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We study coupled unitary Virasoro minimal models in the large rank (m→∞) limit. In large m
perturbation theory, we find two non-trivial IR fixed points which exhibit irrational coefficients in
several anomalous dimensions and the central charge. For N > 4 copies, we show that the IR theory
breaks all possible currents that would otherwise enhance the Virasoro algebra, up to spin 10. This
provides strong evidence that the IR fixed points are examples of compact, unitary, irrational CFTs
with the minimal amount of chiral symmetry. We also analyze anomalous dimension matrices for a
family of degenerate operators with increasing spin. These display further evidence of irrationality
and begin to reveal the form of the leading quantum Regge trajectory.

Introduction. The perturbative renormalization
group (RG) is a robust tool for demystifying the space
of conformal field theories (CFTs) by showing how one
fixed point may be reached by deforming another. In re-
cent years [1–6], hundreds of new CFTs have been shown
to arise from a common starting point: a tensor product
of N copies of the massless free scalar. In this Letter,
we explore the analogous situation in which the tensor
product is applied to a different type of exactly solved
theory: a unitary Virasoro minimal model.

It is typically hard to make sharp statements about RG
flows emanating from minimal interacting CFTs in the
ultraviolet (UV). To mention a widely studied example,
N Ising models coupled as in

S =

N∑
i=1

SiIsing + g

∫
ddx

∑
i<j

εiεj (1)

can be driven to a non-trivial infrared (IR) fixed point
in d = 3. This is the critical O(2) model for N = 2 and
the hypercubic fixed point (having ZN2 o SN symmetry)
for N > 2. Although the cubic fixed point has been
studied in the 4−d expansion since [7], a crucial question
about it — whether it is preferred in nature over the O(3)
universality class — could not be answered until a large
scale numerical bootstrap study [8] was finally completed
[9]. The problem of course is that the scaling dimension
of εiεj differs from 3 by a finite amount which makes the
flow uncontrolled.

A setup similar to (1), based on the q-state Potts model
in two dimensions instead of the Ising model in d dimen-
sions, faces the same problem. The q − 2 expansion of

S =

N∑
i=1

Siq−Potts + g

∫
d2x

∑
i<j

εiεj (2)

used in [11] is uncontrolled because εiεj has dimension
∆ = 8

5 < 2 in the most interesting case of q = 3 [12].

This means the maximal chiral algebra realized by (2) in
the IR along with the number of primary operators in its
spectrum are both unknown.

CFTs with a finite number of primary operators are
called rational. This is because a modular invariant par-
tition function can only be written as a finite bilinear
combination of characters if the central charge and all
conformal weights are rational numbers [14]. A condi-
tion weaker than rationality is compactness defined as
discreteness of the spectrum. The literature is replete
with long lists of rational CFTs [15, 16]. The amount of
attention paid to compact irrational CFTs pales in com-
parison to the point where essentially all known unitary
examples can be described in three lines.

1. The compact free boson with a generic radius.

2. Calabi-Yau sigma models with generic moduli.

3. Spinning top CFTs [17] with finite fusion rules.

All of these theories have enhanced chiral symmetry. Said
another way, there are Virasoro primaries at infinitely
many spins ` such that the twist τ ≡ ∆− ` vanishes.

For analytic bootstrap methods which apply to CFTs
in d > 2, the presence of a twist gap is indispensible
[18, 19]. Corrections to a theory’s universal behaviour at
large spin may be computed systematically because the
contribution of a given operator to a 4pt function in the
lightcone limit decays with twist. Virasoro symmetry is
already enough to kill a naive application of this method
in d = 2 but [20, 21] found a suitable improvement. Their
insight was to reorganize a more modern version of the
analytic bootstrap [22, 23] in terms of Virasoro primaries
using the crossing kernel found in [24, 25]. This Letter
aims to describe an RG flow which ends on a CFT satis-
fying the assumptions of the Virasoro analytic bootstrap.

This will be accomplished by regarding minimal mod-
els as distinguished points on a continuous line. In con-
trast to (2) which was strongly coupled at q = 3 and
non-unitary otherwise, our flows will become unitary and
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weakly coupled at the same time as we take the central
charge c → 1. Analytic continuation in c has previously
been used as a tool for interpreting numerical bootstrap
results [26, 27]. Before this, it was implicitly used in
perturbative studies of the integrable flows connecting
minimal models [28, 29]. Applications of this strategy to
coupled systems are scarce [30]. In the only example we
are aware of, the authors of [32] found perturbative flows
by coupling minimal models of dn type W-algebras [33].
Some evidence was found for irrationality but not for the
presence or absence of enhanced chiral symmetry. The
techniques developed here for the Virasoro case appear
well poised for answering this question in the future.

The model. We start from N rank m unitary Vi-
rasoro minimal models with central charge c = 1 −
6/(m(m+ 1)) each. Having in mind the large m regime,
where perturbation theory is well defined and where an
infinite number of unitary theories accumulate, the holo-
morphic dimension of a primary labelled by r, s ∈ N is

h(r,s) =
(r − s)2

4
+
r2 − s2

4m
+O(m−2) . (3)

To find relevant operators, we can only take pairs of the
type (r, r + 1) and (r, r + 2). In the first case, we need
to multiply four copies for near marginality, but in the
second case one copy suffices. This is an infinite set of
deformations, but fortunately there is a finite subsector.
By taking r = 1, repeated operator product expansions
(OPEs) will only produce (1, s), meaning we can truncate
to products of four (1, 2) operators and a single (1, 3).
The natural choice to preserve the SN symmetry per-
muting the copies leads us then to the formal action

SCMM =

N∑
i=1

Sim + gε

∫
d2xN−

1
2

N∑
i=1

φi(1,3) (4)

+ gσ

∫
d2x

(
N

4

)− 1
2

N∑
i<j<k<l

φi(1,2)φ
j
(1,2)φ

k
(1,2)φ

l
(1,2) .

The first line describes N copies of the famous flow from
[28, 29] while the second is more interesting. For conve-
nience, we will henceforth denote these deformations by
ε and σ respectively. Subsequent analysis will use large
m limits of the OPE coefficients from [35, 36],

C
(1,3)
(1,2)(1,2) =

√
3

2
, C

(1,3)
(1,3)(1,3) =

4√
3
. (5)

To address the global symmetry G of this model, two
viewpoints are possible. If Sim in (4) represents only the
closed subsector of (1, s) operators, there is a Z2 symme-
try sending φi(1,2) 7→ −φ

i
(1,2) for all m but no modular

invariance. In this case, G is the diagonal Z2 × SN for
N > 4 and Z3

2oS4 for N = 4. If Sim is instead the modu-
lar invariant theory (which only exists for integer m) the
appropriate Z2 symmetry sends φi(1,2) 7→ (−1)mφi(1,2) [37]

so that G is hypercubic for even m [38].

 

FIG. 1: Schematic flow diagram linking the fixed points.

Renormalization group. It is straightforward to an-
alyze the IR fixed points using conformal perturbation
theory [40]. For the deformation

∫
d2x gIOI , classic one-

loop results (with the summation convention) are [41, 42]

βI = 2g̃I − πCIJKgJgK (6)

∆c = −2π2NIJgJ
(
3g̃I − πCIKLgKgL

)
where g̃I ≡ (1− hI)gI and NIJ ≡ 〈OI(0)OJ(∞)〉. Com-
bining (5) and (6) with combinatorial gymnastics yields

βσ =
6

m
gσ −

4π
√

3√
N

gσgε − 6π

(
N − 4

2

)(
N

4

)− 1
2

g2
σ ,

βε =
4

m
gε −

4π√
3N

g2
ε −

2π
√

3√
N

g2
σ (7)

to leading order in 1/m [43]. The beta functions have four
roots. Along with the UV fixed point {g∗ε = 0, g∗σ = 0}
and the N decoupled rank m−1 models {g∗ε = 2

√
3

mπ , g
∗
σ =

0}, there are two fully coupled fixed points FP ∗± with

g∗σ± = ±
√

(N − 3)4

πm
√

2P (N)
, g∗ε± =

∓Q(N) +
√

3P (N)

2πm
√
P (N)/N

, (8)

where P (N) = 3N4−53N3 +357N2−1069N+1194 and
Q(N) = 3N2 − 27N + 60. One can then also extract the
IR dimensions of the deforming operators by diagonaliz-
ing the matrix ∂βI/∂gJ , finding the linear combinations
which are dilation eigenstates in the process. The result
is a rather cumbersome formula for general N , but the

lowest lying examples are ∆ = 2 ± 2
√

6
m in both fixed

points with N = 4, 5. These become ∆ = 2 −
√

6±
√

870
6m

for FP ∗+ and ∆ = 2 +
√

6±
√

870
6m for FP ∗− when N = 6.

In fact, one always gets a relevant and an irrelevant op-
erator in the IR, so these are tricritical fixed points, as
shown in figure 1. Furthermore, for general N one always
finds irrational numbers multiplying 1/m which is a mild
hint of irrationality [44]. Indeed, if the IR CFTs were
rational for every large integer m, with rational scaling
dimensions, a natural possibility would be for the dimen-
sions to admit an expression as a rational function of m.
The large m expansion of such a function would have
rational coefficients as well.
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From the second line of (6),

∆c∗± = −2N

m3

√
3Q(N)∓ 3

√
P (N)√

P (N)
. (9)

These shifts are rational and the same for both fixed
points in the cases N = 4, 5, but are irrational and dif-
ferent for N > 6, showing the same type of hint.
Lifting of currents. Before the interaction is turned

on, the chiral symmetry of N minimal models is VirN

with each factor generated by a quasi-primary stress ten-
sor T i. If the only chiral algebra surviving in the IR is a
single Virasoro algebra (which is our claim), it must be

the diagonal one generated by T̂ ≡
∑
i T

i which we will

call V̂ir. Any CFT with this property is guaranteed to be
irrational due to the standard result that c > 1 implies
infinitely many Virasoro primaries [45].

We will start by proving a weaker statement — that
the IR chiral algebra is strictly smaller than VirN . The
most convincing way to do this is to compute the anoma-
lous dimension matrix for T i operators. In our case,
it will come from σ since ε does not couple any min-
imal models. One-loop conformal perturbation theory
instructs us to compute

〈
T iσT j

〉
which vanishes by chi-

rality while the two-loop calculation involving
〈
T iσσT j

〉
is technically challenging. Fortunately, we can use the
alternative method of multiplet recombination [46–49].
If a short spin ` current is broken, it becomes long. For
consistency with the counting of states this must happen
by “eating” a spin `− 1 divergence V`:

∂̄T` = b̃(gσ)V`, (10)

where b̃(gσ) = bgσ +O(g2
σ) by UV conservation. Since

b 〈V`(z1)V`(z2)〉 ,
∫

d2z
〈
∂̄T`(z1)V`(z2)σ(z)

〉
(11)

are both valid expressions for g−1
σ

〈
∂̄T`V`

〉
, b can be found

by integrating a 3pt function [50]. As long as it is non-
zero, the two-loop dimension will be given by the formula
in [47] involving the UV 2pt functions of T` and V` [51].

For the N individual stress tensors, our ability to lift
N−1 degrees of freedom is strongly suggested by the fact
that the operators Li−1σ (which sum to a descendant)
have the same quantum numbers as ∂̄T i. More precisely,
the unique divergence candidates for T i are

V i =
∑

(j<k<l)6=i

(∂φi)φjφkφl − 1

4
∂(φiφjφkφl) , (12)

summing to zero, where we used the shorthand notation
φ ≡ φ(1,2). We can then compute 〈V iV j〉 and use the
Ward identities for T i to fix b. Diagonalizing this matrix,
the spin 2 dilation eigenstates are T̂ and T i−T i+1 for i 6
N−1. The anomalous dimension matrix correspondingly

has a zero eigenvalue, associated to T̂ , and the (N − 1)-
fold degenerate

γ[T i − T i+1] = (g∗σπ)2 3

N − 1
(13)

describing a V̂ir primary in the standard representation
of SN .

Moving onto the harder task, ruling out enhanced
symmetry means proving that all of the infinitely many

higher spin UV currents outside the V̂ir identity multi-
plet lift in the IR. We will obtain evidence for this with
a brute force check up to spin 10. The necessary com-
putational resources can be greatly reduced by check-

ing V̂ir primaries and realizing that descendants of them
will lift in the same way. Similarly, it is enough to con-
sider SN singlets [52] which enable a compact notation.

The state associated to T̂ in radial quantization is clearly∑
i L

i
−2 |0〉. Suppressing indices and the vacuum, it be-

comes ΣL−2. When encountering a multiple sum, we will
implicitly subtract traces so that a product of sums in-
cludes only terms where the indices differ. An example

from (4) is σ = 1
4!

(
N
4

)−1/2
(Σφ)4. Now,

T4 = ΣL−4 −
5

3
ΣL2
−2 +

9

N − 1
(ΣL−2)2 (14)

is the unique singlet primary current at spin 4. At
generic N , the space of potential divergences is two di-
mensional and we can find a linear combination V ⊥4 such
that

〈
T4V

⊥
4 σ
〉

= 0. Its orthogonal partner

V4 = 12(Σφ)3(ΣL−3φ)− 18(Σφ)(ΣL−1φ)3 (15)

+ 9(Σφ)2(ΣL−1φ)(ΣL2
−1φ)− 7(Σφ)3(ΣL3

−1φ)

then ensures the lift of T4 for general N [53] with

γ[T4] = (g∗σπ)2 5N + 22

2N(N − 1)
. (16)

Table I counts T`, V` operators for increasing spin. As
with the counting in [54], the matrix

〈
T I` V

J
` σ
〉

quickly
becomes much wider than it is tall [55]. This makes it
highly believable that the rows will be linearly indepen-
dent. Code which performs the explicit check is attached
to this Letter’s arXiv submission [56]. At ` = 10, we have
run it for several values of N > 5 (which takes about one
CPU day) and found that everything lifts. For ` 6 8,
we have additionally done a symbolic check which es-
tablishes this result for all values of N which are large
enough for the numbers in Table I to stabilize. The case
of exactly four copies is a different story. The 2×2 matrix
for ` = 6 has zero determinant which means a current at
this spin is conserved to two loops [57]. Signs of enhanced
symmetry therefore appear if and only if N = 4.
Double twist operators. Given our handle on the

multiplet of conserved currents, analyticity in spin [22]
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`
N

4 5 6 7

4 (1, 1) (1, 2) (1, 2) (1, 2)
6 (2, 2) (2, 5) (2, 6) (2, 6)
8 (4, 7) (4, 17) (4, 22) (4, 23)
10 (5, 18) (7, 50) (7, 69) (7, 75)

TABLE I: Ordered pairs giving the number of primary
singlet currents T` and then the number of potential

divergences for them V` built out of φ(1,2).

2 3 4 5 6 7 8

-0.2

0.0

0.2

0.4

0.6

ℓ

m
γ
ℓ

FIG. 2: Anomalous dimensions of types 1 (blue) and 3
(orange) at N = 14 showing one possible interpolation.

makes it tempting to look for trends within operator fam-

ilies. Consider Φ ≡ Σφ with V̂ir primaries

O0 = (Σφ)2, (17)

O2 = (Σφ)(ΣL̄2
−1φ)− 3(ΣL̄−1φ)2 − 3

N − 2
(ΣL̄−2)(Σφ)2,

of increasing spin (T̄ weight) in Φ×Φ. For m→∞, these
clearly have unit twist. Another regime which makes the
twist of (17) well understood is N → ∞. Even though
this sends (16) to zero, it also causes all higher Virasoro
generators to decouple leaving the sl(2) result τ → 1 +
2γΦ ≈ 1 − 1

2mN as ` → ∞ [18, 19]. This limit should
be reached monotonically due to Nachtmann’s theorem
[60]. To investigate smaller values of m and N , we have
computed anomalous dimensions up to spin 8 leading to
matrices of size 1, 1, 4, 11 and 29. Employing

(Γ) J
I = −π (gσCIKσ + gεCIKε) (N−1)KJ (18)

to accommodate operators which are not orthonormal
[61], two checks become apparent. First, the ε term is
provably a multiple of the identity as required for a de-
coupled flow. Second, eigenvalues of the σ term [62] (and
hence of the sum) appear to be solvable by radicals if and
only if N = 4. Some N = 4 eigenvalues are degenerate
thus demonstrating the effect of the spin 6 current [64].

More extensive numerical experiments show that 45 of
these 46 eigenvalues fall into the following three types.

1. Positive numbers decaying as N−1 for large N .

2. Negative numbers with a finite large N limit.

3. Negative numbers asymptotic to − 1
2mN [66].

Type 3 is remarkable because it shows that τ = 1 + 2γΦ

can be achieved at large N without the spin being large.
Let us therefore keep track of where type 3 eigenvalues
move as we lower N to 14. Assuming a small shift in the
central charge, this is the smallest integer allowing the
Virasoro identity block in Φ×Φ to have a discrete contri-
bution in the crossed channel. These contributions were
termed quantum Regge trajectories in [21] and shown to
reproduce ordinary Regge trajectories from mean field
theory as c→∞. At large spin, their twists are bounded
above by c−1

12 and satisfy a version of Nachtmann’s theo-
rem. If we assume the unique type 3 eigenvalue at spin 4
lies on such a trajectory, its fate for higher spins is tightly
constrained by monotonicity. At spin 6, there is only one
type 3 eigenvalue which can give it a larger twist. At
spin 8, there are two but the distance between them is
very small. The picture that emerges is Figure 2.

These perturbative results can no longer be trusted
when ` becomes large enough to compete with m. The
behaviour which takes over is found by relating τ to c
and ∆Φ with the Virasoro analytic bootstrap [20, 21]
and then perturbing the latter quantities. The result

τ =

√
N − 1−

√
N − 7

3/
√
N − 7

+
2πg∗ε√
N/3

(√
N − 1

N − 7
− 2

)
(19)

holds for
√
`γ∗ � 1 or

√
`� m� 1. Here, γ∗ is the twist

of the most weakly broken current which we expect to
be T4. It would be interesting to find a non-perturbative
estimate for this Regge trajectory in between the regimes
of (19) and Figure 2.
Discussion. Due to the recombination analysis in this

Letter, Occam’s razor favours the following scenario. The
fixed points (8) with N > 4 have only Virasoro symmetry
and are therefore irrational. If this were false, the first SN
singlet disproving it would need to have a spin of at least
12. This conclusion should also apply to any extension
of (4) which explicitly breaks SN [67]. In particular,
there are simple interactions preserving ZN which is the
symmetry of a stack of layers with periodic boundary
conditions. Following [63], the large N limit in such cases
could give a window onto three dimensional physics.

All models just discussed can be defined for the contin-
uum or the lattice. Hamiltonian truncation and Monte
Carlo techniques are therefore both available for deter-
mining the precise extent of the conformal window [68].

Finally, there is much that can be said about analogues
of (4) which couple minimal models of a W-algebra. The
setup examined in [32] uses W [dn] which is part of a
family W [g] labelled by a simply laced Lie algebra. If one
includes the A-series as well, the space of SN preserving
flows becomes richer but not infinitely so. In particular,
the requirement that operators become marginal as c→
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rank(g) allows g to be no larger than a8. A detailed study
of the various possibilities will appear in future work [69].
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