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The isotropic Heisenberg chain represents a particular case of an integrable many-body system exhibiting
superdiffusive spin transport at finite temperatures. Here, we show that this model has distinct properties also at
finite magnetization m 6= 0, even upon introducing the SU(2) invariant perturbations. Specifically, we observe
nonmonotonic dependence of the diffusion constant D0(∆) on the spin anisotropy ∆, with a pronounced max-
imum at ∆ = 1. The latter dependence remains true also in the zero magnetization sector, with superdiffusion
at ∆ = 1 that is remarkably stable against isotropic perturbation (at least in finite-size systems), consistent with
recent experiments with cold atoms.

Introduction. The integrable quantum many-body lattice mod-
els and their anomalous finite-temperature T > 0 trans-
port properties have been the subject of theoretical inves-
tigations for many decades. The development of efficient
analytical and numerical techniques [1] has recently signifi-
cantly advanced our understanding. In this regard, the one-
dimensional isotropic Heisenberg model played a prominent
role. In spite of its exact solvability [2], understanding the
plethora of anomalous transport properties continues to posit a
challenge, especially concerning the observed anomalous su-
perdiffusive spin transport at T > 0 emerging at the junction
of the gapless regime at ∆ < 1, implying finite spin stiffness
D(T > 0) > 0 [3–5] featuring ballistic spin transport [6–8],
and gapped regime for ∆ > 1 with vanishing D(T > 0) = 0
and finite (dissipationless) diffusion constant D0 < ∞ [9].
While postulated earlier [10], the superdiffusion of isotropic
∆ = 1 point with particular universal Kardar-Parisi-Zhang
(KPZ) dynamical scaling exponent z = 3/2 has been re-
cently established both numerically [9, 11–13] and analyti-
cally within the generalised hydrodynamics (GHD) [14–18].
It is worth noting that isotropic Heisenberg chains can be ap-
proximately realized in spin-chain materials [19, 20] (possess-
ing very large thermal conductivity owing to nearly conserved
energy current [21]), as well as in cold-atom optical lattices
[22–24].

Although there are still open questions in integrable lattice
models, the understanding of the effects of (even weak) in-
tegrability breaking perturbations (IBP) remains particularly
challenging [25–27]. In connection with the dc spin conduc-
tivity σ0 and related spin diffusion D0, the role of the uni-
form (preserving translational symmetry) perturbative term
gH ′ has been addressed numerically within the easy-plane
regime ∆ < 1 [28–31]. It was proposed, via perturbation-
theory arguments, that at high-T and weak g � 1 the dc con-
ductivity scales as ∝ 1/g2, but in general exhibiting multiple
relaxation times [31] related to the different conserved quan-
tities involved in the current relaxation. On the other hand, in
the easy-axis ∆ > 1 regime, the role of IBP is unusual [32, 33]
due to finite, anomalous/dissipationless diffusion even in the
integrable model. The spin transport in the perturbed isotropic

Heisenberg model seems to be even richer. In particular, due
to the SU(2) spin symmetry, the isotropic perturbations that
preserve such symmetry are expected to have different (even
singular) effect on spin transport [24, 34, 35], in contrast to
anisotropic ones [30].

In this Letter, we show that the distinctive transport prop-
erties of the isotropic Heisenberg model are, at high-T , not
exclusive to the integrable (i.e., unperturbed) model or to van-
ishing magnetization density m = 0, but are instead seen also
at finite m > 0 and finite isotropic perturbation strengths. We
present numerical evidence that: (i) In the m = 0 sector for
∆ = 1, superdiffusive transport is extremely robust to the
isotropic perturbations of even moderate strength g, exhibit-
ing superdiffusive scaling of the diffusion constant D0 ∼ Lζ

with 0 < ζ < 1/2 for system sizes up to L = 100. (ii)
For isotropic perturbations at ∆ = 1, the diffusion constant
D0(∆) features a peak at ∆ = 1 in all magnetization sec-
tors. In contrast, the anisotropic IBP lead to a monotonic
dependence D0(∆). Away from ∆ ' 1 and m = 0, in
both cases, the results appear close to the standard perturba-
tion theory D0 ∝ 1/g2 scaling, while for ∆ = 1 the g de-
pendence of our results is less conclusive. (iii) Already in
the unperturbed isotropic spin chain, the high-T spin stiff-
ness, measured in the units of static spin susceptibility, re-
veals a roughly linear dependence D∗(m) ' 2|m| across
a broad range of densities m & 0.3 that have gone unno-
ticed so far. This dependence eventually crosses over to the
non-analytic behavior D∗(m) ' m2 log(1/|m|) at small m,
which is hard to observe numerically. Finite magnetization
results are obtained with the microcanonical Lanczos method
(MCLM) on systems up to L = 36 sites. However, the most
challenging regime appears in the vicinity of critical point
m = 0,∆ = 1. Here, we employ the time-evolving block
decimation (TEBD) technique for boundary driven open sys-
tems with up to L = 100 sites to establish the nonequilibrium
steady state (NESS).

Model. We study the S = 1/2 XXZ Heisenberg spin chain
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with general anisotropy ∆ adding the IBP of the strength g

H = J
∑
i

[1
2

(S+
i+1S

−
i + H.c.) + ∆Szi+1S

z
i

]
+ gJH ′ . (1)

We deal with the IBP, which (at least partly) con-
serve the translational symmetry of the model, and
concentrate on the case of the staggered exchange.
The anisotropic IBP contains only the spin-flip term
H ′an = (1/2)

∑
i(−1)i(S+

i+1S
−
i + H.c.), while as the alter-

native case we consider H ′is = H ′an + ∆
∑
i(−1)iSzi+1S

z
i

which is fully SU(2) isotropic for ∆ = 1. We con-
sider Hamiltonians that conserve total magnetization, namely
sztot = mL, where |m| ≤ 1/2 is the magnetization den-
sity of the system, and the spin current operator is given by
js = (J/2)

∑
i[1 + g(−1)i](iS+

i+1S
−
i + H.c.). We use J =

1 as the unit of energy and analyse finite systems with L
sites, either closed with periodic boundary conditions (PBC)
or open with boundary driving.
Perturbed Heisenberg chain - finite magnetization. We first
consider the high-T dynamical conductivity σ̃(ω) = Tσ(ω)
of a perturbed system with PBC and fixed magnetization
sztot = Lm, focusing here on the intermediate m = 1/4.
We evaluate σ̃(ω) using the MCLM [36–38] by employing
a large number of Lanczos steps, i.e., here typically ML =
20000 for systems up to L = 36 with Nst . 107 basis
states. This allows for frequency resolution δω ' 10−3,
important to resolve also the large dc σ̃0 = σ̃(ω → 0)
emerging due to long relaxation times τ � 1. Conse-
quently, the dc diffusion constant can be extracted assum-
ing the generalized Einstein relation, D0 = σ̃0/(Tχ0),
χ0 = (1/π)

∫
σ(ω)dω = (1/4−m2)/T , which is valid in

perturbed/normal systems [33]. Note that the diffusion D0

is a well defined concept even at T →∞, unlike conductivity
σ0 = σ(ω → 0) ∝ 1/T .

Results for the diffusion constant D0 at magnetization den-
sitym = 1/4 as the function of the anisotropy ∆ are presented
in Fig. 1(a,b). Most strikingly, as shown in Fig. 1(a), D0 re-
veals a pronounced peak at isotropic point ∆ = 1 with high
value D0 � 1 even at substantial g = 0.3. The results are re-
liable despite the very large D0, also implying a narrow peak
in dynamical σ̃(ω), as evidenced by analyzing systems of dif-
ferent numerical complexity L = 24 − 36. Dependence on
the perturbation strength g is quite consistent with expected
standard D0 ∝ 1/g2, see Fig. 1(b). In addition, in Fig. 1(c,d),
we present the frequency ω dependence of the integrated con-
ductivity I(ω) = (1/π)

∫ ω
0
σ(ω′)dω′, from which the diffu-

sion constant can be extracted as I(ω → 0) ∝ D0ω. We
observe the collapse of different g-curves, plotted as a func-
tion of frequencies rescaled by the square of the perturbation
strength ω/g2. On the other hand, in Fig. 1(b), we also dis-
play the effect of the anisotropic IBPH ′an, which behaves reg-
ularly in several respects: (i) the variation with ∆ is smooth
and monotonously decreasing without any specific feature at
∆ = 1; (ii) D0 value is much smaller, at least at ∆ ' 1; (iii)
the scaling with D0 ∝ 1/g2 can be accurately followed for all
the considered values of g.
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Figure 1. Diffusion constant D0 vs. anisotropy ∆ at fixed magneti-
zation density m = 1/4 for isotropic-perturbation strength g = 0.3,
as obtained for different system sizes via ED (L = 24) and MCLM
(L = 28−36). (b)D0 vs. ∆ for isotropic (full lines) and anisotropic
(dashed lines) g = 0.15−0.3, obtained via MCLM forL = 36. (c,d)
Integrated optical conductivity I(ω) for (c) ∆ = 1 and (d) ∆ = 1.3
as the function of the rescaled frequencies by the square of the pertur-
bation strength ω/g2. Dashed (solid) line depict L = 20 (L = 36)
ED (MCLM) data.

In Fig. 2 we present also the variation ofD0(∆) as obtained
via MCLM at fixed size L = 28 in canonical ensembles with
fixed magnetization sztot = mL, m = [0, 6]/28, shown here
for moderate g = 0.2. The anisotropic IBP case (in the inset)
again reveals a steady decrease of D0 with ∆ for all m. By
contrast, the isotropic IBP in the vicinity of ∆ ' 1 reveals a
strikingly different variation of D0 with m, with D0(∆) de-
veloping a peak around ∆ = 1 with increasing m > 0.
Perturbed Heisenberg chain - zero magnetization. Our closed-
system MCLM analysis indicates that the canonical m = 0
results at accessible system sizes L ≤ 28 do not match with
the corresponding grandcanonical average (see inset of Fig. 2
and [39]). This remains true even for substantial g ' 0.3 and
is most pronounced for isotropic IBP. As a consequence, the
analysis of the spin transport in the vicinity of m = 0 and
∆ = 1 requires special attention, and previous studies have
already reported that this regime is particularly sensitive to fi-
nite size/time effects [34]. To achieve larger L, we study open
Heisenberg chains, where the spin current is driven via bound-
ary Lindblad operators L1 =

√
1 + µS−1 , L2 =

√
1− µS+

1 ,
L3 =

√
1− µS−L , L4 =

√
1 + µS+

L with a small spin bias
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Figure 2. Diffusion constant D0 vs. anisotropy ∆, as calculated via
MCLM in ensembles with magnetization densities m = [0, 6]/28
and g = 0.2 for isotropic (main panel) and anisotropic (left in-
set) perturbation, respectively. Right inset: comparison of canonical
m = 0 and grandcanonical results.

µ. To reach the non-equilibrium steady state (NESS) current
jss we use the time-evolving block-decimation technique for
vectorized density matrices [40, 41]. In such a setup for diffu-
sive systems, one finds a linear magnetization profile emerg-
ing at late times, and the spin diffusion constant can be ex-
tracted via D0 = −jss/∇sz , where ∇sz is the magnetiza-
tion gradient [9, 39]. Ballistic transport corresponds to an
essentially flat steady-state magnetization profile in the bulk,
szi ≡ tr(Szi ρss) = 0, with sz2− sz1 = szN − szN−1 = µ

2 jump at
the edges [9, 39]. For superdiffusive transport, spin profile re-
sembles szi '

µ
π arcsin(−1 + 2 i−1

L−1 ) [9, 39]. In both of these
cases, realized by ∆ < 1 and ∆ = 1, respectively, adding IBP
should again give way to diffusive transport with a linear spin
profile. While the bulk spin profile is indeed linear, in finite
systems with IBP and ∆ < 1, a ballistic component transvers-
ing the system without scattering yields a small jump at the
edges, diminishing with increasing L or g. For anisotropic
IBP and ∆ = 1, such jumps at the edges are almost negli-
gible. For isotropic IBP and ∆ = 1, on the other hand, an
approximately linear bulk spin profile retains some curvature,
while the jump at the boundaries is reminiscent of (or even
more pronounced than in) the unperturbed arcsin(x) profile
for finite L [39]. This already indicates that for isotropic IBP
and ∆ = 1, at considered system sizes L ≤ 100, there is still
no restoration of normal transport. We calculate the diffusion
constant from the magnetization gradient extracted from the
f = 0.2 fraction of the central bulk spin profile in all cases.

Anisotropic IBP results far away from ∆ = 1, e.g. at
∆ = 0.5, corroborate the expected scaling D0 ∝ 1/g2 [39].
For ∆ = 1.0 and anisotropic IBP, our results show normal
1/L finite size corrections, however, we cannot access small
enough IBP strengths g, and consequently large enough L, to
reveal the anticipated D0 ∝ 1/g2/3 scaling [30]; for g and L
parameters considered, we see no asymptotic scaling with g
yet [39].

For isotropic IBP and ∆ = 1, Fig. 3(a) presents the esti-
mated system-size dependence of D0(L) by fitting D0 ∼ Lζ ,
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Figure 3. (a) Scaling of NESS diffusion constant vs. L for various
perturbations g = 0.15−0.4, including the unperturbed result g = 0,
fitted with the power laws D′ ∝ Lζ with different ζ = [0.24 −
0.5]. In the inset, fitted ζ for different g are shown for ∆ = 1.0 and
∆ = 0.9. (b) Diffusion constant D0 vs. perturbation ∆ for isotropic
perturbation of different strength g = 0.15−0.4, obtained via NESS
method for sizes L = 30, 60.

with exponent ζ plotted in the inset. Recall that ζ is related
to the dynamical exponent z by ζ = 2 − z [9, 11]. In the
unperturbed case g = 0, we get ζ = 0.46, complying with the
analytically expected KPZ superdiffusion with ζ = 1/2. The
surprising observation is that also for systems with isotropic
IBP, we find a robust signature of superdiffusion, albeit with
a smaller exponent ζ, 0.27 < ζ < 0.37 (but far away from
the diffusive ζ = 0). Our results agree with previous numeri-
cal results [34, 35] that reported z = 3/2 scaling for isotropic
IBP from the short-time dynamics. Similarly, the recent fi-
nite size/time measurements in a cold-atom experiment [24]
gave an estimate 1.7 < z < 1.9 in weakly perturbed systems.
All this suggests that superdiffusion is exceptionally robust
against perturbations respecting the SU(2) symmetry, and the
expected onset of diffusion would require much larger system
sizes (in NESS formalism) and times (for closed systems).

In Fig. 3(b) we display dependence of D0(∆) on ∆ for two
different system sizes L = 30, 60 and different isotropic IBP
strengths g = 0.2, 0.3, 0.4. At stronger IBP g = 0.3, 0.4,
we observe a peak in the diffusion constant D0 at ∆ = 1,
similarly as in ED calculations at finite magnetization den-
sities m > 0, Fig 2 and [39]. Although at weaker strength
g = 0.2 the peak of D0(∆) moves inside the ∆ < 1 regime,
comparing the data for L = 30, 60 makes it apparent that
results are only well-converged (with the system size) away
from ∆ ' 1. For this purpose, we repeat the system-size
analysis also for ∆ = 0.9. Apparently, isotropic IBP pro-
motes anomalous D0 ∼ Lζ0.9 scaling also for ∆ = 0.9, but
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with ζ0.9 < ζ, see inset of Fig. 3(a). This explains that with
increasing L, D0(∆ = 0.9) grows slower than D0(∆ = 1.0)
and the ∆ ≈ 0.9 peak for g = 0.2 is only a finite size ef-
fect, while we expect that the true thermodynamic peak is at
∆ = 1. Similarly, we believe that ∆ < 1 peak at canonical
and GC result for the closed system at m = 0, inset of Fig.2,
is likewise an artifact of small system sizes. To ensure ballis-
tic scaling at g = 0, ζ0.9 could either cross over to ζ0.9 → 1
at small g or show a discontinous jump at g = 0.
Spin stiffness at finite magnetization m > 0. We finally dis-
cuss certain interesting properties of the unperturbed system
at finite magnetization that have so far gone undetected. The
distinctive feature of the unperturbed (g = 0) integrable spin
chains at finite magnetization is the ballistic spin transport at
T > 0, i.e., finite spin stiffness D in the spin conductivity
σ(ω) = 2πDδ(ω) + σreg(ω). In a system with PBC and
given sztot, the D(T � 1) can be evaluated using full exact
diagonalization (ED) by calculating all diagonal and degen-
erate matrix elements TD =

∑
εn=εl

〈n|js|l〉2/(2LNst), with
Nst as the number of many-body states. In the thermodynamic
limit, the exact computation of D is possible using the GHD
formalism [17, 42]. In the following, we find it convenient to
present and discuss the normalized spin stiffnessD∗ = D/χ0,
with static spin susceptibility χ0 = (1/4−m2)/T providing
the conductivity sum rule χ0 = 1

π

∫
σ(ω)dω.

We concentrate here on the most interesting isotropic point
∆ = 1, relegating the discussion of other regimes to [39]. In
Fig. 4, we show (i) ED results, with extrapolations to L→∞,
(ii) tDMRG result from Ref. [43], and (iii) GHD exact results
[17, 42], obtained as detailed in [39]. For large magnetiza-
tions, the observed approximate slope of 2|m| can be, from
the viewpoint of GHD, accurately captured by the contribu-
tions of magnons and two-magnon bound states [39]. Despite
larger bound states becoming increasingly important at lower
magnetization, it turns out, unexpectedly, that for m & 0.3,
contributions conspire to a nearly linear curve. As elaborated
in [39], upon approaching close to half filling (m = 0), the
behavior crosses over to the theoretically established [14, 17]
anomalous non-analytic scaling D∗(m) ∼ m2 log(1/|m|),
signaling the onset of superdiffusion at m = 0. Despite dif-
ferent order of limits (limL→∞ limt→∞), extrapolation of our
ED results within the accessible range is found in good agree-
ment with the tDMRG data and GHD. At lower magnetization
densities, tDMRG values fall on top of the GHD curve until
they also depart from it due to finite time limitations.
Conclusions. In this Letter, we show that the anomalous be-
havior of transport in isotropic Heisenberg chain is not lim-
ited to the unperturbed (i.e., integrable) model nor to zero av-
erage magnetization m = 0 (zero external magnetic field),
but manifests itself over the entire range of m and at un-
expectedly strong perturbations. For isotropic perturbations
and ∆ = 1, we observe anomalously large diffusion con-
stants, with non-monotonic dependence of D0(∆) on ∆ for
all magnetizations, and with the peak at ∆ = 1 becoming
more pronounced at larger m. Anisotropic perturbations yield
much smaller diffusion constants D0(∆) with monotonous ∆

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Magnetization density m

ED L → ∞
tDMRG
GHD
2m
6.19m2 log(1/m)

Figure 4. (a) Normalized spin stiffness D∗ vs. magnetization
density m obtained from (i) extrapolated L → ∞ ED data [39]
(solid black points), (ii) tDMRG result Ref. [43] (open black points),
and (iii) GHD exact calculation (orange line). Simple linear re-
lation D∗ = 2|m| (green solid line) at large magnetization and
D∗(m) = 6.19m2 log(1/|m|) (green dashed line) at small mag-
netization is also presented.

dependence. This suggests that within the isotropic Heisen-
berg model, the quasi-particles are less severely affected by
isotropic than anisotropic perturbations. Whether large diffu-
sion constants observed in the isotropically perturbed model
can be explained from the broadening of the unperturbed spin
stiffness associated with the quasiparticle decay channels or
perhaps arise from the dissolution of the anomalous (i.e. sin-
gular) diffusion constant of the unperturbed isotropic model
remains an open future challenge.

The most challenging to discern is the behavior of the per-
turbed Heisenberg chain at m = 0. Here, the anisotropic per-
turbation suppresses the superdiffusion and leads to finite D0

well converged with system size. On the other hand, for the
isotropic perturbation, even the largest open-system NESS re-
sults conform with a superdiffusive scaling with L, D0 ∼ Lζ ,
with exponent ζ ∈ [0.25, 0.4] decreasing with increasing per-
turbation strength g. The intriguing conclusion of our findings
is that for finite systems, certain features of the unperturbed
KPZ superdiffusion with ζ = 1/2 remain fairly robust even
for moderately strong isotropic perturbations. Moreover, dy-
namical exponents in the range z = 2 − ζ ∈ [1.6, 1.75] are
well consistent with recent experiments on spin superdiffusion
in cold-atom lattices, where the perturbation to the Heisenberg
chain is added via the exchange between neighboring chains
[24]. As far as non-monotonous dependence ofD0(∆) is con-
cerned, our open system computations with m = 0 corrobo-
rate the m > 0 MCLM results obtained in closed systems.

Although the present study is restricted to the staggered ex-
change perturbation, we have found a similar dichotomy of
anisotropic vs. isotropic perturbations in other examples via
MCLM in closed systems, e.g., the next-neighbor exchange,
bringing our analysis even closer to actual experiments [24].
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brych, “From dissipationless to normal diffusion in easy-axis
heisenberg spin chain,” (2022), arXiv:2205.11891.

[34] J. De Nardis, S. Gopalakrishnan, R. Vasseur, and B. Ware, “Sta-
bility of superdiffusion in nearly integrable spin chains,” Phys.
Rev. Lett. 127, 057201 (2021).

[35] Dipankar Roy, Abhishek Dhar, Herbert Spohn, and Manas
Kulkarni, “Robustness of kardar-parisi-zhang scaling in a clas-
sical integrable spin chain with broken integrability,” (2022),
arXiv:2205.03858.
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In the Supplemental Material, we present additional numerical results for the spin diffusion constant in the perturbed Heisen-
berg chain. In particular, we provide more details on the open-systems NESS results, system size and perturbation strength
scalings, and additional results from closed grand canonical calculation. The last section highlights the calculation of spin
stiffness using generalized hydrodynamics.

Boundary driven open systems: different transport regimes

The zero magnetization m = 0 results reported in the
main text are predominantly obtained by inducing spin current
through the system by coupling it to the baths at the edges.
The evolution of the system’s density matrix ρ(t) is then gov-
erned by the Lindblad master equation,

∂tρ = −i[H, ρ] + D̂ρ, (S1)

where H denotes the system Hamiltonian and D̂ the dissi-
pator, which is expressed in terms of the Lindblad opera-
tors Lk as D̂ρ =

∑
k LkρL

†
k −

1
2{L

†
kLk, ρ}. For our prob-

lem, H is the XXZ Hamiltonian described in Eq. (1) in
the main text, while Lindblad operators Lk act only on the
boundary spins and are given by L1 =

√
1 + µS−1 , L2 =√

1− µS+
1 , L3 =

√
1− µS−L , L4 =

√
1 + µS+

L . Bias µ im-
poses a finite boundary local magnetization and spin current in
the non-equilibrium steady state (NESS), jss = Tr[ρssjs]. To
evolve the density matrix towards the steady state ρss, we em-
ploy the time-evolving block decimation for vectorized den-
sity matrices. In particular, we use the fourth order TEBD
with a time step dt = 0.2, bond dimension χ ∼ 180, and bias
µ ∼ 0.001.

In Fig. S1, we show the NESS magnetization profiles for
different choices of ∆ and types of perturbations, as described
in the main text. The upper panel indicates how the flat pro-
file in the easy-plane regime, characteristic of ballistic trans-
port, gives way to a linear diffusive profile coexisting with the
boundary jumps caused by finite system sizes. Here isotropic
and anisotropic IBP yield similar effects. Staggering effects in
the magnetization profile are related to the staggering in our
perturbations. In the lower panel, we perform the same anal-
ysis for ∆ = 1, showing how the superdiffusive profile with a
tentative form szi ∼

µ
π arcsin(−1 + 2 i−1

L−1 ), szi = Tr(Szi ρss)
[9] gets modified by our perturbation. While anisotropic IBP
yields a mostly linear diffusive-like profile with small jumps at
the edges, the profile for isotropic perturbation has much more
pronounced jumps and only an approximately linear bulk pro-
file.

In Fig. S2(a) we show the relative value for the magnetiza-

tion jump

G =
sz2 − sz1
µ

=
szL − szL−1

µ
, (S2)

at the boundaries for the isotropic IBP. As a function of system
size, G is decaying approximately as G ∼ L−ζ′ with ζ ′ ≈ 0.5.
Such a dependence seems to be another indication of the rem-
nant signatures of superdiffusion in the presence of isotropic
IBP and most probably correlates with roughly superdiffusive
(KPZ) scaling of the steady state current jss ∼ L−γ with
γ ≈ 0.5, Fig. S2(b), for all IBP strengths considered. While
in boundary driven setups, transport is often deduced directly
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Figure S1. Spin profiles Tr(Szi ρss)/µ for different ∆ = 0.5, 1.0
and g = 0, 0.3 parameters. (a) Shows unperturbed, isotropically and
anisotropically perturbed ballistic case for ∆ = 0.5. Here, both IBPs
have comparable effect. (b) Shows unperturbed, isotropically and
anisotropically perturbed superdiffusive case for ∆ = 1.0. Unper-
turbed profile resembles arcsin(x) profile. For anisotropic perturba-
tion, spin profile is linear with negligible jump at the edges. Isotropic
perturbation has much more anomalous effect, leading to pronounced
jumps and only approximately linear bulk profile. L = 80.
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Figure S2. Open-system NESS results vs. L form = 0 and isotropic
perturbations g = 0.15 − 0.4: (a) the relative strength of boundary
jump G with corresponding fits to power law G ∼ L−ζ with ζ ≈ 0.5,
(b) the steady state current jss with power-law fits jss ∼ L−γ and
γ ≈ 0.5.

from the jss(L) scaling, as ballistic for γ = 0, diffusive for
γ = 1, etc., we note here that to avoid additional misleading
finite-size effects, transport properties should be determined
from the diffusion constant extracted from the bulk of the sys-
tem, as we explain in the main text.

Heisenberg chain: anisotropic perturbation

In Fig. S3(a), we present the scaling of D0 with the
anisotropic IBP strength g, as obtained via open-system NESS
method for different sizes L and two ∆ = 0.5, 1.0. The be-
havior at ∆ = 0.5 confirms the standard perturbation-theory
scalingD0 ∝ 1/g2 scaling. On the other hand, at the isotropic
point ∆ = 1, we do not see the analytically anticipated
D0 ∝ 1/g2/3 scaling [30] yet, presumably because we can-
not access small enough g and correspondingly large L.

Heisenberg chain: isotropic perturbation

Isotropic perturbations are considerably more delicate for
numerical analysis and interpretation. Our first observation
is that for closed-system MCLM at fixed m = 0, canonical
and GC results are much further apart. The GC results in
Fig. S4 show dependence of D0 with ∆, obtained via MCLM
in L = 28 system for three strengths g = 0.2, 0.3, 0.4. These
results can be compared with the canonical m = 0 one for the
same system in Fig. 2 of the main text for g = 0.2. While
away from ∆ = 1 both approaches yield similar results, the
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Figure S3. (a) Diffusion constant D0 vs. anisotropic perturbation
strength g at m = 0 for ∆ = 0.5 and ∆ = 1, calculated via NESS
for open systems with lengths L = 20, 40, 60. For ∆ = 0.5, results
are fitted with scaling 1/gα, α = 2. For ∆ = 1, we apparently
cannot reach large enough L and small enough g to observe any
1/gα scaling, in particular analytically anticipated α = 2/3 [30].
(b) Diffusion D0 vs. isotropic perturbation strength g for ∆ = 1, as
obtained via open-system NESS for different L = 40− 80.

GC calculation reveals a maximum near ∆ = 1 for all g, in
contrast with much smaller canonical m = 0 values. For the
canonical calculation, the shifting of the maxima from ∆ = 1
for g ≥ 0.3 to ∆ < 1 at g < 0.3 (for given size L = 28), as
well the overall D0(∆) variation, is well consistent with the
open-system NESS results, presented in Fig. 3(a) of the main
text also for larger L.

Finally, we show in Fig. S3(b) also the analysis of NESS
results for the variation of D0 at ∆ = 1 with the isotropic
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Figure S4. Diffusion constant D0 vs. anisotropy ∆ for the different
isotropic perturbation strengths g = 0.2, 0.3, 0.4, evaluated as the
GC average over magnetization sectors m, calculated with MCLM
on L = 28 system.
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perturbation strength g, presented at several lengths L = 40−
80. We do not see any clear g scaling for system sizes and
perturbation strengths considered.

Spin stiffness in the unperturbed Heisenberg model at finite
magnetization

Ballistic spin transport at T > 0 is a distinctive feature
of the unperturbed (g = 0) integrable spin chains at finite
magnetization, reflecting in a finite spin stiffnessD in the spin
conductivity

σ(ω) = 2πDδ(ω) + σreg(ω) (S3)

Spin stiffness D(T � 1) is with exact diagonalization (ED)
evaluated from

D =
1

T2LNst

∑
εn=εl

〈n|js|l〉2, (S4)

with Nst as the number of many-body states. Alternatively,
the exact result for D can be, in the thermodynamic limit,
calculated with the GHD formalism [44, 45], as described in
[17, 42, 46]. In the high-T limit, D as a function of mag-
netization density m (related to the GC chemical potential
h coupling to the global spin projection sztot =

∑
i S

z
i via

m(h) = 1
2 tanh (h/2)), reads explicitly [17, 42, 47]

D =
1

2T

smax∑
s=1

∫
dθρtot

s (θ)ns (1− ns)(veff
s (θ)mdr

s )2, (S5)

normalized to match the convention from review [1], consis-
tent with definition (S3). In this hydrodynamic formula [48],
the sum runs over the contributions from single magnons
(s = 1) and magnonic bound states with s quanta of mag-
netization (s > 2), while integration is performed over the
entire range of rapidities (parameterized by magnon momenta
ps = ps(θ)). Moreover, ρtot

s (θ) denote the total densities of
available states for the specie s, while ns are the correspond-
ing Fermi occupation functions (which in the high-T limit
become independent of θ), veff

s (θ) are the effective velocities
of propagation and mdr

s their dressed value of magnetization.
Note that all the state functions depend nontrivially on m. For
∆ ≥ 1, the spectrum of quasiparticles forms an infinite tower
of bound states (with bare magnetization ms = s) and hence
smax = ∞, whereas for ∆ < 1 the number of quasiparticle
species is always finite, but it depends on ∆ (e.g., for ∆ = 0.5,
smax = 3). In the latter case, the exact formulae for the ther-
modynamic state functions can be found e.g. in [14, 49].

In the following, we present and discuss the normalized
spin stiffness D∗ = D/χ0. Dependence of D∗(m) on m is
depicted in Fig. S5(a), shown for three characteristic regimes
corresponding to easy-plane ∆ < 1, isotropic, and easy-axis
regime ∆ > 1 [50]. While for ∆ < 1 we find D∗(m →
0) > 0, consistently with ballistic spin transport and partly
conserved js [4, 5], for ∆ > 1, D∗(m � 1/2) ∝ m2 is
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Figure S5. (a) Normalized spin stiffness D∗ vs. magnetization den-
sity m obtained via ED in systems with L = 20 sites for different
anisotropies ∆ = 0.5, 1.0, 1.5. (b) Finite-size scaling of D∗ vs.
m for isotropic system ∆ = 1 for different L = 10, 12, . . . , 40,
together with extrapolated L → ∞ results (solid black points),
tDMRG result Ref. [43] (open black points), GHD exact calculation
(orange line), and simple linear relation D∗ = 2|m| (green dashed
line). Inset depicts detailed data close to m ∼ 0.5 magnetization
density. (c) 1/L scaling of magnetization density m of interpolated
D∗ = 0.5, 0.55, . . . , 1.0 (top to bottom).

well captured by the Mazur bound [8], where the quadratic
dependence comes from a large projection of spin current on
the conserved energy current. In all cases D∗(m→ 1/2) = 1
is plausible since the latter reflects dissipationless propagation
in the case of low density of excitations (magnons). Quanti-
tative agreement between ED on finite L = 20 and GHD is
evidently rather poor. The reason is different quasi-particle
content; for example, at m = 1/2 − 1/L magnetization den-
sity, ED contains only magnons, while GHD calculation takes
into account also bound states with s > 1. Therefore, a di-
rect comparison to GHD only makes sense by subsequently
performing the L → ∞ extrapolation of ED results, as done
in Fig. S5(b,c) for ∆ = 1. In the accessible range of ED
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we find perfect agreement, despite the different order of lim-
its t → ∞ and L → ∞ taken in the two approaches. As we
elaborate below, dependence of D∗(m) on m in the isotropic
spin chain consists of two opposite regimes: a roughly linear
dependence D∗(m) ' 2|m| for m & 0.3, and a non-analytic
scaling D(m) ≈ am2 log (1/m) for small m; by numerical
evaluation of (S5) we find a ' 6.19.

We proceed by explaining the numerically observed slope
D∗(m) ' 2|m| at large magnetization density. With aid of
numerical evaluation, we find that in the h → ∞ limit, the
rapidity integrals can be for s . 50 accurately approximated
as
∫
dθρtot

s (θ,m)veff
s (θ,m)2 ≈ s−2/2, yielding a compact ap-

proximation for spin stiffness D(m) ≈
∑smax

s=1 D̃s(m) with

D̃s(m) ≡ 1

2T

1

2s2
ns(m) (1− ns(m))mdr

s (m)2. (S6)

By differentiating this result with respect to m, we readily
retrieve the anticipated slope of D∗(m), namely

∂mD
∗(m)

∣∣
m= 1

2

= ∂m

∑smax

s=1 D̃s(m)

(1/4−m2)

∣∣∣
m= 1

2

= 3− 1 = 2.

(S7)
Numerically we find that only magnons (s = 1) and bound
states (s = 2) are relevant, contributing slopes 3 and −1, re-
spectively, while all other s > 2 terms have a vanishing slope
at m = 1/2. Nonetheless, s = 1, 2 species feel the presence
of the full quasi-particle content implicitly via dressing. It is
rather remarkable that the same slope of 2m persists approx-
imately even at lower magnetization densities until m & 0.3,
despite higher bound states (s > 2) contribute appreciably in
this regime. The exact infinite sum expression for D is unfor-

tunately difficult to handle analytically, and thus we currently
lack a simple effective model to capture this behavior.

In the proximity of half filling, i.e. for small m,
the spin stiffness develops a non-analytic form D∗(m) ∼
m2 log(1/|m|), already inferred in previous works [14, 17].
This type of non-analytic behavior is inherently tied to the
onset of superdiffusion. To this end, we briefly rehash the ar-
guments of [14, 15, 17]. By imposing a cutoff smax = s?, the
curvature C of spin stiffness D(h) for small m ∼ h, defined
via D(h) ∼ C h2/2, is found to diverge as C ∼ log (s∗) [14],
readily implying non-analytic behavior at h = 0, D(h) ∼
h2 log (s∗). It then remains to deduce the cutoff depen-
dence s∗(h) on chemical potential h. This can be directly in-
ferred from dressed magnetizationmdr

s (h), which experiences
a crossover from mdr

s ∼ hs2 at sh� 1 to mdr
s (h) = ms = s

at sh � 1 [15]; cutoff s∗ ∼ 1/|h| ∼ 1/|m| thus effectively
separates light species from giant magnons that importantly
contribute at small h. At small h ∼ m, spin stiffness thus
shows D(m) ∼ m2 log (1/|m|) dependence.

Accordingly, since the spin diffusion constant DI at h = 0
diverges linearly with the cutoff s∗ as DI ∼ s∗, it diverges
algebraically as DI(m) ∼ 1/|m|. The dynamical exponent
z = 3/2 (associated with the KPZ superdiffusion) can be then
deduced from the growth in the time domain [15]: assuming
DI(t) ∼ tα ∼ s∗, using the scaling relation for the dressed
velocities veff

s ∼ 1/s at large s, and equating the anomalous
lengthscale veff

s t ∼ t/s∗ ∼ t1−α with
√
DI(t)t ∼ t(α+1)/2,

one deduces α = 1/3. The variance σ2
x(t) thus exhibits

asymptotic growth σ2
x(t) ∼ DI(t)t ∼ t4/3 = t2/z , imply-

ing z = 3/2.
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