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We study the variational perturbations for the mean-field solution of an interacting spinor system
with underlying rotational symmetries. An approach based upon the Majorana stellar representa-
tion for mixed states and group theory is introduced to this end. The method reduces significantly
the unknown degrees of freedom of the perturbation, allowing us a simplified and direct exploration
on emergent physical phenomena. We apply it to characterize the phases of a spin-1 Bose-Einstein
condensate and to study the behavior of these phases with entropy. The spin-2 phase diagram
was also investigated within the Hartree-Fock approximation, where a non-linear deviation of the
cyclic-nematic phase boundary with temperature is predicted.
Keywords: Spinor Bose-Einstein condensates, Majorana stellar representation, variational pertur-
bations, rotational symmetries

I. INTRODUCTION

Many-body quantum systems of interacting spins may
exhibit novel phases and fascinating physical phenomena.
In particular, in the field of ultracold atoms, phases oc-
curring in spinor Bose-Einstein condensates (BEC) can
be realized and manipulated under highly controllable
setups [1–5]. Most notably, the spin domain behavior of
spinor BECs can differ drastically over different atomic
species [2]. For instance, it has been corroborated ex-
perimentally [6–9] that condensates of 23Na and 78Rb in
an optical trap exhibits different ground spinor phases:
the polar (P) and the ferromagnetic (FM) phases, re-
spectively [1, 10]. Recent experimental advances allow
us to scrutinize the spin phases of BEC of several spin
values, from 1 to 8, even in the presence of external fields
and spin-orbit interactions [7, 11–16]. Theoretically, the
study of the spin-phase diagram in spinor BECs has been
done using mean-field (MF) theories, first for spin f = 1
[17, 18], and subsequently for higher spins [2, 19–22]. MF
theory commonly reduces a many-body interacting prob-
lem into an effective one-body problem. This is achieved
through the replacement of all interactions with an aver-
age over the many-body quantum states. Consequently,
MF theory in BECs assumes that all the atoms in the
condensate share the same single quantum state, such
state characterized by a spinor order-parameter Φ obey-
ing the spinor version of the well-known Gross-Pitaevskii
(GP) equations [1, 2, 10].

Although the MF theory predicts qualitatively well
the spin phases of a BEC, it fails to offer a satisfac-
tory description of a wide range of physical effects as, its
behavior at finite temperatures, quantum fluctuations,
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or non-local perturbations. The studies of the spinor
BEC covering these aspects become essential to scruti-
nize other nontrivial physical phenomena such as devi-
ations in the spin phase boundaries, metastable phases,
tunneling effects, quench dynamics, or (dynamic/static)
quantum phase transitions, among other phenomenol-
ogy [5, 8, 11, 23–38].

Some of the well-known beyond mean-field theories are
the variational approaches, which have already proven to
be well suitable near the MF phases in BECs [23, 39–44].
The condensate gas, represented by a mixed ensemble of
particles, is described by a density matrix ρ. It is as-
sumed to be comprised by two contributions such that
ρ = ρc + ρnc, where ρc = Φ†Φ is the atom fraction
that remains in the same MF solution Φ, while ρnc is
the ensemble of noncondensate atoms described by other
quantum states to be determined [23, 27, 40]. Opera-
tionally, the study of the condensate and its perturbation
entails the solution of the GP equations solved in a self-
consistent manner with a set of equations that govern the
noncondensate fraction [39, 40]. Such approach is compu-
tationally demanding and not free from numerical issues.
A way to circumvent this is to make use of variational
methods exploiting the so called, self-consistent symme-
tries [39], i.e., approaches where the noncondensate frac-
tion ρnc inherits the common symmetries between the
Hamiltonian of the whole cold gas and the order param-
eter Φ of its condensed fraction.

In fact, it is known that, as a consequence of the
Michel’s theorem [45], the common symmetries of the
Hamiltonian of the spinor sector of the BEC and Φ
usually conform a nontrivial point group, composed of
a set of rotational and reflection symmetries. This re-
sult has been used to characterize MF solutions of spinor
BEC [2, 20, 22, 46, 47]. The point group symmetries
associated to spin phases are also of great interest due
to its connection to the appearance of Abelian and non-
Abelian vortices [48–50]. Notably, the inherited sym-
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metries of ρnc has been exploited before to study the
metastable phases of spinor BEC of spin-1 at finite tem-
peratures [27].

In this Letter, we present a thoroughly systematic
method based on the Majorana representation of spin
mixed states [51, 52] and the use of self-consistent sym-
metries, that allows us the full determination of the non-
condensed fraction ρnc of a spinor BEC having a particu-
lar point group. Our approach greatly reduces the num-
ber of degrees of freedom of the variational perturbation,
offering a simplified methodology for the exploration of
the nature of phase diagrams in BECs. We make use of
the approach to characterize the ρnc of the spin phases of
BECs of spin f = 1 and 2. In addition, as an application
of these characterizations, we develop a simple analyt-
ical model to study the spin-1 phases of a BEC under
the presence of perturbations encoded by an increment
in its entropy. The simple model reproduces well the
known results for the phase diagrams reported earlier in
the literature for BECs at finite temperatures. Further-
more, we study the phase diagram of the spin-2 BEC
at finite temperatures using the Hartree-Fock approxi-
mation [23, 39–41], leading us to predict the appearance
of a non-linear deviation with temperature of the cyclic-
nematic phase boundary.

II. METHODOLOGY

We start by considering a BEC with spin f confined
in an optical trap. The atomic gas is assumed to be
weakly interacting and sufficiently diluted such that only
two-body collisions are predominant and that the s-wave
approximation is still valid. Moreover, we will work in the
regime where neither spin-orbit coupling nor the dipolar
interactions are of significance. We also consider that the
Hamiltonian model of the atomic gas is factorizable into
its spinorial and spatial sectors, and that the BEC is free
of any topological spin disorder.

Under such conditions, the spinor sector of the full
Hamiltonian can be written in the second-quantization
formalism in terms of the spinor field operators ψ̂m, and
the numerical tensors associated to the two-body colli-
sions, M(γ),

Ĥ =

f∑
γ=0

∑
i,j,k,l

cγ
2
M(γ)

ijklψ̂
†
i ψ̂

†
j ψ̂kψ̂l , (1)

where the indices i, j, k, l run over the magnetic quan-
tum numbers m = f, f − 1, . . . , −f and cγ are the cou-
pling factors associated to the s-wave scattering lengths
of a given interaction channel, with γ = 0, 1, . . . f [1, 2].
For example, the interactions for a spinorial BEC with
f = 2 has only three different tensor elements, and are

given by [2]

M(0)
ijkl =δilδjk , M(1)

ijkl = (Fν)il(Fν)jk ,

M(2)
ijkl =

(−1)i+k

5
δi,−jδk,−l , (2)

where δij is the Kronecker delta, and Fν are the com-
ponents of the angular momentum matrices along the
ν = x, y or z direction, which here are scaled by ℏ mak-
ing them dimensionless. For spin-1 condensates, only
the first two interactions c0 and c1 appear in the Hamil-
tonian. The c0-interaction is spin-independent since it is
equivalent to the square of the number operator. The rest
of the interactions are all spin-dependent. The spinor-
quantum field operator associated to the spinor conden-
sate is denoted by Ψ̂ = (ψ̂f , ψ̂f−1 , . . . , ψ̂−f )

T, where T
denotes the transpose. Note that the Hamiltonian (1) has
a symmetry point group SO(3) × Z2 constituted by the
group of rotations SO(3) and the inversion with respect
to the origin.

Mean-field (MF) approximation assumes that ⟨Ψ̂⟩ =
Φ, where Φ = (ϕf , ϕf−1, . . . , ϕ−f )

T, is the spinor order-
parameter obeying Φ†Φ = N , being N the total number
of atoms in the condensate gas [1, 2]. The spin phase of
the BEC is thus the order parameter Φ that minimizes
the energy functional E[Φ] = ⟨Ĥ⟩. The rotational sym-
metries of Φ can be found through the Majorana repre-
sentation for pure states [51], which associate each spin-f
state Φ with 2f points on the sphere, usually called the
(Majorana) constellation of Φ and denoted by CΦ. The
representation is defined via a polynomial that involves
the coefficients of Φ,

pΦ(z) =

f∑
m=−f

(−1)f−m

√(
2f

f −m

)
ϕmz

f+m . (3)

The degree of the polynomial pΦ(z) is at most 2f . By
rule, its set of roots {ζk} is always increased to 2f by
adding the sufficient number of roots at infinity [51, 53].
CΦ thus represents a set of 2f points on the sphere S2,
called stars, and they are obtained through the stere-
ographic projection from the south pole. Hence, each
root ζk = tan(θk/2)e

iφk is associated to a point on
S2 with spherical angles (θk , φk). When Φ is trans-
formed by the unitary representation D(R) of a rota-
tion R ∈ SO(3) in its Hilbert space, the constella-
tion CΦ rotates by R on the physical space R3, where
D

(σ)
µ′µ(R) ≡ ⟨σ, µ′|e−iαFze−iβFye−iγFz |σ, µ⟩ is the Wigner

D-matrix of a rotation R with Euler angles (α, β, γ) [54].
Therefore, the point group of the quantum state Φ is
equal to the point group of the geometrical object asso-
ciated to CΦ. This representation has been used success-
fully to classify the spin ground phases of BEC in the
ideal case of zero temperature [20, 22, 46].

We now briefly review some of the most well-known
spinor phases associated that corresponds to a MF solu-
tion of a BEC with spin f = 1, 2, and with a point group.
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In particular, we specify its order parameters and its cor-
responding Majorana constellations (Figs. 1 and 2) for a
given orientation:

(i) Ferromagnetic (FM) phase: The spinor order-
parameter has only one non-zero coefficient, ϕf =√
N . It is symmetric under rotations about the z

axis, imposing its symmetry group to be isomor-
phic to SO(2). Its constellation CΦ consists of 2f
coincident points on the north pole.

(ii) Polar (P) phase: Here ϕm =
√
Nδm0. Its symmetry

group, C∞ in the Schönflies notation [55], consists
of the group generated by any rotation about the
z axis, and a rotation by π about any axis on the
equator. For spin f = 2 condensates, it belongs to
the family of states called the nematic phase [20].
The constellation of the polar phase has f points
on each pole of the sphere.

(iii) Antiferromagnetic (AF) phase: It is a non-inert
state [46] since it is represented by a family of spin-
1 states Φ =

√
N(cosχ, 0, sinχ)T with χ ∈ (0, π/4].

The whole family is symmetric over two geometric
operations, a rotation by π about the z axis, and
a reflection across the yz plane, implying that the
symmetry group is isomorphic to Z2 ×Z2. Its Ma-
jorana constellation consists of two points on the
yz plane, with an angle ω between them bisected
by the z axis (see Fig. 1). ω depends functionally
on the parameter χ and increases monotonically.

(iv) Square (S) phase: A spin-2 phase with non-zero
order-parameter terms ϕ2 = ϕ−2 =

√
N/2. Its

Majorana constellation consists of a square. Hence,
Φ has the dihedral point group denoted by D4 in
the Schönflies notation [55]. This phase belongs
also to the family of the nematic spin-2 states [20].

(v) Cyclic (C) phase: This spin-2 phase is described
with Φ = (

√
N/3)(1, 0, 0,

√
2, 0)T. The order pa-

rameter has a constellation equal to a tetrahedron
with point group T in the Schönflies notation [55].

The point group of each spin state can be established
by inspecting at its corresponding Majorana constella-
tion. The spin phases mentioned above are still present
as ground states for Hamiltonians with some additional
symmetry breaking terms such as linear and quadratic
Zeeman interactions, and fixed magnetization [2, 19].

We now consider a variational perturbation δ̂j of the
field operators near the MF solution, such that ψ̂j =

ϕj + δ̂j . The ultra-cold atomic gas is now described by
two fractions: those who define the condensate (c) part,
and those that specify the noncondensate (nc) fraction
of atoms. They are represented by the density matrices
ρcij = ϕiϕ

∗
j and ρncij = ⟨δ̂†j δ̂i⟩, respectively. Here Na =

Tr(ρa) with a = n, nc for the atomic fractions in each
splitted part satisfying N c + Nnc = N . The ground

state phases of the condensate will thus correspond to the
spin states that minimizes the energy functional E(ρ) =

⟨Ĥ⟩. By working within the Popov approximation, which
assumes that all field operators of the form ⟨δ̂j δ̂i⟩ are
ruled out, and further neglecting the contribution of the
three-field operators of the form ⟨δ̂†k δ̂j δ̂i⟩ [40], we obtain
for the energy,

E(ρ) =
c0
2

{
N2 + Tr [ρnc (2ρc + ρnc)]

}
+
c1
2

∑
α

{
Tr [ρFα]

2
+ Tr[Fαρ

ncFα(2ρ
c + ρnc)]

}
+
c2
10

{Tr [T ρT ρ+ T ρncT (2ρc + ρnc)]} , (4)

here the coupling factors ck have physical units of energy
per density square, and for spin-1 BEC, c2 = 0. The
time-reversal operator T acts in ρ as [52]

(T ρT )ji = (−1)2f−i−jρ−i−j . (5)

The previous equation leads to the MF energy [2, 10] in
the assumption that ρncij = 0, and consequently ρ = ρc.
In this case, the MF energy reduces to

E(MF )(ρ) =
c0N

2

2
+
c1
2

∑
α

Tr [ρFα]
2
+
c2
10

Tr [T ρT ρ] ,

(6)
In the scenario of a variational method with a self-
consistent symmetry, ρnc inherits the specific point group
symmetries of the Hamiltonian (1) and ρc. We then need
to determine the most general ρnc for a given point group.
To that end, we make use of the Majorana representation
for mixed states [52].

A mixed state is represented by a density matrix, i.e.,
a (2f + 1) × (2f + 1) complex matrix with a nonneg-
ative eigenspectrum. The set of density matrices has
an orthonormal basis given by the tensor operators T (f)

σµ

with σ = 0, . . . 2f and µ = −σ, . . . , σ [54, 56, 57], which
are defined in terms of the Clebsch-Gordan coefficients
Cjm

j1m1j2m2
, and reads

T (f)
σµ =

f∑
m,m′=−f

(−1)f−m′
Cσµ

fm,f−m′ |f,m⟩ ⟨f,m′| . (7)

For clarity, henceforth, we omit the super index (f) when
there is no possible confusion. The tensor operators Tσµ
satisfy

Tr(T †
σ1µ1

Tσ2µ2
) = δσ1σ2

δµ1µ2
, T †

σµ = (−1)µTσ−µ . (8)

The most important property of the Tσµ operators is that
they transform block-diagonally under a unitary transfor-
mation U(R), describing a rotation R ∈ SO(3) according
to an irrep of SO(3), D(σ)(R), that is

U(R)TσµU
−1(R) =

σ∑
µ′=−σ

D
(σ)
µ′µ(R)Tσµ′ , (9)
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CΦ Cρnc

FIG. 1. Majorana representations of the order parameters
Φ (left) and noncondensed fraction ρnc (right) of spin phases
of BEC of f = 1. The adjacent number in some points cor-
respond to its degeneracy. Each nonzero vector ρσ of ρnc

is associated to a constellation of 2σ points, which are also
colored in red and yellow for σ = 1 and 2, respectively. For
clarity, we omit the cartesian axis in the figures and split the
constellations of the AF phase. The gray area in the second
constellation of Cρnc of the AF phase is the corresponding ge-
ometric object of the points.

where σ = 0, 1, 2, . . . labels the irrep. In the Tσµ basis,
the density matrix ρnc can be written as

ρnc = Nnc

(
1f

2f + 1
+

2f∑
σ=1

ρσ · Tσ

)
, (10)

where ρσ = (ρσσ, . . . , ρσ−σ) ∈ C2σ+1 with ρσµ =
Tr(ρ T †

σµ), and Tσ = (Tσσ, . . . , Tσ,−σ) is a vector of ma-
trices. Here the dot product stands for

∑σ
µ=−σ ρσµTσµ.

Each vector ρσ, which transforms as a spinor of spin σ by
Eq. (9), can be associated to a constellation à la Majo-
rana [51] consisting of 2σ points on S2 obtained through
a similar polynomial as Eq. (3) but defined with ρσµ. The
hermiticity condition of ρnc together with Eq. (8) implies
that every constellation C(σ) has an antipodal symmetry
[52]. While a pure state Φ is normalized and its global
phase factor is physically irrelevant, the same quantities
of ρσ carry now the necessary information to fully char-
acterize ρnc. However, this information can also be added
in the Majorana representation of ρnc. The norm of ρσ,

rσ, is associated to the radius of the sphere where the
constellation of ρσ lies. On the other hand, the hermitic-
ity property of ρnc implies that the global phase factor
of ρσ can only have two choices [52], both differing by a
minus sign. There exists a method to associate this sign
to a certain equivalence class of the points of each con-
stellation [52]. Here, we just incorporate this choice of
sign to the norm rσ. Hence, rσ can have negative values
that evidently does not affect the radius of the sphere. In
summary, a mixed state will be associated to a set of 2f
constellations, denoted by Cρnc , with antipodal symme-
try and a number of stars equal to 2σ, with σ = 1, . . . , 2f ,
over spheres with radii rσ, respectively.

We now determine the density matrices ρnc with a par-
ticular point group G. By the property (9) of the Ma-
jorana representation, ρnc has the point group G if each
ρσ fulfills

D(σ)(g)ρσ = ρσ , for each g ∈ G . (11)

Let us remark that this condition is more restrictive that
in the case of pure states, where a state Φ is invariant
under the element action g ∈ G if D(g)Φ is equal to
Φ up to a global phase factor. The determination of
pure spin states with a particular point group has been
studied before in [58]. We use Eq. (11) to impose on ρnc
the symmetries of the spin phases mentioned above. We
plot their Majorana representations in figures 1 and 2.
By looking at the constellations, one can deduce that the
point group of ρnc is equal to their corresponding order
parameter Φ.

III. RESULTS FOR SPIN-1 AND 2 BECS

A. Characterization of the noncondensate fractions

We use now the Majorana representation for mixed
states to obtain the most general density matrix ρ with a
fixed point group Eq. (11). In particular, we consider the
point groups of the spin-1 and 2 phases mentioned above.
Their respective Majorana constellations are shown in
Figs. 1 and 2. We summarize the most important char-
acteristics of Cρnc of each phase:

(i–ii) FM and P phases: ρσ has only the 0th-components
different than zero ρσ0 = rσ. Their constellations
are given by σ stars on each pole of the sphere.
The additional symmetry of the P phase implies
that the ρσ vectors with σ odd are zero.

(iii) AF phase: The vectors of ρσ are given by

ρ1 = r1 (0, 1, 0) ,

ρ2 = r2

(
cosx√

2
, 0, sinx, 0,

cosx√
2

)
. (12)

The constellations of ρ1 has a star on each pole,
and for ρ2 it is a rectangle with sides parallels to
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CΦ Cρnc

FIG. 2. Majorana representations of Φ (left) and ρnc (right)
of spin phases of BEC of spin-2, where we follow the same
conventions as in Fig. 1. The constellations of ρσ for σ = 3, 4,
correspond to the constellations with six (green sphere) and
eight (blue sphere) points, respectively.

the y and z axes with length dimensions dependent
of the variable x.

(iv) S phase: ρnc has only two non-zero vectors ρσ

ρ2 = r2 (0 , 0 , 1 , 0 , 0) ,

ρ4 = r4

(
cos y√

2
, 0 , 0 , 0 , sin y , 0 , 0 , 0 ,

cos y√
2

)
. (13)

The constellation of ρ2 has two stars on each pole,
and for ρ4 it consists of a parallelepiped with faces
parallel to the cartesian planes and length dimen-
sions dependent of the variable y.

(v) C phase: The ρσ non-zero vectors are

ρ3 = r3

(
−
√
2 , 0 , 0 ,

√
5 , 0 , 0 ,

√
2
)
/3 , (14)

ρ4 = r4

(
0 ,−

√
10 , 0 , 0 ,−

√
7 , 0 , 0 ,

√
10 , 0

)
/
√
27 .

FIG. 3. (Top) Energy of the FM and P ground state phases ρ
with fixed linear entropy SL describing the mixture (disorder)
of the system for positive and negative values of c1. (Bottom)
The fractions fm of the FM phase in the |s,m⟩ states versus
the linear entropy. For SL = 0, the system is in the MF solu-
tion of the FM phase, and as SL increases, the system tends
to the equally partitioned state achieved at SL → 2/3. Both
limit cases illustrate the regimes T = 0 and T → ∞, respec-
tively. The fractions of the P phase have a similar behavior
(see Eq. (18)).

Their constellations are given by an octahedron and
a constellation conformed by two antipodal tetra-
hedrons, respectively.

In overall, a generic ρnc will have a total of (2f + 1)2

degrees of freedom constituted by the variables ρσµ and
Nnc, with domain restricted by the properties of the den-
sity matrices ρnc, unit trace, hermiticity and positive
semidefinite condition [59]. Notwithstanding, the pre-
vious calculations show that the inherited symmetries
of ρnc reduce the degrees of freedom considerably. For
example, in spin-1 BEC, the number is reduced from 9
degrees to 3 for both the FM and P phases, namely to
(Nnc, r1, r2), and to 4 in the AF phase, (Nnc, r1, r2, x).
Additionally, the total degrees of freedom for the spin-
2 phases, which add up to 25 in the general case, are
drastically reduced to just 3 or 5, depending upon the
symmetry of its corresponding order-parameter.
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B. Spin phases for f = 1 and f = 2

For sake of illustration of our variational perturbation
approach with self-consistent symmetries, we apply it to
study the behavior of the phases for spin-1 and 2 BECs
against temperature and entropy near the mean field so-
lution. Let us first consider the spin-1 BEC case with
spin phases at zero temperature having a nontrivial point
group, namely, the FM, P, and AF phases, as described
in Sec. II. For the perturbation, instead to consider a
particular scenario, let us just consider an increment of
the entropy of the condensate, which is a signature of the
atomic disorder (mixedness) of the condensate, due for
instance to non-zero temperature effects. In that sense,
we can study the physical properties of the spin-1 ground
phases of a BEC with respect to the entropy given by [60]

S(ρ) = −Tr[(ρ/N) ln(ρ/N)] . (15)

Here, for simplicity, we work within the linear entropy
response, obtained by Taylor expanding over the loga-
rithm of a matrix around a pure state, yielding SL(ρ) ≡
1 − Tr

[
(ρ/N)2

]
[61]. It is noteworthy that SL(ρ) is

a good approximation of the entropy S(ρ) as long as
|S − SL| ≪ 1. The previous regime can be written in
terms of the non-zero eigenvalues Λk of ρ∣∣∣∣∣∣1−

∑
Λk ̸=0

Λk

N

(
Λk

N
− ln

Λk

N

)∣∣∣∣∣∣≪ 1 . (16)

Notice that for T = 0, the density matrix has only one
nonzero eigenvalue Λm = N , yielding S = SL = 0. On
the other hand, T → ∞ entails, by the equipartition the-
orem, that the three eigenvalues are equal to N/3, and
consequently SL = 2/3. The ground spin phase is charac-
terized by the state ρ that minimizes the thermodynam-
ical potential Ω(ρ) = E − NkBTSL. However, since we
are going to consider a fixed value of the entropy SL, the
ground state phase is also identified as the density matrix
with minimal energy E(ρ). The problem is then reduced
to minimize Eq. (4) under the constraints of fixed num-
ber of particles N = Tr(ρ) and linear entropy SL(ρ), for
the admissible phases of the spin-1 BEC. A direct calcu-
lation shows that the ground states allowed are only for
the FM and the P phases for c1 < 0 and c1 > 0, respec-
tively. The energies of the ground state phases have an
analytical form, and are given by

E(ρ(FM)) =N2

[
c0

(
1− SL

2

)
+ c1(1− SL)

]
,

E(ρ(P )) =N2

[
c0

(
1− SL

2

)
+ c1

SL

2

]
. (17)

We plot the minimized energy E(ρ) (17) of the FM and
P phases for a given value of SL(ρ) in Fig. 3. We can
observe that for c1 > 0 (c1 < 0), the ground state phase
of the BEC has its atoms predominantly in the FM (P)

FIG. 4. Phase diagram of the spin-2 BEC in the space of
the spin-dependent coupling factors (c1, c2). The C-P phase
transition (color curves) depends on the temperature, while
the rest of the phase transitions remain invariant (black lines).
We also add the values of the coupling factors (c1, c2) of sev-
eral atomic species along with its respective uncertainties [19].

phase. Therefore, our approach predicts that by an incre-
ment of the entropy in the spin-1 BEC, the FM-P phase
transition at c1 = 0 does not exhibit a deviation. This
observation agrees with other calculations found in the
literature [23, 27], where in contrast, extensive numerical
calculations were considered instead to reach to the same
conclusion.

Since the density matrices are diagonal with respect
to the eigenbasis of the operator Fz, the condensate can
thus be understood as consisting of a statistical mixture
of atoms in the |1,m⟩ states. Each state is populated
by a fraction of atoms equal to fm = ⟨1, m| ρ |1, m⟩ /N ,
with values

f
(FM)
1 =f

(P )
0 =

1

3

(√
4− 6SL + 1

)
,

f
(FM)
0 =f

(FM)
−1 = f

(P )
1 = f

(P )
−1 =

1

6

(
2−

√
4− 6SL

)
.

(18)

We plot the behavior of the fractions for the FM
phases (18) in Fig. 3. We can observe that for SL = 2/3
(T → ∞), the atoms of the BEC are equally distributed
of the FM and P phases are equal, as expected by the
equipartition theorem. The qualitative behavior of the
fractions exposed in Fig. (18) is consistent with the nu-
merical calculations reported in Ref. [27] where it is used
the Hartree-Fock approximation.

The same procedure can be applied for a more sophis-
ticated model. As an example, we apply the characteri-
zations of ρc and ρnc to calculate the spin phase diagram
of spin-2 BEC at finite temperatures using the Hartree-
Fock approximation [23, 39–41]. In this case, ρnc is deter-
mined by the Bose-Einstein distribution at temperature
T , while the spatial energy density is defined by its poten-
tial trap. For simplicity, we consider a finite box potential
trap, with eigenstates labeled by the wavenumber vector
k, having a spatial energy contribution of ℏ2k2/2M , be-
ing M the atomic mass of the condensate. After the
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replacement
∑

k → (2π)−3
∫
dk, the spatial part of ρnc

is integrated leading to

ρncij =

2f+1∑
ν=1

ξνi ξ
ν∗
j Λν , Λν =

Li3/2
(
e−βκν

)
λ3dB

, (19)

where Li3/2(z) is the polylogarithm function and λdB =

h/
√
2πMkBT is the thermal de Broglie wavelength. The

spin eigenstates ξν with energies κν are defined by
the eigendecomposition of the (2f + 1) × (2f + 1) ma-
trix A, usually called the Hartree-Fock Hamiltonian,
whose entries are derivatives of the energy (4), Aij =
δE/δρncji [27]. In Fig. 4, we plot the phase diagram of
the spin-2 BECs at finite temperatures. We predict a de-
viation of the C-P phase-transition as a function of the
temperature, in contrast with the other phase transitions
that remain invariant with the temperature. We can
conclude that, whilst for 23Na and 83Rb cold gases the
phases remain practically insensible to temperature, the
87Rb condensates may exhibit a temperature-dependent
spin-phase transition. Further details of the HF approx-
imation applied to spin-1 and spin-2 BECs are discussed
in [27].

IV. SUMMARY AND CONCLUSIONS

We have introduced a rigorous and systematic
method capable of characterizing the MF variational
perturbations of an interacting spinor system with
a self-consistent rotational symmetry. Our method
is based in a generalization of the Majorana stellar

representation for quantum mixed states in conjunction
with point group symmetry arguments. A distinctive
feature of the approach is that it reduces considerably
the unknown degrees of freedom of the perturbation. In
addition the methodology can be applied to any other
spin or spin-like physical system having self-consistent
symmetries. We applied the approach to characterize the
noncondensate fractions in a spin-1 BEC and to study
the behavior of its spin phases when the mixedness of the
condensate is monitored by the value of the entropy. The
model is solved analytically and reproduces the same
results predicted by others methods [23, 27] but with
much less intricacies involved. In addition, we calculate
the phase diagram of spin-2 BEC in the Hartree-Fock
approximation at finite temperatures, where a non-linear
deviation in the C-P phase transition with temperature
is predicted. The method presented here can be also
be implemented in more complex systems, for example,
for physical setups described by a tensor product of
spins systems. However, further generalizations of the
Majorana stellar representation may be necessary in
such cases [62, 63].
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