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Many-body systems with spin degree of freedom may exhibit emergent phenomena described only
by beyond mean-field (MF) theories. Here we present a rigorous method to determine the variational
perturbations for the MF solution of an interacting spinor system with rotational symmetries. It is
based on a generalization of the Majorana stellar representation for quantum mixed states, and it
is amenable to any variational method with self-consistent symmetries and for any open ensemble
of spinor-like particles. As an application of the formalism, we characterize the allowed phases in
spin 1 and 2 Bose-Einstein condensates and calculate the finite-temperature phase diagram of spin-2
condensates.

Many-body quantum systems of interacting spins ex-
hibit novel phases and fascinating physical phenomena.
In the field of ultracold atoms, the phases occurring
in spinor Bose-Einstein condensates (BEC) can be re-
alized nowadays under highly controllable setups [1–5].
In BECs the spatial behavior of the ground state is ba-
sically defined by the type of the confinement trap, pro-
vided that neither spin-orbit coupling nor the dipolar
interactions are of significance. Most notably, the spin
domain behavior of spinor BECs can differ drastically
over different atomic species [2]. For instance, it has
been corroborated experimentally [6–9] that condensates
of 23Na and 78Rb in an optical trap exhibits different
ground spinor phases: the polar (P) and the ferromag-
netic (FM) phases, respectively [1, 10]. Recent exper-
imental advances allow us to study the spin phases of
BEC of several spin values, from 1 to 8, even in the pres-
ence of external fields and spin-orbit interactions [7, 11–
16]. Theoretically the study of the spin-phase diagram
in spinor BECs via mean-field (MF) theories were in-
troduced first for spin f = 1 [17, 18] and subsequently
for higher spins [2, 19–22]. The MF theory consists to
assume that all the atoms in the condensate share the
same quantum state, which is defined by an average over
the many-body quantum states of the condensate, and
characterized by a spinor order-parameter Φ obeying the
spinor version of the well-known Gross-Pitaevskii (GP)
equations [1, 2, 10].

Although the MF theory predicts qualitatively well the
spin phases of a BEC, it fails to offer a satisfactory de-
scription of a wide range of physical effects as, its behav-
ior at finite temperatures, quantum fluctuations, or non-
local perturbations. The studies of the spinor BEC cov-
ering these aspects become essential to scrutinize other
nontrivial physical phenomena such as deviations in the
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spin phase boundaries, metastable phases, tunneling ef-
fects, quench dynamics, or (dynamic/static) quantum
phase transitions, among others phenomena [5, 8, 11, 23–
38]. Some of the well-known beyond mean-field theo-
ries are the variational approaches which have proven in
BECs to be well suitable near its MF phases [23, 39–44].
Physically, this entails that the condensate gas, repre-
sented by a mixed ensemble of particles, is described by
a density matrix ρ. It is assumed to be comprised by two
contributions such that ρ = ρc + ρnc, where ρc = Φ†Φ
is the atom fraction that remains in the same MF so-
lution Φ, while ρnc is the ensemble of noncondensate
atoms described by other quantum states to be deter-
mined [23, 27, 40].

Operationally, variational methods in condensates in-
volve self-consistent solutions of the GP equations cou-
pled to a set of equations that govern the nonconden-
sate fraction. These methods are, however, compu-
tationally demanding and not free from numerical is-
sues [23, 27, 39, 40].A way to circumvent this is to make
use of variational methods with self-consistent symme-
tries [39], i.e., approaches where the noncondensate frac-
tion ρnc inherits the common symmetries between the
Hamiltonian and the order parameter Φ of the con-
densed fraction. In fact, and as a consequence of the
Michel’s theorem [45], the common symmetries of the
Hamiltonian and Φ are a nontrivial point group, i.e. a
set of rotational and reflection symmetries. This result
has been used to characterize MF solutions of spinor
BEC [2, 20, 22, 46, 47]. The point group symmetries
associated to spin phases are also of great interest due
to its connection to the appearance of (Abelian or non-
Abelian) vortices [48–50]. Notably, the inherited sym-
metries of ρnc has been exploited before to study the
metastable phases of spinor BEC of spin-1 at finite tem-
peratures [27].

In this Letter, we present a thoroughly systematic
method based on the Majorana representation of spin
mixed states [51, 52] and the use of self-consistent sym-
metries that allows to fully determine the non-condensed
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fraction ρnc of a spinor BEC with a certain point group
symmetry. We exemplify the method by characterizing
ρnc of the spin phases of BEC of spin f = 1 and 2.
As an application, we present the phase diagram of the
spin-2 BEC at finite temperatures using the Hartree-Fock
approximation [23, 39–41], that in turn predicts the ap-
pearance of a deviation with temperature of the cyclic-
nematic phase boundary. Due to the nontrivial spin in-
teractions a rich scenario emerges within the Hartree-
Fock approximation for the noncondensate fraction in
other symmetries and/or higher spins [2, 13, 14, 16]. This
however, goes beyond the aim of this letter but it is cov-
ered in the companion paper [53].

We start by considering a BEC with spin f in an opti-
cal trap. The system is assumed to be weakly interacting
and sufficiently diluted such that only two-body collisions
are predominant and the s-wave approximation is still
valid. We also consider that the atomic gas is factoriz-
able into its spinorial and spatial sectors, and is without
topological spin disorder. The spinor sector of the full
Hamiltonian can be written in the second-quantization
formalism in terms of the interaction channel with its
respective coupling factors cγ , where γ = 0, 1, . . . f , as-
sociated to the s-wave scattering lengths of the total spin
channel [1, 2]. In a general form, the Hamiltonian of the
spinor sector of the BEC can be written as

Ĥ =

f∑
γ=0

cγ
2
M(γ)

ijklψ̂
†
i ψ̂
†
j ψ̂kψ̂l , (1)

whereM(γ) are numerical tensors associated to the two-
body collisions [2]. For example, the interactions for a
spin-2 BEC has three tensor elements given by [53]

M(0)
ijkl =δilδjk , M(1)

ijkl = (Fν)il(Fν)jk ,

M(2)
ijkl =

(−1)i+k

5
δi,−jδk,−l , (2)

where δij is the Kronecker delta, and Fν are the com-
ponents of the angular momentum matrices along the
ν = x, y or z direction, which here are scaled by ~ mak-
ing them dimensionless. For spin-1 condensates, only
the first two interactions c0 and c1 appear in the Hamil-
tonian. The c0-interaction is spin-independent since it is
equivalent to the square of the number operator. The rest
of the interactions are all spin-dependent. The spinor-
quantum field associated to the spinor condensate is de-
noted by Ψ̂ = (ψ̂f , ψ̂f−1 , . . . , ψ̂−f )

T, where ψ̂m are the
field operators with magnetic quantum numberm, and T
denotes the transpose. The Hamiltonian (1) has a sym-
metry point group SO(3)×Z2 constituted by the group
of rotations SO(3) and the inversion through the origin.

Mean-field (MF) approximation assumes that 〈Ψ̂〉 =
Φ, where Φ = (φf , φf−1, . . . , φ−f )

T, is the spinor order-
parameter obeying Φ†Φ = N , being N the total number
of atoms in the condensate gas [1, 2]. The spin phase of
the BEC is thus the order parameter Φ that minimizes

the functional energy E[Φ] = 〈Ĥ〉. The rotational sym-
metries of Φ can be found through the Majorana repre-
sentation for pure states [51], which associates each spin-
f state Φ with 2f points on the sphere, usually called the
(Majorana) constellation of Φ and denoted by CΦ. The
representation is defined via a polynomial that involves
the coefficients of Φ,

pΦ(z) =

f∑
m=−f

(−1)f−m
√(

2f

f −m

)
φmz

f+m . (3)

The degree of the polynomial pΦ(z) is at most 2f , and
by rule, its set of roots {ζk} is always increased to
2f by adding the sufficient number of roots at infinity
[51, 54]. CΦ is thus a set of 2f points on the sphere
S2, called stars, obtained with the stereographic projec-
tion from the south pole of the roots ζk = tan(θk/2)e

iϕk ,
with (θk , ϕk) the spherical angles. When Φ is trans-
formed by the unitary representation D(R) of a rota-
tion R ∈ SO(3) in its Hilbert space, the constella-
tion CΦ rotates by R on the physical space R3, where
D

(σ)
µ′µ(R) ≡ 〈σ, µ′|e−iαFze−iβFye−iγFz |σ, µ〉 is the Wigner

D-matrix of a rotation R with Euler angles (α, β, γ) [55].
Therefore, the point group of the quantum state Φ is
equal to the point group of the geometrical object asso-
ciated to CΦ. This representation has been used success-
fully to classify the spin ground phases of BEC in the
ideal case of zero temperature [20, 22, 46].

We now briefly review some of the most well-known
phases associated with a symmetry point group that ap-
pears as a MF solution of a BEC with spin f = 1, 2.
In particular, we write its order parameters and respec-
tive Majorana constellations (Figs. 1 and 2) for a given
orientation.

(1) Ferromagnetic (FM) phase: The spinor order-
parameter has only one non-zero coefficient, φf =

√
N .

It is symmetric under rotations about the z axis, impos-
ing that its symmetry group be isomorphic to SO(2). Its
constellation CΦ consists of 2f coincident points on the
north pole.

(2) Polar (P) phase: Here φm =
√
Nδm0. Its symme-

try group, which is isomorphic to SO(2) × Z2, consists
of rotations about the z axis and the inversion through
the origin. For spin f = 2 condensates, it belongs to the
family of states called the nematic phase [20]. The con-
stellation of the polar phase has f points on each pole of
the sphere.

(3) Antiferromagnetic (AF) phase: It is a non-inert
state [46] since it is represented by a family of spin-1
states Φ =

√
N(cosχ, 0, sinχ)T with χ ∈ (0, π/4]. The

whole family is symmetric over two geometric operations,
a rotation by π about the z axis, and a reflection across
the yz-plane, implying that the symmetry group is iso-
morphic to Z2 ×Z2. Its Majorana constellation consists
of two points on the yz plane, and their angle is depen-
dent on χ and bisected by the z axis.

(4) Square (S) phase: A spin-2 phase with non-zero
order-parameter terms φ2 = φ−2 =

√
N/2. Its Majo-
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rana constellation consists of a square. Hence, Φ has the
dihedral point group denoted by D4 in the Schönflies no-
tation [56]. This phase belongs also to the family of the
nematic spin-2 states [20].

(5) Cyclic (C) phase: This spin-2 phase is described
with Φ = (

√
N/3)(1, 0, 0,

√
2, 0)T. The order parameter

has constellation equal to a tetrahedron with point group
T in the Schönflies notation [56].

The point group of each spin state can be established
by seeking at its respective Majorana constellation. The
spin phases mentioned above also appear as ground states
for Hamiltonians with additional terms as Zeeman in-
teractions, or others restrictions as fixed magnetization
[2, 19].

We now consider a variational perturbation of the field
operators δ̂j near the MF solution, such that ψ̂j = φj+δ̂j .
The atoms in the condensate are now split in two frac-
tions: those who describes the condensate (c) part, and
those that specify the noncondensate (nc) fraction of
atoms. They are represented by the density matri-
ces ρcij = φiφ

∗
j and ρncij = 〈δ̂†j δ̂i〉, respectively. Thus

Na = Tr(ρa) for a = n, nc are the fractions in each
part satisfying N c + Nnc = N . In the case of a varia-
tional method with self-consistent symmetry, ρnc inher-
its a particular point group from the symmetries of the
Hamiltonian (1) and ρc. We then need to determine the
most general ρnc for a given point group symmetry. To
that end, we make use of the Majorana representation
for mixed states [52].

A mixed state is represented by a density matrix, i.e.,
a (2f + 1) × (2f + 1) complex matrix with a nonneg-
ative eigenspectrum. The set of density matrices has
an orthonormal basis given by the tensor operators T (f)

σµ

with σ = 0, . . . 2f and µ = −σ, . . . , σ [55, 57, 58], which
are defined in terms of the Clebsch-Gordan coefficients
Cjmj1m1j2m2

, and reads

T (f)
σµ =

f∑
m,m′=−f

(−1)f−m
′
Cσµfm,f−m′ |f,m〉 〈f,m′| . (4)

Henceforth, we shall omit the super index (f) when there
is no possible confusion. The tensor operators Tσµ satisfy

Tr(T †σ1µ1
Tσ2µ2

) = δσ1σ2
δµ1µ2

, T †σµ = (−1)µTσ−µ . (5)

The most important property of the Tσµ operators is
that they transform block-diagonally under a unitary
transformation U(R), that represents a rotation R ∈
SO(3), according to an irrep of SO(3) D(σ)(R), such that

U(R)TσµU
−1(R) =

σ∑
µ′=−σ

D
(σ)
µ′µ(R)Tσµ′ , (6)

where σ = 0, 1, 2, . . . labels the irrep. The density matrix
ρnc can be written in the Tσµ basis as

ρnc = Nnc

(
1f

2f + 1
+

2f∑
σ=1

ρσ · Tσ

)
, (7)

CΦ Cρnc

FIG. 1. Majorana representations of the order parameters
Φ (left) and noncondensed fraction ρnc (right) of spin phases
of BEC of f = 1. The adjacent number in some points cor-
respond to its degeneracy. Each nonzero vector ρσ of ρnc

is associated to a constellation of 2σ points, which are also
colored in red and yellow for σ = 1 and 2, respectively. For
clarity, we omit the cartesian axis in the figures and split the
constellations of the AF phase. The gray area in the second
constellation of Cρnc of the AF phase is the corresponding
geometric object of the points.

where ρσ = (ρσσ, . . . , ρσ−σ) ∈ C2σ+1 with ρσµ =
Tr(ρ T †σµ), and Tσ = (Tσσ, . . . , Tσ,−σ) is a vector of ma-
trices. Here the dot product stands for

∑σ
µ=−σ ρσµTσµ.

Each vector ρσ, which transforms as a spinor of spin σ by
Eq. (6), can be associated to a constellation à la Majo-
rana [51] consisting of 2σ points on S2 obtained through a
similar polynomial as Eq. (3) but defined with ρσµ. The
hermiticity condition of ρnc together with Eq. (5) im-
plies that every constellation C(σ) has antipodal symme-
try [52]. While a pure stateΦ is normalized and its global
phase factor is physically irrelevant, the same quantities
of ρσ carry now the necessary information to fully char-
acterize ρnc. However, this information can also be added
in the Majorana representation of ρnc. The norm of ρσ,
rσ, is associated to the radius of the sphere where the
constellation of ρσ lies. On the other hand, the hermitic-
ity property of ρnc implies that the global phase factor of
ρσ can only have two choices [52], both differing by a mi-
nus sign. There exists a method to associate this sign to
a certain equivalence class of the points of each constella-
tion [52] that is presented in the companion article [53].
Here, we just incorporate this choice of sign to the norm
rσ. Hence, rσ can have negative values that evidently
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does not affect the radius of the sphere. In summary,
a mixed state will be associated to a set of 2f constel-
lations, denoted by Cρnc , with antipodal symmetry and
a number of stars equal to 2σ, with σ = 1, . . . , 2f , over
spheres with radii rσ, respectively.

We now determine the density matrices ρnc with a par-
ticular point group G. By the property (6) of the Ma-
jorana representation, ρnc has the point group G if each
ρσ fulfill the following condition

D(σ)(g)ρσ = ρσ , for each g ∈ G . (8)

Let us remark that this condition is more restrictive that
in the case of pure states, where a state Φ is invariant
under the element action g ∈ G if D(g)Φ is equal to
Φ up to a global phase factor. The determination of
pure spin states with a particular point group has been
studied before in [59]. We use Eq. (8) to impose on ρnc
the symmetries of the spin phases mentioned above. We
plot their Majorana representations in figures 1 and 2.
By looking at the constellations, one can deduce that
the point group of ρnc is equal to their corresponding
order parameter Φ. We summarize the most important
characteristics of Cρnc of each phase:

(1-2) FM and P phases: ρσ has only the 0th-
components different than zero ρσ0 = rσ. Their constel-
lations are given by σ stars on each pole of the sphere.
The additional symmetry of the P phase implies that the
ρσ vectors with σ odd are zero.

(3) AF phase: The vectors of ρσ are given by

ρ1 = r1 (0, 1, 0) , ρ2 = r2

(
cosx√

2
, 0, sinx, 0,

cosx√
2

)
.

(9)
The constellations of ρ1 has a star on each pole, and for
ρ2 it is a rectangle with sides parallels to the y and z
axes with length dimensions dependent of the variable x.

(4) S phase: ρnc has only two non-zero vectors ρσ

ρ2 =r2 (0 , 0 , 1 , 0 , 0) ,

ρ4 =r4

(
cos y√

2
, 0 , 0 , 0 , sin y , 0 , 0 , 0 ,

cos y√
2

)
. (10)

The constellation of ρ2 has two stars on each pole, and
for ρ4 it consists of a parallelepiped with faces parallel
to the cartesian planes and length dimensions dependent
of the variable y.

(5) C phase: The ρσ non-zero vectors are

ρ3 =r3

(
−
√
2 , 0 , 0 ,

√
5 , 0 , 0 ,

√
2
)
/3 , (11)

ρ4 =r4

(
0 ,−
√
10 , 0 , 0 ,−

√
7 , 0 , 0 ,

√
10 , 0

)
/
√
27 .

Their constellations are given by an octahedron and a
constellation conformed by two antipodal tetrahedrons,
respectively.

A generic ρnc has a total of (2f+1)2 degrees of freedom
constituted by the variables ρσµ and Nnc, with domain
restricted by the properties of the density matrices ρnc,

CΦ Cρnc

FIG. 2. Majorana representations of Φ (left) and ρnc (right)
of spin phases of BEC of spin-2, where we follow the same
conventions as in Fig. 1. The constellations of ρσ for σ = 3, 4,
correspond to the constellations with six (green sphere) and
eight (blue sphere) points, respectively.

unit trace, hermiticity and positive semidefinite condition
[60]. The latter is intricate to implement but is still hold
true in general for any physical system. Notwithstanding,
the previous calculations show that the inherited symme-
tries of ρnc reduce the degrees of freedom considerably.
For example, in spin-1 BEC, the number is reduced from
9 degrees to 3 (Nnc, r1, r2) for the FM and P phases, and
to 4 (Nnc, r1, r2, x) in the AF phase. On the other hand,
the degrees of freedom of the spin-2 phases, which add
to 25 in the general case, are significantly reduced to 3
or 5, depending upon the symmetry of its corresponding
order-parameter. As an application to the power of these
reductions, we have calculated with this approach the
spin phase diagram of a BEC of spin-2 at finite temper-
atures using the Hartree-Fock approximation [23, 39–41]
(See Fig. 3). We predict a deviation of the C-P phase-
transition dependent of the temperature, as opposite as
the other phase transitions that remain invariant with
the temperature. We can conclude that, whilst for 23Na
and 83Rb cold gases the phases remain practically insen-
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FIG. 3. Phase diagram of the spin-2 BEC in the space of
the spin-dependent coupling factors (c1, c2). The C-P phase
transition (color curves) depends on the temperature, while
the rest of the phase transitions remain invariant (black lines).
We also add the values of the coupling factors (c1, c2) of sev-
eral atomic species along with its respective uncertainties [19].

sible to temperature, the 87Rb condensates may exhibit
a temperature-dependent spin-phase transition. Details
of the calculations are presented in the companion article

[53], including additional material related to the magne-
tization and the characterization of the allowed regions
of the spin phases.

To summarize, we introduced a rigorous method capa-
ble of characterize the MF variational perturbations of
an interacting spinor system with a self-consistent rota-
tional symmetry. Our method is based in a generaliza-
tion of the Majorana stellar representation for quantum
mixed states in conjunction with point group symme-
try arguments. A distinctive feature of the approach is
that is general for any variational approach with a self-
consistent symmetry, and for any other spin or spin-like
physical system. Moreover, the method presented here
can be implemented in systems constituted by a tensor
product of spin systems, where other generalizations of
the Majorana representation may be necessary [61, 62].

E.S.-E. acknowledges support from the postdoctoral
fellowships offered by DGAPA-UNAM and the IPD-
STEMA program of the University of Liège. F.M. ac-
knowledges the support of DGAPA-UNAM through the
project PAPIIT No. IN113920.
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