
are of vibrational nature and explicitly incorpo-
rate anharmonic effects. Surprisingly, principal
component and k-means clustering analysis
show that elastic and vibrational descriptors,
rather than the usual ones related to chemical
composition and ion mobility, are best suited for
reducing the high complexity of SSE and classi-
fying them into universal classes. Our findings
highlight the need of considering databases that
incorporate temperature effects to improve our
understanding of SSE and point towards a gener-
alized approach to the design of energy materials.

Social networks use modern data analysis techniques
to improve their customers experience and increase ad-
vertising revenues [1]. Each mouse click and fingers ac-
tion on the touchscreen reveal information on the users
preferences that can be employed to classify individuals
into similarity groups and thus better select the contents
they are exposed to. Materials, in analogy to humans,
conform to highly diverse and complex collectives and
as such advanced data analysis techniques are being in-
creasingly applied on them to improve their design and
recommend possible uses [2, 3]. A necessary condition
for the meaningful development and application of data-
driven materials design strategies is the existence of com-
prehensive and reliable databases.

Solid-state electrolytes (SSE) are a class of energy ma-
terials in which specific groups of ions may start to diffuse
throughout the crystalline matrix driven by the thermal
excitations [4]. SSE are the pillars of green-energy con-
version and storage technologies like fuel cells, electrocat-

alysts and solid-state batteries, hence tuning of their ion-
transport properties turns out to be critical for the fields
of Energy and Sustainability. SSE, however, are highly
complex materials that present disparate compositions,
structures, thermal behaviors and ion mobilities, thus it
is difficult to ascribe them to general and rational design
principles. These difficulties have motivated researchers
to seek for easy to measure (or calculate) quantities that
may serve as good descriptors of the ion conductivity; ex-
amples of such descriptors include structural parameters,
defect formation energies, atomic polarizabilities and lat-
tice dynamics [5–9]. In recent years, pinpointing the role
of phonon dynamics on ion transport has attracted spe-
cial and increasing attention. Actually, for some specific
SSE it has been demonstrated that lattice anharmonicity
is one of the most influential factors affecting their ion
mobility [9–14].

Quantum mechanics-based density functional theory
(DFT) [15] has proven tremendously successful in the
field of computational materials science, and currently
several databases of automated DFT calculations are be-
ing widely employed for materials design applications
[16–19]. Nevertheless, despite of their great successes,
the existing DFT databases might not be entirely ade-
quate for progressing in the design and understanding
of SSE because they mostly contain information gener-
ated at zero temperature (e.g., structural parameters and
formation energies) and thus completely disregard anhar-
monicity and T -induced effects [20]. In addition, modern
high-throughput and machine learning studies relying on
such DFT databases mainly have targeted Li and Na-
based SSE families due to their predominance in electro-
chemical storage applications [8, 21, 22]. To holistically
better understand the phenomena of ion transport, how-
ever, it might be necessary to analyse in equal measure
other classes of SSE, like those involving mobile O, Cu,
Ag and halide ions, which are technologically relevant as
well [23–25].

Here, we present a data-driven analysis of SSE
that covers aspects generally unaddressed by previous
computational studies and the existing DFT materi-
als databases. First, a comprehensive first-principles
database was created for prototypical families of inor-
ganic SSE containing both sets of zero-temperature DFT
and finite-temperature ab initio molecular dynamics
(AIMD) results. Subsequently, a thorough correlation
study between the ion diffusion coefficient (D) and other
materials features was performed to determine universal
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FIG. 1. Spearman correlograms and corresponding p-value matrices. Correlations between pairs of materials features
obtained for (a) all and (c) exclusively the Li-based SSE contained in our DFT-AIMD database. The p-value matrices corre-
sponding to all and exclusively Li-based Spearman correlograms are shown in (b) and (d), respectively. All the AIMD-based
diffusive and vibrational descriptors were estimated at T = 500± 100 K.

ion-transport descriptors (as well as those specific to
Li-based SSE). By relying on this new knowledge and
the introduced DFT-AIMD database, several machine
learning models were trained for the prediction of D and
other T -dependent quantities. Finally, principal compo-
nent and k-means clustering analysis, data techniques
customarily employed in the social sciences, were applied
to reduce the high complexity of the SSE landscape and
determine universal classes of fast-ion conductors.

Curated first-principles SSE database. The gen-
erated SSE DFT-AIMD database [26] comprises a total
of 61 materials of which 46% contain Li, 23% halide (i.e.,
F, Cl, Br and I), 15% Na, 8% O and 8% Ag/Cu atoms as
the mobile ions. These percentages were selected in order
to roughly reproduce the relative abundances of fast-ion
conductors reported in the literature [27]. The generated
SSE DFT-AIMD database contains materials with both
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stoichiometric and non-stoichiometric compositions and
the AIMD results were obtained over a broad range of
temperatures (Supplementary Tables 1–3 and [26]).

To analyze the degree of similarity between all the
surveyed SSE, a great variety of descriptors were es-
timated for each material adding up to a total of 54
(the complete list of descriptors is detailed in the Meth-
ods section). Some of these descriptors had been al-
ready proposed in the literature (e.g., band gap and
vacancy formation energy) while some others were to-
tally new (e.g., harmonic phonon energy and Pugh’s
modulus ratio). The descriptors were classified into
three general categories: “mechanical-elastic”, “diffusive-
vibrational” and “structural-compositional”. The value
of some descriptors were obtained from zero-temperature
DFT calculations (“mechanical-elastic” and “structural-
compositional”) while the rest (“diffusive-vibrational”)
were deduced from AIMD simulations performed at tem-
peratures above ambient (Methods and Supplementary
Tables 1–3).

It is worth noting that the results obtained from
AIMD simulations explicitly account for anharmonic
effects, which constitutes one of the most important
novelties and technical advances of the present work and
introduced SSE database. Moreover, most vibrational
descriptors were estimated considering the following
cases (1) all the ions, (2) only non-diffusive ions and
(3) only diffusive ions, in order to better substantiate the
role of the vibrating crystalline matrix on ion transport
(Methods). The approximate computational cost of the
generated SSE DFT-AIMD database was of 50 Million
CPU hours.

Correlations between pairs of SSE descrip-
tors. The correlation for a couple of materials descrip-
tors, x and y, can be quantified in several non-unique
ways [28]. In this work, we considered the Pearson (cP )
and Spearman (cS) correlation coefficients which are de-
fined like:

cP (x, y) =
cov(x, y)

σxσy
and

cS(x, y) = cP [R(x), R(y)] , (1)

where σi is the standard deviation of the descriptor i and
R(i) the rank of the i samples. The covariance function
is expressed as:

cov(x, y) = 〈xy〉 − 〈x〉〈y〉 , (2)

where 〈·〉 denotes expected value. The Spearman correla-
tion coefficient is able to detect monotonic dependencies
between pairs of descriptors while the Pearson can only
identify linear correlations. Thus, the cS correlation coef-
ficients are more general and robust than cP (i.e., can as-
sess monotonic relationships whether linear or not). For
this important reason, and despite the fact that linear
correlations have been assumed in most previous SSE
studies [7, 9], we will stick to the Spearman correlation
definition for the rest of our analysis.

Figure 1a shows the Spearman correlation coefficients
estimated for all pairs of materials descriptors consider-
ing the entire DFT-AIMD database (an analogous Pear-
son correlogram can be found in the Supplementary
Fig.1). In view of the preeminence of Li-based SSE in
electrochemical applications, the same correlation anal-
ysis was performed for this family of materials alone
(Fig.1c). To assess the statistical significance of the esti-
mated cS correlograms, we computed the corresponding
p-value matrices (Figs.1b,d). The p-value represents the
probability for a particular correlation result to arise if
the null hypothesis (i.e., no correlation at all) were true,
thus the smaller the calculated p-value the more statisti-
cally significant cS is.

In a bird’s eye view, the two correlograms obtained for
all SSE and only those containing Li ions look quite sim-
ilar. Nevertheless, the p-value matrix estimated for all
SSE displays a noticeably higher number of statitiscally
significant cases (arbitrarily defined here as p < 0.2),
probably due to the larger amount of samples. Reassur-
ingly, a number of already expected high correlation co-
efficients, like those estimated for couples of vibrational
and elastic quantities that are physically related (e.g.,
Fvib and Svib), emerge from the calculated cS maps. For
the sake of focus, hereafter we will concentrate on the
correlations involving the ion diffusion coefficient (D).

Figure 2a encloses a standardized representation [that
is, x̂ ≡ (x− 〈x〉) /σx] of the pairs of descriptors D–Cv
and D–〈ω〉, where Cv stands for the lattice heat capacity
and 〈ω〉 for the average vibrational frequency (Methods).
In these two cases, as well as in others not shown here,
it is clearly appreciated that the dependency beween
D and the other quantities is far from linear although
roughly monotonic. This outcome confirms that for
determining reliable relationships between SSE features
the Spearman correlation analysis is certainly more
suitable than the usual Pearson approach. Actually,
there are significant discrepancies between the Spearman
and Pearson correlation maps; for instance, cS amounts
to −39% for the pair of descriptors D–〈ω〉 (Fig.1a)
whereas cP renders a significantly smaller value of −23%
(Supplementary Fig.2).

Universal ion diffusion descriptors. Figure 2b
shows the Spearman correlation coefficients estimated
for all pairs of descriptors involving D and considering
the entire DFT-AIMD database. All the AIMD-based
vibrational and diffusive descriptors were estimated at
T = 500 ± 100 K. First, we note that larger |cS | values
are associated with statistically more significant corre-
lation results (i.e., smaller p-values). And second, the
estimated correlation coefficients in general are not very
high: only 19 out of the 53 pairs of materials descriptors
present |cS |’s larger than 20% while the maximum cor-
relation value only amounts to 39% (obviously, the D–D
pair was excluded here). These low-correlation outcomes
are consistent with the usual difficulties encountered in
the settlement of flawless ion transport descriptors [6].
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FIG. 2. Correlation study of the ion diffusion coefficient with other materials descriptors. (a) Standardized
representation of the ion diffusion coefficient D along with other materials descriptors. The descriptors correlations are, to
some extent, monotonic but not linear as it is shown by the orange and blue lines therein (both simple guides to the eyes).
Spearman correlation coefficients for D and the rest of materials descriptors considered in this study, obtained by taking
into account (b) all and (c) exclusively the Li-based compounds included in our DFT-AIMD database. The p-value results
corresponding to the Spearman correlation coefficients are indicated with different colours. All the AIMD-based diffusive and
vibrational descriptors were estimated at T = 500± 100 K.
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Interestingly, the largest D correlations are found for
AIMD-based vibrational descriptors (Methods) like the
phonon band center (or average lattice frequency), 〈ω〉
(−39%), lattice heat capacity, CV (+39%), vibrational
free energy, Fvib (−37%), and vibrational entropy, Svib
(+33%). These results indicate that insulator materials
with small average phonon frequencies, large heat capac-
ities and large vibrational entropies should be good ion
conductors. It is worth noticing that strongly anhar-
monic materials perfectly fit into this description, thus
our data-driven results generalize the conclusions of re-
cent experimental SSE studies revealing that low-energy
phonon modes can actively influence ion diffusion in some
specific materials [9–14].

Our correlation analysis provides further valuable in-
sights. First, when the vibrational descriptors were es-
timated considering either non-diffusive or diffusive ions
alone (superscripts “nd” and “d” in Fig.2b, respectively)
the value of the D correlation coefficients slightly de-
creased in the first case (|cS | = 30%) and practically
vanished in the second (except that corresponding to
〈ω30〉(d)). This outcome highlights the existence of a
strong and general interplay between the vibrating crys-
talline matrix and mobile ions. And second, when consid-
ering vibrational descriptors that do not explicitly take
into account anharmonic effects, like the lowest-energy
optical phonon mode calculated at T = 0 K (Γ in Fig.2b),
the resulting D correlation coefficient (−11%) signifi-
cantly drops in comparison to those obtained for anhar-
monic quantities (besides, the corresponding p-value in-
creases). Thus, scrutinity of anharmonicity appears to
be indispensable for the evaluation of reliable and statis-
tically meaningful D correlation coefficients.

Few descriptors belonging to the “structural-
compositional” category also correlate appreciably
high with D. Of special mention are the vacancy
formation energy of the mobile ions (Evac, −22%), the
crystal polarizability (αC , +25% –calculated with the
Clausius-Mossotti relation–) and the symmetry of the
perfect lattice (SO, +27%) [29]. On the other hand,
intrinsically electronic properties like the energy band
gap (Eg) and dielectric constant (ε) have virtually no
correlation with the ion diffusivity (|cS | ≤ 5%). As a
word of caution, we note that when the correlations
between D and other materials descriptors are assumed
to be linear (i.e., Pearson’s approach) the resulting
conclusions significantly differ from those just explained
(Supplementary Fig.2). In particular, most D cor-
relation coefficients turn out to be smaller than the
corresponding Spearman values and the materials de-
scriptors belonging to the “mechanical-elastic” category
(e.g., the Young and shear moduli –E and G–) become
equally relevant than the vibrational features.

Figure 2c shows the Spearman D correlation co-
efficients estimated exclusively for Li-based SSE.
Intriguingly, the resulting cS chart differs appreciably
from that estimated considering the entire DFT-AIMD
database (Fig.2b). First, the D correlation coefficients

in general present larger values with a total of 11 pairs
of materials descriptors scoring above 40%. Some of the
largest |cS |’s correspond to the AIMD-based vibrational
descriptors Fvib (−42%), Svib (+42%) and 〈ω30〉(d)
(−63%). However, in contrast to the all-SSE case, now
Γ, which is estimated at T = 0 K and does not explicitly
account for anharmonicity, is strongly correlated with D
as well (−47%). Moreover, several descriptors belonging
to the “mechanical-elastic” category that, to the best
of our knowledge, have not been previously proposed in
the literature like the Vickers’ hardness, HV (−43%),
Pugh’s modulus ratio, κ (−56%), Poisson’s ratio, ν
(+55%), Cauchy’s pressure, PC (+48%), and velocity
ratio, vr (+56%), now also render very high |cS | values.
Therefore, in terms of key D descriptors, Li-based
compounds are plainly different from the average SSE, a
finding that fundamentally justifies the large number of
studies focusing on the ion transport properties of this
family of materials.

Machine learning models for prediction of T -
dependent properties. In view of the complex relation-
ships between D and other materials descriptors (Fig.2a),
several machine learning (ML) models based on artifi-
cial neural networks were trained in our SSE DFT-AIMD
database with the aim of predicting the ion diffusion coef-
ficient and other relevant T -dependent properties of SSE
such as 〈ω〉 and CV (Methods). We considered two dif-
ferent ML training schemes: (1) considering all the mate-
rials descriptors (denoted as “anharmonic”) and (2) ex-
cluding the AIMD-based vibrational descriptors (“har-
monic”). The predictions of our trained ML models for
a validation set of 12 compounds are shown in Fig.3.
Therein, it is appreciated that the two trained ML mod-
els can predict the finite-temperature values of 〈ω〉 and
CV with high accuracy. In particular, the mean absolute
percentage error (MAPE) of the “anharmonic” (“har-
monic”) ML model amounts to 2.5% (7.5%) and only
0.5% (1.9%) for 〈ω〉 and CV , respectively. In stark con-
trast, the ML predictions for the ion diffusion coefficient
are much less accurate and there is a huge difference in
the level of precision achieved with the “anharmonic”
(MAPE of 69%) and “harmonic” (290%) ML models.

Several conclusions follow from the ML results en-
closed in Fig.3. First, the SSE DFT-AIMD database
introduced in this work appears to be comprehensive
enough to ensure proper training of ML models able
to make accurate predictions of certain T -dependent
materials properties. And second, ML-based prediction
of the ion diffusivity appears to be a particularly
challenging task. In this latter case, however, a big
improvement is achieved when AIMD-based anharmonic
vibrational descriptors are explicitly incorporated into
the ML model (also in the 〈ω〉 and CV cases). This
outcome indirectly corroborates our previous finding
that anharmonicity is a key general factor influencing ion
transport. Nonetheless, to improve the “anharmonic”
ML prediction of D probably it is necessary to increase



6

FIG. 3. Machine learning (ML) models trained in our DFT-AIMD database for prediction of different SSE
T -dependent quantities. The ML models were trained by considering and neglecting AIMD-based vibrational descriptors
that explicitly incorporate anharmonic effects, labelled as “anharmonic” and “harmonic”, respectively. (a) First momentum
of the vibrational density of states obtained from AIMD simulations, 〈ω〉. (b) Constant volume heat capacity obtained from
AIMD simulations, CV . (c) Ionic diffusion coefficient obtained from AIMD simulations, D. “MAPE” stands for the mean
absolute percentage error of the ML predictions.
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FIG. 4. Principal component analysis results obtained for the SSE DFT-AIMD database. (a) Eigenvalues corre-
sponding to the diagonalization of the Spearman correlation matrix obtained by considering the entire DFT-AIMD database.
(b) Eigenvector components of the first three principal components obtained from the diagonalization of the Spearman corre-
lation matrix obtained by considering the entire DFT-AIMD database.

the number of SSE materials and descriptors in our
DFT-AIMD database and/or resort to alternative and
more advanced ML approaches (e.g., graph neural
networks [30]).

Complexity reduction in the SSE land-
scape. Principal component analysis (PCA) is a sta-
tistical technique widely employed for analyzing large
datasets containing a high number of features. PCA in-
creases the interpretability of a dataset by reducing its
dimensionality and simultaneously preserving the max-
imum amount of information. Complexity reduction is
accomplished by linearly transforming the data into a
new coordinate system where most of its variation can
be described with fewer dimensions. The principal com-
ponents are the eigenvectors of the dataset correlation
matrix, which are expressed as linear combinations of
the initial descriptors. The first principal component,

the one with the largest eigenvalue, maximizes the vari-
ance of the projected data. The i-th principal component
corresponds to a direction that is orthogonal to the pre-
vious i − 1 principal components and along which the
variance of the projected data is maximized as well.

Figure 4 shows the results of diagonalizing the
Spearman correlation matrix obtained for the entire
SSE DFT-AIMD database. The first three principal
components (PC) account for about two thirds of the
total variance in the original 54-dimensional dataset (as
quantified by the sum of their normalized eigenvalues,
≈ 62%) hence its complexity can be greatly reduced
by considering data projections on the orthogonal
three-dimensional space PC1–PC2–PC3. PC1 presents
a dominant “mechanical-elastic” character, PC2 “vibra-
tional” and PC3 “structural” (Fig.4b). Intriguingly, the
contribution of the ion diffusivity to each of these PC’s is
practically zero, namely, 0.2% to PC1, 0.8% to PC2 and
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FIG. 5. K-means clustering analysis results obtained for the SSE DFT-AIMD database. (a) Classification of the
analyzed materials in the orthogonal bidimensional space PC1–PC2. (b) Materials population of each group identified in the
PC1–PC2 space expressed in terms of the mobile ion species. (c) Classification of the analyzed materials in the orthogonal
tridimensional space PC1–PC2–PC3. (d) Materials population of each group identified in the PC1–PC2–PC3 space expressed
in terms of the mobile ion species. To improve visual clarity, some points have been removed from the plots without affecting
the main conclusions.

1.3% to PC3. This data-driven outcome indicates that
when it comes to characterize the great disparity of SSE,
with the aim of fundamentally better understanding
them and to establish general SSE categories, the ubiq-
uitous D descriptor is actually irrelevant. Likewise, the
compound stoichiometry (Stc) and dielectric constant
(ε) hardly contribute to the first three PC’s hence they
neither can be regarded as universally distinctive SSE
features. By contrast, elastic and vibrational descriptors
like E, HV , 〈ω〉 and CV become most pertinent for the
evaluation of SSE similarities and general classification
purposes.

K-means clustering analysis. Figure 5 encloses the
results of our k-means clustering analysis performed for
the entire SSE DFT-AIMD database. K-means cluster-
ing is an unsupervised learning algorithm that classify

sets of objects in such a way that objects within the
same group, called “cluster”, are more similar to each
other in a broad sense than to the objects in other clus-
ters. We selected a subminimal number of 7 clusters to
account for the SSE database variance based on the out-
comes of the elbow and silhouette methods (Supplemen-
tary Figs.3–4). This number of clusters is already larger
than the number of A-based SSE families considered in
this study (i.e., 6 with A = Li, Na, halide, Ag, Cu and
O). Thus, it straightforwardly follows that the materi-
als composition, despite of its obvious utility in naming
compounds, should not be regarded as a fine descriptor of
SSE diversity since, at least, one SSE family will spread
over more than one k-means cluster.

Figures 5a–b show the results of our k-means cluster-
ing analysis performed in the simplified PC1–PC2 space.
It is noted that Li-based SSE are present in 5 out of
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the total 7 clusters. From those 5 clusters, Li-based SSE
are the most abundant in 80% of the cases and over-
all they share similarities with other Na, halide and O-
based SSE (although not necessarily in terms of ion con-
ductivity). In clusters number 1 and 2, which are re-
spectively characterized by dominant PC1 (“elastic”) and
PC2 (“vibrational”) components, Li-based SSE actually
conform the entire population. From these outcomes, we
may readily conclude that (1) Li-based SSE are intrinsi-
cally different from Ag- and Cu-based SSE, which in turn
are highly similar because inhabit the same cluster, and
(2) Li-based SSE can be partitioned into several similar-
ity subgroups attending to their elastic and vibrational
properties. Likewise, halide-based SSE appear in 4 differ-
ent clusters, Na-based in 3 and O-based in 2. Thus, as it
was mentioned above, chemical composition is not a good
descriptor for grouping SSE into similarity categories.

Figures 5c–d enclose the k-means clustering results ob-
tained in the expanded PC1–PC2–PC3 space. In this
case, the main findings are very similar to those just ex-
plained for the reduced P1–P2 space, namely, Li-based
SSE are present in 5 out of the total 7 clusters and they
are particularly numerous in the majority of those groups
(e.g., 100% in cluster number 7 and 67% in cluster num-
ber 2). Likewise, halide-based SSE spread over 4 different
clusters, Na-based over 4, O-based over 2 and Cu/Ag-
based only appear in 1. The Li-based SSE family overall
shares similarities with other Na, halide and O-based SSE
(not so with Cu- and Ag-based SSE), and most subgroup
differences (i.e., relative distances between clusters cen-
troids) are contained in the P1–P2 plane. Thus, the PC3
(“structural”) dimension does not appear to add sensible
information on SSE diversity and for grouping purposes is
practically expendable (in accordance with its relatively
small eigenvalue of ≈ 4%, Fig.4a).

The presented k-means clustering analysis enlightens
the difficulties encountered in the rational design of SSE
with specific ion mobility. The bulk of the variation
in the SSE family is encoded in the materials elastic
and vibrational properties, neither in the ion mobility
nor their chemical composition. This finding implies
that materials which can be rigorously considered as
overall highly similar (because they belong to a same
k-means cluster) in practice may exhibit very different
ion diffusion and chemical features (e.g., Li-based and
halide-based SSE). Conversely, materials which render
very similar ion mobilities and chemical compositions
(e.g., Li-based SSE inhabiting groups 7 and 3 in Fig.5d)
may behave radically different in terms of other measur-
able quantities. These conclusions are consistent with
the D correlation results enclosed in Fig.2, which show
that Li-based SSE can significantly depart from the
general trends averaged over all SSE.

In summary, we have presented an original and com-
prehensive SSE data-driven study on the correlations
of the ion diffusion with other materials descriptors
as well as a rigorous examination of universal SSE

categories, based on a new and thorough DFT-AIMD
database comprising both zero-temperature and finite-T
first-principles results. It has been demonstrated that
ion diffusion correlates strongly and monotonically,
not necessarily linearly, with vibrational descriptors
that explicitly incorporate anharmonic effects (i.e., are
estimated from AIMD simulations). In the particular
case of Li-based SSE, the ion mobility also correlates
significantly with elastic quantities like the Vickers’
hardness, Pugh’s modulus ratio, Poisson’s ratio and
Cauchy’s pressure, pertinent ion-diffusion descriptors
that previously have been overlooked in the literature.
Furthermore, most of the variation in the generated
SSE 54-fold dimensional space can be resolved in terms
of elastic and vibrational descriptors; ion mobility and
chemical composition are very much irrelevant when
it comes to quantify the SSE diversity, a fact that
complicates the rational design of SSE with targeted ion
conductivities. The present data-driven study highlights
the necessity to consider finite-temperature effects in
a high-throughput fashion to better understand SSE
and improve the predictions of machine learning models
in them; it also provides new theoretical guidelines
for analyzing materials that in analogy to SSE are
highly anharmonic and technologically relevant (e.g.,
thermoelectrics and superconductors).

METHODS

First-principles calculations outline. Ab initio
calculations based on density functional theory (DFT)
were performed to analyse the physico-chemical proper-
ties of bulk SSE. We performed these calculations with
the VASP code [31] by following the generalized gradient
approximation to the exchange-correlation energy due
to Perdew et al. [32]. (For some halide compounds,
possible dispersion interactions were captured with
the D3 correction scheme developed by Grimme and
co-workers [33].) The projector augmented-wave method
was used to represent the ionic cores [34] and for each
element the maximum possible number of valence
electronic states was considered. Wave functions were
represented in a plane-wave basis typically truncated at
750 eV. By using these parameters and dense k-point
grids for Brillouin zone integration, the resulting zero-
temperature energies were converged to within 1 meV
per formula unit. In the geometry relaxations, a tol-
erance of 0.005 eV·Å−1 was imposed in the atomic forces.

First-principles molecular dynamics simula-
tions. Ab initio molecular dynamics (AIMD) simulations
based on DFT were performed in the canonical (N,V, T )
ensemble (i.e., constant number of particles, volume,
and temperature) for all the considered bulk materials.
The selected volumes were those determined at zero
temperature hence thermal expansion effects were
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neglected; nevertheless, based on previously reported
molecular dynamics tests [12], thermal expansion effects
are not expected to affect significantly the estimation
of the ion-transport properties of SSE at moderate
temperatures (i.e., T = 500± 100 K). The concentration
of ion vacancies in the non-stoichiometric compounds
was also considered independent of the temperature
and equal to ∼ 1–2%. The temperature in the AIMD
simulations was kept fluctuating around a set-point value
by using Nose-Hoover thermostats. Large simulation
boxes containing Nion ∼ 200–300 atoms were employed
in all the cases and periodic boundary conditions were
applied along the three Cartesian directions. Newton’s
equations of motion were integrated by using the
customary Verlet’s algorithm and a time-step length
of δt = 1.5 · 10−3 ps. Γ-point sampling for integration
within the first Brillouin zone was employed in all the
AIMD simulations. The finite-temperature simulations
typically comprised long simulation times of ttotal ∼ 100–
200 ps. For each material, we ran an average of 3 AIMD
simulations at different temperatures and considering
both stoichiometric and non-stoichiometric compositions
(Supplementary Tables 1–3 and [26]). Previous tests
performed on the numerical bias stemming from the
finite size of the simulation cell and duration of the
molecular dynamics runs reported in work [12] indicate
that the adopted Nion and ttotal values should provide
reasonably well converged results for the ion diffusivity
and vibrational density of states of SSE.

Estimation of key diffusive and vibrational
properties. The mean-squared displacement (MSD) was
estimated like:

MSD(τ) =
1

Nion (Nstep − nτ )
× (3)

Nion∑
i=1

Nstep−nτ∑
j=1

|ri(tj + τ)− ri(tj)|2 ,

where ri(tj) is the position of the migrating ion i at time
tj (= j · δt), τ represents a lag time, nτ = τ/δt, Nion is
the total number of mobile ions, and Nstep the total num-
ber of time steps. The maximum nτ was chosen equal to
Nstep/2 in order to accumulate enough statistics to re-
duce significantly the fluctuations in MSD(τ) at large τ ’s.
The diffusion coefficient then was obtained by using the
Einstein relation:

D = lim
τ→∞

MSD(τ)

6τ
. (4)

In practice, we performed linear fits over the averaged
MSD(τ) values calculated within the lag time interval
τmax/2 ≤ τ ≤ τmax.

To estimate the vibrational density of states (VDOS)
of bulk SSE considering anharmonic effects, g(ω), we
calculated the Fourier transform of the corresponding
velocity-velocity autocorrelation function as obtained di-

rectly from the AIMD simulations, namely:

g(ω) =
1

Nion

Nion∑
i

∫ ∞
0

〈vi(τ) · vi(0)〉eiωτdτ , (5)

where vi(t) represents the velocity of the ith atom at time
t, and 〈· · · 〉 denotes statistical average in the (N,V, T )
ensemble. Once the density of vibrational states was
determined, it was straightforward to calculate the cor-
responding phonon band center (or average lattice fre-
quency), 〈ω〉, defined like:

〈ω〉 =

∫∞
0
ω g(ω) dω∫∞

0
g(ω) dω

, (6)

which also depends on T . Likewise, the contribution of a
particular group of ions to the full VDOS was estimated
by considering those ions alone in the summation ap-
pearing in Eq.(5). In order to determine a characteristic
low-energy phonon frequency for bulk SSE, we defined
the quantity:

〈ω30〉 =

∫ ωmax
0

ω g(ω) dω∫ ωmax
0

g(ω) dω
, (7)

for which we imposed an arbitrary cut-off frequency of
ωmax = 30 meV. The analytical expression for other
vibrational descriptors (e.g., Fvib, Evib and CV ) can be
found in work [35].

Machine learning models. The Scikit-learn pack-
age in Python [36] was used to encode the non-numeric
descriptors as well as to implement the Artificial Neural
Network (ANN) conforming our machine learning model.
For the generation of the input data, the simulations in-
volving all compounds, compositions and temperatures
in our SSE DFT-AIMD database were taken into con-
sideration (i.e., a total of 174 samples, Supplementary
Tables 1–3 and [26]). The non-numeric descriptors (i.e.,
the diffusive chemical element, stoichiometricity, chemi-
cal composition of the compound and symmetry of the
relaxed structure) were encoded with the one-hot encod-
ing approach, and all input data was normalized using
a standard scaler. Specifically, a Multi-Layer Percep-
tron Regressor (MLPR) was implemented, consisting on
input, hidden and output layers. As output layer, the
algorithm was defined in such a way that any of the con-
sidered descriptors could be used as dependent variable.
Consequently, the input layer was constructed as the set
of all the other descriptors. Optionally, anharmonic de-
scriptors could be removed from the input layer if desired.
Finally, 6 hidden layers of 150, 500, 50, 150, 70 and 100
neurons, respectively, showed the best performance.

Attending to the extraction of metrics, K-fold valida-
tion was implemented: on each interation, the model
was required to predict the output for one element us-
ing the rest as training set. Therefore, given that each
element consists of a different number of simulations



11

(the original dataset presents a variable number of sim-
ulated temperatures and stoichiometricities for each el-
ement), the computed metrics were weighted with the
number of predicted outputs and then divided by the to-
tal amount of simulations. The optimization of the model
was monitored by using the mean absolute percentage er-
ror (MAPE) defined like:

MAPE =
1

N

N∑
i=1

∣∣∣∣x0i − xix0i

∣∣∣∣ , (8)

where N is the total number of samples in the set,
{x} the predicted outputs and {x0} the actual values
in the DFT-AIMD database. Note that these metrics
can be extracted from both the training and test sets.
As optimal hyperparameters, Adam optimizer with the
square error as loss function and constant learning rate
of 0.001, rectified linear unit (ReLU) activation function,
and α = 0.05 strength for the L2 regularization term of
the loss function were used.

SSE descriptors abbreviations. To analyze the
similarities and dissimilarities between fast-ion conduc-

tors a great variety of different physical descriptors were
estimated for each SSE, which are summarized in Table I.
The descriptors are generally classified according to the
quality they refer to, in particular: “mechanical-elastic”
(M-E), “diffusive-vibrational” (D-V) and “structural-
compositional” (S-C). It may be noted that most D-V
descriptors like the mean phonon frequency (both
with and without cut-off), harmonic phonon energy,
constant-volume heat capacity, Helmholtz free energy
and entropy, were calculated for the materials as a
whole (i.e., considering both diffusive and non-diffusive
ions) and also exclusively considering either the non-
diffusive (denoted as “nd” in the figures) or diffusive
atoms (denoted as “d” in the figures). The total
number of descriptors considered in this work is equal
to 54. The descriptors estimated from AIMD (DFT)
simulations were obtained at T = 500±100 K (T = 0 K).
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