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Abstract

Hydrodynamics is a powerful emergent theory for the large-scale behaviours in
many-body systems, quantum or classical. It is a gradient series expansion, where
different orders of spatial derivatives provide an effective description on different length
scales. We here report the first general derivation of third-order, or “dispersive”, terms
in the hydrodynamic expansion. We obtain fully general Kubo-like expressions for the
associated hydrodynamic coefficients, and we determine their expressions in quantum
integrable models, introducing in this way purely quantum higher-order terms into
generalised hydrodynamics. We emphasise the importance of hydrodynamic gauge
fixing at diffusive order, where we claim that it is parity-time-reversal, and not time-
reversal, invariance that is at the source of Einstein’s relation, Onsager’s reciprocal
relations, the Kubo formula and entropy production. At higher hydrodynamic orders
we introduce a more general, n-th order “symmetric” gauge, which we show implies
the validity of the higher-order hydrodynamic description.
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1 Introduction and main results

Understanding the dynamics that emerge at large scales of space in time in many-body
systems is one of the most fundamental problems of theoretical physics. Hydrodynamics
is arguably a powerful framework for this purpose. In recent years it has been shown
to apply to a wide variety of models, chaotic or integrable, deterministic or stochastic,
relativistic or not [1–14]. In its most basic description, hydrodynamics is a dynamical
theory for the time evolution of local physical observables, expressed as an expansion in
derivatives with respect to space and time. The convergence of this expansion has been
recently discussed in relativistic field theories [15], and, in quantum integrable models, the
study of this expansion beyond first orders [16–32] is subject of current research [33–35].
Hydrodynamics purports that only a restricted set of observables is necessary to describe
the emergent dynamics. According to fundamental principles of statistical mechanics
and “ergodicity”, these emergent dynamical degrees of freedom are associated with the
densities of extensive conserved quantities admitted by the system.

In this paper, we restrict to one dimension of space for simplicity – although there is
no fundamental obstacle in generalising the theory developed here to higher dimensions.
If qi(x, t) are the values at spacetime point x, t of the local conserved densities (labelled by
i) admitted by the model, then one may expect that the one-dimensional hydrodynamic
equations up to third order in the gradient expansion take the general form

∂tqi + A
j
i ∂xqj =

1

2
∂x

(

D
j
i ∂xqj

)

sgn(t) +
1

2
∂x

(

W(2) j
i ∂2

xqj +W(1,1) jk
i ∂xqj∂xqk

)

, (1.1)

where the Einstein convention of summation over repeated indices is implied. These
are in fact of the form of continuity equations: indeed the flux Jacobian is of the form
A

j
i = ∂Ji/∂qj , where Ji = Ji(q) is the Eulerian current of charge qi (the current in the

stationary, entropy-maximised state that is characterised by the values qi of the conserved
densities).

We shall show that this higher-order hydrodynamic expansion emerges in many-body
systems. All hydrodynamic coefficients, A

j
i , D

j
i , W(2) j

i and W(1,1) jk
i depend on the

local conserved densities qk’s. As far as we are aware, the coefficients W(2) j
i and W(1,1) jk

i

were not known before in full generality, and we will provide explicit, Kubo-like formulae
for these, written in terms of space-time integrated correlation functions of densities and
currents within stationary states. Moreover, we shall show how in some cases, as in a
class of interacting integrable models and in free models, it is possible to choose a set of
densities such that the equation reduces to the quasilinear form

∂tqi + A
j
i ∂xqj =

1

2
∂x

(

D
j
i ∂xqj

)

+
1

2
∂x

(

W(2) j
i ∂2

xqj

)

. (1.2)

For hydrodynamic equations to correctly represent the large-scale behaviour of many-
body systems, just writing the naive derivative expansion (1.1) is not sufficient. Two
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essential aspects to consider are (1) that the densities qi of extensive conserved quanti-
ties are ambiguously defined, and this ambiguity must be lifted, and (2) that the general
form of the derivative expansion is constrained by the underlying microscopic physics. In
particular, the hydrodynamic coefficients must satisfy a number of relations, which are
fundamental laws of many-body physics – it is in general not sufficient to simply use, for
instance, the spacetime symmetries in order to constrain the form of the hydrodynamic
coefficients. These fundamental laws guarantee that the correct physical behaviours arise
from the emergent hydrodynamic equation. For instance, one requires hyperbolicity of the
Euler equation (the first-order expansion), the Onsager reciprocal relations for the diffu-
sion coefficients, and non-negative entropy production at the diffusive scale – which imply
irreversibility of the flow and stability of the hydrodynamic equations. It is important to
correctly fix the conserved densities in a universal, model-independent fashion, and to un-
cover the universal constraints on hydrodynamic coefficients that imply these fundamental
laws. We shall discuss how to choose conserved densities for the hydrodynamic equation
in such a way that, under a natural definition of the total entropy, not only diffusive terms
lead to entropy increase, but dispersive (third order) terms do not affect it.

In order to frame the problem, first recall that at the Euler order, the problem is
reduced to determining the exact local currents Ji in homogeneous, stationary, cluster-
ing states: these are the maximal entropy states, Gibbs or generalised Gibbs ensembles,
parametrised by the ensemble averages of conserved densities qk’s. Indeed, at the Euler
scale, the system is assumed to have locally maximised entropy (with respect to the avail-
able conservation laws). The function Ji(q) is the equation of state of the thermodynamics.
In fact, it is expected that the Euler scale always exists for short-range interactions, inde-
pendently of the specific structure of the microscopic model [36,37].

At the diffusive order, the local maximisation principle does not hold anymore, and
the average current receives higher-derivative corrections. The Kubo formula, obtained
by a linear response argument, gives D j

i in terms of spacetime-integrated stationary state
correlation functions of currents. This presents a subtlety: the total conserved quantities
under Hamiltonian evolution H

Qi =

ˆ

R

dx qi(x, t), [H,Qi] = 0, (1.3)

give the microscopic conserved densities qi(x, t), satisfying the continuity equation ∂tqi(x, t)+
∂xji(x, t) = 0, only up to spatial derivatives. Thus, there is a “gauge ambiguity” at all
length scales [34, 38], and the charge densities can always be redefined as

qi(x) 7→ qi(x) + ∂xa
(1)
i (x) + ∂2

xa
(2)
i (x) + ∂3

xa
(3)
i (x) + . . . . (1.4)

This ambiguity does not affect the Euler order but gives ambiguities from the diffusive
order onwards. In [38, 39] it was proposed that PT symmetry fixes, in an essential way,

the first functions a
(1)
i , and that this gauge fixing extract the correct emergent degrees of

freedom at the diffusive order. As we emphasise in the present paper, section 2, with this
gauge fixing, basic principles of statistical mechanics guarantee that these hydrodynamic
coefficients admit the correct physics. In particular, the Onsager reciprocal relations
hold, and entropy production is non-negative. This, we believe, is an important remark,
especially in relation to some recent works investigating such aspects [40–43]. The diffusive
order of hydrodynamics is sometimes broken: the Kubo formula may give infinity, implying
that superdiffusion occurs instead of diffusion. This is typical in one dimension [44–49],
although, in the restricted case of integrable models, the diffusive order exists except for
special models [50,51].
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At the dispersive order, as far as we are aware, there is no general Kubo-like formula

for the dispersive coefficients W(2) j
i , W(1,1) jk

i , and no general theory for fundamental laws
they may obey. On the other hand the dispersive order of hydrodynamics is physically
very relevant: for instance, we expect that dispersive hydrodynamics will describe in a
universal fashion the dispersive shock waves observed in quasi-BEC [52–55], free-fermion
models [33, 34, 56] and soliton gases [57]. In sections 3, 4 and appendix B, we obtain
general, Kubo-like formulae for the dispersive hydrodynamic coefficients

W(2) j

i , W(1,1) jk

i .

We obtain them by an appropriate nonlinear response analysis, assuming that the micro-
scopic model is Hamiltonian (quantum or classical). We discuss in section 5 the general

properties of these coefficients, in particular the choice of gauge a
(2)
i , if it exists, for the

resulting conserved densities to be the correct emergent degrees of freedom and the link
with a notion of entropy production that is valid up to the dispersive order. We propose
a gauge fixing procedure which we denote as symmetric gauge. In quantum integrable
systems, this allows us to compute exactly the dispersive hydrodynamic coefficients, as we
show (along with simple examples) in section 6. We conclude in section 7.

2 Diffusive hydrodynamics and PT gauge fixing

In this section, we review some basic notions related to hydrodynamics at the diffusive
scale, as well as some results and concepts first introduced in [38,39] which we believe are
important to stress.

First, one should note that diffusion in many-body systems appears in two main dif-
ferent incarnations. On the one hand, one may look at the spatial spread of two-point,
two-time correlation functions in some stationary state,

〈qi(x, t)qj(0, 0)〉
c = 〈qi(x, t)qj(0, 0)〉 − 〈qi(x, t)〉〈qj(0, 0)〉. (2.1)

Under diffusive spreading, the variance
´

R
dxx2(qi(x, t)qj(0, 0))

c grows linearly and we can
define the coefficient of such a growth as the diffusion matrix times the covariance matrix
Cij =

´

R
dx 〈qi(x, t)qj(0, 0)〉

c

D
k
i Ckj = lim

t→∞
t−1

ˆ

R

dxx2〈qi(x, t)qj(0, 0)〉
c, (2.2)

where we have neglected eventual ballistic components (see below). This is a consequence
of hydrodynamic diffusion, and can be obtained by linear response on the diffusive hydro-
dynamic equation.

On the other hand, one may look at the response of each current under an externally
applied field gradient. Understanding this requires a perturbative analysis of the micro-
scopic dynamics under small applied forces, and therefore linear response analysis of the
microscopic evolution equations. Looking at the linear response of various currents ji (and
again subtracting their eventual ballistic part) under the corresponding various forces F i,
one gets a matrix: the Onsager matrix,

Lij =
∂ji
∂F j

∣
∣
∣
F=0

. (2.3)

The general theory of diffusion is mainly characterised by four (related) important
relations involving these quantities: the Einstein relation, Onsager reciprocal relations,
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the Kubo formula, and entropy production. Expressed in the general context of multiple
conservation laws, these are as follows. First, the Einstein relation is the statement that
the Onsager matrix is related to the diffusion matrix, by a factor of the static covariance
matrix,

Lij = D
k
i Ckj (Einstein relation). (2.4)

Thus hydrodynamic diffusion, which describes large-scale dynamics, is determined by the
response of currents to applied forces. Second, the Onsager reciprocal relations state that
the Onsager matrix is symmetric:

Lij = Lji (Onsager reciprocal relations). (2.5)

This is surprising and says, in words, that the response of the ith current to the jth force
is the same as that of the jth current to the ith force. Third, the Kubo formula, which
makes Onsager reciprocal relations explicit, relates the Onsager matrix, and thus diffusion
by the Einstein relation, to time-integrated total current correlations,

Lij =

ˆ ∞

−∞
dt

ˆ

R

dx (ji(x, t), jj(0, 0))
c (Kubo formula), (2.6)

where the two-point correlation is symmetric, and in the quantum case given by the
usual Kubo-Martin-Schwinger product [58], see also Appendix A. The Kubo formula is
important, showing that the Onsager matrix is non-negative. This finally implies positive
entropy production under the hydrodynamic equation. That is, the total entropy of the
hydrodynamic state,

S = −Tr[ρhydro log ρhydro], ρhydro = e−
´

dxβi(x)qi(x) (2.7)

where βi(x) are the local thermodynamic potentials, qi(x) the local densities, can only
increase by the formula

dS

dt
=

ˆ

R

dx ∂xβ
i
Lij∂xβ

j ≥ 0 (entropy production), (2.8)

which makes diffusive hydrodynamics irreversible, see sec. 5.2.
It is a simple matter to account for the presence of ballistic transport in addition to

diffusive behaviours; this translates into a different definition of the Onsager matrix (2.3),
and the Kubo formula (2.6), where the ballistic part is subtracted out, see in particular
the next section 3.

These important relations have been derived at various levels of generality and in
various models. However, questions still arise regarding their domain of validity [40–43].
What properties must a many-body system possess for this general theory to hold? It
is often believed that time reversal invariance is required; however, Onsager reciprocal
relations have been observed in systems without time-reversal invariance [40].

We claim that time-reversal invariance is not necessary for the Einstein relation, On-
sager reciprocal relations, the Kubo formula and positive entropy production. Instead, all
relations follow solely from general principles of statistical mechanics, along with the con-
dition that the system admits PT-symmetry. The presence of PT-symmetry in a model
means that there exists a choice of conserved densities qi(x, t) and an involution σ of
the algebra of observables, such that σ flips space and time but otherwise preserves all
conserved densities,

σ(qi(x, t)) = qi(−x,−t) (PT-symmetry). (2.9)
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(Note that as a consequence of the conservation laws, PT-symmetry also preserves all
currents, σ(ji(x, t)) = ji(−x,−t); it also preserves all maximal entropy states). That is,
see explicitly eq. (3.8) and (3.9),

PT-symmetry ⇒ (2.10)

Einstein relation, Onsager reciprocal relations, Kubo formula, entropy production.

We believe this important statement has not been fully appreciated in the literature.
As indeed mentioned around eq. (1.4), local conservation laws ∂tqi+∂xji = 0 are invariant
under the re-definitions, or gauge transformation, namely at diffusive order we are free to
redefine the densities and their currents as

qi 7→ qi + ∂xa
(1)
i , ji 7→ ji − ∂ta

(1)
i . (2.11)

As shown in [38] and recalled in section 5, PT-symmetry fully fixes the conserved densities

and currents up to terms that involve two derivatives (that is, a
(1)
i must be a total derivative

with respect to space, or to any of the “times” admitted by the model). A different choice
of gauge in general not only breaks the general relations above but leads to inequivalent
hydrodynamic equations. Without the PT-symmetric choice of gauge, generically, the
resulting hydrodynamic equations do not admit positive entropy growth, invalidating the
use of hydrodynamics.

Below, we assume throughout that PT symmetry holds, eq. (2.9).

3 Dispersive hydrodynamics: setup and main results

In this section, we express our main results about the dispersive-order hydrodynamic
equations.

We consider a (one-dimensional) Hamiltonian system, quantum or classical, with (ho-
mogenous) hamiltonian H and which admits a certain number of conserved quantities with
associated local conservation laws, Eq. (1.3). The hydrodynamic variables are the values
of the conserved densities qi(x, t) at spacetime point x, t. To each such set of values we
can associate generalised inverse temperatures β̄i(x, t) by using averages in homogeneous,
stationary maximal entropy states, which are of Gibbs form:

β̄i ↔ qi :
1

Z
Tr(e−β̄iQiqi) = qi. (3.1)

When considering the hydrodynamic equation including the diffusive (and higher)
orders, it is not true that the local state at x, t is a maximal entropy state. Thus the
β̄i(x, t)’s, for given values of x and t, do not describe the physical local state at x, t, but
are just a way of parametrising the average local densities. Nevertheless, the (abstract)
stationary state described by β̄i(x, t)’s can be used not only to describe the local averages,
but also the hydrodynamic coefficients as functions of x, t.

In such states, we thus consider one-point averages and connected two- and three-point
correlation functions for local observables a(x, t), b(y, s), . . ., which are denoted by

(a) =
1

Z
Tr(e−β̄iQia), (a(x, t), b(y, s)), (a(x, t), b(y, s), c(z, u)) (3.2)

(clearly (qi) = qi). These are symmetric under the exchange of the fields. See Appendix A
for the explicit definitions, which in the quantum case involves the Kubo-Mori-Bogoliubov
(KMB) inner product and its 3-point generalisation. All hydrodynamic coefficients at (x, t)
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are evaluated in terms of connected correlation functions evaluated in the state e−β̄i(x,t)Qi

corresponding to the local values of the qi(x, t)’s (thus are functions of the qi(x, t)’s).

We start by defining the standard static covariance matrices (or susceptibility matrices)

Cij = (Qi, qj) = −
∂(qi)

∂β̄j
, Bij = (Ji, qj) = −

∂(ji)

∂β̄j
, (3.3)

the 3rd order covariance is

C′
ijk = (Qi, Qj , qk) =

∂2(qi)

∂β̄j∂β̄k
, (3.4)

and the flux Jacobian is

A
j
i = BikC

kj =
∂(ji)

∂(qj)
. (3.5)

Here and below, we use the upper-index shorthand for the inverse C matrix

CijC
jk = δki , (3.6)

as well as Einstein’s notation of implied summation over repeated upper and lower indices.

We will show in section 4 and appendix B that, by evaluating the form of the currents
as functions of the densities after local relaxation using microscopic nonlinear response
theory, the hydrodynamic expansion of the current leads to the following expression for
the currents ji(x, t) of the hydrodynamic variables qi(x, t) at point x

ji = (ji)−
1

2
L
(1)
ij Cjk∂qk sgn(t) +

1

2
L
(2)
ij ∂2β̄j +

1

2
L
(1,1)
ijk ∂β̄j∂β̄k. (3.7)

Note how the diffusive part of the current has a factor sgn(t). This characterises the time
direction in which evolution is taken: expression (3.7) is to be put within the conservation
law giving the hydrodynamic equation, which is assumed to evolve from its initial condition
at time 0. The hydrodynamic current takes different forms for a microscopic evolution
towards positive times (sgn(t) = 1) and towards negative times (sgn(t) = −1), because in
both cases, entropy should increase. This is a sign of irreversibility.

The diffusive Onsager matrix derived from the hydrodynamic expansion reads in full
generality as

L
(1)
ij = lim

t→∞
2

ˆ

dy y[(ji(y, t), qj)− A k
i (qk(y, t), qj)]. (3.8)

Here and below, when no arguments appear, the observable is evaluated at (0, 0). Ex-
pression (3.8), in general, is neither symmetric nor positive definite, and does not satisfy
Einstein’s relation. By imposing PT symmetry, it can be recast into the standard Kubo-
like formula

L
(1)
ij =

ˆ ∞

−∞
ds (Ji(s), jj)

C , (3.9)

where Ji(s) =
´

dy ji(y, s) and the superscript C indicates that the infinite time limit of
the correlator is subtracted out:

(Ji(s), jj)
C = (Ji(s), jj)− lim

t→∞
(Ji(t), jj) = (Ji(s), jj)− A k

i (Qk, jj), (3.10)

where hydrodynamic projection has been used in the last equality. Now expression (3.9)
is symmetric, and can be shown to be positive semi-definite.
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At the dispersive order, we have the two following higher-order coefficients

L
(2)
ik =

[

−

ˆ

dxx2(ji(x, t)− A
j
i qj(x, t), qk(0, 0))

]

t0

L
(1,1)
ilm =

[ ˆ ˆ

dxdy xy(ji(0, t) − A
j
i qj(0, t), ql(x, 0)qm(y, 0))

]

t0
. (3.11)

The symbol
[
·
]

t0
means that one should only retain the coefficient of order O(t0) = O(1)

in an asymptotic expansion in integer powers of t at large t. Assuming that the asymptotic
expansion has a finite number of positive powers, this can be written explicitly as limits
with subtractions of the positive powers by solving the recursive system

[
f(t)

]

tn
= lim

|t|→∞
fn(t)/t

n, fn(t) = f(t)− tn+1
[
f(s)

]

sn+1 , (3.12)

starting with fn+1(t) = f(t) if f(t) = O(tn). In fact, in general, the asymptotic expansion
may be different as t → ∞ and t → −∞; we account for this by keeping factors of sgn(t)
in

[
f(t)

]

tn
. As we will see, the expressions within the square brackets above have integer-

power asymptotic expansion; for L
(2)
ik , the expression is O(t), and for L

(1,1)
ilm , it is O(t2),

and we may also write

L
(1)
ij sgn(t) =

[

2

ˆ

dy y[(ji(y, t), qj)− A k
i (qk(y, t), qj)]

]

t0
. (3.13)

Eq. (1.1) is obtained from the above (higher-order) Onsager matrices by setting:

D
j
i = L

(1)
ik Ckj, W(2) j

i = L
(2)
ik Ckj , W(1,1) jk

i = −(L
(1,1)
ilm +W(2) n

i C′
nlm)CljCmk. (3.14)

Equations (1.1), (3.11) and (3.14) are our main results. Further, two related results are
as follows.

First, the equation (1.1) also implies equations for the evolution of the two or higher
point functions. For two-point functions in space-time stationary states, we apply hy-
drodynamic linear response theory by taking the functional derivative δ/δβi(0, 0) on the
hydrodynamic average, and the homogeneous limit. We find for the Fourier transform
Sqq(k, t) =

´

dx eikx(q(x, t), q(0, 0)):

Sqq(k, t) = exp
[

Aikt+
1

2
D(ik)2|t|+

1

2
W(2)(ik)3t

]

C. (3.15)

For higher-point functions, one should generalise the Euler-scale hydrodynamic projection
theory to higher derivative orders, and also consider potential long-range correlations [59];
we hope to come back to this in future work.

Second, we shall then show in section 5 that the imposition of a 2nd order symmetric
gauge guarantees positive entropy increase for eq. (1.1) and a simpler definition of the
hydrodynamic coefficients

L
(2)
ik = L

(2)
0,ik = lim

t→0

[

−

ˆ

dxx2(ji(x, t)− A
j
i qj(x, t), qk(0, 0))

]

L
(1,1)
ilm = L

(1,1)
0,ilm = lim

t→0

[ˆ ˆ

dxdy xy(ji(0, t) − A
j
i qj(0, t), ql(x, 0)qm(y, 0))

]

. (3.16)

Note how the extraction of the O(t0) coefficient in a large-time expansion has been replaced
by the simple limit t → 0 (the limit can be taken from above or from below, giving the
same result by PT symmetry). The 2nd order symmetric gauge may or may not exist;
this will depend on the details of the model under study. We will show that it exists for
the free fermion model, and provide indications that it does also for the hard-rod model.
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4 Hydrodynamic expansion

We now explain the main steps in the derivation of the dispersive terms in the results
Equations (3.7), (3.11) and (3.14), from which the hydrodynamic expansion (1.1) follows
by the continuity equations. We do this using microscopic response theory, as introduced in
[39], which allows us to correctly describe the local relaxation necessary for the emergence
of the hydrodynamic equation. All technical calculations are reported in appendix B.

The technique relies on the ansatz that the relation between the average currents ji
and densities qi, within the nth-order hydrodynamic approximation, can be obtained as
the relation that arises for such quantities in the large-time limit, from a density matrix
ρhydro of the form

ρhydro = exp
[

−

ˆ

dx
∑

i

βi(x)qi(x)
]

/Z, (4.1)

expanded to nth order in derivatives of the potentials βi(x). When trying to evaluate
the large-time limit of the currents and densities after doing the expansion in derivatives
of potentials, order by order, one obtains divergences; this is because the true large-time
limit is non-perturbative in potential derivatives. Thus the large-time asymptotic expan-
sion of these quantities has growing terms. However, we will show that the expression
of large-time currents in terms of large-time densities and their spatial derivatives, has a
finite and well-defined large-time limit: all growing terms cancel. This fact was already
known up to the 2nd order, and here we show it at the 3rd order of derivatives in the
potentials. The resulting expression of currents as functions of densities and their spatial
derivatives is therefore valid at the timescale when “partial” relaxation has occurred (meso-
scopic timescale). Indeed, it is natural to define the timescale when partial relaxation has
occurred as the timescale controlled by the vanishing terms in the large-time asymptotic
expansion of currents and densities, as these are expected to be of microscopic origin. The
resulting expression for the currents is then the correct one to use in the hydrodynamic
expansion, as microscopic scales are much smaller than the timescale associated with the
hydrodynamic evolution; this expression expresses the local relaxation that occurs within
“fluid cells”.

Note that the finiteness of the currents when written in terms of densities and their
spatial derivatives at large times, at the third order of the derivative expansion, is a
nontrivial statement; this is one of the main technical achievements of this paper.

For the argument, it is sufficient to consider ρhydro to be at time t = 0, and to evaluate
currents and densities at the point x = 0.

Expanding the density matrix, we write

ρini = exp
[

−

ˆ

dx
∑

i

(βi + x∂βi +
x2

2
∂2βi)qi(x)

]

/Z. (4.2)

Here and below, for convenience, we denote f = f(0), ∂f = ∂xf(x)|x=0, ∂
2f = ∂2

xf(x)|x=0.
Notice that the potentials βi(x) are not the same as the β̄i(x) in (3.1); the β̄i(x) are
formal potentials associated values of conserved densities qi (here, obtained in the large-
time limit). In contrast, the βi are the initial values of the potentials used to study the
relaxation process. The two sets of potentials are related to each other via a derivative
expansion, βi = β̄i +O(∂β̄).

The relaxation process is studied by expanding (4.2), evaluating the currents and den-
sities order by order, and taking the large time limit of their (microscopic) time evolution.

In the following, we shall lighten the notation by discarding indices. We use (·) for the
expectation value in the state Z−1e−βiQi , and likewise (, ) and (, , ) are the appropriate
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connected, KMB-type correlators (see Appendix A) in that state. With this, we define
the integrated correlators

U (n) = −

ˆ

dy yn(q(0, t), q(y, 0)), U (n,m) =

ˆ

dy ynzm(q(0, t), q(y, 0), q(z, 0)) (4.3)

and

V (n) = −

ˆ

dy yn(j(0, t), q(y, 0)), V (n,m) =

ˆ

dy ynzm(j(0, t), q(y, 0), q(z, 0)). (4.4)

We are interested in ō(0, t) = Z−1Tr
(
ρhydroo(0, t)

)
with the state (4.2). The expansion

takes the form

j̄(0, t) = (j) + V (1)∂β +
1

2
V (2)∂2β +

1

2
V (1,1)(∂β, ∂β),

q̄(0, t) = (q) + U (1)∂β +
1

2
U (2)∂2β +

1

2
U (1,1)(∂β, ∂β),

∂q(0, t) = U (0)∂β + U (1)∂2β + U (1,0)(∂β, ∂β),

∂2q(0, t) = U (0)∂2β + U (0,0)(∂β, ∂β). (4.5)

Here, we use the notation (∂β, ∂β) to denote contraction respect to different indices:
(, , )(∂β, ∂β) ≡

∑

m,n(, n,m)∂βn∂βm, to be contrasted with (, )∂2β ≡
∑

m(,m)∂2βm, etc.

We also used the symmetry U
(1,0)
ijk = U

(0,1)
ikj . The remaining non-contracted index is the

same on the right- and left-hand sides.

The relaxation process is described by expressing the values of the currents in the first
line of (4.5) as functions of the hydrodynamic variables (3.1) and their spatial derivatives,
i.e.

qi ≡ q̄i(0, t), ∂qi ≡ ∂qi(0, t), ∂2qi ≡ ∂2qi(0, t). (4.6)

As explained, this step is fundamental in order to obtain finite results at the mesoscopic
timescale. We simply expand the integrated correlators as asymptotic series in large t,
taking care of re-expressing all integrated correlators as functions of β̄i’s instead of βi’s, the
former defined via (3.1). Again, quite remarkably, under the assumption that asymptotic
expansions of integrated correlators at large times take integer powers, in the large (meso-
scopic) time limit the currents ji = j̄i(0, t) become finite expressions of qi, ∂qi, ∂

2qi (all
positive-power, time-divergent terms cancel). The computations are reported in app. B,
giving our main results. It would be interesting to extend these ideas to situations where
large-time asymptotic expansions take non-integer powers (giving superdiffusion and re-
lated phenomena).

5 Gauge fixing

As mentioned in the introduction, a full specification of the 3rd-order hydrodynamics
requires an appropriate gauge fixing, namely a precise choice of the hydrodynamic densities
qi(x), see eq. (1.4). In this section, we introduce the symmetric gauge. This is done for
a quantum theory, but we expect a similar concept to exist also for classical theories.
We propose that the symmetric gauge, if it exists, is the correct gauge. We justify this
statement by showing that hydrodynamics constructed under the symmetric gauge has
a positive increase of the space-integrated local entropy of the hydrodynamic state (more
precisely, the 3rd-order term in the hydrodynamic equation does not affect the entropy,
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thus the entropy increase from the diffusive term, if it is present, still is dominant and
positive).

Recall that as we are looking at higher orders in the hydrodynamic derivative ex-
pansion, the assumption that the system has locally maximised entropy, and therefore is
locally described by a Gibbs state, is not valid anymore. Hence, the notion of local entropy
cannot simply be taken as the von Neumann entropy of the local Gibbs state. We here
introduce an appropriate and natural definition of local entropy; the result that the total
entropy may only increase (implying irreversibility of the flow) justifies why this definition
is useful.

We emphasise that, for any given system, there is no a priori guarantee that the sym-
metric gauge, or any gauge that implies irreversibility (and therefore stability) of the hy-
drodynamic flow, should exist. That is, there may not be local conserved densities that
satisfy the conditions of the symmetric gauge. If the gauge doesn’t exist, one may ar-
gue that the 3rd-order hydrodynamic is simply not a valid description of the large-scale
physics, and additional degrees of freedom, beyond the conserved densities qi(x), must be
introduced to characterise the state at a given time. We shall see that in some cases there
must exist a space of local densities under the symmetric gauge.

5.1 The symmetric gauge

Let us consider the eigenstates {|e〉}e of the (homogenous) Hamiltonian H, which also
diagonalises the total momentum operator K, with momentum and energy eigenvalues
ke, εe. We consider the matrix elements of the charge densities at a given position x = 0,
written as 〈e|qi(0)|e

′〉. By translation invariance,

〈e|qi(x)|e
′〉 = eix(ke′−ke)〈e|qi(0)|e

′〉, (5.1)

and, as we consider the system of infinite size and on continuous space, the total momentum
ke takes all values in R. Notice that the eigenstate parametrisation {e} may be fully
characterised by different quantities beyond energy εe and momentum ke, as the latter
can, in principle, be highly degenerate. Under the choice of such a parametrisation, we
then define charges qi in the n-th order symmetric gauge such that their matrix elements
do not depend on the momentum difference up to corrections of order (ke′ − ke)

n+1, i.e.

∂ℓ

∂(ke′ − ke)ℓ
〈e|qi(0)|e

′〉
∣
∣
∣
ke′−ke=0

= 0 ∀ ℓ ≤ n. (5.2)

Here ∂/∂(ke′−ke) =
1
2(∂/∂ke′+∂/∂ke), and all other parameters in the choice of parametri-

sation of the state |e〉 are kept fixed under differentiation.

This gauge may always be formally achieved by using the n-th order gauge shifts (see
eq. (1.4))

qi(x) 7→ q̃i(x) = qi(x) +
n∑

ℓ=1

∂ℓ
xa

(ℓ)
i (x). (5.3)

Indeed, we may choose the a
(ℓ)
i (x) to cancel the momentum-difference dependence of the

matrix elements up to corrections of order O[(ke − ke′)
n+1],

〈e|q̃i(0)|e
′〉 = 〈e|qi(0)|e

′〉+

n∑

ℓ=1

[

i(ke′ − ke)
]ℓ
〈e|a

(ℓ)
i (0)|e′〉, (5.4)
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by choosing appropriately their matrix elements for ke ≈ ke′ . In fact, this can be expressed
quite explicitly using the center-of-mass operator X conjugate to the total momentum
[X,K] = i, which acts as

X|e〉 = −i
∂

∂ke
|e〉. (5.5)

The operators a
(ℓ)
i can be constructed recursively as multiple anticommutators with the

centre of mass operator X, by cancelling the leading power of ke′ − ke at each step. We

define q
(ℓ)
i = q

(ℓ−1)
i + ∂xa

(ℓ)
i with q

(0)
i = qi and q

(n)
i = q̃i, and we have

a
(ℓ)
i (0) = −

1

2ℓℓ!
{X, {. . . , {X,
︸ ︷︷ ︸

ℓ

q
(ℓ−1)
i (0)}}}. (5.6)

In fact, by the recursive procedure, one can see that this equality is required, at each step,
only for matrix elements at equal momenta ke = ke′ .

For example, imposing the second-order symmetric gauge reads as

〈e|q̃i(0)|e
′〉 = 〈e|qi(0)|e

′〉+ i(ke′ − ke)〈e|a
(1)
i (0)|e′〉 − (ke′ − ke)

2〈e|a
(2)
i (0)|e′〉, (5.7)

where

〈e|a
(1)
i |e′〉 = i

∂

∂(ke′ − ke)
〈e|qi|e

′〉, (5.8)

and

〈e|a
(2)
i |e′〉 =

∂2

∂(ke′ − ke)2
〈e|qi + ∂xa

(1)
i |e′〉

=
∂2

∂(ke′ − ke)2
〈e|qi|e

′〉 −
∂2

∂(ke′ − ke)2
(ke′ − ke)

∂

∂(ke′ − ke)
〈e|qi|e

′〉. (5.9)

We refer to as fully symmetric gauge the case where all functions a
(ℓ)
i are fixed for all

ℓ > 0, and matrix elements of charge densities do not depend at all on the total momen-
tum difference, namely the n = ∞ order in eq. (5.4).

Two caveats are in order about this formal construction. First, the operator X is not
uniquely determined by [X,K] = i. Only relation (5.5) fixes it. Thus the choice of X is
related to the choice of parametrisation {e} of the eigenstates e for the extra quantum
numbers not fixed by the total momentum and energy. Second, in general, there is no
guarantee that the multiple anticommutator expression (5.6) gives a local operator q̃i. Yet,
the locality of the densities is (presumably) important for the hydrodynamic equation to
make sense. For instance, in a system of N particles with positions x̂i and momenta p̂i,
the total momentum operator is K =

∑

i p̂i, and a natural choice is X = N−1
∑

i x̂i; but
the anticommutators of X with local observables are not generically local. Perhaps one
may find an appropriate choice of X (thus of eigenstates parametrisation) for the result
to be local. More likely, the condition (5.6) is only satisfied for ke ≈ ke′ , and the matrix
elements beyond this neighbourhood are fixed by requiring locality. In order to argue that
it should be possible to keep locality after gauge fixing, recall that locality is assessed
by considering the commutators (here, we concentrate on diagonal matrix elements for
simplicity of the discussion)

〈e|[qi(x), qj(0)]|e〉 = 2 Im
∑

e′

ei(ke−ke′ )x〈e|qi|e
′〉〈e′|qj|e〉 (5.10)
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and requiring the vanishing of this commutator at large enough distances. Thus, if the
charges qi after being gauged remain local, all such commutators should decay at large
x. The formally-written sum over e′ includes an integral over the continuous values of
ke′ , and a typical mechanism for the vanishing of commutators is to perform a contour
deformation of this integral, towards imaginary directions, up to the positions of singu-
larities of the matrix elements or the integration measure. The imaginary part of the
closest such position determines the exponent in the (expected) exponential decay. This
mechanism suggests that it is the analytic structure of the matrix element of 〈e|qi|e

′〉 away
from ke = ke′ that determines the locality of qi, hence generically, we should expect that
it is possible to modify form factors in a neighbourhood of ke = ke′ without affecting the
locality of the densities qi(x).

We remark that the PT gauge choice we discussed earlier is a weaker condition than

the symmetric gauge, but the modification by the gauge functions a
(ℓ)
i , as constructed

above, does not affect the PT symmetry of the charge densities. Thus, all conclusions
that follow from PT symmetry are unchanged. Indeed, as shown in [38, App C2] PT
gauge fixing is unique up to a shift ∂xz(x), where z(x) is a PT antisymmetric operator.

As σ(X) = −X, any shift functions a
(ℓ)
i constructed by eq. (5.6) has PT-parity equal to

(−1)ℓ, i.e. σ(a
(ℓ)
i (x)) = (−1)ℓa

(ℓ)
i (−x), hence it does not affect PT-symmetry of qi. Notice

moreover that for every ℓ odd, all diagonal matrix elements must vanish, 〈e|a
(ℓ)
i |e〉 = 0,

and thus a
(ℓ)
i must be a total, either space of time, derivative.

For a consistent hydrodynamic theory at diffusive (2nd) order, PT symmetry is suffi-
cient, as we have argued above (and see [38]). At dispersive (3rd) order, as we now argue,
the 2nd order symmetric gauge is enough. In fact, it implies that integrated correlators
appearing in the hydrodynamic expansion (4.5) are all polynomial functions in t (with in
general different polynomials for the expansion as t → ±∞ as per time-reversal symmetry
/ anti-symmetry), and in particular

L
(2) = L

(2)
0 , L

(1,1) = L
(1,1)
0 , (5.11)

where the coefficients on the right-hand side are obtained by computing the integrated
correlators directly at time t = 0+. This, as we show in sec. 5.2, guarantees a positive
entropy increase.

Let us argue for eq. (5.11): First, let us notice the important fact that matrix elements
of densities and currents indeed satisfy the continuity equation

(εe − εe′)〈e|qi(0)|e
′〉 = (ke − ke′)〈e|ji(0)|e

′〉, (5.12)

therefore, modulo a zero density of states, the matrix elements of the charge densities qi
between states with zero momentum difference (ke − ke′) = 0 are zero unless their energy
difference is also zero (εe − εe′) = 0. We then insert a resolution of identity

∑

e′ |e
′〉〈e′| in

the computation of one of the correlation functions appearing in (4.5)

[V (2)]ik =
∑

e

∑

e′

ρe,e′δ
′′(ke − ke′)e

−it(εe−εe′ )〈e|qi|e
′〉〈e|jk|e

′〉∗. (5.13)

The measure ρe,e′ is the KMS density of states obtained after integration over the imagi-
nary time. In the 2nd order symmetric gauge, the derivative of momenta can not act on
the matrix elements, as they do not depend on ke − ke′ , therefore it can only act on the
measure ρe,e′ or the energy phase e−it(εe−εe′), but keeping the constraint that then the
sum over e′ only involves states with zero energy difference εe− εe′ = 0. We conclude that
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the correlator must be a polynomial in t. One can then easily repeat the same argument
for the integrated correlators U (2), as well as V (1,1) and U (1,1).

In quantum integrable models, it is known how to define matrix elements between
stationary states, defined by quasiparticle densities, and their excitations, defined by
particle-hole shifts [38, 60–62]. There, every charge density qi(0) acts on a quasiparti-
cle state specified by its density |ρθ〉 of quasiparticles, in the following manner

qi(0)|ρθ〉 =
∑

e′

F
(qi)
e′ |ρθ, e

′〉, (5.14)

where F
(qi)
µ are usually called finite-density form factors and the excitations e′ are typically

in the form of particle-hole, (ph), namely a set of hi, the holes, are replaced by a new set
pi, the particles, in the finite-density thermodynamic state |ρθ〉 (characterised by dressed
momentum and energy k(θ), ε(θ) and particle filling n(θ)) and the summation over states
become a sum over particle-hole contributions

∑

e′

=

∞∑

m=1

1

(m!)2

[ m∏

i=1

ˆ

dpi
2π

k′(pi)(1− n(pi))

ˆ

dhi
2π

k′(hi)n(hi)
]

. (5.15)

The only non-zero measure set of states with zero momentum and energy with finite matrix
elements are in the one and two-particle hole sectors. Indeed we have, for states differing
by one particle-hole excitation, energy and momentum difference reads

1ph ε(p) − ε(h) , k(p)− k(h), (5.16)

and zero momentum implies directly zero energy. For two particle holes instead, energy
and momentum difference reads

2ph ε(p1) + ε(p2)− ε(h1)− ε(h2) , k(p1) + k(p2)− k(h1)− k(h2). (5.17)

Here clearly zero momentum difference does not directly imply zero energy difference, but
there exist a non-zero measure set of states where energy also is zero, namely those states
where the difference p1 − h1 and p2 − h2 (or equivalently p1 − h2 and p2 − h1) are sent
to zero. These states are known to have diverging terms in their matrix elements that
compensate their zeros at small momentum (giving this way to finite matrix elements
with zero momentum and energy). Their contribution contains the diffusive parts of the
integrated correlation function [38, 63, 64]. At higher particle-hole numbers there is no
such divergence at zero energy and momentum (modulo a zero density of states) and
therefore form factors with zero momentum are strictly zero. Moreover, by imposing a
n-th symmetric gauge, they are zero up to O((kn − km)n+1) corrections, and therefore
they can be neglected in the calculation of any correlation function of the type as in (4.5)

ˆ

dy yn(qi(y, t), o), (5.18)

(with a generic operator o) and their higher points generalisation. This statement leads
to the computation of the coefficient (6.15), which is reported in sec. D.

Finally a comment on the existence of the symmetric gauge at order larger than 1
(the first order is simply PT symmetry as specified above). It is clear that in any model
where the center of mass operator X can be written we can gauge its densities as in (5.6).
This is doable in any model on the continuum, where momentum can always be defined.
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For models on the lattice or generically with broken translational symmetry we cannot
prove the existence of such a gauge, even if it could be effectively possible to introduce
a quasi-conserved momentum operator or a non-local one (as is the case in interacting
quantum integrable models).

5.2 Entropy production

The increase, over hydrodynamic times, of the total entropy, provides a measure of the
validity of the hydrodynamic equation. Indeed, the total entropy, evaluated as the sum
over all hydrodynamic fluid cells of each cell’s entropy, can only increase, as the information
that the state contains, as seen as a set of separate fluid cells, can only decrease. This
is irreversibility of the hydrodynamic flow. Intuitively, a negative entropy increase would
signify that information from microscopic (neglected) degrees of freedom is coming up
to the hydrodynamic state, invalidating its use. This is why choosing the appropriate
gauge for the densities qi(x) (that is, the appropriate total-derivative terms, see (1.4)) is
fundamental to describing the state properly at the hydrodynamic scale. Only those sets
of densities (not necessarily unique) that guarantee positive entropy increase are valid for
a correct hydrodynamic description.

This however brings the question of the correct definition of the total entropy of fluid
cells. At the Euler scale, this is straightforward, as each fluid cell is assumed to have max-
imised entropy, with β̄i(x, t) describing the local Lagrange parameters. The von Neumann
entropy of each maximal-entropy state is the natural candidate, and the correct one, giv-
ing zero entropy increase at the Euler scale. At the diffusive scale, the states in fluid cells
are not maximal entropy states, as expectations of local observables admit first-derivative
corrections. Thus, (as explained in previous sections) the β̄i(x, t)’s do not describe actual
maximal entropy states, but are just a way of parametrizing the local conserved densities
qi(x, t) (which themselves describe the local state and solve the hydrodynamic equation).
Nevertheless, it turns out that the same (naive) definition of the local entropy – the von
Neumann entropy associated to β̄i(x, t)’s – also correctly gives entropy increase.

At the third order, however, this would be too naive. In this subsection, we explain
what the correct definition is, which in principle should be valid at all orders; why it
reproduces the naive one at diffusive order; and why, in the symmetric gauge, the third-
order (dispersive) contribution to the entropy increase vanishes, thus guaranteeing (with
entropy increase from the diffusive order) the correct behaviour.

Consider the time-slice at time t. The state is described by the local density averages
qi(x, t) : x ∈ R. By the map (3.1), it is equivalently described by β̄i(x, t) : x ∈ R. But
also, the state may be described by the following density matrix on time slice t:

ρhydro(t) = Z−1 exp
[

−

ˆ

dxβi(x, t)qi(x, t)
]

, qi(x, t) = 〈qi(x, t)〉ρhydro . (5.19)

The expansion in the 2nd equation of (4.5), at t = 0 (and with q̄(0, t) replaced by q(0, 0)
on the left-hand side), provides the relation between qi(0, 0), and (qi) (the GGE average
of qi in the state described by βj(0, 0)’s) and the derivatives ∂βj(0, 0), ∂2βj(0, 0). This
expansion can be inverted, and, translating to arbitrary points x, t, in this way one deter-
mines the βj(x, t)’s in (5.19) in terms of qi(x, t)’s and their spatial derivatives. The state
(5.19) is thus an effective description of the time-slice t up to the appropriate derivative
order (here: the dispersive order). Our proposal is simply that the von Neumann entropy
of this state is in fact the correct total hydrodynamic entropy,

Shydro(t) = −Tr[ρhydro(t) log ρhydro(t)]. (5.20)
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We show that his can only increase under hydrodynamic time evolution, up to, including,
the dispersive order. We first note that a direct calculation gives

Ṡhydro(t) =

ˆ

dxβi(x, t)
(
q̇i(x, t)− 〈q̇i(x, t)〉ρhydro

)

=

ˆ

dx ∂βi(x, t) (ji(x, t)− 〈ji(x, t)〉ρhydro). (5.21)

The hydrodynamic current ji(x, t) is given by (3.7) (at t > 0 as we are looking for entropy
increase towards positive times). The local “current deformation” 〈ji(x, t)〉ρ is obtained,
at (0, 0), from the 1st equation in (4.5) again evaluated at t = 0 (and with j̄i(0, t) replaced
by 〈ji(0, 0)〉ρ on the left-hand side); and at other points (x, t) simply by translation. Every
quantity should be re-written in terms of qi(x, t), equivalently β̄i(x, t).

Let us denote the quantities defined in (4.3), (4.4) at t = 0 using the subscript •0. By
PT symmetry (see also (B.28)) one immediately obtains

[U
(1)
0 ]ij = 0, [V

(1)
0 ]ij = 0. (5.22)

The first equation simplifies the transformation from βi to β̄i, obtained using the 2nd
equation in (4.5):

β̄i = βi −
1

2
Cil[U

(2)
0 ]lj∂

2β̄j −
1

2
Cil[U

(1,1)
0 ]ljk∂β̄

j∂β̄k. (5.23)

The second equation in (5.22) simplifies the expression for the current deformation,

〈ji〉ρhydro = (ji) +
1

2
[V

(2)
0 ]ij∂

2β̄j +
1

2
[V

(1,1)
0 ]ijk∂β̄

j∂β̄k. (5.24)

Putting everything together, we then finally obtain the following total entropy increase:

Ṡ = Ṡdiff +
1

2

ˆ

dx ∂β̄i
[

(L(2) − L
(2)
0 )ij∂

2β̄j +
(

L
(1,1) − L

(1,1)
0

)

ijk
∂β̄j∂β̄k

]

, (5.25)

where, with subscript •0, we have the 3rd order coefficients computed directly at t = 0,
see eq. (3.16). The entropy increase generated by diffusive terms is given as usual by

Ṡdiff =
1

2

ˆ

dx ∂β̄i[L(1) − L
(1)
0 ]i,j∂β̄

j =
1

2

ˆ

dx ∂β̄i[L(1)]i,j∂β̄
j . (5.26)

We note that at the dispersive order, we do not expect integrated correlators to show

discontinuities at t = 0: the limits t → 0± agree and thus the definitions of L
(2)
0 and L

(1,1)
0

in (3.16) make sense. Therefore, in the symmetric gauge, where the polynomial form
implies that the O(t0) terms are given by the evaluation at t = 0+, see (5.11), we indeed
have the equalities (3.16), and therefore the vanishing of the dispersive entropy-increase
term in (5.25). In the absence of symmetric gauged densities, the integral in Eq. (5.25) is
nonzero; as this integral does not have a specific sign, in this case the entropy increase due
to dispersive terms (3rd order in spatial derivatives) may take both positive and negative
values. Making the dispersive contribution zero is the only way which, in combination with
positive semi-definiteness of the Onsager matrix L

(1) (which follows from PT symmetry),
guarantees positive entropy production, hence the stability of the dispersive hydrodynamic
equation. This is achieved in particular if the set of local densities qi(x) is chosen such
that the integrated correlators determining the currents at 2nd order in derivatives, are
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polynomial functions in t, implying that condition (5.11) holds. This is indeed true under
the 2nd order symmetric gauge.

We stress that the continuity of correlators L
(2) and L

(1,1) at t = 0, is not shared by
the diffusive order correlators: even if the integrated correlators [V (1)]ij are polynomial in
t, the term of order O(t0) is antisymmetric under time reversal, hence is proportional to

sgn(t) and the limit t → 0± disagree. Also, the time-0 integrated correlator, [V
(1)
0 ]ij , is

exactly 0, see eq. (5.22), by PT symmetry. Hence, the correlator [V (1)]ij (and the same
for [U (1)]ij) is discontinuous

lim
t→0+

[V (1)]ij 6= [V
(1)
0 ]ij = 0. (5.27)

Therefore, given that L(1) = limt→0+ [V
(1) −AU (1)], we have [L(1) − L

(1)
0 ] = L

(1) 6= 0 and
diffusion still leads to finite, yet positive, entropy increase, also under symmetric gauge.

6 Examples of dispersive hydrodynamics in integrable mod-

els

In this section, we provide some examples of applications of our hydrodynamic theory, in
particular for certain integrable systems.

6.1 Free fermions gas

We here consider the hydrodynamic description of a fermionic model (with fermionic
number conservation) on the continuum space given by the generic Hamiltonian

H =

ˆ

dk

2π
ε(k)c†kck, (6.1)

with dispersion velocity v(k) = ∂kε(k). The densities of charges can be defined using the
well-known Wigner function description [65–67], namely

qi(0) =

ˆ

dy

ˆ

dk

2π
hi(k)e

iykc†
−y/2

cy/2 =

ˆ

dk1
2π

dk2
2π

hi((k1 + k2)/2)c
†
k1
ck2 , (6.2)

with hi(k) the single-particle eigenvalue of the charge Qi =
´

dx qi(x) (this definition can
be directly extended to systems on a lattice, provided

´

dy is replaced by
∑

y∈Z [68]). The
definition of the charges (6.2), with the shift in y symmetric between the two fermionic
operators, respect the fully symmetric gauge, as the matrix elements are not functions of
k1 − k2 at all orders in k1 − k2.

It is known that under this gauge, in free fermionic theories, can allow for a hydrody-
namic expansion at all orders, as shown in [33, 34]. However we can limit ourselves to a
2−nd order symmetric gauge (higher orders won’t affect the hydrodynamic equation up
to dispersive order) and in section C, we shall show how hydrodynamic expansion gives
the following expression for the 3rd order hydrodynamic coefficients, on a generic state
specified by the occupation function n(k)

L
(2)
ik =

1

12

ˆ

dk

2π
v′′(k)n(k)(1 − n(k))hi(k)hl(k), L

(1,1) = −W(2)C′, (6.3)

with

Cil =

ˆ

dk

2π
n(k)(1 − n(k))hi(k)hl(k), W

(2)
i

l =
1

12

ˆ

dk

2π
v′′(k)hi(k)hl(k). (6.4)
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Therefore, the hydrodynamic expansion leads to the same well-known hydrodynamic equa-
tion for the expectation value n(k, x, t) of the occupation (Wigner) function

n̂(k, x, t) =

ˆ

dyeiykc†x+y/2cx−y/2, (6.5)

that reads as

∂tn(k, x, t) = −v(k)∂xn(k, x, t) +
v′′(k)

24
∂3
xn(k, x, t), (6.6)

in full accord with previous derivations [68–70].

6.2 Gauge ambiguity and free fermions vs interacting systems

Free fermions systems satisfy the condition (5.11), namely zero entropy increasing, for all
choices of gauges, as their charge densities are quadratic in fermionic operators, namely all
their charge densities are characterised by zero entropy increase (this is true at diffusive
scale, where L(1) = 0 for free theories, no matter what gauge is chosen to fix the functions

a
(1)
i (x), [71]). The choice of the fully symmetric gauge, therefore, is merely convenient, and

it does not affect the validity of the hydrodynamic description, see sec. E for additional
details, however it does affect the form of the hydrodynamic equations. In particular, a
different choice of densities leads to a non-symmetric L

(2) matrix and the violation of
relation (6.12). We denote by qi the densities in the (2nd-order) symmetric gauge and by
q̃i a set of (still PT invariant) charges not in the symmetric gauge. The two are related by
a shift ∂2

xa
(2). When describing the hydrodynamic state with the hydrodynamic variables

qi = Tr[qe−β̄iQi ]/Z, our result of (3.7) for symmetric gauged densities gives

∂tqi = AC∂β̄ −
1

2
∂x(L

(2)∂2β̄), (6.7)

while using the charges q̃ = q − ∂2
xa

(2) we have a different hydrodynamic equation indeed

∂tq̃i = AC∂ ˜̄β −
1

2
∂x

( 1

2
L̃
(2)∂2 ˜̄β +

1

2
L̃
(1,1)(∂ ˜̄β, ∂ ˜̄β)

)

, (6.8)

The fact that different choices of charge densities lead to different hydrodynamic equations
here is resolved by noticing that eq. (6.8) is merely the evolution of the expectation value
〈q̃〉 = 〈q−∂2

xa
(2)〉 = qi−∂2

x〈a
(2)〉 in the hydrodynamic states evolving under (6.7). Indeed

the evolution of this latter is given by

∂tq̃i = AC∂β̄+A∂x(∂
2
x〈a

(2)〉)−
1

2
∂x(L

(2)∂2β̄) = AC∂β̄−
1

2
∂x

( 1

2
L̃
(2)∂2β̄+

1

2
L̃
(1,1)(∂β̄, ∂β̄)

)

,

(6.9)
where we used that in the second term on the right-hand side of eq. (6.8) we can change
˜̄β → β̄ at this hydrodynamic order, and where the extra terms are generated by the term
∂2
x〈a

(2)〉, and they read

L̃
(2) = L

(2) − A
δ2〈a〉

δβ̄2
(6.10)

L̃
(1,1) = −A

δ〈a〉

δβ̄δβ̄
. (6.11)

Therefore the two different hydrodynamics are consistent, and there is no privileged choice

for the gauge functions a
(2)
i in free fermionic systems.
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The same argument would instead fail in a generic interacting model due to the finite
diffusive terms, i.e. with finite Onsager matrix L

(1) in the expression of the current (3.7).
In generic interacting models indeed gauge must be properly fixed, and the hydrodynamic
equations for densities in different gauges would be inconsistent with each other, as only
the proper choice of charge densities, i.e. the set that guarantees positive entropy increase,
can be used to construct stable hydrodynamic theories.

6.3 Interacting quantum integrable system

In quantum integrable models, where in past years the theory of generalised hydrody-
namics have been extensively developed for Euler and diffusive hydrodynamic, see for
example [17–32,72–74], the 2nd order symmetric gauge also guarantees a relation between
the three-point coefficients and the two-point ones, see app. D,

L
(1,1) = −W(2)C′, (6.12)

which implies the hydrodynamic equation for charges in such gauge,

∂tqi + A
j
i ∂xqj =

1

2
∂x

(

D
j
i ∂xqj

)

+
1

2
∂x

(

W(2) j
i ∂2

xqj

)

, (6.13)

with hydrodynamic coefficients that can be analytically computed. In such models, indeed
hydrodynamic variables can be related to a density of quasiparticles ρ(θ)

qi(x, t) =

ˆ

dθ ρ(θ;x, t)hi(θ) ∀i, (6.14)

where hi(θ) is the one-particle eigenvalue of the total charge Qi. The relation involves the
momentum k(θ), energy ε(θ), filling n(θ) = 2πρ(θ)/k′(θ), scattering shift T (θ − θ′) and
effective velocity veff(θ) = ε′(θ)/k′(θ), as it is the case for interacting and free integrable
models. The coefficients, still under second-order symmetric gauge, are then expressed as
operators in the space of functions of θ ∈ R, and the dispersive terms turn out to be a
simple generalisation of the free fermionic ones of eq. (6.4), reading as

W(2) = (1− nT )−1
[k′(θ)ε′′′(θ)− k′′′(θ)ε′(θ)

12(k′(θ))4

]

(1− nT ), (6.15)

analogously to the other (known) coefficients

A = (1− nT )−1veff (1− nT ), C = (1− nT )−1ρ(1− n)(1− Tn)−1, (6.16)

giving the 3rd order generalised hydrodynamic equation for the density ρ(θ;x, t) is

∂tρ+ ∂x(v
effρ) =

1

2
∂x(D∂xρ) +

1

2
∂x(W

(2)∂2
xρ), (6.17)

and with the diffusion kernel D already been derived in previous works and reported for
example in [75].

6.4 Dispersive hydrodynamics of the hard rods gas

A gas made of hard rods particles with fixed length a represents the simplest imple-
mentation of an integrable model, with a constant microscopic scattering shift defined
as T = −a/2π, and a well-defined hydrodynamic limit [76], well discussed in these past
years [77,78]. In particular, as shown in [76], in such a classical system on a ring of size L,
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with total density of rods ρ̄, is possible to express the two-point correlator of the density
of particles n(v, x, t) = L−1

∑

i δ(x− xi)δ(v − vi), with velocity v, v′, at all orders in k on
a stationary state

Sv,v′(k, t) =

ˆ

dxeikx(n(v, x, t), n(v′, 0, t)) S(k, t) = etW(k)C(k), (6.18)

which can then be expanded at low momentum, analogously to our result of eq. (3.15), as

S(k, t) = exp
[

ikAt−
k2

2
D|t| −

1

2
iW(2)k3t

]

C, (6.19)

with the convective matrix

[A](v, v′) =
1

1− aρ̄
δ(v − v′)v +

ρ̄a

(1− aρ̄)2
vh(v) −

ρ̄a

(1− aρ̄)
v′h(v), (6.20)

the diffusion kernel

[D](v, v′) =
ρ̄a2

1− aρ̄
(δ(v − v′)r(v)− |v − v′|h(v)), (6.21)

and the dispersive one

[W](2)(v, v′) =
1

12

( a3ρ̄

1− aρ̄
vδ(v − v′)−

a3ρ̄

1− aρ̄
h(v)v′ −

a3ρ̄(2− aρ̄)

1− aρ̄
h(v)v

)

. (6.22)

These coefficients cannot be obtained directly from our eq. (6.15). In this model indeed
dressed energy and momentum are simple linear functions of the velocity, and their third-
order derivatives with respect to v are therefore zero. While instead, the convective and
diffusive coefficient present a form which is entirely generic, valid for both quantum and
classical integrable models, (see in [38] how they can be written for quantum models and
the hard rod gas) our result for the dispersive coefficient of eq. (6.15) is only valid for
quantum models. One possible way to extend our results of higher order hydrodynamic
terms of quantum theories to the classical hard rod system would be to take a classical limit
of a quantum theory (for example, as done in [79]), such as the Lieb-Liniger model [80].
In this model, with interaction c, the scattering shift is indeed given by

T (θ, α) =
1

π

c

(θ − α)2 + c2
(6.23)

At large c it gives T → 1
πc and therefore it corresponds to the one of the Hard rod gas with

c = −2/a. We can therefore compute the derivative of velocity and momentum in the first
non-trivial order. We have, in an equilibrium state with a density of quasiparticles ρ(θ),

ε′ = 2θ + T ⋆ (nε′), k′ = 1 + 2πT ⋆ ρ, (6.24)

where T acts as a convolution kernel in the space of functions, as usual. We have then

ε′′′ = T ′′ ⋆ (nε′), k′′′ = 2πT ′′ ⋆ ρ. (6.25)

Expanding in the first non-trivial order in 1/c = −a/2 and imposing a zero momentum
state we find

ε′′′ 7→
a3

4π

ˆ

dθn(θ)ε(θ)′ = 0 k′′′ 7→
a3

2
ρ̄, (6.26)

with the bare energy mapping to one of the Hard rod gas ε′ = 2θ 7→ v. We can then apply
the result of (6.15), giving this way a result equivalent to (6.22). We leave for future
works a comprehensive analysis of the validity and the specificity of such limit from the
Lieb-Liniger model to the hard rod gas.
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7 Conclusions

We have reported an extensive and complete derivation of third-order terms of the hydro-
dynamic gradient expansion. The new hydrodynamic coefficients are expressed as gener-
alised Kubo formula, in terms of spatially integrated correlation functions in stationary
states. We have shown that a proper gauge choice is necessary to fix the hydrodynamic
charge densities, the symmetric gauge at 2nd order, in order to guarantee positive en-
tropy production and therefore the validity of the hydrodynamic theory. We have shown
how under the proper gauge the newly introduced hydrodynamic terms can be computed
in the case of quantum integrable models, extending this way the theory of generalised
hydrodynamics to include dispersive terms.

Many questions are now in sight: first, we expect that numerous studies shall be de-
voted to computing the newly derived dispersive terms in quantum integrable systems,
where some work will be also necessary to obtain the charge densities in the second-order
symmetric gauge. Such dispersive terms are expected to be relevant in regimes of low
temperatures and large gradients, and for example could provide a microscopic derivation
of the quantum pressure in the Bose gas and of quantum hydrodynamic terms beyond
linear Luttinger liquids [81], i.e. beyond Euler spreading of quantum correlations [29].
Then further studies shall focus on the quantum-classical correspondence of the hydrody-
namic terms. As we have shown, the quantum and the classical third-order coefficients
differ, at least when looking at the classical gas of hard rods, as opposed to the ballistic
and diffusive terms, which instead take a universal form for both quantum and classical
theories (where, at diffusive order, quantum / classical-ness is encoded only within the
free energy function). In the near future, we aim to analyze more specifically the origin
of such discrepancy and the type of semi-classical limits necessary to derive dispersive
hydrodynamic terms for classical integrable theories from their quantum ones.

Finally, we have also emphasise how PT symmetry is important at the diffusive order,
but not sufficient at the dispersive one. In this context, it is worth mentioning that one of
the most important lines of current research in emergent large-scale behaviours is the ex-
tension of hydrodynamic theories to active systems. There, the breaking of PT symmetry,
manifested by non-reciprocity, plays a crucial role [82, 83], and the general ideas we have
developed may help to establish guiding principles for active-systems hydrodynamics.
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A Kubo-Mori-Bogoliubov inner product and its generalisa-

tions

We are interested in correlation functions

〈a1a2 . . .〉 =
Tr(e−βiQia1a2s)

Tre−βiQi
, (A.1)

and in particular in connected correlation functions 〈a, b, . . .〉c; note that 〈a, b, . . .〉c =
〈a− 〈a〉, b − 〈b〉, . . .〉 for the 2- and 3-point connected correlation functions.

In classical models, correlation functions (where Tr is replaced by the ensemble average)
have the property of being invariant under permutations of the observables. In quantum
models, this symmetry is broken, because observables are operators, and don’t necessarily
commute with each other.

The quantities that arise from perturbation theory in classical models are indeed such
correlation functions. However, in the quantum case this is not so. Instead, correlations
where operators are integrated over imaginary time are involved. In particular, with ~ = 1,
it is the standard “KMB inner product” that arises, which takes the form

(a, b)KMB =

ˆ 1

0
dτ 〈aτ b〉, (A.2)

where aτ = eτβ
iQiae−τβiQi . At the third order, it is a 3rd order “KMB correlation func-

tion”, which takes the form

(a, b, c)KMB =
1

2

ˆ 1

0
dτ

ˆ τ

0
dτ ′

[

〈aτ bτ
′

c〉+ 〈bτaτ
′

c〉
]

. (A.3)

Again, we are interested in the connected versions (a, b)cKMB and (a, b, c)cKMB, defined
as above but in terms of connected correlation functions. In order to account for both
classical and quantum models simultaneously, we will simply define

(a, . . .) =

{
〈a, . . .〉c (classical)
(a, . . .)cKMB (quantum)

(A.4)

It turns out that these expressions are now fully symmetric, including in the quantum
case:

(a, b) = (b, a), (a, b, c) = (b, c, a), (a, b, c) = (b, a, c), (A.5)

(the latter two equalities are two actions of the symmetric group S3 which generate the
whole group, so are sufficient to show that the expression is fully symmetric). Symmetry
of the KMB two-point function is well known, and the last equality in (A.5) is immediate.
Hence, let us prove is the second equality in (A.5). We only consider the first term in
(A.3), as this will imply a similar result for the second term:

ˆ 1

0
dτ

ˆ τ

0
dτ ′ 〈aτ bτ

′

c〉
KMS
=

ˆ 1

0
dτ

ˆ τ

0
dτ ′ 〈bτ

′

caτ−1〉

stationarity
=

ˆ 1

0
dτ

ˆ τ

0
dτ ′ 〈bτcτ

′

a〉, (A.6)

where in the first equality we employed the Kubo–Martin–Schwinger (KMS) relation [84].
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In order to see how these definitions apply to perturbation theory, let us consider an
expansion of the stationary state under small perturbations. We may use the general
relation

eA+λB = eA + eA
ˆ 1

0
dτ e−τAλBeτA + eA

ˆ 1

0
dτ e−τAλB

ˆ τ

0
dτ ′ e(τ−τ ′)AλBeτ

′A +O(λ3).

(A.7)
Let us apply this to expand the following (un-normalized) density matrix in powers of the
derivatives βk′ and βk′′, which is relevant to the hydrodynamic expansion:

ρ = exp

(

−

ˆ

dx

(

βk + βk′x+ βk′′x
2

2

)

qk(x)

)

. (A.8)

Denoting ρGGE = e−βkQk , we obtain

ρ = ρGGE

(

1−

ˆ 1

0
dτ

ˆ

dxβk′xqτk(x) +

ˆ 1

0
dτ

ˆ τ

0
dτ ′
ˆ

dxdy xyβk′βl′qτk(x)q
τ ′

l (y)

+
1

2

ˆ 1

0
dτ

ˆ

dxx2βk′′qτk(x)
)

. (A.9)

Taking into consideration the expansion of Tr(ρ) as well, expectation values are expanded
as

〈o〉 = 〈o〉GGE − βk′

ˆ

dxx

ˆ 1

0
dτ〈qτk(x), o〉

c +
1

2
βk′′

ˆ

dxx2
ˆ 1

0
dτ〈qτk(x), o〉

c

+ βk′βl′

ˆ

dxdy xy

ˆ 1

0
dτ

ˆ τ

0
dτ ′〈qτk(x), q

τ ′

l (y), o〉c. (A.10)

By using the symmetry under exchange of indices k ↔ l on the last line, this indeed is
written in terms of the 2- and 3-point KMB connected correlation functions,

〈o〉 = 〈o〉GGE − βk′

ˆ

dxx(qk(x), o) +
1

2
βk′′

ˆ

dxx2(qk(x), o)

+
1

2
βk′βl′

ˆ

dxdy xy (qk(x), ql(y), o). (A.11)

B Hydrodynamic expansion calculations

Let us denote as in the main text

U (n) = −

ˆ

dy yn(q(0, t), q(y, 0)), U (n,m) =

ˆ

dy ynzm(q(0, t), q(y, 0), q(z, 0)), (B.1)

and

V (n) = −

ˆ

dy yn(j(0, t), q(y, 0)), V (n,m) =

ˆ

dy ynzm(j(0, t), q(y, 0), q(z, 0)). (B.2)

along with

U
(n)
0 =

[
U (n)

]

t0
, U

(n,m)
0 =

[
U (n,m)

]

t0
, V

(n)
0 =

[
V (n)

]

t0
, V

(n,m)
0 =

[
V (n,m)

]

t0
, (B.3)

i.e. their correspondent O(t0) = O(1) terms in their large t expansion. Recall that
these are evaluated in a homogeneous, stationary state characterised by potentials βi, or
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equivalently by the densities (qi). Moreover, we shall use all the known Euler and diffusive
hydrodynamic coefficients in this state: the convective matrix or flux Jacobian A (3.5),
susceptibility matrix C (3.3), and diffusion matrix D (3.14), (3.9). We also use C′, A′, D′

as C′
ijk = −∂βkCij (eq. (3.4), fully symmetric) and (A′) jk

i = ∂(qk)A
j
i (symmetric in j, k),

(D′) jk
i = ∂(qk)D

j
i . We will also sometimes use B′

ijk = −∂βkBij (symmetric in j, k, see
(3.3) for the B matrix). We note that, using B = AC,

B′ = A′(C,C) + AC′, (B.4)

which we will use to simplify the form of some equations.
We have from (4.5), and noting that U (0) = −C, U (0,0) = C′ (here and below, expres-

sions are valid up to, including, 2nd derivatives),

j̄ = (j) + V (1)∂β +
1

2
V (2)∂2β +

1

2
V (1,1)(∂β, ∂β)

q = (q) + U (1)∂β +
1

2
U (2)∂2β +

1

2
U (1,1)(∂β, ∂β)

∂q = −C∂β + U (1)∂2β + U (1,0)(∂β, ∂β)

∂2q = −C∂2β + C′(∂β, ∂β). (B.5)

As mentioned in the main text, to have a self-consistent hydrodynamic equation, we
now must express the value of the currents in the first line of (B.5) as functions of the
hydrodynamic variables q̄, rather than the q ≡ (q). The relation between the two sets of
densities can be inverted as follows:

(q) = q− U (1)∂β −
1

2
U (2)∂2β −

1

2
U (1,1)(∂β, ∂β). (B.6)

Notice how for now, we are keeping U (1), U (2) and U (1,1) evaluated at (q), not q = q̄. Later
in the computation, we will evaluate these at q (that is, integrated correlation functions
as per their basic definition, but in the state characterised by q instead of (q)), which we
will denote Ū (1), Ū (2) and Ū (1,1). Using (B.6), the first term, (j), in the expression for j̄
in (B.5), is written in terms of q as follows

(j) = (j) − ĀU (1)∂β −
1

2
ĀU (2)∂2β −

1

2
ĀU (1,1)(∂β, ∂β) +

1

2
Ā′(U (1)∂β,U (1)∂β) (B.7)

where (j) = (j)q is the current average in the state characterised by q, and Ā = ∂(j)/∂q
is the flux Jacobian in that state. The last term in (B.7) comes from the 2nd order term
in the Taylor expansion of (j)q+δ in δ = −U (1)∂β+ higher derivatives. We then obtain
the following expression for the current

j̄ = (j) + (V (1) − ĀU (1))∂β +
1

2
(V (2) − ĀU (2))∂2β

+
1

2
(V (1,1) − ĀU (1,1))(∂β, ∂β) +

1

2
Ā′(U (1)∂β,U (1)∂β)

= (j) + (V (1) − AU (1))∂β +
1

2
(V (2) − AU (2))∂2β

+
1

2
(V (1,1) − AU (1,1))(∂β, ∂β) −

1

2
A′(U (1)∂β,U (1)∂β), (B.8)

where in the second step we have re-expanded all Ās and Ā′ about the state q using
Ā = A+ A′U (1)∂β+ higher derivatives and Ā′ = A′+ higher derivatives.
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We shall show that hydrodynamic calculations give (see section B.1), in general, up to
vanishing terms in time o(1),

U (1) = ACt, U (2) = −A2Ct2 −DC |t|+ U
(2)
0 , (B.9)

U (1,0) = −B′t, (B.10)

and

V (1) = A2Ct+
1

2
DC sgn(t), V (2) = −A3Ct2 − (AD+DA)C |t|+ V

(2)
0 , (B.11)

which also allows writing L
(1), defined in (3.8) as L(1) =

[

2(V 1 − AU1)
]

t=∞
, in the form

L
(1) = DC, (B.12)

the Einstein relation (2.4). Note that U
(2)
0 , V

(2)
0 are independent of t and not determined

by the Euler and diffusive scales (the above expansions define them). From this, we find
in particular

V (2) − AU (2) = −DAC |t|+ L
(2), (B.13)

where we used L
(2) = V

(2)
0 − AU

(2)
0 from (3.11). Further, we have (see section B.1)

V (1,0) − AU (1,0) = A′(AC,C)t+
1

2
(D′(C,C) +DC′) sgn(t), (B.14)

and

V (1,1) − AU (1,1) = A′(AC,AC)t2 +
1

2
D

′(C,AC)(1 + P ) |t|+DB′ |t|+ L
(1,1), (B.15)

where P is the permutation P kl
ij = δliδ

k
j and we used L

(1,1) = V
(1,1)
0 −AU

(1,1)
0 , again from

(3.11).

We insert these into (B.8) to obtain

j̄ = (j) +
1

2
L
(1)∂β sgn(t) +

1

2
(−DAC|t|+ L

(2))∂2β

+
1

2

(

D′(C,AC)|t|+DB′|t|+ L
(1,1)

)

(∂β, ∂β). (B.16)

Notice how the t2 terms have already been cancelled. We now invert the last two equations
in (B.5); we denote by β̄ the potentials associated to the state characterised by q = q̄. We
have:

−C∂β = ∂q− ACt∂2β̄ + B′t (∂β̄, ∂β̄)

−C∂2β = ∂2q− C′(∂β̄, ∂β̄). (B.17)

We insert this into (B.16) using L
(1) = DC, together with the expression of the diffusion

constant as a function of the q̄, i.e., D = D̄−D
′U (1)∂β = D̄−D

′ACt∂β, to finally obtain
an equation where remarkably, all divergences in time t do simplify,

j̄ = (j)−
1

2
D̄∂q sgn(t) +

1

2
L
(2)∂2β̄ +

1

2
L
(1,1)(∂β̄, ∂β̄), (B.18)
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and which can be rewritten in terms of the derivative of the hydrodynamic variables q = q̄,
using ∂2q = C′(∂β̄, ∂β̄)− C∂2β̄,

j̄ = (j) −
1

2
D̄∂q sgn(t)−

1

2
L
(2)C−1∂2q+

1

2
(L(1,1) + L

(2)C−1C′)(C−1∂q,C−1∂q),

(B.19)

giving eq. (1.1) with coefficients defined as in eq. (3.14). We stress how it has been
important to express all hydrodynamic matrices in terms of q in the first derivative order
(that is, D̄ instead of D), while in the second order it is sufficient to keep the hydrodynamic
matrices as functions of (q) = q+O(∂x), as corrections are of higher derivative order, hence
neglected.

B.1 Large time expansion of the integrated correlators

We here shall derive (B.9)-(B.15). For this purpose, we start with the fundamental ex-
pressions of correlation functions of charge-charge and charge-current at the hydrodynamic
Euler and diffusive scales, which follow directly from the hydrodynamic equation up to
the diffusive scale, and hydrodynamic linear response:

Sqq(k, t) =

ˆ

dx eikx(q(0, t), q(x, 0)) = exp
[

− ikAt−
k2

2
D|t|

]

C(k) (B.20)

and

Sjq(k, t) =

ˆ

dx eikx(j(0, t), q(x, 0)) =
(

A− sgn(t)
ik

2
D

)

exp
[

− ikAt−
k2

2
D|t|

]

C(k).

(B.21)
We also define the three-point functions

Sqqq(k, t) =

ˆ

dxdy xy eikx(q(0, t), q(x, 0), q(y, 0)), (B.22)

Sjqq(k, t) =

ˆ

dxdy xy eikx(j(0, t), q(x, 0), q(y, 0)). (B.23)

Space-integrated correlators are assumed to be of the form ant
n + an−1t

n−1 sgn(t) + . . .+
a0 sgn(t)

n + o(1) (t → ∞), and the above expressions are assumed to provide the correct
first two leading, positive powers of t, that is an and an−1.

The quantity C(k), above, characterises the initial condition of the hydrodynamic
equation for the correlator (q(0, t), q(x, 0)). In general, it takes the form C(k) = C +
C1ik sgn(t) + C2 (ik)2/2 + . . ..

Let us denote ′ = ∂/∂(ik). Using the general formula

∂eX/∂ℓ e−X = ∂X/∂ℓ+
1

2
[X, ∂X/∂ℓ] + . . . , (B.24)

and denoting E(k, t) = exp
[

− ikAt− k2

2 D|t|
]

, we note that

E′(k, t) = (−At+ ikD|t|)E(k, t) +
1

2

[

− ikAt−
k2

2
D|t|,−At+ ikD|t|

]

E(k, t) + . . .

= (−At+ ikD|t|)E(k, t) +O(k2).
(B.25)
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Therefore,
U (1) = −S′

qq(0, t) = ACt− C1 sgn(t) + o(1) (B.26)

U (2) = −S′′
qq(0, t) = −A2Ct2 −DC|t|+ 2AC1|t|+ U

(2)
0 + o(1). (B.27)

Note that the existence (finiteness) of U
(2)
0 in (B.27) is part of our assumption about the

asymptotic expansion at large t.
We first show that, by PT symmetry, we must have C1 = 0. Indeed, by (B.26),

2C1 =

ˆ

dxx((q(x, t), q) − (q(x,−t), q)) − 2ACt

=

ˆ t

−t
ds

[ˆ

dxx(∂sq(x, s), q) − AC
]

=

ˆ t

−t
ds

[ˆ

dx (j(x, s), q) − AC
]

=

ˆ t

−t
ds

[

AC− AC
]

= 0. (B.28)

Thus,
U (1) = −S′

qq(0, t) = ACt+ o(1), (B.29)

U (2) = −S′′
qq(0, t) = −A2Ct2 −DC|t|+ U

(2)
0 + o(1). (B.30)

Similarly, we find

V (1) = −S′
jq(0, t) = A2Ct+

1

2
DC sgn(t) + o(1), (B.31)

V (2) = −S′′
jq(0, t) = −A3Ct2 −DAC|t| − ADC|t|+ V

(2)
0 + o(1). (B.32)

This yields (B.9) and (B.11).
For the three-point functions, more work is needed. We may derive Un,m by solving

the diffusive-scale equation satisfied by the 3-point function. Starting with

∂tq+ ∂x

(

j−
1

2
D∂xq sgn(t)

)

= 0, (B.33)

as an initial value problem from t = 0, we obtain equations for 2- and 3-point functions
by differentiation with respect to β(y, 0), β(z, 0). Note how the factor sgn(t) is necessary
for this equation also to represent the hydrodynamic limit of negative-time evolution from
t = 0. Note also that, for general positions in space-time, three-point functions cannot
be obtained by such a simple response formalism because of the long-range hydrodynamic
correlations that develop from inhomogeneous initial conditions; see [59]. However, here
two of the observables are taken at equal time in the stationary state (at time 0), where
no such long-range correlations exist; therefore perturbations of the initial clustering state
correctly describe space-time correlations with the third observable at later times.

In the following, we will assume that evolution is towards positive times, t > 0. It is
simple to re-insert the factor sgn(t), which occurs in conjunction with the diffusion matrix
and its derivatives. Denoting (qq) := (q(x, t), q(y, 0)), we obtain

∂t(qq) + ∂x

(

A(qq)−
1

2
D

′(∂xq, (qq)) −
1

2
D∂x(qq)

)

= 0, (B.34)
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and by further differentiating and using D
′(∂xq, (qq)) = D

′P ((qq), ∂xq) in order to have
the right order of implicit indices (where we recall that P is the permutation P kl

ij = δliδ
k
j ),

for (qqq) := (q(x, t), q(y, 0), q(z, 0)) and (qq) y

z
:= (q(x, t), q(yz , 0))

0 = ∂t(qqq) + ∂x

(

A′((qq)y, (qq)z) + A(qqq)

−
1

2
D

′′(∂xq, (qq)y, (qq)z)−
1

2
D

′P ((qq)y , ∂x(qq)z)−
1

2
D

′(∂xq, (qqq))

−
1

2
D

′(∂x(qq)y, (qq)z)−
1

2
D∂x(qqq)

)

. (B.35)

We are interested in the steady state, so we obtain

0 = ∂t(qqq)− A′(∂y + ∂z)((qq)y, (qq)z)− A(∂y + ∂z)(qqq)

−
1

2
D

′P (∂y + ∂z)∂z((qq)y, (qq)z)−
1

2
D

′(∂y + ∂z)∂y((qq)y , (qq)z)

−
1

2
D(∂y + ∂z)

2(qqq). (B.36)

We may now set x = 0, and we define

Sqqq(k, k
′, t) =

ˆ

dydz eiky+ik′z(q(0, t), q(y, 0), q(z, 0)). (B.37)

This satisfies

0 = ∂tSqqq + (ik + ik′)A′(Sqq(k, t), Sqq(k
′, t)) + (ik + ik′)ASqqq

+(k + k′)k′
1

2
D

′P (Sqq(k, t), Sqq(k
′, t)) + (k + k′)k

1

2
D

′(Sqq(k, t), Sqq(k
′, t))

+(k + k′)2
1

2
DSqqq. (B.38)

We may solve this order by order in k, k′ to get the various hydrodynamic orders. For now
we just want up to order k, k′. At order 1, we have Sqqq(0, 0, t) = C′ (that is, the equation
above says that it is constant, and we evaluate the constant by definition of the C′ tensor).
The next order, O(k, k′), has the form (a1ik + b1ik

′)t+ (a0ik + b0ik
′) sgn(t) + o(1) by our

assumption on the large-t asymptotic form, and the solution for a1, b1 is purely ballistic:

Sqqq(k, k
′, t) = C′ − (ik + ik′)B′t+ (a0ik + b0ik

′) sgn(t) +O(k2, kk′, (k′)2). (B.39)

where we used (B.4). Note by our assumption, the result is meaningful for the first two
powers of t, so for t and t0 at the order O(k, k′), the t0 therefore having coefficient 0.
Therefore

U (1,0) =
∂Sqqq(k, 0, t)

∂k

∣
∣
∣
k=0

= −B′t+ a0 sgn(t) + o(1). (B.40)

By using PT symmetry, we show that a0 = 0 (much like our proof that C1 = 0 above):

2a0 =

ˆ

dydz y((q(0, t), q(y, 0), q(z, 0)) − (q(0,−t), q(y, 0), q(z, 0))) + 2B′t

=

ˆ t

−t
ds

[ˆ

dydz y(∂sq(0, s), q(y, 0), q(z, 0)) + B′
]

=

ˆ t

−t
ds

[

−

ˆ

dydz (j(0, s), q(y, 0), q(z, 0)) + B′
]

=

ˆ t

−t
ds

[

− B′ + B′
]

= 0. (B.41)
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Therefore we conclude

U (1,0) = −B′t+ o(1), (B.42)

which yields (B.10).

We can similarly evaluate (jqq) by differentiating j− 1
2D∂xq in an inhomogeneous state.

This is already done above: it is what’s in the big parenthesis on the right-hand side of
(B.35). Taking this in a homogeneous state,

(jqq) = A′((qq)y, (qq)z) + A(qqq)

−
1

2
D

′P ((qq)y , ∂x(qq)z)−
1

2
D

′(∂x(qq)y, (qq)z)−
1

2
D∂x(qqq). (B.43)

For the purpose of the derivation, we need V (1,1) − AU (1,1), so we evaluate

(jqq)− A(qqq) = A′((qq)y, (qq)z)

−
1

2
D

′P ((qq)y, ∂x(qq)z)−
1

2
D

′(∂x(qq)y, (qq)z)−
1

2
D∂x(qqq). (B.44)

With this, in order to go to order 2 in k, k′, we only need the q-correlators to order 1 in
k, k′, which we already have. We get

Sjqq(k, k
′, t)− ASqqq(k, k

′, t)

= A′(Sqq(k, t), Sqq(k
′, t))

−
1

2
D

′P (Sqq(k, t), ik
′Sqq(k

′, t))−
1

2
D

′(ikSqq(k, t), Sqq(k
′, t))−

1

2
D(ik + ik′)Sqqq(k, k

′, t),

(B.45)

and we are looking for V (1,0)−AU (1,0) = ∂/∂(ik)
∣
∣
k=k′=0

and V (1,1)−AU (1,1) = ∂2/∂(ik)∂(ik′)
∣
∣
k=k′=0

of this. Therefore we finally obtain

V (1,0) − AU (1,0) = −A′(U (1),C)−
1

2
D

′(C,C) −
1

2
DC′, (B.46)

and

V (1,1) − AU (1,1) = A′(U (1), U (1)) +
1

2
D

′P (U (1),C) +
1

2
D

′(C, U (1)) +DB′t+O(1), (B.47)

which demonstrates (B.15).

C Hydrodynamic coefficients in the free fermions theory

We here explicitly compute the hydrodynamic coefficients in the free fermionic theory
introduced in sec. 6.1. We start with the computation of the two-point functions on a
stationary state is given by momentum occupation function n(k)

[U (2)]ki = −

ˆ

dτ

ˆ

dxx2(qk(x, τ), qi(t))

= −

ˆ

k1,k2

1

2π
n(k1)(1 − n(k2))

ˆ

dxx2
ˆ

dτe−ix(k1−k2)eτ(w(k2)−w(k1))eit(ε(k2)−ε(k1))

× hi((k1 + k2)/2)hk((k1 + k2)/2), (C.1)
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[V (2)]ki =

ˆ

k1,k2

1

2π
n(k1)(1− n(k2))

ˆ

dxx2
ˆ

dτe−ix(k1−k2)eτ(w(k2)−w(k1))

× hi((k1 + k2)/2)hk((k1 + k2)/2)
ε(k1)− ε(k2)

k1 − k2
eit(ε(k2)−ε(k1)). (C.2)

The KMS imaginary time integration gives

ˆ

τ
eτ(w(k2)−w(k1)) =

1− ew(k2)−w(k1)

w(k1)− w(k2)
= G[1](k1, k2), (C.3)

where the function w(k) = βihi(k) = log(1/n(k) − 1) characterises the stationary state
with occupation n(k). Therefore, neglecting the term where derivatives act on the energy
phases (which gives the terms of order t2 in the correlator (B.9), (B.11)) and using Aij =
´

dkv(k)hi(k)hj(k) and
∑

i hi(k)hi(k
′) = δ(k − k′) we obtain

L
(2) =

[ˆ

dk1dk2
1

2π
δ′′(k1 − k2)n(k1)(1 − n(k2))G

[1](k1, k2)

× hi((k1 + k2)/2)hk((k1 + k2)/2)
ε(k1)− ε(k2)

k1 − k2

−

ˆ

dk1dk2
1

2π
δ′′(k1 − k2)n(k1)(1 − n(k2))G

[1](k1, k2)

× hi((k1 + k2)/2)hk((k1 + k2)/2)v((k1 + k2)/2)
]

. (C.4)

Since the measure of integration n(k1)(1−n(k2))G
[1](k1, k2) is symmetric under exchange

of k1 and k2, the only term surviving the difference is when the derivative acts on the
velocity part, in both terms, therefore, using

(ε(k1)− ε(k2))

k1 − k2
− v((k1 + k2)/2) = [1/6ε′′′ − 1/8ε′′′](k1 − k2)

2 + . . . . (C.5)

We finally obtain

L
(2) =

ˆ

dk

2π
n(k)(1 − n(k) hi(k)hk(k)[

1

12
v′′(k)]. (C.6)

Notice the importance of having form factors hi which are functions only of k1 + k2 up to
possible deviations of orders (k1 − k2)

3, namely, even if in this computation here we have
chosen charge densities in the fully symmetric gauge, the result only depends on imposing
1st and 2−nd order gauge.

We then move to the computation of the 3-point function. We first rewrite it as follows

[U (1,1)]kli =

ˆ

dxdyxy(qi(t), qk(x), ql(y)) + (k ↔ l), (C.7)

[V (1,1)]kli =

ˆ

dxdyxy(ji(t), qk(x), ql(y)) + (k ↔ l), (C.8)

where we also have used symmetry under exchanges of all indices. We then decompose it
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as

Uikl = (2π)−5

ˆ

dτdτ ′
ˆ

dxdyxy

ˆ

k1,k2,k3,k4,k5,k6

e−ix(k3−k4)e−iy(k5−k6)eit(ε(k2)−ε(k1))

× hi((k1 + k2)/2)hk((k3 + k4)/2)hl((k5 + k6)/2)〈c
†
k1
ck2c

†
k3
ck4c

†
k5
ck6〉

c

× e−τ(w(k1)−w(k2))e−τ ′(w(k3)−w(k4))

= (2π)−3

ˆ

dτdτ ′
ˆ

dxdyxy

ˆ

k1,k2,k3

n(k1)(1 − n(k2))n(k3)e
−ix(k3−k1)e−iy(k2−k3)eit(ε(k2)−ε(k1))

× hi((k1 + k2)/2)hk((k3 + k1)/2)hl((k2 + k3)/2)

+ (2π)−3

ˆ

dτdτ ′
ˆ

dxdyxy

ˆ

k1,k2,k3

n(k1)(1 − n(k2))(1 − n(k3))e
it(ε(k2)−ε(k1))e−ix(k2−k3)

× e−iy(k3−k1)e−τ(w(k1)−w(k2))e−τ ′(w(k2)−w(k3))hi((k1 + k2)/2)hk((k2 + k3)/2)hl((k3 + k1)/2).
(C.9)

Notice how the correlator splits into a contribution where either particle excitations on
the two states are the same or where hole expectations are the same. The KMS time
integration now it gives

ˆ

τ,τ ′
e−τ(w(k1)−w(k2))e−τ ′(w(k3)−w(k1)) =

1−ew(k2)−w(k1)

w(k1)−w(k2)
− 1−ew(k2)−w(k3)

w(k3)−w(k2)

w(k3)− w(k1)
, (C.10)

ˆ

τ,τ ′
e−τ(w(k1)−w(k2))e−τ ′(w(k2)−w(k3)) =

1−ew(k2)−w(k1)

w(k1)−w(k2)
− 1−ew(k3)−w(k1)

w(k1)−w(k3)

w(k2)− w(k3)
. (C.11)

We are here interested in the limits of coinciding momenta as

lim
k3→k1

1−ew(k2)−w(k1)

w(k1)−w(k2)
− 1−ew(k2)−w(k3)

w(k3)−w(k2)

w(k3)− w(k1)
= −

∂G[1](k1, k2)

∂w(k1)
=

∂G[1](k1, k2)

∂w(k2)
, (C.12)

lim
k3→k2

1−ew(k2)−w(k1)

w(k1)−w(k2)
− 1−ew(k3)−w(k1)

w(k1)−w(k3)

w(k2)− w(k3)
= −

∂G[1](k1, k2)

∂w(k1)
=

∂G[1](k1, k2)

∂w(k2)
, (C.13)

given that integration over spaces is such as
ˆ

dxdy xy e−ix(k3−k1)e−iy(k2−k3) = −(2π)2δ′(k3 − k1)δ
′(k2 − k3), (C.14)

ˆ

dxdy xy e−ix(k2−k3)e−iy(k3−k1) = −(2π)2δ′(k2 − k3)δ
′(k3 − k1). (C.15)

As before for the case of 2 point functions, since we have [ ε(k1)−ε(k2)
k1−k2

− v((k1 + k2)/2)] =

(k1 − k2)
2ε′′′/24 + . . . the derivative of the second delta function can only act on the first

delta to produce a second order derivative in momentum, all other terms contribute to
zero when taking the difference V (1,1) −AU (1,1), giving therefore

L
(1,1) = −

ˆ

dk

2π
n(k)(1− n(k))(2n(k) − 1)hi(k)hl(k)[

1

12
v′′(k)] hk(k), (C.16)

where we have

n(k)(1 − n(k))[2n(k) − 1]hk(k) =
δ(n(1 − n))

δβk
, (C.17)

which yields eq. (6.3).
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D Hydrodynamic coefficients in interacting quantum inte-

grable models under symmetric gauge

Under the symmetric gauge, the computation of L(2) in the interacting case follows the
free fermion case directly, see sec. C.

The above form factors give the following exact expansion

U (2) = t2U
(2)
1ph−(1) + tU

(2)
2ph + U

(2)
1ph−(2), (D.1)

V (2) = t2V
(2)
1ph−(1) + tV

(2)
2ph + V

(2)
1ph−(2). (D.2)

Namely for each correlator, there are two contributions, one of order t2 and one of order
t0 coming from the one particle-hole contributions, and one from the two particle-hole
contributions, and nothing else. The terms with 2ph give the diffusive terms, namely all
terms in the expansion of the integrated correlator, see eq. (B.11) and (B.15) which are
proportional to the diffusion matrix D. We therefore here focus on the one particle-hole
contributions. Denoting with F (qi)(p, h) the one particle-hole form factors of the density
qi(0), we have the two correlators entering

[U
(2)
1ph−(2)]ki =

ˆ

p,h
k′(p)ρ(h)(1 − n(p))G[1](p, h)F (qk)(p, h)F (qi)(p, h)δ′′(k(p) − k(h)),

(D.3)

[V
(2)
1ph−(2)

]ki =

ˆ

p,h
k′(p)ρ(h)(1 − n(p))G[1](p, h)

ε(p)− ε(h)

k(p) − k(h)
(D.4)

× F (qk)(p, h)F (qi)(p, h)δ′′(k(p)− k(h)), (D.5)

and where we introduced the KMS imaginary time integration

ˆ

τ
eτ(w

dr(p)−wdr(h)) = G[1](p, h). (D.6)

Working in the 2nd order symmetric gauge imposes that one particle-hole form factors
cannot depend on momentum difference k(p) − k(h) up to deviations O((k(p) − k(h))3).
Knowing the well-established relation between form factors and single-particle eigenvalues
hi(h) of charge density qi

F (qi)(h, h) = hdri (h), hdri = (1− Tn)−1hi, (D.7)

and using that momentum k(θ) is a monotonous function in θ, this implies

F (qi)(p, h) = hdri ((p+ h)/2) +O((k(p) − k(h))3). (D.8)

Therefore, using Aij = (hi, (1−nT )−1veff(1−nT ), hj), h
dr
i = (1−Tn)−1hi and

∑

i hi(θ)hi(θ
′) =

δ(θ − θ′), we finally obtain

L
(2) =

ˆ

p,h
k′(p)ρ(h)(1 − n(p))G[1](p, h)hdri ((p + h)/2)hdrk ((p + h)/2)

δ′′(k(p)− k(h))
[ ε(p)− ε(h)

k(p)− k(h)
− veff((h+ p)/2) +O((k(p)− k(h))3)

]

. (D.9)

32



Choosing p = h+ ǫ we can integrate over δ and the derivative must act on the parenthesis,
which is indeed of order ǫ2

[ ε(p)− ε(h)

k(p)− k(h)
− veff ((h+ p)/2)

]

= ǫ2
ε′′′(h)k′(h)− ε′(h)k′′′(h)

24(k′(h))2
+ . . . (D.10)

We obtain then, using δ′′(k(p)− k(h)) = δ′′(ǫk′(h)) and ε′(θ) = veff(θ)k′(θ)

L
(2) =

ˆ

θ
ρ(θ)(1− n(θ))hdri (θ)hdrk (θ)

k′(θ)ε′′′(θ)− k′′′(θ)ε′(θ)

12(k′(θ))4
, (D.11)

where we used that G[1](h, h) = 1. The computation of the three-point function follows
analogously, as in the free fermions case, see sec. C.

E The centre of mass operator and the symmetric gauge in

free fermions

The free fermionic charges reported in eq. (6.2)

qi(0) =

ˆ

dy

ˆ

dk

2π
hi(k)e

iykc†−y/2cy/2 =

ˆ

dk1
2π

dk2
2π

hi((k1 + k2)/2)c
†
k1
ck2 , (E.1)

are directly expressed in the fully symmetric gauge, as their matrix elements hi((k1+k2)/2)
are only functions of the sum of the two momenta. In general, one could choose any charge
with the following expression

q̃ =

ˆ

dk1
2π

dk2
2π

h̃(k2, k1)c
†
k1
ck2 , (E.2)

with a generic matrix element, function of the two momenta h(k2, k1). The centre of mass
operator X necessary to introduce the gauge shifts is given in free fermion theories by

X = −

ˆ

dx x c†xcx = −

ˆ

dk1dk2
2π

iδ′(k1 − k2)c
†
k1
ck2 . (E.3)

We can consider the matrix element of first gauge shift a
(1)
i = 1

2{X, q̃} between the ther-
modynamic state 〈n| with filling n(k) and its one particle-hole excitation |n, {h, p}〉 with
momenta p and h: by explicit computation we obtain

〈n|q̃X|n, {h, p}〉 = −

ˆ

dk1
2π

dk2

ˆ

dq

2π

dk

2π
h̃(q, k)iδ′(k1 − k2)〈n|c

†
k1
ck2c

†
kcq|n, {h, p}〉

= i∂p−hh̃(p, h) (E.4)

Therefore we conclude that the new charge density, after the shift q̃ → q̃ + ∂xa
(1)
i , has its

matrix elements given by

h̃(k2, k1) → h̃(k2, k1)− (k2 − k1)∂k2−k1 h̃(k2, k1). (E.5)

The higher order relations, necessary to cancel k2 − k1 dependence at higher orders, then
follows from repeating a similar argument with higher powers of the operator X.
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