
ar
X

iv
:2

21
2.

00
96

3v
2 

 [
nl

in
.S

I]
  1

5 
D

ec
 2

02
2

YANG-BAXTER MAPS AND INDEPENDENCE PRESERVING PROPERTY

MAKIKO SASADA AND RYOSUKE UOZUMI

ABSTRACT. We study a surprising relationship between two properties for bijective functions

F : X ×X →X ×X for a set X which are introduced from very different backgrounds. One

of the property is that F is a Yang-Baxter map, namely it satisfies the “set-theoretical” Yang-

Baxter equation, and the other property is the independence preserving property (IP property for

short), which means that there exist independent (non-constant) X -valued random variables X ,Y

such that U,V are also independent with (U,V ) = F(X ,Y ). Recently in the study of invariant

measures for a discrete integrable system, a class of functions having these two properties were

found. Motivated by this, we analyze a relationship between the Yang-Baxter maps and the IP

property, which has never been studied as far as we are aware, focusing on the case X = R+.

Our first main result is that all quadrirational Yang-Baxter maps F : R+×R+ →R+×R+ in the

most interesting subclass have the independence preserving property. In particular, we find new

classes of bijections having the IP property. Our second main result is that these newly introduce

bijections are fundamental in the class of (known) bijections with the IP property, in the sense that

most of known bijections having the IP property are derived from these maps by taking special

parameters or performing some limiting procedure. This reveals that the IP property, which has

been investigated for specific functions individually, can be understood in a unified manner.
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1. INTRODUCTION

1.1. Overview. In this paper, we study a surprising relationship between two properties for

bijective functions F : X ×X →X ×X for a set X which are introduced from very different

backgrounds and seemingly unrelated. One of the property is that F is a Yang-Baxter map,

namely it satisfies the “set-theoretical” Yang-Baxter equation

F12 ◦F13 ◦F23 = F23 ◦F13 ◦F12

where Fi j acts on the i-th and j-th factors of the product X ×X ×X . Yang-Baxter maps

are also called set-theoretical solutions to the quantum Yang-Baxter equation. The other is the

independence preserving property (IP property for short), which means that there is a class of

quadruplets of (non-Dirac) probability distributions µ ,ν , µ̃ , ν̃ satisfying F(µ × ν) = µ̃ × ν̃. In

other words, there exist independent (nonconstant) X -valued random variables X ,Y such that

U,V are also independent with (U,V ) := F(X ,Y ). The IP property has been mostly studied

for explicit functions F with X = R or an open interval of R and used to characterize special

probability distributions such as normal, gamma, exponential, inverse-Gaussian, beta and so on

(more details are discussed below). Such property is also called Matsumoto-Yor property if F is

given by a special form.

Recently, these characterization results with the IP property are also used to study stationary

solutions of stochastic integrable models [6, 9] and invariant measures of discrete integrable

systems [7]. In this context, it was pointed out that the map

F
α ,β
GIG (x,y) =

(

y
1+βxy

1+αxy
, x

1+αxy

1+βxy

)

on R+×R+ into itself with parameters α ,β ≥ 0, which originates from the discrete KdV equa-

tion, have these two properties, namely they are (parameter-dependent) Yang-Baxter maps and

also have the IP property for the generalized inverse Gaussian (GIG) distributions in [7]. This

motivates us to study a relationship between the Yang-Baxter maps and the IP property, which

has never been studied as far as we are aware. We note that later in [4, 25], it is proved that U

and V given by (U,V ) = F
α ,β
GIG (X ,Y ) are independent only when X and Y have GIG distributions

with proper parameters, namely the map characterizes the GIG distribution.

Besides this specific example, recent developments on the study of probabilistic properties

of discrete integrable systems lead us to expect a deep relationship between these two prop-

erties. Actually, one important consequence of the IP property is that the dynamics on the

two-dimensional lattice defined by the map F , which typically turns out to be a discrete inte-

grable system for such map, has a spatially independent and identically/alternately distributed

invariant measure (See Theorem 2.1 of [7]. Note that the IP property is called the detailed bal-

ance condition there). Hence, one may expect that there is a connection between the IP property

and the integrability, while the Yang-Baxter equation is one of the typical ways to characterize

integrability.

As a first study in this direction, we focus on the case X = R+ in this paper, but we do not

lose that much generality as discussed in Subsection 3.1. There are two main contributions of

our paper to connect these two properties. First, we prove that all quadrirational Yang-Baxter

maps F : R+×R+ →R+×R+ in the most interesting subclass [2 : 2] (whose definition is given

in Section 2), which was introduced in [1] and also studied in [34], that are FGIG = (F
α ,β

GIG ),
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H+
I = (H

+,α ,β
I ),H+

II = (H
+,α ,β
II ) and HIII,A = (H

α ,β
III,A) given as

H+
I (x,y) =

(

y

α

β +αx+βy+αβxy

1+ x+ y+βxy
,

x

β

α +αx+βy+αβxy

1+ x+ y+αxy

)

H+
II (x,y) =

(

y

α

β +αx+βy

1+ x+ y
,

x

β

α +αx+βy

1+ x+ y

)

HIII,A(x,y) =

(

y

α

αx+βy

x+ y
,

x

β

αx+βy

x+ y

)

with parameters α ,β > 0, have the IP property as stated in the next theorem. In [34], FGIG is

named HIII,B. We give more background of these functions in Section 2. In the following, for

any p,q > 0, Be′(λ ,a,b; p,q),K(λ ,a,b; p,q) and GIG(λ ,a,b; p,q) are some generalizations of

Beta prime, Kummer of Type 2 and GIG distributions respectively. The explicit density function

of each probability distribution is given in Subsection 1.3. The IP property for FGIG = HIII,B was

obtained in [7] so we omit it in the theorem.

Theorem 1.1. Let α ,β > 0. For the following distributions (X ,Y ), the random variables U,V

given by (U,V ) = F(X ,Y ) for each map are independent and have the following distributions.

(i) For F = H
+,α ,β
I :

X ∼ Be′(λ ,a,b ; α ,1), Y ∼ Be′(−λ ,a,b ; β ,1),

U ∼ Be′(−λ ,a,b ; α ,1), V ∼ Be′(λ ,a,b ; β ,1)

where λ ∈ R, a,b > 0, −min{a,b} < λ
2
< min{a,b}.

(ii) For F = H
+,α ,β
II :

X ∼ K(λ ,a,b ; α ,1), Y ∼ K(−λ ,a,b ; β ,1),

U ∼ K(−λ ,a,b ; α ,1), V ∼ K(λ ,a,b ; β ,1)

where λ ∈ R, a,b > 0, −b <
λ
2
< b.

(iii) For F = H
α ,β
III,A :

X ∼ GIG(λ ,a,b ; α ,1), Y ∼ GIG(−λ ,a,b ; β ,1),

U ∼ GIG(−λ ,a,b ; α ,1), V ∼ GIG(λ ,a,b ; β ,1).

where λ ∈ R, a,b > 0.

By change of variables, the IP property for H
α ,β
III,A is easily reduced to the property for F

α ,β
GIG ,

but the result for H
+,α ,β
I and H

+,α ,β
II are not reduced to any known cases (except for special

parameters), hence we obtain new classes having the IP property. We note that Koudou and

Wesolowski also found the IP property for H
+,α ,β
II independently [24]. We conjecture that these

maps characterize each probability distribution, which was actually proved in the literature for

some special cases such as F
α ,β

GIG (and so true for H
α ,β
III,A). The characterization for H

+,α ,β
II was

proved by Koudou and Wesolowski in [24], which was announced just after the first version

of the present paper was announced. As seen from the explicit expressions, there are beautiful

similarity between these maps and the parameters of distributions, and in fact, we can prove the

claims (ii) and (iii) of Theorem 1.1 by a certain limiting procedure from the result (i), besides

the direct computation. This limiting procedure is studied in Section 4.
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Our second contribution is that, as Theorem 5.1 in Section 5, we reveal that all of known

functions F on a product of open intervals of R having the IP property with two exceptions

(which characterize normal and Cauchy distributions, both having full support on R) are derived

from the quadrirational Yang-Baxter maps H+
I ,H+

II or HIII,A by taking a special parameter or

performing a singular limit with an appropriate coordinate-wise change of variables. These

relations are summarized in the following figure, which is the consequence of Lemma 2.3 and

Theorem 5.1.

H
+,α ,β
I IP

��

H̃
α ,β
I

α=δ ,β=0
// F

+,δ
Be

δ=1
// F+

Be

zero−temp.lim.
// FBe,zero

H
+,α ,β
II IP

IP
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

��

H̃
α ,β
II

α=1,β=0
// F+

K−Ga,A
// F+

Ga

zero−temp.lim.
// FExp

Ĥ
α ,β
II

α=1,β=0
// F+

K−Ga,B

<<

F
α ,β
GIG,zero

H
α ,β
III,A IP H

α ,β
III,B F

+,α ,β
GIG α=1,β=0

//

zero−temp.lim.

33

F+
GIG−Ga

The dotted lines represent singular scaling limits, the equality with label IP means two functions

are IP-equivalent, whose definition is introduced in Section 3, and the arrows represent special

parameter selections. The explicit expression of bijections in the diagram are given in Section

3. This excellently unifies most of known results for the IP property, which is summarized in

Corollary 5.2.

To summarize these two results in short, for the case X = R+, all Yang-Baxter maps (in an

interesting class) have the IP property and (most of) the functions having the IP property are

obtained from a Yang-Baxter map, which was a big surprise for us.

Finally, we discuss possible future developments. First, since H+
I ,H+

II and HIII,A are all of

subtraction-free form, as already pointed out in several contexts [7, 9, 20, 34], there is a zero-

temperature version (also called a tropical version as well as an ultra-discretized version) of

them where the (+,×)-algebra is replaced by (min,+)-algebra. For F
α ,β
GIG , such generalization

was already studied in [4, 7]. These zero-temperature versions also satisfy the Yang-Baxter

property as well as the IP property. However, since the IP property may also hold with some dis-

crete distributions for such zero-temperature versions, the characterization of distributions may

become more complicated. Another promising generalization is the positive definite matrix ver-

sions of H+
I ,H+

II and HIII,A. Actually, for most of bijections F having the IP property discussed

in Section 3, its positive definite matrix version has been introduced and shown that they also

have the IP property (cf. [16, 21, 22, 25, 26]). The matrix version of F
α ,β
GIG was introduced in [25]

and its IP property was already shown there. A very natural and interesting question is whether

these matrix versions are Yang-Baxter maps. Recently, the matrix versions of stochastic inte-

grable systems, such as random polymers and interacting diffusions are introduced [2, 32] and

the matrix versions of the IP property (for a certain function) play an essential role. Of course,

the most important and fundamental question is to figure out why there is a relationship between

the Yang-Baxter maps and the IP property. Also, using the connection between the Yang-Baxter
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maps and the IP property, it is worth trying to find a more direct connection between quantum,

stochastic and classical integrable systems and their stationary distributions in general.

1.2. Outline of the remaining part of the paper. In Section 2, we explain a brief background

on the Yang-Baxter maps and review the result on the characterization of the quadrirational

Yang-Baxter maps on CP1 as well as the origin of H+
I ,H+

II and HIII,A. In Section 3, we review

known results on the IP property for bijections on a product of open intervals of R and classify

them into some classes. Then, with a few exceptions of bijections, we introduce normalized

versions of them by cooridnate-wise change of variables. Here, the normalized version means

that it is a birational map on R+×R+ into itself. In Section 4, we prove Theorem 1.1, which

is essentially a consequence of direct computation, and also discuss several relations between

the maps H+
I ,H+

II and HIII,A as well as the probability distributions appeared in Theorem 1.1.

Finally, in Section 5, we give explicit relations between the functions discussed in Section 3,

which are already known in literature, and newly introduced maps H+
I ,H+

II and HIII,A to derive

known IP properties from Theorem 1.1.

1.3. Notation and probability distributions. Here, we list frequently used bijections:

• I : R+ → R+, I(x) = 1
x
, I−1 = I,

• For α > 0, θα : R+ → R+, θα(x) = αx, (θα)
−1 = θα−1 ,

• π : R2
+ → R2

+, π(x,y) = (y,x), π−1 = π .

We also introduce three classes of probability distributions with two positive parameters

p,q > 0. The specific parametrization is the key to connect probability measures by change

of variables and scaling limits in Lemmas 4.1, 4.2, and unify the known results on the IP prop-

erty in Corollary 5.2.

Generalized Beta prime distribution (p,q): For λ ,a,b ∈ R, −b <
λ
2
< a, the Generalized

Beta prime distribution with parameters (λ ,a,b; p,q), which we denote Be′(λ ,a,b; p,q), has

density

1

Z
xλ−1(1+ px)−a− λ

2 (1+qx−1)−b+ λ
2 , x ∈ R+,

where Z is a normalizing constant.

Kummer distribution of Type 2 (p,q): For λ ,b ∈R, a > 0, −b <
λ
2

, the Kummer distribution

of Type 2 with parameters (λ ,a,b; p,q), which we denote K(λ ,a,b; p,q), has density

1

Z
xλ−1e−apx(1+qx−1)−b+ λ

2 , x ∈ R+,

where Z is a normalizing constant.

Generalized inverse Gaussian distribution (p,q): For λ ∈R, a,b> 0, the generalized inverse

Gaussian distribution with parameters (λ ,a,b; p,q), which we denote GIG(λ ,a,b; p,q), has

density

1

Z
xλ−1e−apx−bqx−1

, x ∈R+,

where Z is a normalizing constant.

We also list special classes of them, which are more common in literature. In the following,

Be′(λ ,a,b; p,q), K(λ ,a,b; p,q) and GIG(λ ,a,b; p,q) are extend properly for p,q ∈ {0,∞} by

the natural way.



YANG-BAXTER MAPS AND INDEPENDENCE PRESERVING PROPERTY 6

Generalized Beta prime distribution (δ ): For a,b,δ > 0 and c ∈ R, the Generalized Beta

prime distribution with parameters (a,b,c;δ ), which we denote Be′δ (a,b,c), has density

1

Z
xa−1(1+ x)−a−b

(

1+δx

1+ x

)c

, x ∈R+,

where Z is a normalizing constant. Note that Be′(λ ,a,b;δ ,1) = Be′δ (b+
λ
2
,a− λ

2
,−a− λ

2
).

Beta prime distribution: For a,b> 0, the Beta prime distribution with parameters (a,b), which

we denote Be′(a,b), has density

1

Z
xa−1(1+ x)−a−b

, x ∈R+,

where Z is a normalizing constant. Note that Be′(λ ,a,b;1,0) = Be′(λ ,a− λ
2
) for λ > 0,

Be′(λ ,a,b;0,1) = Be′(b+ λ
2
,−λ ) for λ < 0, K(λ ,a,b;0,1) = Be′(b+ λ

2
,−λ ) for λ < 0, and

Be′1(a,b,c) = Be′(a,b).
Kummer distribution of Type 2: For a,c > 0 and b ∈R, the Kummer distribution with param-

eters (a,b,c), which we denote K(2)(a,b,c), has density

1

Z
xa−1(1+ x)−a−be−cx

, x ∈ R+,

where Z is a normalizing constant. Note that K(λ ,a,b; p,1) = K(2)(b+ λ
2
,−λ ,ap).

Gamma distribution: For λ ,a > 0, the Gamma distribution with parameters (λ ,a), which we

denote Ga(λ ,a), has density

1

Z
xλ−1e−ax

, x ∈R+,

where Z is a normalizing constant. Note that K(λ ,a,b; p,0)=Ga(λ ,ap) for λ > 0, K(λ ,a,b; p,∞)=

Ga(b+ λ
2
,ap) and GIG(λ ,a,b; p,0) = Ga(λ ,ap) for λ > 0.

Generalized inverse Gaussian distribution: For λ ∈ R and a,b > 0, the generalized inverse

Gaussian with parameters (λ ,a,b), which we denote GIG(λ ,a,b), has density

1

Z
xλ−1e−ax−bx−1

, x ∈ R+,

where Z is a normalizing constant. Note that GIG(λ ,a,b; p,q) = GIG(λ ,ap,bq).

We also note that the class of distributions K(λ ,a,b; p,q) is called Whittaker distribution

in [33].

2. YANG-BAXTER MAPS ON CP1
AND R+

In this section, we briefly review the background on the Yang-Baxter maps and known results

on the classification of Yang-Baxter maps on CP1 ×CP1 in a special class of functions, called

quadrirational functions. Then, we discuss when we can restrict these Yang-Baxter maps to the

domain R+×R+, which is the case we are interested in.

The Yang-Baxter maps, whose notion was introduced in [10] and the term was proposed

in [37], are bijective maps of a Cartesian product of two identical sets X

F : X ×X → X ×X

satisfying the “set-theoretical” Yang-Baxter equation

F12 ◦F13 ◦F23 = F23 ◦F13 ◦F12.
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Here, Fi j are maps on the product of three sets X ×X ×X into itself and act as F on the i-th

and j-th factors and as the identity on the other. For a set of bijective maps F(α ,β ) : X ×X →
X ×X with parameters α ,β in a certain set of parameters Θ, we also say that they are Yang-

Baxter maps if

(2.1) F12(λ1,λ2)◦F13(λ1,λ3)◦F23(λ2,λ3) = F23(λ2,λ3)◦F13(λ1,λ3)◦F12(λ1,λ2)

holds for any parameters λ1,λ2 and λ3 ∈ Θ. Actually, by replacing X with X ×Θ and consid-

ering

F̃((x,α),(y,β )) := F(α ,β )(x,y),

we obtain a (parameter-independent) Yang-baxter map F̃ .

Many important examples of the Yang-Baxter maps were found in literature and it is not

possible to enumerate them all, but some examples are in [11,17] and some classification results

for the case when X is a finite set were obtained in [12, 27]. For more background on the

Yang-Baxter maps and its transfer dynamics, see the nice review paper [38].

In [1], a classification of quadrirational maps on CP1 ×CP1 is given and it is shown that any

quadrirational map is equivalent, by some Möbius transformations acting independently on each

variable, to some Yang-Baxter map. To state their result more precisely, recall that a bijection

F : CP1 ×CP1 → CP1 ×CP1
, (x,y) 7→ (u(x,y),v(x,y))

is said to be birational if F and F−1 are both rational functions. The authors of [1] defined that

a map F : CP1 ×CP1 → CP1 ×CP1 is said to be quadirational if F and F̄ , which is called the

companion map of F , satisfying F̄(u,y) = (x,v) for (u,v) = F(x,y) is a well-defined bijection on

CP1 ×CP1 and moreover, F and F̄ are both birational functions. In other words, F is quadrira-

tional if F,F−1, F̄ and F̄−1 are well-defined rational functions. They proved that quadrirational

maps F(x,y) = (u(x,y),v(x,y)) have the form:

u(x,y) =
a(y)x+b(y)

c(y)x+d(y)
, v(x,y) =

A(x)y+B(x)

C(x)y+D(x)

where a(y), . . . ,d(y) are polynomials in y and A(x), . . . ,D(x) are polynomials in x, whose degrees

are all less than or equal to two. Hence, there exist three subclasses of such maps, which are

denoted by pair of numbers as [1 : 1], [1 : 2] and [2 : 2] depending on the highest degrees of the

coefficients of the polynomials for x and y. The most rich and interesting subclass is [2 : 2], and

so the case is studied in detail in [1] and also in [34].

To classify quadrirational maps, the authors of [1] introduce the equivalence with respect to

Möbius transformations acting independently on each variable x,y,u,v :

Definition 2.1. Quadrirational maps F and F̃ are (Möb)-equivalent if there exist Möbius trans-

formations g1,g2,h1,h2 on CP1 such that

F̃ = (h1 ×h2)◦F ◦ (g1 ×g2),

namely

F̃(x,y) = (h1(u(g1(x),g2(y))),h2(v(g1(x),g2(y))))

where F(x,y) = (u(x,y),v(x,y)).

Theorem 1 of [1] states that, in the subclass [2 : 2] of quadrirational maps, up to this (Möb)-

equivalence, there are only five families of quadrirational maps FI =(F
α ,β
I ),FII =(F

α ,β
II ), . . . ,FV =

(F
α ,β

V ) where each of them has two complex parameters α ,β . Remarkably, they found that all
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of these five canonical representative maps are Yang-Baxter maps, and moreover involutions and

coincide with their companion maps.

However, [34] pointed out that not all quadrirational maps satisfy the Yang–Baxter relation,

since the Möbius transformations on each variable, in general, destroy the Yang-Baxter property.

Hence, the classification result was further refined in [34], considering the following equiva-

lence.

Definition 2.2. Families of parameter dependent quadrirational maps F = (Fα ,β )α ,β and F̃ =

(F̃α ,β )α ,β are YB-equivalent if there exists a family of bijections φ(α) : CP1 → CP1 such that

F̃α ,β = (φ(α)−1 ×φ(β )−1)◦Fα ,β ◦ (φ(α)×φ(β )).

Proposition 1 of [34] showed that if F = (Fα ,β )α ,β and F̃ = (F̃α ,β )α ,β are YB-equivalent,

then F satisfies the relation (2.1) if and only if F̃ satisfies it. Hence, this is a natural equivalence

among the parameter-dependent Yang-Baxter maps. Theorem 2 of [34] showed that, up to this

YB-equivalence, there are 10 families of quadrirational Yang-Baxter maps of subclass [2 : 2]:
the families FI,FII , . . . ,FV obtained in [1] and additional 5 families named HI,HII ,H

A
III ,H

B
III and

HV , where all of them also have two complex parameters α ,β . For ∗ ∈ {I, II,V}, F∗ and H∗ are

(Möb)-equivalent but not YB-equivalent respectively, and FIII ,H
A
III ,H

B
III are (Möb)-equivalent

but not YB-equivalent.

As noted in [34], HI and HII have convenient subtraction-free representatives, which are H+
I

and H+
II given in Introduction, and HIII,A,HIII,B are originally subtraction-free. Hence, we can

consider them as Yang-Baxter maps on R+ by restricting the domain and the codomain to R+×
R+ and parameters α ,β to be positive. Namely, these four families are natural candidate to

study the IP property.

Since HIII,B =FGIG, the IP property for HIII,B was already shown in [7]. Moreover, the (Möb)-

equivalence preserves the IP property which means that HA
III would also have the IP property. In

fact, by a direct computation, we have

HIII,B = ((I ◦θα)× Id)◦HIII,A ◦ (Id × (I ◦θβ ))

where Id is the identity map, and by this relation, we can easily conclude the claim of Theorem

1.1 (iii). Hence, the essential novelty of Theorem 1.1 is in the claims for H+
I and H+

II .

In [34], it is also mentioned that there is an obvious (singular) limit procedure starting from

H+
I to obtain H+

II and HA
III . This is useful to understand relations between probability measures

appeared in Theorem 1.1, so we state this relation more explicitly as follows :

Lemma 2.3. The following scaling limits hold in the sense of the pointwise convergence.

(i) lim
ε↓0

H
+,εα ,εβ
I = H

+,α ,β
II .

(ii) lim
ε↓0

(θε ×θε)◦H
+,α ,β
II ◦ (θε ×θε)

−1 = H
α ,β
III,A.

3. INDEPENDENCE PRESERVING PROPERTY

In this section, we introduce a setting in which we study the independence preserving prop-

erty. Then, we list specific functions that are already known to have this property, in the historical

order with a brief background. We have not found any literature that discusses functions having

the IP property in a unified manner, and this section is the first such attempt.
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3.1. The independence preserving property. Let F be the set of measurable bijections be-

tween two product of open intervals of R :

F := {F : I1 × I2 → J1 × J2 | I1, I2,J1,J2 : open intervals of R, F : measurable bijection}.

For F ∈ F, we are interested in the existence and the characterization of independent ran-

dom variables X ,Y taking values in I1, I2 respectively such that U,V are also independent with

(U,V ) := F(X ,Y ). If there exist such pair of non-constant random variables X ,Y , we say that

F has the independence preserving property. Studying about this IP property is equivalent to

study the existence and the characterization of quadruplets of probability measures µ ,ν , µ̃ , ν̃
with suitable supports, which are not delta measures, satisfying µ̃ × ν̃ = F(µ × ν). In [7], the

relation µ̃ × ν̃ = F(µ ×ν) is called the detailed balance equation, and the quadruplets of proba-

bility measures µ ,ν , µ̃ , ν̃ are called solutions of the detailed balance equation, so we follow this

terminology. Solutions of the detailed balance equation are also called as solutions for short in

the following.

To study this question, it is natural to introduce an equivalence relation among such bijections.

Definition 3.1. For F : I1 × I2 → J1 × J2 and F̃ : Ĩ1 × Ĩ2 → J̃1 × J̃2 in F, we denote F ∼ F̃ if one

of the followings hold:

(a) There exist four measurable bijections g1,g2,h1,h2 such that

gi : Ĩi → Ii, hi : Ji → J̃i, i = 1,2,

and

F̃ = (h1 ×h2)◦F ◦ (g1 ×g2).

(b) F̃ = F−1.

(c) F̃ = F ◦π where π(x,y) = (y,x).
Moreover, F and F̃ ∈ F are IP-equivalent if there exists a finite sequence F0 = F,F1,F2, . . . ,Fn =
F̃ ∈ F such that Fi ∼ Fi+1 for i = 0,1, . . . ,n−1.

The condition (a) means that F̃ is obtained from F by a certain coordinate-wise change of vari-

ables, which is similar to the (Möb)-equivalence. It is obvious that if F and F̃ are IP-equivalent,

then F has the IP property if and only if F̃ has the IP property. In particular, without loss of

generality, we can only consider functions F : R2
+ → R2

+ or F : R2 → R2, or fix any intervals

as domains and codomains. However, it should be noted that by the change of variables, the

probability distributions satisfying the IP property, namely the solutions of the detailed balance

equation, also change. In particular, up to this IP equivalence, in general (more precisely the case

where µ and ν are continuous distributions with supports I1 and I2 respectively), we can change

the solution to be the product of uniform probability measures on [0,1] by using the distribution

functions of µ and ν for the coordinate-wise change of variables. Hence, when we apply the

IP property to characterize some probability distributions, the choice of representative F plays

an essential role. As we see in the next subsection, all of known examples have birational rep-

resentatives or piecewise linear representatives and such representatives characterize important

probability distributions, such as normal, gamma, exponential, beta and so on.

Remark 3.2. The IP property is also know to hold for F : X ×X → X ×X where X are

discrete sets (cf. [7, 8]) or a set of positive definite matrices with size r (cf. [25, 26]). In this

paper, we focus on the case where we can reduce the problem to X = R+.
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3.2. History on the study of bijections with the IP property. The IP property was first dis-

covered for the bijection

FN(x,y) = (x+ y, x− y) : R2 → R2
.

The solution of the detailed balance equation for this bijection was characterized independently

by Kac [18] (1939) and Bernstein [5] (1941) as X ∼ N(a,σ),Y ∼ N(b,σ) for any a,b ∈ R and

σ > 0 where N(a,σ) is the normal distribution with the mean a and the variance σ . The original

characterization results were given under some integrability assumption on the distributions, but

later the characterization was given in full generality (cf. [19]).

After this impressive discovery, several bijections having the IP property have been intro-

duced in different contexts. Most classical ones were found in the context of characterization of

important probability distributions. Such examples are

FGa(x,y) =

(

x+ y,
x

y

)

: R2
+ → R2

+, FExp(x,y) = (min{x,y}, x− y) : R2 → R2
.

The solutions for FGa were characterized by Lucaks [28] (1955) as X ∼ Ga(a,λ ), Y ∼ Ga(b,λ )
for any a,b,λ > 0. For FExp, the solutions were characterized by Ferguson [13, 14] (1964,1965)

as pairs of (possibly shifted) Exponential distributions or (possibly shifted) Geometric distribu-

tions with certain parameters. Hence, the IP property for each bijection characterizes Gamma,

Exponential and Geometric distributions. Note that FExp can be considered as a zero-temperature

limit of FGa, namely FExp is obtained from FGa by replacing (+,×)-algebra with (min,+)-
algebra. Consistent with this, Exponential distributions can be understood as a zero-temperature

limit of Gamma distributions as discussed in [7]. In particular, as discussed in [7], the IP prop-

erty is typically inherited to the zero-temperature limit, and the zero-temperature limit version

has both continuous and discrete solutions.

As a slightly different example, the function

FC(x,y) =

(

y,
x+ y

1− xy

)

: R2 \{(x,y) ∈R2 | xy = 1} → R2

is known to have the IP property which characterizes the Cauchy distribution. Precisely, though

FC is not well-defined on R2, when X ,Y are independent absolutely continuous random vari-

ables, then (U,V ) is well-defined almost surely and under this condition, (U,V ) are independent

if and only if X is the Cauchy distribution with a specific parameter, which was shown in [3]

(1979). This case, Y can be any absolutely continuous random variable. Moreover, by change of

variables x → arctan x and y → arctan y, the IP property for the equivalent function is also known

to characterize the uniform distribution.

After a blank period around twenty years, another bijection

FBe(x,y) =

(

1− y

1− xy
,1− xy

)

: (0,1)2 → (0,1)2

was found to have the IP property in [39] (2003) and the solutions were completely characterized

in [36] as X ∼Be(a,b), Y ∼Be(a+b,c) for any a,b,c > 0 where Be(a,b) is the Beta distribution

with shape parameters a,b.

From a very different context, which was a study of an exponential-version of Pitman’s trans-

form for geometric Brownian motions, Matsumoto and Yor considered the involution

FGIG−Ga(x,y) =

(

1

x+ y
,

1

x
−

1

x+ y

)

=

(

1

x+ y
,

y

x(x+ y)

)

: R2
+ → R2

+
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in [31] (see also [29, 30]) (2001) and found that this function has the IP property with X ∼
GIG(−λ ,a,b) and Y ∼ Ga(λ ,a) for λ ,a,b > 0. The complete characterization of the solu-

tions was done in [26] (2000). Then, to generalize this result, Koudou and Vallois [23] (2012)

considered the class of bijections of the form

(3.1) F(x,y) = ( f (x+ y), f (x)− f (x+ y)) : R2
+ → R2

+

given by a decreasing three times differentiable bijection f : R+ → R+. Remarkably, they com-

pletely characterized bijections F in this class having the IP property for some probability distri-

butions with positive and twice differentiable densities. Up to the IP-equivalence we introduced,

they proved that other than the f (x) = 1
x

which leads FGIG−Ga, there are only two cases having

the IP property : f (x) = log
(

1+x
x

)

or f (x) = log
(

ex+δ−1
ex−1

)

with a parameter δ > 0. By introduc-

ing a certain coordinate-wise change of variables, they showed that f (x) = log
(

1+x
x

)

leads the

bijection

FK−Ga,A(x,y) =

(

x+ y,
1+ 1

x+y

1+ 1
x

)

: R2
+ → R+× (0,1)

and f (x) = log
(

ex+δ−1
ex−1

)

leads the involution

Fδ
Be(x,y) =

(

1− xy

1+(δ −1)xy
,

1− x

1+(δ −1)x

1+(δ −1)xy

1− xy

)

: (0,1)2 → (0,1)2

with a parameter δ > 0. When δ = 1, F1
Be is IP-equivalent to FBe since FBe = π ◦F1

Be ◦π . The

solutions for FK−Ga,A are given as X ∼ K(2)(a,b,c) and Y ∼ Ga(b,c) for a,b,c > 0 while those

for Fδ
Be are given as X ∼ Beδ (a+ b,λ ,−λ − b) and Y ∼ Be(a,b) for a,b,λ > 0 where Beδ is

related by the change of variable x → x
1−x

: (0,1) → R+ to Be′δ . Note that FGa is IP-equivalent

to a bijection of the form (3.1) with f (x) = log x, but since this f takes negative values, it was

not included in the framework of [23]. The functions of the form (3.1) having the IP property

are also said to have Matsumoto-Yor property.

In [15] (2015), the authors introduced another bijection with the IP property

FK−Ga,B(x,y) =

(

y

1+ x
,

x(1+ x+ y)

1+ x

)

: R2
+ → R2

+

which also involves Kummer distribution and Gamma distribution with a motivation to give a

closed identity satisfied by the Kummer distribution. The characterization of solutions without

any assumption on distributions for FK−Ga,A and FK−Ga,B are given in [35] (2018).

Most recently, in the study of invariant measures for the discrete KdV equation, which is

a well-known discrete integrable system, one of the authors of the present paper found, with

the coauthor of [7], that for the class of involutions F
α ,β
GIG , the IP property holds with X ∼

GIG(λ ,aα ,b) and Y ∼ GIG(λ ,bβ ,a) for λ ∈R,a,b > 0. Moreover, the special case α = 1,β =
0 is IP-equivalent to FGIG−Ga since

FGIG−Ga = (Id × I)◦F
1,0
GIG ◦ (Id × I).
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The zero-temperature version of F
α ,β
GIG , which is related to the ultra-discrete KdV equation, and

the zero-temperature version of FBe are also introduced in the study of discrete integrable sys-

tems and stochastic integrable systems, and shown to have the IP property [7, 9]:

F
α ,β
GIG,zero(x,y)

= (x+min{y,α − x}−min{x,β − y}, y−min{y,α − x}+min{x,β − y}) : R2 → R2

FBe,zero(x,y) = (min{x,0}− y, min{x,y,0}− x− y) : R2 → R2
.

The characterization of solutions for them are studied in [4,7], but not fully solved yet, even for

the special case (α ,β ) = (0,∞):

F
0,∞
GIG,zero(x,y) = (min{y,−x}, y+ x−min{y,−x}) : R2 → R2

which is IP-equivalent to the zero-temperature version of FGIG−Ga.

As far as we are aware, there is no other known (nontrivial) functions on the two product of

open intervals of R having the IP property. In the next subsection, we discuss common properties

of them and give a classification.

3.3. Normalized bijections having the IP property in literature and its classification. The

bijections introduced in the last subsection are simply classified into two classes : the zero-

temperature version of some other bijection, and the rest of them. All of the zero-temperature

versions, namely FExp, F
α ,β
GIG,zero and FBe,zero are piecewise linear functions and involve the “min”

function. Since the IP property of these zero-temperature versions can be understood from the

same property of the original (namely, the corresponding “positive-temperature”) bijection, from

now on, we focus on the rest of them, namely, FN, FGa, FC, FBe, FGIG−Ga, FK−Ga,A, Fδ
Be, FK−Ga,B,

F
α ,β
GIG and consider the relation between them.

Remark 3.3. As mentioned in [34] and already discussed in Introduction, there should be natu-

ral zero-temperature versions of H+
I and H+

II . Applying Theorem 1.1, we will be able to show that

the zero-temperature versions of H+
I and H+

II have the IP property and their solutions should be

the zero-temperature version of generalized Beta prime distributions and Kummer distributions

of Type 2.

From the explicit expressions of these bijections, we can find that they are all birational

and naturally extended to the birational functions on CP1 ×CP1. Hence, we may consider

coordinate-wise Möbius transformations to normalize these functions to compare. Namely, in-

stead of considering the equivalence with respect to (a) of Definition 3.1, consider the (Möb)-

equivalence. Then, any open interval I ( R can be mapped to R+ by a Möbius transformation,

but R cannot. Hence, in this sense, FN and FC are exceptional, which are not (Möb)-equivalent

to a birational function which can be restricted to the one having domains and codomains R2
+.

In other words, FGa,FBe,FGIG−Ga,FK−Ga,A,F
δ
Be, FK−Ga,B, F

α ,β
GIG share the common property that

they are (Möb)-equivalent to a subtraction-free birational function with domains and codomains

R2
+. Hence, to study relations between these bijections, we give such representatives for them,

which are denoted by F+
∗ , explicitly by applying the change of variable x → x

1−x
: (0,1) → R+

for each coordinate in Fδ
Be and the second component of the output of FK−Ga,A :

• F+
Ga(x,y) = FGa(x,y) =

(

x+ y, x
y

)

, (F+
Ga)

−1(x,y) =
(

xy
1+y

,
x

1+y

)
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• F
+,δ
Be (x,y) =

(

1+x+y
δxy

,
1+x+y+δxy

x(δ+δx)

)

, (F+,δ
Be )−1 = F

+,δ
Be

• F+
K−Ga,A(x,y) =

(

x+ y,
x(x+y+1)

y

)

, (F+
K−Ga,A)

−1(x,y) =
(

xy
1+x+y

,
x(1+x)
1+x+y

)

• F+
K−Ga,B(x,y) = FK−Ga,B(x,y) =

(

y
1+x

,
x(1+x+y)

1+x

)

, (F+
K−Ga,B)

−1 = F+
K−Ga,B

• F
+,α ,β
GIG (x,y) = F

α ,β
GIG (x,y) =

(

y
1+βxy
1+αxy

, x
1+αxy
1+βxy

)

, (F
+,α ,β

GIG )−1 = F
+,α ,β
GIG

For FBe and FGIG−Ga, since we know they are (Möb)-equivalent to F1
Be and F

1,0
GIG respectively, we

choose representatives as

• F+
Be(x,y) = F

+,1
Be (x,y) =

(

1+x+y
xy

,
1+y

x

)

• F+
GIG−Ga = F

+,1,0
GIG (x,y) =

(

y
1+xy

, x(1+ xy)
)

Other than these two simple equivalence, any relation between these bijections are not discussed

in literature. From these explicit expressions, we can easily see that some of them are obtained

by a singular limit procedure from others by introducing scaling parameters. Such procedure

conserves the IP property, and so the IP property of them are also related. Surprisingly, all of

these bijections are obtained from H+
I ,H+

II and HIII,A by such procedure and/or taking special

values of parameters together with a proper coordinate-wise change of variables, which is our

second main result stated in Theorem 5.1 in Section 5.

4. PROOF OF THEOREM 1.1 AND PROPERTIES OF PROBABILITY DISTRIBUTIONS

In this section, we discuss proofs of Theorem 1.1. In the first subsection, we give a proof

by a direct computation for the most complicated case, namely for the claim (i). In the second

subsection, we study some useful properties of probability distributions appearing in Theorem

1.1, and explain a way to obtain Theorem 1.1 (ii) and (iii) from Theorem 1.1 (i).

4.1. Proof of Theorem 1.1. In this subsection, we give a proof of Theorem 1.1. Actually, the

result is given by a direct computation and can be checked even by computers, but for clarity,

we give some key formulas.

To prove the claims of Theorem 1.1, we only need to prove that

pX (x)pY (y) = JF(x,y)pU (u(x,y))pV (v(x,y))

holds where F(x,y) = (u(x,y),v(x,y)) and JF(x,y) is the Jacobian of F , namely JF(x,y) =

|∂u
∂x

∂v
∂y

− ∂v
∂x

∂u
∂y
| and pX , pY , pU , pV are probability density functions for the distributions and pa-

rameters given each claim.

To check the relation for (i), let u(x,y) = y
α

σ1(x,y)
σ2(x,y)

and v(x,y) = x
β

σ3(x,y)
σ4(x,y)

, namely

σ1(x,y) = β +αx+βy+αβxy, σ2(x,y) = 1+ x+ y+βxy,

σ3(x,y) = α +αx+βy+αβxy, σ4(x,y) = 1+ x+ y+αxy.

Then, by simple calculations, we have

yσ1 +σ2 = σ4(1+βy), yσ1 +ασ2 = σ3(1+ y),

xσ3 +σ4 = σ2(1+αx), xσ3 +βσ4 = σ1(1+ x),

JF(x,y) =
σ1σ3

αβσ2σ4
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where we simply denote σi(x,y) by σi for i = 1, . . . ,4. Hence, if U ∼ Be′(−λ ,a,b;α ,1), we

have

pU (u(x,y)) =
1

Z

(

y

α

σ1

σ2

)−λ−1(

1+ y
σ1

σ2

)−a+ λ
2
(

1+
α

y

σ2

σ1

)−b− λ
2

=
1

Z
y−λ−1 σ−λ−1

1

σ−λ−1
2

(

σ2 + yσ1

σ2

)−a+ λ
2
(

yσ1 +ασ2

yσ1

)−b− λ
2

=
1

Z
y−λ−1σ

− λ
2
−1+b

1 σ
λ
2
+1+a

2 (σ4(1+βy))−a+ λ
2 (σ3(1+ y))−b− λ

2

where Z is a normalizing constant which may change line by line. In the same way, f V ∼
Be′(λ ,a,b;β ,1), we have

pV (v(x,y)) =
1

Z

(

x

β

σ3

σ4

)λ−1(

1+ x
σ3

σ4

)−a− λ
2
(

1+
β

x

σ4

σ3

)−b+ λ
2

=
1

Z
xλ−1 σ λ−1

3

σ λ−1
4

(

σ4 + xσ3

σ4

)−a− λ
2
(

xσ3 +βσ4

xσ3

)−b+ λ
2

=
1

Z
xλ−1σ

λ
2
−1+b

3 σ
− λ

2
+1+a

4 (σ2(1+αx))−a− λ
2 (σ1(1+ x))−b+ λ

2 .

Hence,

JF(x,y)pU (u(x,y))pV (v(x,y))=
1

Z
y−λ−1(1+βy)−a+ λ

2 (1+y)−b− λ
2 xλ−1(1+αx)−a− λ

2 (1+x)−b+ λ
2 ,

which is equal to pX(x)pY (y) if X ∼ Be′(λ ,a,b;α ,1) and Y ∼ Be′(−λ ,a,b;β ,1). Therefore we

conclude that the claim (i) holds.

For the claim (ii) and (iii), we can prove in a similar way. In the next subsection, we give

another proof by applying a singular limit procedure.

4.2. Some properties of probability distributions under Möbius transformations and scal-

ing limits. We have introduced probability distributions Be′(λ ,a,b; p,q), K(λ ,a,b; p,q) and

GIG(λ ,a,b; p,q) with two auxiliary parameters p,q > 0 because these classes are closed under

the change of scaling, and also two of them are closed under the map I as follows.

Lemma 4.1. For the maps I and θα for any α > 0, the following relations hold.

(i) Suppose X ∼ Be′(λ ,a,b; p,q). Then,

I(X) = X−1 ∼ Be′(−λ ,b,a;q, p), θα(X) = αX ∼ Be′(λ ,a,b;
p

α
,αq).

(ii) Suppose X ∼ K(λ ,a,b; p,q). Then,

θα(X) = αX ∼ K(λ ,a,b;
p

α
,αq).

(iii) Suppose X ∼ GIG(λ ,a,b; p,q). Then,

I(X) = X−1 ∼ GIG(−λ ,b,a;q, p), θα(X) = αX ∼ GIG(λ ,a,b;
p

α
,αq).

This lemma is proved by direct computations.

Moreover, these probability measures are connected by the following scaling limits.
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Lemma 4.2. The following scaling limits hold in the sense of weak convergence.

(i) For a > 0 and b,λ ∈R such that −b <
λ
2

,

lim
ε↓0

Be′(λ ,
a

ε
,b;ε p,q) = K(λ ,a,b; p,q).

(ii) For a,b > 0 and λ ∈ R,

lim
ε↓0

K(λ ,a,
b

ε
; p,εq) = GIG(λ ,a,b; p,q).

This lemma is also proved by the explicit forms of probability density functions, by noting

lim
ε↓0

(1+ ε px)−
a
ε −

λ
2 = e−apx

, lim
ε↓0

(1+ εqx−1)−
b
ε +

λ
2 = e−bqx−1

.

From the claim (i) of Theorem 1.1, for any a > 0 and b,λ ∈ R such that −b <
λ
2

, we have the

IP property holds for H
+,εα ,εβ
I with

X ∼ Be′(λ ,
a

ε
,b ; εα ,1), Y ∼ Be′(−λ ,

a

ε
,b ; εβ ,1),

U ∼ Be′(−λ ,
a

ε
,b ; εα ,1), V ∼ Be′(λ ,

a

ε
,b ; εβ ,1)

with sufficiently small ε > 0. Hence, applying Lemmas 2.3 (i) and 4.2 (i) , we conclude the

claim (ii) of Theorem 1.1.

By this claim (ii) of Theorem 1.1 and Lemma 4.1 (ii), for (θε × θε) ◦H
+,α ,β
II ◦ (θε × θε)

−1,

the IP property holds with

X ∼ K(λ ,a,b ;
α

ε
,ε), Y ∼ K(−λ ,a,b ;

α

ε
,ε),

U ∼ K(−λ ,a,b ;
α

ε
,ε), V ∼ K(λ ,a,b ;

α

ε
,ε)

By changing a → aε and b → b
ε , the IP property holds for the same function with

X ∼ K(λ ,aε ,
b

ε
;

α

ε
,ε) = K(λ ,a,

b

ε
; α ,ε), Y ∼ K(−λ ,aε ,

b

ε
;

α

ε
,ε) = K(−λ ,a,

b

ε
; α ,ε),

U ∼ K(−λ ,aε ,
b

ε
;

α

ε
,ε) = K(−λ ,a,

b

ε
; α ,ε), V ∼ K(λ ,aε ,

b

ε
;

α

ε
,ε) = K(λ ,a,

b

ε
; β ,ε)

for sufficiently small ε > 0. Then, applying Lemmas 2.3 (ii) and 4.2 (ii) , we conclude the claim

(iii) of Theorem 1.1.

5. REDUCTION OF KNOWN IP PROPERTIES FROM THEOREM 1.1

In this section, we recover the IP property for bijections discussed in Section 3 from Theorem

1.1. For this, we give our second main result which connect all of the known bijections having a

subtraction-free representation to the newly introduced bijections H+
I ,H+

II and HIII,A.

Theorem 5.1. The bijections F
+,δ
Be , F+

K−Ga,A, F+
K−Ga,B, F+

Ga and F
+,α ,β
GIG are obtained from one of

H
+,α ,β
I ,H

+,α ,β
II and H

α ,β
III,A by Möbius transformations and singular limits as follows.

(i) F
+,δ
Be = H̃

δ ,0
I where

H̃
α ,β
I = ((I ◦θα)× (I ◦θβ ))◦H

+,α ,β
I .
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(ii) F+
K−Ga,A = H̃

1,0
II where

H̃
α ,β
II = H

+,α ,β
II ◦

(

θα−1 ×θβ−1

)

.

(iii) F+
K−Ga,B = Ĥ

1,0
II where

Ĥ
α ,β
II =

(

θα−1 ×θβ−1

)

◦H
+,α−1,β−1

II ◦
(

θα ×θβ

)

.

(iv) F+
Ga = F̃0

K−Ga,A where

F̃ε
K−Ga,A = (θε−1 × Id)◦F+

K−Ga,A ◦ (θε ×θε).

(v) F+
Ga = F̃0

K−Ga,B where

F̃ε
K−Ga,B = π ◦ (I×θε)◦F+

K−Ga,B ◦ (θε−1 ×θε−1).

(vi) F
+,α ,β
GIG = ((I ◦θα)× Id)◦H

α ,β
III,A ◦ (Id × (I ◦θβ )).

The theorem is proved by a direct computation.

Applying these explicit relations and Lemma 4.1 to Theorem 1.1, we have the solutions of

the detailed balance equations for all of bijections appeared in the last theorem by a systematic

way. Note that when parameters p,q take singular values 0 or ∞, the range of parameters may

narrow.

Corollary 5.2. For the following distributions (X ,Y ), the random variables U,V given by

(U,V ) = F(X ,Y ) for each map are independent and have the following distributions.

(i) For F = H̃
α ,β
I ,

X ∼ Be′(λ ,a,b;α ,1), Y ∼ Be′(−λ ,a,b;β ,1),

U ∼ Be′(λ ,b,a;α ,1), V ∼ Be′(−λ ,b,a;β ,1)

and for F = F
+,δ
Be ,

X ∼ Be′(λ ,a,b;δ ,1) = Be′δ

(

b+
λ

2
,a−

λ

2
,−a−

λ

2

)

, Y ∼ Be′ (−λ ,a,b;0,1) = Be′
(

b−
λ

2
,λ

)

U ∼ Be′(λ ,b,a;δ ,1) = Be′δ

(

a+
λ

2
,b−

λ

2
,−b−

λ

2

)

, V ∼ Be′ (−λ ,b,a;0,1) = Be′
(

a−
λ

2
,λ

)

where λ ∈ R, a,b > 0, −min{a,b} < λ
2
< min{a,b}.

(ii) For F = H̃
α ,β
II ,

X ∼ K(λ ,a,b;1,α), Y ∼ K(−λ ,a,b;1,β ),

U ∼ K(−λ ,a,b;α ,1), V ∼ K(λ ,a,b;β ,1)

where λ ∈ R, a,b > 0, −b <
λ
2
< b and for F = F+

K−Ga,A,

X ∼ K(λ ,a,b;1,1) = K(2)

(

b+
λ

2
,−λ ,a

)

Y ∼ K(−λ ,a,b;1,0) = Ga(−λ ,a)

U ∼ K(−λ ,a,b;1,1) = K(2)

(

b−
λ

2
,λ ,a

)

, V ∼ K(λ ,a,b;0,1) = Be′
(

b+
λ

2
,−λ

)
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where λ < 0, a,b > 0, −b <
λ
2

.

(iii) For F = Ĥ
α ,β
II ,

X ∼ K(λ ,a,b;1,α−1), Y ∼ K(−λ ,a,b;1,β−1),

U ∼ K(−λ ,a,b;1,α−1), V ∼ K(λ ,a,b;1,β−1).

and for F = F+
K−Ga,B,

X ∼ K(λ ,a,b;1,1) = K(2)

(

b+
λ

2
,−λ ,a

)

, Y ∼ K(−λ ,a,b;1,∞) = Ga

(

b−
λ

2
,a

)

U ∼ K(−λ ,a,b;1,1) = K(2)

(

b−
λ

2
,λ ,a

)

, V ∼ K(λ ,a,b;1,∞) = Ga

(

b+
λ

2
,a

)

where λ ∈ R, a,b > 0, −b <
λ
2
< b.

(iv) For F = F̃ε
K−Ga,A,

X ∼ K(λ ,a,b;ε ,ε−1) = K(λ ,aε ,b;1,ε−1), Y ∼ K(−λ ,a,b;ε ,0) = K(−λ ,aε ,b;1,0),

U ∼ K(−λ ,a,b;ε ,ε−1) = K(−λ ,aε ,b;1,ε−1), V ∼ K(λ ,a,b;0,1) = Be′
(

b+
λ

2
,−λ

)

where λ < 0, a,b > 0, −b <
λ
2

. By changing parameters a → ε−1a and taking ε = 0, for

F = F+
Ga,

X ∼ K(λ ,a,b;1,∞) = Ga

(

b+
λ

2
,a

)

, Y ∼ K(−λ ,a,b;1,0) = Ga(−λ ,a)

U ∼ K(−λ ,a,b;1,∞) = Ga

(

b−
λ

2
,a

)

, V ∼ K(λ ,a,b;0,1) = Be′
(

b+
λ

2
,−λ

)

where λ < 0, a,b > 0, −b <
λ
2

.

(v) For F = F
+,α ,β
GIG ,

X ∼ GIG(λ ,a,b;α ,1) = GIG(λ ,aα ,b), Y ∼ GIG(λ ,b,a;β ,1) = GIG(λ ,bβ ,a),

U ∼ GIG(λ ,b,a;α ,1) = GIG(λ ,bα ,b), V ∼ GIG(λ ,a,b;β ,1) = GIG(λ ,aβ ,b)

where λ ∈ R, a,b > 0.

This recovers all known results on the IP property except for FN and FC and the zero-temperature

versions. Though we do not discuss here, the zero-temperature limits of the above subtraction-

free bijections and their (continuous) solutions are also systematically obtained. Hence, com-

bining with Lemma 2.3, we can conclude that the most fundamental IP property is for H+
I and

all other results except FN and FC are derived by changing variables, taking special parameters

and performing some limiting procedures from that for H+
I . This explains why the solutions

have exactly three parameters for all bijections in Corollary 5.2, which was a mystery until now.

Remark 5.3. In Corollary 5.2, we did not apply the relation (v) of Theorem 5.1 since the dis-

tribution K(λ ,a,b; p,q) are not closed for the bijection I(x) = x−1. If we introduce the inverse

Kummer distribution properly, we can also derive the IP property for F+
Ga using the relation (v)

of Theorem 5.1.
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