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Thermo-osmotic flows, generated at liquid-solid interfaces by thermal gradients, can be used to
produce electric currents from waste heat on charged surfaces. The two key parameters controlling
the thermo-osmotic current are the surface charge and the interfacial enthalpy excess due to liquid-
solid interactions. While it has been shown that the contribution from water to the enthalpy excess
can be crucial, how this contribution is affected by surface charge remained to be understood.
Here, we start by discussing how thermo-osmotic flows and induced electric currents are related
to the interfacial enthalpy excess. We then use molecular dynamics simulations to investigate the
impact of surface charge on the interfacial enthalpy excess, for different distributions of the surface
charge, and two different wetting conditions. We observe that surface charge has a strong impact
on enthalpy excess, and that the dependence of enthalpy excess on surface charge depends largely
on its distribution. In contrast, wetting has a very small impact on the charge-enthalpy coupling.
We rationalize the results with simple analytical models, and explore their consequences for thermo-
osmotic phenomena. Overall, this work provides guidelines to search for systems providing optimal
waste heat recovery performance.

I. INTRODUCTION

Nanofluidic systems (natural porous materials and syn-
thetic devices where liquids are confined at the nanoscale)
offer great promises to address societal challenges related
to water and to energy harvesting [1–3]. Liquid-solid in-
terfaces play a critical role in such nanoscale systems, and
surface effects provide efficient means to produce elec-
tricity from various thermodynamic gradients available
in nature. For instance, diffusio-osmotic flows, generated
at liquid-solid interfaces under a gradient of salt concen-
tration, can be used to produce electricity from the salin-
ity difference between sea and river water [4–6]. Indeed,
if the solid surface is charged, ions in the liquid reorga-
nize to form a diffuse layer with an opposite charge in the
vicinity of the surface, the electrical double layer (EDL)
[7–9]. The advection of the EDL by the osmotic flow then
generates an electric current [10–13].

Similarly, thermal gradients can generate electric cur-
rents in liquids through a variety of mechanisms [14–
18]. Among these mechanisms, thermo-osmotic flows
[19, 20] induced by thermal gradients could be used to
produce electricity from low-grade waste heat, by advect-
ing the charge of the EDL [21]. The resulting electric
current is controlled by the surface charge, which is op-
posite to the charge in the EDL, and by the velocity
of the thermo-osmotic flow. There is an increasing ef-
fort to better understand thermo-osmotic flows, through
experimental characterization [22, 23] and modeling [24–
35]. As detailed in the Theory section, for liquids, Der-
jaguin and collaborators developed a standard theoretical
framework [13, 36–38], which relates the thermo-osmotic
flow velocity to the interfacial enthalpy excess, stemming
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from the interactions of the liquid with the solid. This
framework has been extended recently to take into ac-
count liquid-solid slippage arising on low-friction surfaces
[13, 25, 39], which can boost the flow. It has also been
shown recently that, in addition to the commonly consid-
ered ion electrostatic contribution to the enthalpy excess
[19, 36, 37], the contribution of water to the enthalpy ex-
cess could also be significant, and even dominate over
the electrostatic one [21, 39]. While the electrostatic
contribution is well described by the Poisson-Boltzmann
framework [40–42] (especially at low salt concentrations,
at which this contribution becomes large), the water con-
tribution to the enthalpy excess results from specific in-
teractions with the surface and requires descriptions at
the molecular level, for instance with molecular dynamics
simulations.

However, previous studies have only computed the wa-
ter enthalpy excess on charge neutral surfaces [39]. With
the ultimate goal to use thermo-osmosis to produce elec-
tricity, it is crucial to understand how surface charge
modifies the interfacial enthalpy excess, and in partic-
ular its water contribution. In this article, we start by
clarifying the link between the interfacial enthalpy ex-
cess and thermo-osmotic phenomena. We then present
the results of molecular dynamics simulations of an aque-
ous electrolyte confined between parallel charged walls.
We investigated the impact of surface charge density on
the interfacial enthalpy excess, for different distributions
of the surface charge, and two different wetting condi-
tions. We rationalized the results with simple analytical
models, which can be used to evaluate the interfacial en-
thalpy excess in a wide variety of systems, and we ex-
plored their consequences for thermo-osmotic flows and
thermo-osmotic currents.
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II. THEORY

The purpose of this section is to show how the enthalpy
excess is related to the thermo-osmotic response. To that
aim, we will briefly recall how the standard theoretical
framework initially introduced by Derjaguin and collab-
orators [13, 36–38] can be extended to take into account
liquid-solid slip [13, 25, 39]. Indeed, at the nanoscale,
it is known that the standard no-slip boundary condi-
tion can fail [43]. The velocity jump at the liquid-solid
interface is quantified by the slip length b, which is the
distance inside the wall where the linear extrapolation of
the liquid velocity profile reaches the wall velocity [43].

We first discuss the thermo-osmotic coefficient, which
quantifies the thermo-osmotic response of a liquid-solid
interface to a temperature gradient parallel to the wall,
and is defined by:

Mto = −vto(∞)

∇T/T
, (1)

with T the temperature, and vto(∞) the thermo-osmotic
velocity far from the surface; Mto can be positive or neg-
ative, depending on the direction of the thermo-osmotic
flow. The thermo-osmotic velocity profile vto(z) can be
obtained by integrating Stokes equation, assuming a ho-
mogeneous viscosity η (we will come back to this choice
later) and taking into account slippage [13]:

vto(z) = −∇T/T

η

{∫ z

0

dz′
∫ ∞

z′
δh(z′′)dz′′

+ b

∫ ∞

0

δh(z)dz

}
,

(2)

where z is the distance to the wall, b is the slip length,
and δh(z) is the enthalpy excess density due to interac-
tions between the fluid and the solid; we will discuss the
definition of δh for an electrolyte solution in the next
section. The value of the velocity far from the surface is:

vto(∞) = −∇T/T

η

∫ ∞

0

(z + b)δh(z)dz, (3)

and the thermo-osmotic coefficient is thus expressed as:

Mto =
1

η

∫ ∞

0

(z + b)δh(z)dz. (4)

Defining the interfacial enthalpy excess (per unit sur-
face):

∆H =

∫ ∞

0

δh(z)dz, (5)

one can rewrite Eq. (4) as follows:

Mto =
1

η

{∫ ∞

0

zδh(z)dz + b∆H

}
(6)

=
∆H

η
(λh + b), (7)

where we have set

λh =
1

∆H

∫ ∞

0

zδh(z)dz; (8)

λh is the characteristic thickness of the layer where the
liquid interacts with the wall, and hence δh(z) ̸= 0. For
pure water, λh has been found to be on the order of
7 Å in previous work [32]. Generally, λh is controlled by
the range of liquid-solid interactions, therefore its value
should be similar for all water-solid interfaces. Note that
λh is also the distance from the wall over which the
thermo-osmotic velocity profile develops and converges
to vto(∞).
The approach developed above for thermo-osmosis is

analogous to the one used to describe electro-osmotic
flows, which are generated when an electric field E par-
allel to the interface is applied. In this case, the response
coefficient is given by [13, 44, 45]:

Meo =
veo(∞)

E
=

1

η

∫ ∞

0

(z + b)ρe(z)dz, (9)

where veo(∞) is the electro-osmotic velocity far from
the surface and ρe is the charge density. To ensure
electroneutrality,

∫∞
0

ρe(z)dz = −Σ with Σ the surface
charge density of the wall. Equation (9) can then be
rewritten:

Meo = −Σ

η
(λeff + b), (10)

where λeff = 1/(−Σ)
∫∞
0

zρe(z)dz is the effective De-
bye length [13, 41, 46], which quantifies the thickness
of the EDL in the non-linear Poisson-Boltzmann regime.
Therefore, in the same way that one can predict the
electro-osmotic flow based on the surface charge density
using Eq. (10), one can predict the thermo-osmotic coef-
ficient from the enthalpy excess using Eq. (7).
Thermo-osmosis can also be used to create an electric

current in the case of electrically charged surfaces [21].
Indeed, in this case, the thermo-osmotic flow sets in mo-
tion the fluid and thus the EDL, which creates an electric
current. One can quantify the thermo-osmotic current
generated by thermo-osmosis for a planar surface surface
of transverse width w by defining the thermo-osmotic
conductance Kto:

Kto =
Je/w

(−∇T/T )
=

1

−∇T/T

∫ ∞

0

ρe(z) vto(z)dz, (11)

with Je the thermo-electric current. When the enthalpy
excess density decreases rapidly compared to the elec-
tric potential, i.e. λh ≪ λeff , one can consider that the
thermo-osmotic velocity profile has reached its plateau
value, vto(z) ≈ vto(∞), everywhere in the EDL. The ef-
fective Debye length is a function of the ion concentra-
tion n0 and the surface charge density Σ [41], so that
λh ≪ λeff is met when n0 < 0.1M and Σ < 50mC/m2.
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In that case, Kto can be re-expressed as:

Kto ≈ vto(∞)

−∇T/T

∫ ∞

0

ρe(z)dz ≈ Mto × (−Σ) (12)

≈ −Σ∆H

η
(λh + b); (13)

Kto is therefore, in this limit, Mto scaled by the surface
charge density.

Finally, let us return to the assumption of a uniform
viscosity made to obtain equations (7) and (13). Indeed,
it has been shown that, near the wall, the liquid viscosity
could significantly increase [24, 47, 48]. A good approxi-
mation for the viscosity is to consider the following step
function [48]:

η(z) =

{
ξ η, z < zs,
η, z ≥ zs,

(14)

with zs the position of the plane of shear [48] and ξ ≥ 1.
Using Eq. (14), one can show that the thermo-osmotic
velocity far from the surface is given by (derivation pro-
vided in the appendix):

vto(∞) =− ∇T/T

ξ η

∫ zs

0

(z + b)δh(z)dz

− ∇T/T

η

∫ ∞

zs

(z + b)δh(z)dz,

(15)

and the thermo-osmotic coefficient becomes:

Mto =
1

ξ η

∫ zs

0

(z + b)δh(z)dz

+
1

η

∫ ∞

zs

(z + b)δh(z)dz.

(16)

As expected, the thermo-osmotic coefficient is lower when
considering a liquid layer near the wall with higher vis-
cosity. The thermo-osmotic coefficient is weighted by the
ratio between the two viscosities ξ, but still remains a
function of the enthalpy excess density. In the case of
a stagnant liquid layer, ξ → ∞, with b = 0, and one
obtains:

Mξ→∞
to =

1

η

∫ ∞

zs

z δh(z)dz <
∆H

η
λh, (17)

where zs is now the thickness of the stagnant layer. In
this case, the thermo-osmotic coefficient is significantly
lower than for a uniform viscosity, since the slip length is
zero and the enthalpy excess from the stagnant layer does
not contribute to the osmotic flow. On the other hand,
for hydrophobic surfaces, the viscosity remains constant,
even near the interface [47, 48], ξ = 1, and one recovers
Eq. (7). Using hydrophobic surfaces seems therefore to be
the optimal approach for maximizing osmotic responses.

Overall, Eqs. (7) and (13) highlight the key role
of enthalpy excess and slip length in thermo-osmotic
responses. Accordingly, to predict thermo-osmotic re-
sponses on charged surfaces, it is crucial to know how

these two quantities depend on the surface charge. While
the surface charge dependence of the slip length has been
investigated before [49, 50], less is known about the en-
thalpy excess, and in particular about its water contri-
bution. In the following, we will use molecular dynamics
simulations to compute ∆H as a function of the surface
charge.

III. SIMULATION METHODS

A. System

We used the LAMMPS package [51] to perform equilib-
rium molecular dynamics simulations of an aqueous elec-
trolyte composed of 2000 water molecules and NaCl salt
with a bulk concentration n0 ∼ 0.20M, corresponding to
a Debye length λD ∼ 7 Å, confined between two parallel
walls made of four atomic layers of a fcc crystal with a
lattice parameter a = 5.3496 Å (Fig. 1). We used a large
salt concentration, so that the ion contribution is negli-
gible as compared to the one of water [39]. We applied
periodic boundary conditions along the x and y direc-
tions to our system of size Lx = Ly = 32.0976 Å. Water
molecules were simulated using the SPC/E model [52],
which employs both Lennard-Jones (LJ) and Coulombic
potentials to model the atomic interactions. The LJ po-
tential is defined by the characteristic diameter σii, and
the interaction particle εii of particle i. For the ions, we
used the LJ parameters given in Ref. 53 along with the
Lorentz-Berthelot mixing rules. As for the LJ wall, we
chose the parameters to build either a hydrophobic or a
hydrophilic surface, following Ref. 44. We studied three
types of surface charge distribution: 1) A homogeneous
case where we charged all surface atoms with a charge
q = ΣS/Nwall, where S = LxLy is the surface of the wall
and Nwall the number of atoms on the surface, which
results in a surface charge density Σ (Fig. 1.b); 2) A het-
erogeneous case where we randomly selected atoms of the
surface and attributed them a charge of ±1 e (Fig. 1.c) so
that the surface charge density was Σ; 3) A case in which
atoms with a charge of ±1 e protrude from the surface
with respect to the fcc structure of the crystal, simulating
defects on the surface (Fig. 1.d). In all cases, counter-
ions were added to the system to keep it electrically neu-
tral. The bottom wall was frozen and we used the top
wall as a rigid piston during an equilibration phase that
lasted 0.6 ns, before fixing it at its equilibrium position
to set the pressure to 10 atm, following previous studies
[39, 44]. The equilibrium distance between the walls was
d ∼ 60 Å. We fixed the temperature of the fluid at 298K
via a Nosé-Hoover thermostat with a damping time of
100 fs. The simulations lasted 10 ns with a timestep of
2 fs.
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FIG. 1. Visualization of the modeled systems composed of
an aqueous electrolyte solution confined between two walls
(a), realized with VMD [54]. The walls are charged either
homogeneously (b), heterogeneously (c) or with the charge
protruding from the walls to create a “defective solid” case
(d) (see text for more details).

B. Quantities of interest

For a mixture of particles, we define the enthalpy ex-
cess density as [24]:

δh(z) =
∑
i

ni(z)[hi(z)− hB
i ], (18)

with i ∈ [O,H,Na,Cl] the atom type, ni the number
density, hi the enthalpy per particle, and the superscript
B denotes a bulk quantity, i.e. its value far from the
surface, where it is homogeneous. We define the enthalpy
per particle as:

hi(z) = ui(z) +
p∥(z)

ntot(z)
, (19)

where ui is the internal energy per particle, ntot(z) =∑
i ni(z) the total number density and p∥(z) the com-

ponents of the virial pressure tensor parallel to the sur-
face (pxx or pyy, which are equal). Indeed, pressure is
anisotropic near the wall, and following previous studies
[24, 33], we consider the pressure component parallel to
the surface to compute the enthalpy excess density. We
can consider only the contribution of the potential energy
to calculate the internal energy term. Indeed the equipar-
tition theorem implies that the kinetic energy terms can-
cel out: ⟨uk(z)⟩ = uB

k . Here attributing p∥(z)/ntot(z)
to each atom amounts to evenly distribute the atomic
volume regardless of the atom type.

From the definition of the enthalpy excess density,
Eq. (18), δh(z) = 0 in the absence of particles, and the

enthalpy per particle needs to be defined only when the
density is non zero. Denoting z0 the minimum height at
which fluid particles are found, Eq. (18) becomes:

δh(z) =


∑

i ni(z)[up,i(z)− uB
p,i]

+p∥(z)− pB

nB
tot

ntot(z) if z ≥ z0,

0 if z < z0,

(20)

where we denote pB the bulk pressure, which is isotropic,
and where up,i is the potential energy of particle type i,
which takes into account its interactions with all atom
types.
We compute pressure profiles using the stress per atom

approach. Indeed the virial part of the stress per atom is

given by Παβ
i = −∑Ni

k rkαfkβ where α and β ∈ {x, y, z},
and Ni is the number of atoms of type i. With this defi-

nition, pαβ(z) = −(1/V )
∑

i Π
αβ
i (z). Although it is well

known that the pressure tensor is not uniquely defined
for an inhomogeneous fluid near an interface [55], this
is not an issue here since we will consider its integral,
Eq. (23), which is unambiguously defined [55].
Finally, we can compute the enthalpy excess by inte-

grating the enthalpy excess density from z0 to the middle

of the channel: ∆H =
∫ h/2

z0
δh(z) dz, which we decom-

pose into three contributions: the water internal energy
excess ∆Uwater, the ions internal energy excess ∆Uions

and a pressure excess term ∆P ∥:

∆Uwater =

∫ h/2

z0

{nO(z)[up,O(z)− uB
p,O]

+ nH(z)[up,H(z)− uB
p,H]} dz,

(21)

∆Uions =

∫ h/2

z0

{nNa(z)[up,Na(z)− uB
p,Na]

+ nCl(z)[up,Cl(z)− uB
p,Cl]} dz,

(22)

∆P ∥ =

∫ h/2

z0

[
p∥(z)− pB

nB
tot

ntot(z)

]
dz. (23)

To estimate the thermo-osmotic and thermoelectric re-
sponses of our systems, we also computed the slip length
b using non-equilibrium molecular dynamics simulations.
With that regard, we moved the walls in opposite x di-
rections with a speed Vx ∈ [10, 40]m/s (we verified that
we were in the linear response regime), generating a lin-
ear velocity profile far from the wall. The slip length can
then be determined using the Navier boundary condition
[21, 56]:

b =
vs
γ̇
, (24)

with γ̇ the bulk shear rate and vs the slip velocity; vs is
defined as the difference between the wall velocity and the
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FIG. 2. Comparison of the different contributions to ∆H
(mauve circles): ∆Uions (grey triangles up) the contribution
of the potential energy of the ions, ∆Uwater (blue squares) the

contribution of the water potential energy and ∆P ∥ (purple
triangles down) the pressure excess.

velocity of the fluid at the hydrodynamic wall position,
given by γ̇h/2, where the hydrodynamic height h of the
liquid is given by [57]:

h =
M

ρbulkA
, (25)

with M the total mass of the fluid, ρbulk the bulk mass
density and A the wall surface area.
We performed four independent simulations to deter-

mine the error on the calculation of ∆H. The slip length
and its error were determined from measurements that
fell in the linear response regime. The error bars given
in the following figures correspond to a statistical error
with 95% confidence level.

IV. RESULTS AND DISCUSSION

A. Impact of surface charge density

Figure 2 presents the enthalpy excess ∆H and its con-
tributions as a function of the surface charge density. One
can observe that ∆H varies notably with Σ, increasing
significantly with the absolute value of the surface charge
density. Even at the large salt concentration considered
here and at large surface charges, ions do not have much
impact on the enthalpy excess, because their number re-
mains much smaller than the number of water molecules.
It is actually ∆Uwater and ∆P ∥ which contribute the most
to the enthalpy excess.

Let us first focus on ∆Uwater. The water energy term
has a parabolic form, which is relatively symmetrical with
respect to the surface charge density. One can approxi-
mate this quantity using a simple dipole model. At the

interface, water molecules orient themselves under the
effect of the electric field created by the charged wall.

In this regard the energy excess density δudp
water can be

expressed as:

δudp
water(z) = −⟨µz⟩(z)nO(z)E(z), (26)

with nO the number density of oxygen atoms, E(z) =
Σ/ε0εr(z) the electrostatic field where ε0 is the vacuum
permittivity and εr(z) are the local relative permittivity,
and ⟨µz(z)⟩ = µ⟨cos(θ)(z)⟩ the average dipole moment
along the z axis, with ⟨cos(θ)⟩ the average dipole mo-
ment orientation and θ the angle formed by the dipole
with the surface, and µ = 1.85D the water dipole mo-
ment. In the EDL, the electric field is weak with respect
to its value at the surface (i.e., for z = 0) and δudp is
negligible [39]. However, for water molecules in the first
two interfacial layers, the perpendicular (or out-of-plane)
relative permittivity ε⊥ is greatly reduced [58, 59]. This
reduction is due to the preferential orientation of water
molecules close to the wall along the z direction, which
reduces the polarizability of water and thus the dielec-
tric constant in this direction. The electric field becomes
stronger and δudp is not negligible anymore.

We can compute ⟨cos(θ)⟩ from the simulation or we
can compute it theoretically using Boltzmann statistics
(Fig. 3.b). Let P (θ) be the probability for a molecule to
have an orientation angle θ, we have:

P (θ) =
eαcos(θ)∫
eαcos(θ)dΩ

, (27)

with Ω the solid angle and α = βµE with β = 1/kBT .
Thus,

⟨cos(θ)⟩ =
∫

P (θ)cos(θ)dΩ = coth(α)− 1

α
. (28)

As stated before, near the interface, the relative permit-
tivity decreases significantly and we can no longer con-
sider the bulk value εr = 71 for SPC/E water [60, 61].
This is the reason why we considered an effective relative
permittivity εeffr , treated as a fitting parameter. Thus,
writing E = Σ/ε0ε

eff
r , one obtains:

δudp
water = −

µ

(
coth(α)− 1

α

)
Σ

ε0εeffr
nO(z), (29)

and so:

∆Udp
water = −

µ

(
coth(α)− 1

α

)
Σ

ε0εeffr
nsurf
O , (30)

with nsurf
O the atomic surface density of the first layer,

which can be computed from the simulations. Finally

∆Uwater = ∆U0
water+∆Udp

water, where ∆U0
water is the value

of ∆Uwater for an electrically neutral surface.
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FIG. 3. Water energy contribution to the enthalpy excess (a)
with the measured values ∆Uwater (blue squares), the theo-
retical model with measured ⟨cos(θ)⟩ and nsurf

O (grey circles),
and the fully theoretical model (mauve line). The theoretical
and measured orientations of water molecules near the sur-
face (respectively mauve line and grey circles) are given in
(b). The effective permittivity was set to εeffr = 12 for neg-
atively charged surfaces, and εeffr = 9 for positively charged
surfaces. The surface density of water molecules near the in-
terface is given in (c) with the same legend as in (b).

Fig. 3.b represents the dipole orientation, measured in
the simulations, and fitted using Eq. (28). We can see
an asymmetry of the measured curve, where the dipole
orientation follows two different patterns: for the neg-
ative surface charges, θ precisely follows its theoretical
value by taking εeffr = 12. However, for the positive ones,
the model is less accurate. To fit this part of the curve,
we took εeffr = 9. As mentioned above, the dielectric
constant of the first layers depends on the orientation
of water molecules. Its asymmetric behavior, depend-
ing on the sign of the surface charge density, is therefore
expected.

Figure 3.c presents the atomic surface density of the
first layer, measured in the simulations, and approxi-
mated by 1/σ2

O ≃ 0.10 Å−2, with σO the oxygen LJ di-
ameter. We thus have two ways of plotting the model
presented (Fig. 3.a): from direct measurement of ⟨cos(θ)⟩
and nsurf

O , or from their theoretical estimates. Overall, al-
though the asymmetry of cos(θ) and nsurf

O is not sufficient
to explain the asymmetry found in ∆Uwater, our model
describes fairly the water excess energy term.

Regarding the pressure term (Fig. 4), one way to de-
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FIG. 4. Pressure term ∆P ∥ as a function of the surface
charge density. The value obtained from the simulations (grey
points) is rationalized by a capacitor model (blue line). The
effective permittivity in Eq.(34) is set to εeffr = 6 for nega-
tively charged surfaces, and εeffr = 4.5 for positively charged
surfaces.

scribe it is to make an analogy between ∆P ∥ and the
surface tension γ. Indeed the surface tension of a liquid-
solid interface can be computed by the mechanical route
[62, 63]:

γ =

∫ +∞

−∞
[p⊥(z)− p∥(z)]dz, (31)

where p⊥ and p∥ are the normal and tangential compo-
nents of the pressure tensor. To ensure mechanical equi-
librium, it is necessary to have a constant perpendicular
pressure along the channel, p⊥(z) = pB⊥ = pB∥ , because

pressure is isotropic in a bulk liquid. Thus, the surface
tension becomes:

γ =

∫ +∞

−∞
[pB∥ − p∥(z)]dz ∼ −∆P ∥. (32)

We will therefore try to describe the variation of ∆P ∥

with Σ following standard electrowetting models. The
variation of the surface tension with respect to the surface
charge density is given by the Lippmann’s equation [64,
65], which considers the energy stored in the capacitor
formed by the charged surface and the EDL:

γ = γ0 −
Σ2

2C
= γ0 −

dΣ2

2ε0εeffr
, (33)

where γ0 is the surface tension for a neutral surface and
C = ε0ε

eff
r /d is the capacitance per unit area, with d

the capacitor thickness, i.e. the mean distance between
charges on the wall and counter-ions in the EDL. Sim-
ilarly, one can define a capacitor like model to under-
stand the variation of the pressure excess with the surface
charge density:

∆P ∥ = ∆P ∥,Σ=0 +
dΣ2

2ε0εeffr
. (34)
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FIG. 5. Impact of wetting on the enthalpy excess. Two wet-
tings are explored here: a hydrophobic case (blue circles) and
a hydrophilic case (grey squares). The water contribution (a),
the pressure term (b), as well as the total enthalpy excess (c)
are represented.

Once again, the relative permittivity εeffr used in the
model must be smaller than the one of bulk water due
to its drop near the interface. Moreover we can see in
Fig. 3.c that near the surface, water displays different
structuring depending on the sign of Σ, and so should do
the relative permittivity. This allows us to fit our capac-
itor model with two values of the relative permittivity,
εeffr = 6 for the negative charge surfaces εeffr = 4.5 for
positive ones, see Fig. 4.

B. Effect of wetting properties

Now that we have understood the behavior of the
enthalpy excess for a hydrophobic and homogeneously
charged wall, let us look at the effect of wetting on
the enthalpy excess. In Fig. 5.c we compared the en-
thalpy excess calculated close to a hydrophobic and a
hydrophilic surface. First we note that the hydrophobic
surfaces have higher enthalpy excess, which is consistent
with a previous study on thermo-osmosis that indicates
that hydrophobic surfaces maximize the thermo-osmotic
response[39]. Secondly, for an electrically neutral sur-
face, there is a change of sign of the enthalpy excess,
indicating a change of direction of the thermo-osmotic
flow, again being consistent with a previous study that
reports a change of direction on the flow when changing

the wetting of the system [25]. On silica-based materials,
which have hydrophilic surfaces, it has been shown that
the surface charge density can affect the thermo-osmotic
flow direction, this effect being attributed to a change
of sign of the enthalpy excess [22, 35], our calculations
tend to confirm qualitatively the results of these stud-
ies. While the enthalpy of a neutral surface depends on
the wetting, its variation with the surface charge hardly
depends on the wetting and one can say as a first ap-
proximation that the wetting simply shifts the values of
∆H. When looking at the decomposition of the enthalpy
excess, it appears that ∆Uwater is simply shifted and be-
comes smaller for hydrophilic surfaces. Water molecules
are indeed more attracted to the wall in the hydrophilic
case, which allows them to adopt a more favorable en-
ergy configuration thus reducing the overall internal en-
ergy (Fig. 5.a). The pressure term is also shifted and the
parabola is more pronounced. One can use the capacitor
model to understand this: in the hydrophilic case, water
molecules are closer to the surface, thus the capacitor is
thinner, resulting in a variation of the capacitance and
a modification of the curvature of ∆P ∥. Note that we
simulated two systems with very different wetting prop-
erties, and the change in capacitance remained small, so
that considering that the capacitance is independent of
wetting represents a good approximation.

C. Effect of charge distribution on the enthalpy
excess

Regarding the charge distribution, one can see in Fig. 6
that it has a drastic impact on the enthalpy excess. In
particular, the defective solid case displays a different be-
havior than the other two, displaying a change of sign for
negatively charged surfaces. One can understand these
differences by looking at the decomposition of ∆H. For
∆Uwater (Fig. 6.a), the dipole model, which assumes a
homogeneous charge distribution, does not work for the
heterogeneous and defective solid cases. Indeed, in the
latter cases, a charge will only affect the surrounding wa-
ter molecules, because with a heterogeneous charge dis-
tribution, a counter-ion will tend to bond to each charge,
with the effect to screen the electric field. Therefore the
variation of the energy excess is simply proportional to
the number of surface charges:

∆Uwater = ∆U0
water + UES |Σ|

e
(35)

where UES is the energy excess per charge, which is a
function of sgn(Σ) and the charge distribution (Table I),
and e is the elementary charge. We obtain the values
of the energy excess per charge by linearly fitting the
measured values of ∆Uwater with Eq. (35), see Fig. 6.
Even though there is a quantitative difference between

the three cases for ∆Uwater, the differences on the en-
thalpy excess come largely from ∆P ∥ (Fig. 6.b). For the
heterogeneously charged surface, even though the charge
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FIG. 6. Effect of the charge distribution on the enthalpy ex-
cess. For ∆Uwater (a), the homogeneous case (blue squares)
is described by a dipole model (blue line) while the heteroge-
neous (purple triangles) and the defective (grey circles) cases
are described by a linear model of potential energy excess per
unit charge, Eq. (35), represented in full lines. For ∆P ∥ (b),
the homogeneous as well as the heterogeneous case can be de-
scribed by a capacitor model but the model cannot describe
the behavior of the defective solid. There is a change of sign
of ∆H for the defective solid case, taking negative values for
negatively charged surfaces (c).

UES (kcal.mol−1) Σ < 0 Σ > 0
Heterogeneous −1.24× 10−2 −9.8× 10−3

Defective −1.32× 10−2 −4.3× 10−3

TABLE I. Water enthalpy excess per charge for different
charge distributions.

is not evenly distributed, the capacitor model is still ap-
plicable, due to the presence of a clear gap between water
molecules and the surface. However, in the presence of
defects, water molecules near the surface are on the same
level as charges. In this case, the thickness of the capac-
itor d is 0, and our model predicts that the parabolic
dependence of ∆P ∥ with Σ should vanish. We suggest
that the small remaining drift of ∆P ∥ with the surface
charge, not captured by our model, originates from spe-
cific liquid-wall interactions, indirectly affected by the
surface charge.
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m
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M
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)
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Kel
to

FIG. 7. Slip length and resulting transport coefficients Mto

and Kto as a function of the surface charge density Σ. The
slip length is relatively small for this surface, and decreases
rapidly with the surface charge density, in particular in the
heterogeneous and defective cases; the thickness of the inter-
action layer λh is shown with a dotted line for comparison
(a). Corresponding thermo-osmotic coefficient (Eq. 7), along
with the standard electrostatic prediction (Eq. 37) plotted
in light green (b), and theoretical thermo-osmotic conduc-
tance (Eq. 13), along with the standard electrostatic predic-
tion (Eq. 38) plotted in light green (c).

D. Consequences on transport properties

Let us now look at the effect of the enthalpy excess on
thermo-osmotic transport properties. To compute Mto

and Kto, we used Eqs. (7) and (13), with λh = 7 Å and
η = 0.729mPa·s, the viscosity of SPC/E water at 1 atm;
it is indeed very close to the viscosity of SPC/E at 10 atm
[66]. We plotted the results in Fig. 7. First, one can see
that the slip length decreases with the absolute value of
the surface charge, but it decreases faster in both het-
erogeneous and defective cases [49]. For the hydrophobic
surface considered, the slip length is relatively small even
at zero surface charge, bΣ=0 = 3.9 nm, and it decreases
quickly so that b becomes smaller than λh when the abso-
lute surface charge density exceeds 100mC/m

2
for homo-

geneous surfaces and 40mC/m
2
in the other cases. Thus,

for relatively large surface charge densities, the thermo-
osmotic and thermoelectric coefficients no longer depend
on b and their variations with the surface charge are only
driven by the enthalpy excess, together with the surface
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charge density for Kto, which explains the similarity be-
tween the homogeneous and heterogeneous cases. For low
surface charges, the slip length influences the response co-
efficients and the homogeneous charge distribution gives
the best results.

Let us see how these results compare to the classical
theory, which only considers the electrostatic contribu-
tion of ions to the enthalpy excess density [13, 39]:

δhel(z) = −εV (z)
d2V

dz2
+

ε

2

(
dV

dz

)2

, (36)

where V (z) is the electrostatic potential, which can be
computed analytically using the Poisson-Boltzmann the-
ory. In this case, the thermo-osmotic response and the
thermo-osmotic conductance become [13]:

M el
to =

1

2πℓBηβ

{
− 3 ln

(
1− γ2

)
− asinh2(x)

+
b

λD

[
3x|γ| − 2xasinh(x)

]}
,

(37)

Kel
to = − e

2π2ℓ2Bηβ

sgn(Σ)x

λD

{
5

[
1− asinh(x)

x

]

− 2|γ|asinh(x) + b

λD

[
3|γ|x− 2xasinh(x)

]}
, (38)

with ℓB = βe2/(4πε) the Bjerrum length, where e is the
elementary charge, x = λD/ℓGC, with λD = 1/

√
8πℓBn0

the Debye length and ℓGC = e/(2πℓB|Σ|) the Gouy-

Chapman length, and γ = (sgn(Σ)/x)
{
−1 +

√
1 + x2

}
[41].

As shown in Fig. 7, for the parameters considered
in this work, i.e. λD ≃ 7 Å, ℓB ≃ 8 Å, and the slip
length of the homogeneous charge distribution, the clas-
sical thermo-osmotic theory predicts thermo-osmotic co-
efficients much lower than the ones computed with the
total enthalpy excess; note however that the electrostatic
contribution of ions could be larger in other range of pa-
rameters, and in particular at lower salt concentrations
[39]. Moreover, δhel(z) only predicts negative thermo-
osmotic coefficients Mto, and predicts a thermo-osmotic
conductance having the same sign as the surface charge
density, which is also in strong contrast with the pre-
dictions taking into account the total enthalpy excess.
Once again, this highlights the important contribution
of the solvent to the enthalpy excess, which leads to a
rich and complex behavior, such as the change of sign of
the thermo-osmotic coefficient for protruding charges.

V. CONCLUSION

In this article, we highlighted the connection between
the interfacial enthalpy excess and thermo-osmotic trans-
port; in particular, we clarified the impact of the enthalpy

excess on the thermo-osmotic coefficient Mto and the
thermo-osmotic conductance Kto. We then used equi-
librium molecular dynamics simulations to study the ef-
fect of surface charge density and charge distribution on
the enthalpy excess. We have shown that the surface
charge density has a large impact on the enthalpy ex-
cess. For homogeneously charged surfaces, the enthalpy
excess is enhanced by 300 to 500% for the highest surface
charge densities considered. We investigated the different
contributions to the enthalpy excess, and showed that it
was dominated by the change of tangential pressure close
to the wall, with a non-negligible correction due to the
change in water internal energy. In contrast, the contri-
bution from ions internal energy was negligible for the
range of parameters used in this work. We then ratio-
nalized how the different contributions to the enthalpy
excess depended on surface charge with simple analyti-
cal models.

We also studied the effect of wetting to realize that
it does not significantly modify the impact of surface
charge on the enthalpy excess. Nonetheless the values
of the enthalpy excess are more important in the hy-
drophobic case, especially at small surface charges, it
is thus preferable to use non-wetting surfaces to max-
imize the enthalpy excess. We also studied the effect
of the charge distribution on the enthalpy excess. We
have shown that using homogeneously or heterogeneously
charged surfaces does not have a strong impact on the en-
thalpy excess. However, the presence of protruding de-
fects has a great influence on it. In particular, with this
charge distribution we have been able to observe a change
of sign of ∆H for negative surface charges. The strong
changes in the enthalpy excess are largely reflected on the
thermo-osmotic transport coefficients. The standard pic-
ture, which only considers the electrostatic contribution
of ions to compute the enthalpy excess, does not capture
the complexity of the thermo-osmotic responses. It it
thus necessary to use molecular dynamics to compute the
enthalpy excess close to charged surfaces. Overall we pro-
vide a useful tool to explore a wide variety of systems and
identify those promising the best thermo-osmotic per-
formance. For example it could be interesting to study
thermo-osmotic responses of new two-dimensional mate-
rials using this method.
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Appendix A: Derivation of the thermo-osmotic
velocity with a viscosity following a step function

To derive Eq. (15), we start from Stokes equation:
−η

d2v

dz2
= f(z), z > zs

−ξ η
d2v

dz2
= f(z), z < zs

(A1)

where f(z) is the force density generated by a ther-
modynamic gradient along the interface. It is equal to
−δh(z)(∇T/T ) for a thermal gradient. The integration
of Stokes equation leads to:

η
dv

dz
=

∫ ∞

z

f(z′)dz′, z > zs (A2)

ξ η
dv

dz
= ξ

∫ ∞

zs

f(z)dz +

∫ zs

z

f(z′)dz′, z < zs. (A3)

We integrate these equations again. From Eq. (A2) we
get the velocity of the fluid far from the interface:

v(∞) = v(zs) +
1

η

∫ ∞

zs

dz

∫ ∞

z

f(z′)dz′, (A4)

which we integrate by part:

v(∞) = v(zs) +
1

η

∫ ∞

zs

z f(z)dz − zs
η

∫ ∞

zs

f(z)dz. (A5)

The velocity at the plane of shear v(zs) is determined
from Eq. (A3):

v(zs) = v(0) +
zs
η

∫ ∞

zs

f(z)dz +
1

ξ η

∫ zs

0

dz

∫ zs

z

f(z′)dz′,

(A6)
which simplifies by integrating by part:

v(zs) = v(0) +
zs
η

∫ ∞

zs

f(z)dz +
1

ξ η

∫ zs

0

z f(z)dz. (A7)

The velocity of the fluid at the interface, v(0), is given
by the Navier boundary condition:

v(0) = b
dv

dz

∣∣∣∣
z=0

=
b

ξ η

∫ zs

0

f(z)dz +
b

η

∫ ∞

zs

f(z)dz.

(A8)
Finally:

v(∞) =
1

ξ η

∫ zs

0

(z + b)f(z)dz +
1

η

∫ ∞

zs

(z + b)f(z)dz.

(A9)
Substituting f(z) by −δh(z)(∇T/T ), one obtains
Eq. (15).

[1] R. Schoch, J. Han, and P. Renaud, Reviews of Modern
Physics 80, 839 (2008).

[2] L. Bocquet and E. Charlaix, Chem. Soc. Rev. 39, 1073
(2010).

[3] N. Kavokine, R. R. Netz, and L. Bocquet, Annual Review
of Fluid Mechanics 53, 377 (2021).

[4] A. Siria, M.-L. Bocquet, and L. Bocquet, Nature Reviews
Chemistry 1, 0091 (2017).

[5] S. Marbach and L. Bocquet, Chemical Society Reviews
48, 3102 (2019).

[6] L. Joly, R. H. Meißner, M. Iannuzzi, and G. Tocci, ACS
Nano 15, 15249 (2021).

[7] D. C. Grahame, Chemical Reviews 41, 441 (1947).
[8] J. Israelachvili, Intermolecular and Surface Forces (Aca-

demic Press, 2011).
[9] R. Hartkamp, A.-L. Biance, L. Fu, J.-F. Dufrêche,
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