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I. INTRODUCTION

Miniaturization provides us with an intuitive way of
understanding why, in the near future, quantum mechan-
ics will become important for computation. The electron-
ics industry for computers grows hand-in-hand with the
decrease in size of integrated circuits. This miniaturiza-
tion is necessary to increase computational power, that is,
the number of floating-point operations per second (flops)
a computer can perform. In the 1950’s, electronic com-
puters based on vacuum-tube technology were capable of
performing approximately 103 floating-point operations
per second, while nowadays (2022) there exist supercom-
puters whose power is greater than 100 petaflops (a 1
petaflops computer is capable of performing 1015 floating-
point operations per second). This enormous growth of
computational power has been made possible owing to
progress in miniaturization, which may be quantified em-
pirically in Moore’s law. This law is the result of a re-
markable observation made by Gordon Moore in 1965:
the number of transistors on a single integrated-circuit
chip doubles approximately every 18 − 24 months. This
exponential growth has not yet saturated and Moore’s
law is still valid. At the present time the limit is close
to 1010 transistors per chip and the typical size of cir-
cuit components is of the order of 5 − 10 nanometres.
Extrapolating Moore’s law, it is estimated that within a
few years, one would reach the atomic size for storing a
single bit of information. At that point, quantum effects
will become unavoidably dominant.

Quantum physics sets fundamental limitations on the
size of the circuit components. The first question un-
der debate is whether it would be more convenient to
push the silicon-based transistor to its physical limits or
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instead to develop alternative devices, such as quantum
dots, single-electron transistors or molecular switches. A
common feature of all these devices is that they are at
the nanometre length scale, and therefore quantum ef-
fects play a crucial role.

So far, the quantum switches that could substitute
silicon-based transistors and possibly be connected to-
gether to execute classical algorithms based on Boolean
logic were discussed. In this perspective, quantum ef-
fects are simply unavoidable corrections that must be
taken into account owing to the nanometre size of the
switches. A quantum computer represents a radically dif-
ferent challenge: the aim is to build a machine based on
quantum logic, that is, it processes the information and
performs logic operations in agreement with the laws of
quantum mechanics [1].

II. QUANTUM LOGIC

The elementary unit of quantum information is called a
qubit (the quantum counterpart of the classical bit) and
a quantum computer may be viewed as a many-qubit
system. Physically, a qubit is a two-level system, like the
two spin states of a spin-1/2 particle, the vertical and
horizontal polarization states of a single photon or two
levels of an atom.

A classical bit is a system that can exist in two dis-
tinct states, which are used to represent 0 and 1, that
is, a single binary digit. The only possible operations
(gates) in such a system are the identity (0→ 0, 1→ 1)
and NOT (0 → 1, 1 → 0). In contrast, a quantum bit
(qubit) is a two-level quantum system, described by a
two-dimensional complex Hilbert space. In this space,
one may choose a pair of normalized and mutually or-
thogonal quantum states, called |0〉 and |1〉 (say, the
eigenstates of the Pauli operator σz), to represent the
values 0 and 1 of a classical bit. These two states form
a computational basis. From the superposition principle,
any state of the qubit may be written as

|ψ〉 = α|0〉+ β|1〉 , (1)

where the amplitudes α and β are complex numbers, con-
strained by the normalization condition |α|2 + |β|2 = 1.

A quantum computer can be seen as a collection of
n qubits and therefore its wave function resides in a 2n-
dimensional complex Hilbert space. While the state of an
n-bit classical computer is described in binary notation

ar
X

iv
:2

21
1.

16
91

0v
1 

 [
qu

an
t-

ph
] 

 3
0 

N
ov

 2
02

2

mailto:giuliano.benenti@uninsubria.it
mailto:giulio.casati@uninsubria.it


2

by an integer k ∈ [0, 2n − 1],

k = kn−1 2n−1 + · · ·+ k1 2 + k0 , (2)

with k0, k1, . . . , kn−1 ∈ [0, 1] binary digits, the state of an
n-qubit quantum computer is

|ψ〉 =

2n−1∑
k=0

ck |k〉

=

1∑
kn−1,...,k1,k0=0

ckn−1,...,k1,k0 |kn−1 · · · k1k0〉, (3)

where |kn−1 · · · k1k0〉 ≡ |kn−1〉 ⊗ · · · ⊗ |k1〉 ⊗ |k0〉. No-
tice that the complex numbers ck are constrained by the

normalization condition
∑2n−1
k=0 |ck|2 = 1.

The superposition principle is clearly visible in Eq. (3):
while n classical bits can store only a single integer k, the
n-qubit quantum register can be prepared in the corre-
sponding state |k〉 of the computational basis, but also
in a superposition. The number of states of the compu-
tational basis in this superposition can be as large as 2n,
which grows exponentially with the number of qubits.
The superposition principle opens up new possibilities
for computation. When one performs a computation on a
classical computer, different inputs require separate runs.
In contrast, a quantum computer can perform a computa-
tion for exponentially many inputs on a single run. This
huge parallelism is the basis of the power of quantum
computation.

The superposition principle is not a uniquely quan-
tum feature. Indeed, classical waves satisfying the su-
perposition principle do exist. For instance, consider the
wave equation for a vibrating string with fixed endpoints.
Its solutions |ϕk〉 satisfy the superposition principle and
one can write the most general state |ϕ〉 of a vibrating
string as a linear superposition of these solutions, anal-

ogously to Eq. (3): |ϕ〉 =
∑2n−1
k=0 ck|ϕk〉. It is therefore

also important to point out the importance of entangle-
ment for the power of quantum computation, as com-
pared to any classical computation. Entanglement is the
most spectacular and counter-intuitive manifestation of
quantum mechanics, observed in composite quantum sys-
tems: it signifies the existence of non-local correlations
between measurements performed on well-separated par-
ticles. After two classical systems have interacted, they
are in well-defined individual states. In contrast, after
two quantum particles have interacted, in general, they
can no longer be described independently of each other.
There will be purely quantum correlations between two
such particles, independently of their spatial separation.
Examples of two-qubit entangled state are the four states
of the so-called Bell basis, |φ±〉 = 1

2 (|00〉 ± |11〉) and

|ψ±〉 = 1
2 (|01〉 ± |10〉). The measure of the polarization

state of one qubit will instantaneously affect the state
of the other qubit, whatever their distance is. There is
no entanglement in classical physics. Therefore, in or-
der to represent the superposition of N = 2n levels by

means of classical waves, these levels must belong to the
same system. Indeed, classical states of separate systems
can never be superposed. Thus, any computation based
on classical waves requires a number N of levels that
grows exponentially with n. If ∆ is the typical energy
separation between two consecutive levels, the amount
of energy required for this computation is given by ∆2n.
Hence, the amount of physical resources needed for the
computation grows exponentially with n. In contrast,
due to entanglement, in quantum physics a general su-
perposition of 2n levels may be represented by means of n
qubits. Thus, the amount of physical resources (energy)
grows only linearly with n.

To implement a quantum computation, one must be
able to control the evolution in time of the many-qubit
state describing the quantum computer. As far as the
coupling to the environment may be neglected, this evo-
lution is unitary and governed by the Schrödinger equa-
tion. It is well known that a small set of elementary logic
gates allows the implementation of any complex compu-
tation on a classical computer. This is very important: it
means that, when one changes the problem, one does not
need to modify one’s computer hardware. Fortunately,
the same property remains valid for a quantum com-
puter. It turns out that, in the quantum circuit model,
any whatever complex unitary transformation acting on
a many-qubit system can be decomposed into quantum
gates acting on a single qubit and a suitable quantum
gate acting on two qubits. Any unitary operation on
a single qubit can be constructed using only Hadamard
and phase-shift gates. The Hadamard gate is defined
as follows: it turns |0〉 into (|0〉 + |1〉)/

√
2 and |1〉 into

(|0〉−|1〉)/
√

2. The phase-shift gate (of phase δ) turns |0〉
into |0〉 and |1〉 into eiδ|1〉. One can decompose a generic
unitary transformation acting on a many-qubit state into
a sequence of Hadamard, phase-shift and CNOT gates,
where CNOT is a two-qubit gate, defined as follows: it
turns |00〉 into |00〉, |01〉 into |01〉, |10〉 into |11〉, and
|11〉 into |10〉. As in the classical XOR gate, the CNOT
gate flips the state of the second (target) qubit if the first
(control) qubit is in the state |1〉 and does nothing if the
first qubit is in the state |0〉. Of course, the CNOT gate,
in contrast to the classical XOR gate, can also be applied
to any superposition of the computational basis states.

The decomposition of a generic unitary transforma-
tion of a n-qubit system into elementary quantum gates
is in general inefficient, that is, it requires a number of
gates exponentially large in n (more precisely, O(n24n)
quantum gates). However, there are special unitary
transformations that can be computed efficiently in the
quantum circuit model, namely by means of a number
of elementary gates polynomial in n. A very impor-
tant example is given by the quantum Fourier trans-

form, mapping a generic n-qubit state
∑2n−1
k=0 ak|k〉 into∑2n−1

l=0 bl|l〉, where the vector {b0, ..., bN−1} is the dis-
crete Fourier transform of the vector {a0, ..., aN−1}, that

is, bl =
∑N−1
k=0 e2πikl/2nak. It can be shown that this
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transformation can be efficiently implemented in O(n2)
elementary quantum gates, whereas the best known clas-
sical algorithm to simulate the Fourier transform, the
fast Fourier transform, requires O(n2n) elementary op-
erations. The quantum Fourier transform is an essential
subroutine in many quantum algorithms.

III. QUANTUM ALGORITHMS

As shown above, the power of quantum computation is
due to the inherent quantum parallelism associated with
the superposition principle. In simple terms, a quantum
computer can process a large number of classical inputs
in a single run. For instance, starting from the input

state
∑2n−1
k=0 ck|k〉 ⊗ |0...0〉, one may obtain the output

state

2n−1∑
k=0

ck|k〉 ⊗ |f(k)〉. (4)

Therefore, the function f(k) is computed for all k in a
single run (note that one needs two quantum registers to
compute by means of a reversible unitary transformation
f(k); the second register requires enough qubits to load
the output f(k) for all input values k = 0, 1, .., 2n, with
n number of qubits in the first register). However, it is
not an easy task to extract useful information from the
output state. The problem is that this information is,
in a sense, hidden. Any quantum computation ends up
with a projective measurement in the computational ba-
sis: the qubit polarization is measured along the z-axis
for all the qubits. The output of the measurement pro-
cess is inherently probabilistic and the probabilities of the
different possible outputs are set by the basic postulates
of quantum mechanics. Given the state (4), one obtains
|k̄〉|f(k̄)〉 with probability |ck̄|2, hence, the evaluation of
the function f(k) for a single k = k̄, exactly as with
a classical computer. However, there exist quantum al-
gorithms that exploit quantum interference to efficiently
extract useful information.

In 1994, Peter Shor proposed a quantum algorithm
that efficiently solves the prime-factorization problem:
given a composite odd positive integer N , find its prime
factors. This is a central problem in computer science
and it is conjectured, though not proven, that for a clas-
sical computer it is computationally difficult to find the
prime factors. Indeed, the best classical algorithm, the
number field sieve, requires exp(O(n1/3(log n)2/3)) op-
erations. Shor’s algorithm instead efficiently solves the
integer factorization problem in O((n2 log n log log n)) el-
ementary quantum gates, where n = logN is the number
of bits necessary to code the input N . Therefore it pro-
vides an exponential improvement in speed with respect
to any known classical algorithm. The integer factoring
problem can be reduced to the problem of finding the
period of the function f(k) = ak mod N , where N is

the number to be factorized and a < N is chosen ran-
domly. The modular exponentiation can be computed
efficiently on a quantum computer and, starting from the

state 1√
N

∑2n−1
k=0 |k〉|0...0〉 (the equal superposition of all

basis states in the first register can be obtained by ap-
plying one Hadamard gate for each qubit), one arrives

at 1√
N

∑2n−1
k=0 |k〉|f(k)〉. Notice that there are two quan-

tum registers, the first one stores k, the second f(k).
By measuring the second register, one obtains the out-
come f(k̄). Thus, the quantum computer wave function

collapses onto 1√
m

∑m−1
j=0 |k̄ + jr〉|f(k̄)〉, where m is the

number of k values such that f(k) = f(k̄), and r is the
period of f(k), that is f(k) = f(k + r). To determine
the period r, one has to perform the quantum Fourier
transform of the first register. The resulting wave func-
tion is peaked around integer multiples of N/r. From the
measurement of this state, one can extract the period r.
It is worth mentioning that there are cryptographic sys-
tems, such as RSA, that are used extensively today and
that are based on the conjecture that no efficient algo-
rithms exist for solving the prime factorization problem.
Hence Shor’s algorithm, if implemented on a large scale
quantum computer, would break the RSA cryptosystem.

Other quantum algorithms have been developed. In
particular, Grover has shown that quantum computers
can also be useful for solving the problem of searching for
a marked item in an unstructured database of N = 2n

items. The best one can do with a classical computer is
to go through the database, until one finds the solution.
This requires O(N) operations. In contrast, the same

problem can be solved by a quantum computer in O(
√
N)

operations. In this case, the gain with respect to classical
computation is quadratic.

IV. QUANTUM SIMULATION OF PHYSICAL
SYSTEMS

The simulation of quantum many-body problems on
a classical computer is a difficult task as the size of the
Hilbert space grows exponentially with the number of
particles. For instance, if one wishes to simulate a chain
of n spin-1/2 particles, the size of the Hilbert space is
2n. Namely, the state of this system is determined by
2n complex numbers. As observed by Feynman in the
1980’s, the growth in memory requirement is only lin-
ear on a quantum computer, which is itself a many-body
quantum system. For example, to simulate n spin-1/2
particles one only needs n qubits. Therefore, a quantum
computer operating with only a few tens of qubits can
outperform a classical computer. Of course, this is only
true if one can find an efficient quantum algorithm and
if one can efficiently extract useful information from the
quantum computer. Quite interestingly, a quantum com-
puter can outperform a classical computer not only for
the investigation of the properties of many-body quan-
tum systems, but also for the study of the quantum and
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classical dynamics of complex single-particle systems.
For a concrete example, consider the quantum-

mechanical motion of a particle in one dimension (the
extension to higher dimensions is straightforward). It is
governed by the Schrödinger equation

i~
d

dt
ψ(x, t) = H ψ(x, t) , (5)

where the Hamiltonian H is given by

H = H0 + V (x, t) = − ~2

2m

d2

dx2
+ V (x, t) . (6)

The Hamiltonian H0 = −(~2/2m) d2/dx2 governs the free
motion of the particle, while V (x, t) is a (possibly time-
dependent) one-dimensional potential. To solve Eq. (5)
on a quantum computer with finite resources (a finite
number of qubits and a finite sequence of quantum gates),
one must first of all discretize the continuous variables
x and t. If the motion essentially takes place inside a
finite region, say −d ≤ x ≤ d, decompose this region into
2n intervals of length ∆ = 2d/2n and represent these
intervals by means of the Hilbert space of an n-qubit
quantum register (this means that the discretization step
drops exponentially with the number of qubits). Hence,
the wave function |ψ(t)〉 is approximated as follows:

|ψ̃(t)〉 =
1

N

2n−1∑
i=0

ψ(xi, t) |i〉 , (7)

where xi ≡ −d +
(
i+ 1

2

)
∆, |i〉 = |in−1〉 ⊗ · · · ⊗ |i0〉 is a

state of the computational basis of the n-qubit quantum

register and N ≡
√∑2n−1

i=0 |ψ(xi, t)|2 is a factor that

ensures correct normalization of the wave function. It
is intuitive that |ψ̃〉 provides a good approximation to
|ψ〉 when the discretization step ∆ is much smaller than
the shortest length scale relevant for the motion of the
system. The Schrödinger equation (5) may be integrated
by propagating the initial wave function ψ(x, 0) for each
time-step ε as follows:

ψ(x, t+ ε) = e−
i
~ [H0+V (x,t)]ε ψ(x, t) . (8)

If the time-step ε is small enough, it is possible to write
the Trotter decomposition

e−
i
~ [H0+V (x,t)] ε ≈ e− i

~H0 εe−
i
~V (x,t) ε , (9)

which is exact up to terms of order ε2. The operator
on the right-hand side of Eq. (9) is still unitary, simpler
than that on the left-hand side, and, in many interesting
physical problems, can be efficiently implemented on a
quantum computer. Advantage is taken of the fact that
the Fourier transform can be efficiently preformed by a
quantum computer. One can then write the first operator
in the right-hand side of (9) as

e−
i
~H0 ε = F−1 e

+ i
~

(
~2k2

2m

)
ε
F , (10)

where k is the variable conjugated to x and F the discrete
Fourier transform. This represents a transformation from
the x-representation to the k-representation, in which
this operator is diagonal. Then, using the inverse Fourier
transform F−1, one returns to the x-representation, in
which the operator exp(−iV (x, t)ε/~) is diagonal. The
wave function ψ(x, t) at time t = lε is obtained from
the initial wave function ψ(x, 0) by applying l times the
unitary operator

F−1 e
+ i

~

(
~2k2

2m

)
ε
F e−

i
~V (x,t) ε. (11)

Therefore, simulation of the Schrödinger equation is now
reduced to the implementation of the Fourier transform
plus diagonal operators of the form

|x〉 → eicf(x) |x〉 , (12)

where c is some real constant. Note that an operator
of the form (12) appears both in the computation of
exp(−iV (x, t)ε/~) and of exp(−iH0ε/~), when this latter
operator is written in the k-representation. The quantum
computation of (12) is possible, using an ancillary quan-
tum register |y〉a, by means of the following steps:

|0〉a ⊗ |x〉 → |f(x)〉a ⊗ |x〉 → eicf(x) |f(x)〉a ⊗ |x〉
→ eicf(x) |0〉a ⊗ |x〉 = |0〉a ⊗ eicf(x) |x〉 . (13)

The first step is a standard function evaluation and may
be implemented by means of O(n2n) elementary quan-
tum gates. Of course, more efficient implementations
(polynomial in n) are possible when the function f(x)
has some structure, as it is the case for the potentials
V (x, t) usually considered in quantum-mechanical prob-
lems. The second step in (13) is the transformation
|y〉a → eicy|y〉a and can be performed in m single-qubit
phase-shift gates, m being the number of qubits in the an-
cillary register. Indeed, one may write the binary decom-
position of an integer y ∈ [0, 2m − 1] as y =

∑m−1
j=0 yj2

j ,

with yj ∈ {0, 1}. Therefore,

exp(iy) = exp

( m−1∑
j=0

icyj2
j

)
=

m−1∏
j=0

exp(icyj2
j) , (14)

which is the product of m single-qubit gates, each act-
ing non-trivially (differently from identity) only on a sin-
gle qubit. The j-th gate operates the transformation
|yj〉a → exp(icyj2

j)|yj〉a, with |yj〉a ∈ {|0〉, |1〉} vectors
of the computational basis for the j-th ancillary qubit.
The third step in (13) is just the reverse of the first and
may be implemented by the same array of gates as the
first but applied in the reverse order. After this step the
ancillary qubits are returned to their standard configu-
ration |0〉a and it is therefore possible to use the same
ancillary qubits for every time-step. Note that the num-
ber of ancillary qubits m determines the resolution in the
computation of the diagonal operator (12). Indeed, the
function f(x) appearing in (12) is discretized and can
take 2m different values.



5

An example of an interesting dynamical model that can
be simulated efficiently (and without ancillary qubits) on
a quantum computer is the so-called quantum sawtooth
map. This map represents the dynamics of a periodically
driven system and is derived from the Hamiltonian

H(θ, I; τ) =
I2

2
+ V (θ)

+∞∑
j=−∞

δ(τ − jT ) , (15)

where (I, θ) are conjugate action-angle variables (0 ≤
θ < 2π), with the usual quantization rules, θ → θ and
I → I = −i∂/∂θ (set ~ = 1) and V (θ) = −k(θ − π)2/2.
This Hamiltonian is the sum of two terms, H(θ, I; τ) =
H0(I) + U(θ; τ), where H0(I) = I2/2 is just the kinetic
energy of a free rotator (a particle moving on a cir-
cle parametrized by the coordinate θ), while U(θ; τ) =
V (θ)

∑
j δ(τ − jT ) represents a force acting on the par-

ticle that is switched on and off instantaneously at time
intervals T . Therefore, its is said that the dynamics de-
scribed by Hamiltonian (15) is kicked. The (quantum)
evolution from time tT− (prior to the t-th kick) to time
(t+ 1)T− (prior to the (t+ 1)-th kick) is described by a
unitary operator U acting on the wave function ψ:

ψt+1 = U ψt = UTUk ψt ;

UT = e−iTI
2/2 , Uk = eik(θ−π)2/2 . (16)

This map is called the quantum sawtooth map, since the
force F (θ) = −dV (θ)/dθ = k(θ − π) has a sawtooth
shape, with a discontinuity at θ = 0.

In the following, an exponentially efficient quantum al-
gorithm for simulation of the map (16) is described. It is
based on the forward/backward quantum Fourier trans-
form between action and angle bases. Such an approach
is convenient since the operator U is the product of the
two operators Uk and UT , which are diagonal in the θ and
I representations, respectively. This quantum algorithm
requires the following steps for one map iteration:

1. Apply Uk to the wave function ψ(θ). In order to
decompose the operator Uk into one- and two-qubit
gates, we first of all write θ in binary notation:

θ = 2π

n∑
j=1

αj2
−j , (17)

with αi ∈ {0, 1}. Here n is the number of qubits, so
that the total number of levels in the quantum saw-
tooth map is N = 2n. One can insert (17) into the
unitary operator Uk, obtaining the decomposition

eık(θ−π)2/2 =

n∏
i,j=1

eı2π
2k(αi2

−i− 1
2n )(αj2

−j− 1
2n ), (18)

which is the product of n2 two-qubit gates, each
acting non-trivially only on the 4-dimensional sub-
space spanned by the qubits i and j.

FIG. 1: Husimi function for the sawtooth map for n = 9 (left)
and n = 16 (right) qubits, in action angle variables (I, θ), with
−N/2 ≤ I < N/2 (vertical axis, N = 2n) and 0 ≤ θ < 2π
(horizontal axis), averaged in the interval 950 ≤ t ≤ 1000, for
T = 2π/N and kT = −0.1. An action eigenstate, |ψ0〉 = |m0〉,
with m0 = [0.38N ] is considered as initial state at time t = 0.
The color is proportional to the density: blue for zero and red
for maximal density.

2. The change from the θ to the I representation is ob-
tained by means of the quantum Fourier transform,
which requires and 1

2n(n+ 1) elementary quantum
gates.

3. In the I representation, the operator UT has essen-
tially the same form as the operator Uk in the θ
representation, and therefore it can be decomposed
into n2 two-qubit gates, similarly to Eq. (18).

4. Return to the initial θ representation by application
of the inverse quantum Fourier transform.

Thus, overall, this quantum algorithm requires 3n2 + n
gates per map iteration. This number is to be compared
with the O(n2n) operations required by a classical com-
puter to simulate one map iteration by means of a fast
Fourier transform. Thus, the quantum simulation of the
quantum sawtooth map dynamics is exponentially faster
than any known classical algorithm. Note that the re-
sources required to the quantum computer to simulate
the evolution of the sawtooth map are only logarithmic
in the Hilbert space dimension N .

As an example of the efficiency of this quantum al-
gorithm, Fig. 1 shows the Husimi functions, taken after
1000 map iterations. It is noted that n = 9 qubits are
sufficient to observe the appearance of integrable islands,
while at n = 16 these islands exhibit a complex hierar-
chical structure in the phase space.

However, there is an additional aspect to be taken into
account. Any quantum algorithm has to address the
problem of efficiently extracting useful information from
the quantum computer wave function. Indeed, the result
of the simulation of a quantum system is the wave func-
tion of this system, encoded in the n qubits of the quan-
tum computer. The problem is that, in order to measure
all N = 2n wave function coefficients by means of stan-
dard polarization measurements of the n qubits, one has
to repeat the quantum simulation a number of times ex-
ponential in the number of qubits. This procedure would
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spoil any quantum algorithm, even in the case, like the
present one, in which such algorithm could compute the
wave function with an exponential gain with respect to
any classical computation. Nevertheless, there are some
important physical questions that can be answered in an
efficient way.

The quantum computation can provide an exponential
gain (with respect to any known classical computation)
in problems that require the simulation of dynamics up
to a time t which is independent of the number of qubits.
In this case, provided that one can extract the relevant
information in a number of measurements polynomial in
the number of qubits, one should compare, in the ex-
ample of the quantum sawtooth map, O(t(logN)2) ele-
mentary gates (quantum computation) with O(tN logN)
elementary gates (classical computation). This is, for in-
stance, the case of dynamical correlation functions of the
form

Ct ≡ 〈ψ0|A†t B0 |ψ0〉 = 〈ψ0| (U†)tA†0 U tB0 |ψ0〉 , (19)

where U is the time-evolution operator (16) for the quan-
tum sawtooth map. Similarly, one can efficiently com-
pute the fidelity of quantum motion, which is a quantity
of central interest in the study of the stability of quan-
tum motion under perturbations. The fidelity f(t) (also
called the Loschmidt echo), measures the accuracy with
which a quantum state can be recovered by inverting, at
time t, the dynamics with a perturbed Hamiltonian. It
is defined as

f(t) = 〈ψ| (U†ε )t U t |ψ〉 = 〈ψ| eiHεt e−iHt |ψ〉 . (20)

Here the wave vector |ψ〉 evolves forward in time with
Hamiltonian H up to time t and then evolves backward
in time with a perturbed Hamiltonian Hε. If the evo-
lution operators U and Uε can be simulated efficiently
on a quantum computer, as is the case in many physi-
cally interesting situations, then the fidelity of quantum
motion can be evaluated with exponential speed up with
respect to known classical computations. As shown in
Fig. 2, it is possible to measure the fidelity by means of a
Ramsey-type quantum interferometer method. A single
ancillary qubit is needed, initially prepared in the state
|0〉, while the input state for the other n qubits is a given
initial state |ψ0〉 for the quantum sawtooth map. Two
Hadamard gates are applied to the ancillary qubit, and
in between these operations a controlled-W operation is
applied (W is a unitary operator), namely W is applied
to the other n qubits only if the ancillary qubit is in its |1〉
state. As a result, one obtains the following final overall
state for the n+ 1 qubits:

1

2
[(|0〉+ |1〉)|ψ0〉+ (|0〉 − |1〉)W |ψ0〉]. (21)

If W = (U†ε )tU t, then one can derive the fidelity from
polarization measurements of the ancillary qubit. One
obtains

f(t) = 〈σz〉2 + 〈σy〉2, (22)

where 〈σz〉 and 〈σy〉 are the expectation values of the
Pauli operators σz and σy. Provided that the quantum
algorithm implementing U is efficient, as it is the case
for the quantum sawtooth map, the fidelity can then be
computed efficiently.

W

MeasurementHH

FIG. 2: Schematic drawing of a quantum circuit implementing
a Ramsey-type quantum interferometer. The top line denotes
a single ancillary qubit, the bottom line a set of n qubits, H
the Hadamard gate and W a unitary transformation.

V. SIMULATING COMPLEX DYNAMICS ON
ACTUAL QUANTUM HARDWARE

Present-day quantum computers, whether they are
based on superconducting qubits or on trapped ions, suf-
fer from significant decoherence and the effects of various
noise sources. Therefore, achieving the quantum advan-
tage in practically relevant problems such as chemical
reactions, new materials design, or biological processes,
is an imposing task. Note that quantum advantage is
achieved when a quantum computer can solve a problem
that no classical computer can solve in a feasible amount
of time. The progress of currently available quantum
processors can nevertheless be benchmarked by simulat-
ing complex dynamics.

An illustrative example is again provided by the quan-
tum sawtooth map. The classical limit of such map is
chaotic when kT < −4 or kT > 0. Although the saw-
tooth map is a deterministic system, in the chaotic regime
the motion along the action direction is in practice in-
distinguishable from a random walk, with diffusion in
the action variable. If one considers a classical ensemble
of trajectories with fixed initial action m0 and random
initial angle θ, the second moment of the action distri-
bution grows linearly with the number t of map itera-
tions, 〈(∆I)2〉 ≈ D(k)t, with a diffusion coefficient D
dependent on k. The quantum sawtooth map, in agree-
ment with the correspondence principle, initially exhibits
diffusive behavior, with the classical diffusion coefficient
D. However, after a break time t?, quantum interfer-
ence leads to suppression of diffusion. For t > t?, the
quantum distribution reaches a steady state which de-
cays exponentially over the action eigenbasis:

Wm ≡
∣∣〈m|ψ〉∣∣2 ≈ 1

`
exp

[
−2|m−m0|

`

]
, (23)

where the index m singles out the action eigenstates
(I|m〉 = m|m〉), the system is initially prepared in the
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eigenstate |m0〉, and ` is known as the localization length
of the system. Therefore, for t > t? only√

〈(∆I)2〉 ≈
√
Dt? ≈ ` (24)

levels are populated. This phenomenon, known as dy-
namical localization, is due to quantum interference ef-
fects, suppressing the underlying classical diffusion pro-
cess after a time t? ≈ ` ≈ D.

Fig. 3 shows the results of a dynamical localization
experiment with n = 3 qubits on a real and freely
available IBM quantum processor, with superconducting
qubits, remotely accessed through cloud quantum pro-
gramming [2]. The initial condition is peaked in action,
ψ0(m) = 〈m|ψ0〉 = δm,m0

, with m0 = 0. The quan-
tum algorithm for the sawtooth map allows one to com-
pute the wave vector ψt(m) as a function of the num-
ber of map steps, and then the probability distribution
Wt(m) = |ψt(m)|2. In the figure k ≈ 0.273 < 1, so that
the distribution is already localized after a single map
step. On the other hand, here kT = 1.5, corresponding
to diffusive, chaotic behavior for the underlying classical
dynamics. In Fig. 3 the ideal, noiseless distribution after
t = 1 map step is compared with the results of the real
quantum hardware and with a simulator (Qiskit, pro-
vided by IBM), which takes into account a few relevant
noise sources, modeling in particular dephasing, relax-
ation, and readout errors. The results show that the
quantum hardware exhibits a localization peak, which
emerges from quantum interference. Note that the quan-
tum algorithm performs forward-backward Fourier trans-
form, thus exploring the entire Hilbert space of the quan-
tum register in a complex multiple-path interferometer
that leads to wave-function localization. As such, dynam-
ical localization is a very fragile quantum phenomenon,
extremely sensitive to noise. The height of the peak, is
significantly smaller than the noiseless value and the pre-
diction of the Qiskit simulator. These results show that
the Qiskit simulator underestimate some of the relevant
noise channels, such as fluctuations of the qubit quality
parameters between calibrations of the quantum com-
puter, memory effects, and cross-talks between qubits.

The presence of these noise channels also shows the
imposing difficulties in scaling quantum algorithms to a
large number of qubits and of quantum gates. On the
other hand, striking progress has been reported in recent
years, quantified for instance by the quantum volume VQ,
a single number meant to encapsulate the quantum com-
puter performance, including number of available qubits
and number of quantum gates that can be reliably imple-
mented, before errors dominate [3]. The quantum volume
is defined as

log2 VQ = arg maxκ≤n{min[κ, d(κ)]}, (25)

where n is the number of qubits in the quantum com-
puter, and d(κ) = 1/(κεeff(κ)), known as circuit depth,
is determined by an effective error rate εeff(κ) for a subset
of κ ≤ n qubits, on which sequences of random two-qubit

FIG. 3: Dynamical localization in the quantum sawtooth map
with n = 3 qubits, kT = 1.5, k ≈ 0.273. Data from the IBM
quantum processors lima (red) are obtained after averaging
over 10 repetitions of 8192 experimental runs, and compared
with the Qiskit simulator (blue) and the noiseless simulation
(green).

unitaries are implemented. From January, 2020 to De-
cember, 2021, the reported values of VQ have increased
from VQ = 32 to VQ = 2048 (for a comparison, data from
Fig. 3 have been obtained with a machine with quantum
volume VQ = 8).

VI. OUTLOOK

A few significant examples have been discussed show-
ing the capabilities of a quantum computer in the simula-
tion of complex physical systems. A quantum computer
with a few tens of qubits and a long enough decoherence
time to allow the implementation of a large number of
quantum gates, would outperform a classical computer
in this kind of problems.

Any practical implementation of a quantum computer
has to face errors, due to the inevitable coupling of the
computer to the surrounding environment or to imperfec-
tions in the quantum computer hardware. The first kind
of error is known as decoherence and is a threat to the ac-
tual implementation of any quantum computation. More
generally, decoherence theory has a fundamental interest
beyond quantum information science, since it provides
explanations for the emergence of classicality in a world
governed by the laws of quantum mechanics [4]. The core
of the problem is the superposition principle, according
to which any superposition of quantum states is an ac-
ceptable quantum state. This entails consequences that
are absurd according to classical intuition, like the super-
position of “cat alive” and “cat dead” that is considered
in the Schrödinger’s cat paradox. The interaction with
the environment can destroy the coherence between the
states appearing in a superposition (for instance, the “cat
alive” and “cat dead” states). Therefore, decoherence in-
validates the quantum superposition principle, which is
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at the heart of the power of quantum algorithms. The
presence of device imperfections, although not leading to
any decoherence, also hinders the implementation of any
quantum computational task, introducing errors. There-
fore, decoherence and imperfection effects appear to be
the ultimate obstacle to the realization of a large-scale
quantum computer.

Note that a quantum computer is not necessarily re-
quired for implementing quantum simulation. Simpler
quantum devices, called (analog) quantum simulators
can mimic the evolution of other quantum systems in
an analog manner. Such simulators are problem-specific
quantum machines, namely controllable quantum sys-
tems used to simulate other quantum systems [5].

At present (2022) it is not clear if and when a use-
ful quantum computer, capable of outperforming existing
classical computers in important computational tasks,
will be built. In order to perform coherent controlled

evolution of a many-qubit system, one needs to take into
account the problem of decoherence, and therefore large-
scale quantum computers appear unrealistic with present
technology. On the other hand, progress in the field has
been huge in recent years. Moreover, we should bear in
mind that technological breakthroughs (such as the tran-
sistor was for the classical computer) are always possi-
ble and that no fundamental objections have been found
against the possibility of building a quantum computer.
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