
1

Martinize2 and Vermouth: Unified

Framework for Topology Generation

P C Kroon1

F Grunewald1,*

J Barnoud1,3

M van Tilburg1

P C T Souza1,2

T A Wassenaar1

S J Marrink1, *

1) Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,

Groningen, the Netherlands.

2) Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of

Lyon, Lyon, France.

3) 5CiTIUS Intelligent Technologies Research Centre, Rúa de Jenaro de la Fuente, s/n,

15705 Santiago de Compostela, A Coruña, Spain.

*) Corresponding authors

s.j.marrink@rug.nl

f.grunewald@rug.nl

mailto:s.j.marrink@rug.nl
mailto:f.grunewald@rug.nl

2

Abstract

Ongoing advances in force field and computer hardware development enable the use of

molecular dynamics (MD) to simulate increasingly complex systems with the ultimate goal of

reaching cellular complexity. At the same time, rational design by high-throughput (HT)

simulations is another forefront of MD. In these areas, the Martini coarse-grained force field,

especially the latest version (i.e. v3), is being actively explored because it offers enhanced

spatial-temporal resolution. However, the automation tools for preparing simulations with the

Martini force field, accompanying the previous version, were not designed for HT simulations or

studies of complex cellular systems. Therefore, they become a major limiting factor. To address

these shortcomings, we present the open-source vermouth python library. Vermouth is

designed to become the unified framework for developing programs, which prepare, run, and

analyze Martini simulations of complex systems. To demonstrate the power of the vermouth

library, the martinize2 program is showcased as a generalization of the martinize script,

originally aimed to set up simulations of proteins. In contrast to the previous version, martinize2

automatically handles protonation states in proteins and post-translation modifications, offers

more options to fine-tune structural biases such as the elastic network, and can convert non-

protein molecules such as ligands. Finally, martinize2 is used in two high-complexity

benchmarks. The entire I-TASSER protein template database as well as a subset of 200,000

structures from the AlphaFold Protein Structure Database are converted to CG resolution and

we illustrate how the checks on input structure quality can safeguard HT applications.

3

Introduction

Molecular dynamics (MD) has grown to be a valuable and powerful tool in studying a variety of

systems in molecular detail. Advances in force fields and computer hardware have enabled the

use of MD in increasingly complex systems, exemplified by recent simulations of, e.g. realistic

cell membranes1,2, virus particles2,3, and even complete aerosol droplets4. However, there is a

growing interest in studying systems of even greater complexity, culminating in molecularly

detailed simulations of whole organelles5,6 and the set goal of simulating entire cells7–9.

Moreover, the growing demand for computer-aided rational design relies on high-throughput

(HT) simulations with millions of systems simulated in parallel.10–12 Currently, the computational

demand of MD methods representing all atoms explicitly severely limits the access to the

spatial-temporal resolution needed to simulate the aforementioned systems. Coarse-grained

(CG) MD methods overcome this challenge by grouping several atoms into one effective

interaction site called bead and thus reducing the number of degrees of freedom that have to be

simulated.

Among the most popular CG methods is the Martini force field.13,14 Within the scope of the

Martini force field about 2-5 non-hydrogen atoms are grouped into one bead. Nonbonded

interactions between beads are defined in a discrete interaction table calibrated to reproduce

thermodynamic data, whereas bonded interactions are matched to underlying atomistic

reference simulations. Molecule parameters created following this approach are transferable

between different systems and chemical contexts.13,14 This transferability-based approach

allows Martini simulations to easily reach the aforementioned complexity scale. However, to

really prepare Martini for the HT and whole cell scale simulation era, automated workflows that

enable fast and efficient setup of complex systems are of fundamental importance.

4

The Martini community has a long-standing history of easy-to-use and freely accessible scripts

and programs, which helped researchers to set up, run, analyze, and backmap simulations. A

non-exhaustive overview can be found in our recent review of the 20-year history of Martini.15

However, the codes and scripts developed so far present a collection of separate scripts that

share no common framework or backend even though they share many common operations

such as resolution transformation or mapping of coordinates. In addition, input files which define

molecule parameters or fragments thereof, are not transferable between the tools, with each

one of them often defining their own input file formats. We consider that unifying the operations

as well as input streams into a single framework will speed up program development and also

the robustness of code design to bugs. In addition, it will allow the implementation of modern

software techniques such as code review, continuous integration (CI) testing, and version

control which generally improve code quality and resilience.16

Designing and coding a unified framework to support general Martini software development is a

massive undertaking with many facets as the original scripts and programs deal with different

stages of MD simulations. To start the development, we focused the design of the framework on

topology generation. A topology lies at the heart of each simulation and defines the starting

coordinates as well as input parameters for the simulation. For example, to run protein

simulations within Martini, a script called martinize17 takes atomistic protein coordinates, maps

them to the coarse-grained resolution, and generates the protein molecule definitions from

building blocks. This workflow is quite classic and underlies many scripts and programs for

topology generation both at the coarse-grained but also at the all-atom level.17–36 With the latest

release of version 3 of Martini (M3), proteins have been thoroughly reparametrized.13 The new

capabilities of M3 proteins are exemplified by their use of HT drug binding assays11,37, which are

an essential step in computer-aided drug design (CADD). Part of the improved protein

properties come from the redefined Martini interaction table. However, another part of the

5

improvement is the result of protein-specific methods such as the use of structure-biased

dihedrals38 (often referred to as side-chain corrections), specific elastic networks39, or

integration of Gō-like models.40 All features are additional specific biasing steps applied after the

generation of the original topology file for the protein and are not part of the capabilities of the

previous martinize script. Hence, we choose to co-develop a unified framework for topology

generation together with a new martinize version, martinize2.

In this paper, we present the VERsatile MOdular Universal Transformation Helper (vermouth)

library, a general python framework aiding in the design of programs that can create topologies

for complex systems at all-atom (AA), united-atom (UA), and CG resolution. On top of vermouth,

we built the martinize2 program, as the successor of the martinize script17,34. The goal of

martinize2 is to encompass all functionality required to generate Martini protein parameters

(supporting the older versions Martini 217,39,41 as well as the latest Martini 3) and be compatible

with high-throughput workflows as needed in CADD approaches based on Martini. In addition,

both vermouth and martinize2 are designed to have sufficient flexibility and robustness to ready

Martini for the era of high-throughput high complexity simulations.

Finally, we note that much of the progress of Martini has resulted from an active community of

researchers contributing scripts, programs, and parameters. However, as is the case for most

research software in the field they often fail to adhere to the principles of FAIR: findability,

accessibility, interoperability, and reusability.42–44 The FAIR principles43, originally designed to

improve data management and reproducibility in science, have recently been extended to

research software in a more general sense. This extension is aimed at fostering more

sustainable software development in science.42 To meet these standards the software tools we

present here are distributed under the permissive open-source Apache 2.0 license on GitHub

and are developed using contemporary software development practices, such as continuous

integration testing. To make adoption as easy as possible, they have few dependencies, are

6

distributed through the Python Package Index, and can be installed using the Python package

manager pip. Other researchers are encouraged and welcome to contribute parameters and

code as outlined in our contribution workflow.

Results

In this section, we first outline the design and API of the vermouth library. Then we discuss how

the vermouth library is used to construct a pipeline for generating protein input parameters for

the Martini force field. This pipeline constitutes the new martinize2 program. Finally, we present

some benchmarks and selected test cases to demonstrate the capabilities of martinize2 and

assess its fitness for generating complex system topologies and high-throughput workflows,

surpassing the capabilities of the previous martinize script.

The Vermouth Library

Figure 1 Fundamental stages in topology generation from atomistic structures. First, the

provided input is parsed (step 1). Second, for every parsed residue its atoms are identified and,

if needed, atom names are corrected and missing atoms are added (step 2). Third, mappings

are taken from the library and a resolution transformation to the required output resolution is

7

performed (step 3). Fourth, intra-residue interactions are added from blocks taken from the

library, and inter-residue interactions are added from links taken from the library (step 4). Fifth,

optionally, post-processing is performed to add e.g. an elastic network (step 5). Finally, the

produced topology is written to output files (step 6).

In the literature, many scripts and programs have been described that can create topologies for

linear molecules and some specific software exists that also handles branched molecules such

as carbohydrates24, or dendritic polymers25 . However, to the best of our knowledge, there is at

present not a general program that can create topologies from atomistic structures for any type

of system, and at any resolution, presenting an extendable and stable API. Based on the

existing software, we can, however, define a number of required and desirable features for such

a general program and library to have: 1) it must be force field and resolution agnostic; 2) it

must be MD engine agnostic; 3) it must use data files that can be checked, made and modified

by users, and 4) it must be able to process any type of molecule or polymer, be it linear, cyclic,

branched, or dendrimeric, and mixtures thereof.

To start designing a library that can fulfill the above requirements we note that most workflows

used for topology generation can be decomposed into six fundamental stages (Figure 1): First,

reading input data, usually an atomistic coordinate file (e.g. from the protein data bank); second,

identifying the parsed atoms, to find how they correspond to the atoms in the data files

describing the building blocks; third, optionally a resolution transformation step; fourth, the

generation of the actual topology and assigning particle types and bonded interactions; fifth, any

type of post-processing; and finally, sixth, writing the required output files. Even though these

stages are generally shared for topology generation pipelines, they also apply to other

workflows commonly encountered in Martini programs. Especially, stages 1, 3, 5, and 6 can be

found in almost all Martini programs, which generate simulation input files in the broader

sense.17,45–47 Separating these stages, therefore, helps to define an API with data structures and

8

independent processes, which optimally support such workflows. In addition, the clear

distinction in stages helps to externalize any data files, which can be edited by the user or force

field developers. Vermouth is built on the idea and definition of processors, which are tasks

arranged in a pipeline. This design was inspired by the ubiquitous workflow managers available

in the field.48 We formalize the idea of processors by introducing an abstract base class the

Processor. New pipeline stages can be created as subclasses of this base class. All

Processors operate on the central data structure class System, which contains any number of

Molecule data structures (see Figure 2). A Molecule is defined as the graph of a molecule or

assembly of molecules, which are connected by bonded interactions. The nodes of a Molecule

usually correspond to atoms or coarse-grain beads but can be any form of particle as defined by

the force field.

Figure 2 Organization of the vermouth library. The vermouth library defines 5 types of data

structures (blue) to store molecular information and force field information. For convenience, it

also defines two collection classes (orange) composed of several data-structure instances. Data

structures are initiated or get input from parsers, which read 6 types of data files (see Table S1

9

for more details on file types). The central data structure(s) are Molecule and System. These

are changed, updated, or transformed by so-called Processor classes, which take force field

data as input. Parsers, data structures, and Processors only depend on three libraries as

shown. At the moment vermouth also exposes four types of writers (not shown here) to go along

with the parsers (see Table S2).

Nodes can have attributes that describe additional information such as a residue name or

charge. However, only the atom name, residue name, and residue number are required as

attributes. In addition, the edges of the Molecule follow the connectivity as defined by bonds,

angles, or other bonded interactions. For example, two protein chains connected by a disulfide

bridge would be considered a single Molecule. In contrast, a cofactor, which is only interacting

via non-bonded interactions, would be a separate Molecule. Operations on Molecules usually

add or remove bonded interactions or change node attributes. For convenience, Processors

can also operate on a collection of molecules, which are defined by the System class (see

Figure 2). A list of all available processors is given in the documentation.

Processors operate on Molecules. However, often additional data is required to perform the

pipeline as defined by the Processor. The additional data can be provided in the form of one of

the four other main data structures (Blocks, Links, Modifications, Mappings) or arguments of

the processors that can be set in a script or via the command line interface. These four other

data structures contain all molecular level information required to fully define and/or modify a

topology for any type of MD code (e.g., atom types, bonded interactions, and positions) as well

as enable transformations between topologies. For example, a Mapping consists of two

molecular fragments at different resolutions and a correspondence between their particles. In

contrast, Blocks, Links, and Modifications are graphs, which describe these molecular

fragments, the links between those, and possible changes to fragments respectively. They are

10

all subclasses of a Molecule and an extension of the graph class from the networkx library49

(see Figure 2).

As shown in Figure 2, to make the data structures that are force field specific (Blocks, Links,

Modifications) easier to use, vermouth offers a second collection class called a ForceField.

Every molecule must have a ForceField associated with it. Additional information on the data

structures is given in the documentation.

Finally, the vermouth library also contains a number of parsers that return instances of the data

structures from common input file formats. For example, the in-house ff format defines Blocks,

Links, and Modifications, while the backwards style mapping format can be read to return an

instance of the Mapping class. Table S1 in the Supporting Information summarizes all input

parsers as well as the format and data structure they return. We note that vermouth is also able

to read content associated with the ‘[molecules]’ directive of the GROMACS topology file, which

is colloquially referred to as itp file. This allows to directly manipulate GROMACS molecule files

within vermouth. We note that as neither parsing nor the Molecule itself depends on

GROMACS code, the library can easily be extended to other MD engines.

Martinize2

Martinize2 is a pipeline constructed of vermouth Processors with a command line interface

(CLI), with the purpose of transforming atomistic structure data to a CG Martini topology

including both coordinates and simulation parameters. Martinize2 is the successor of the

martinize script, which was used for generating input parameters for Martini version 2 proteins,

DNA, or RNA. However, different branches had to be used for proteins and DNA (martinize.py17,

martinize-dna.py34) or RNA36. In contrast, martinize2 is designed to generate topologies for the

Martini force field for proteins, DNA, and in principle any other arbitrarily complex molecule.

11

Martinize2 consists of different Processors which fulfill the basic stages of topology generation

as shown in Figure 1. We note that the design of martinize2 is general and applies to arbitrarily

complex polymers consisting of arbitrary monomeric repeat units (MRUs). However, to increase

the readability of the following sections the layout of the program is described in terms of

residues in proteins.

The martinize2 pipeline starts by reading an atomistic structure, which describes a single

molecule (e.g., protein) or assembly of any size. Subsequently, bonds between the atoms are

inferred either by distance calculation, atom names within residues, or using CONECT records

of the PDB file. All atoms that are connected by bonds form a Molecule. Thus, martinize2

creates a System of Molecules at the atomistic resolution at the end of the input reading stage.

In stage 2, Identify and Repair, each residue of each molecule is compared against its canonical

definition. Canonical definitions are selected by residue name from the library files. This

comparison identifies missing or additional atoms on a residue and fixes all atom names (Figure

3a). To efficiently do these comparison operations, martinize2 relies on a number of algorithms

coming from graph theory (e.g. subgraph isomorphism), which reduces the dependence on

accurate atom names, since these occasionally differ based on the source of the input structure.

Which algorithms are used in the code is described in more detail in the Supporting Information.

Once the residues have their canonical atom names, martinize2 checks if the missing or

additional atoms are described by any of the modification files (Figure 3b). Modifications

describe changes in residues from their canonical form, e.g. different protonation states, termini,

or post-translational modifications (PTMs), and the effect these have on the topology.

After completing the repair stage everything is in place to perform the mapping to coarse-

grained resolution. The mapping descriptions are read from the mapping input files in the library

and tie together residue definitions at the all-atom and CG level and the correspondence

between them (Figure 3c). Mapping to CG level in martinize2 is done with a multistep subgraph

12

isomorphism procedure, which is general enough to cover edge cases such as when mappings

span multiple atomistic residues. A detailed description is provided in the Supporting

Information. The mapping provides a System of Molecules at the CG level. These molecules

already define all bonded interactions within the residues as well as the coordinates of the CG

system. To generate the interactions that link the residues, a simple graph matching with library

link definitions is done in the create-topology stage (Figure 3d). Finally, after that, we end up

with the full CG topology, which is ready for post-processing steps. Post-processing

summarizes all biases and modifications that have to be done on the CG molecule and its CG

coordinates. For example, an elastic network is needed to keep the tertiary structure of the

protein and is applied in the post-processing stage. Finally, martinize2 writes out the CG

coordinates and the CG topology file that are production-ready.

13

Figure 3 Illustration of atom recognition, mapping, and linking in topology generation. a)

To identify all atoms in the input molecule (black and orange) every residue in the molecule is

overlaid with its canonical reference (blue and green). Atoms are recognized when they overlap

with atoms in the reference (green). Atoms not present in the molecule are also identified (blue)

and will be added later. Finally, atoms in the molecule not described by the canonical references

are also labeled (orange) so that they may be identified later. b) Identifying the terminal atoms

that are not part of the canonical residues. The modification templates are depicted in blue and

the atoms they match in orange. The cysteine does not participate since it does not carry any

unexpected atoms, and is depicted in grey for clarity. c) Mappings (blue, red, and green)

describe a molecular fragment at two different resolutions and a correspondence between their

particles. The correspondence is depicted approximately here. The mappings are applied to the

molecule (black). d) Example of applying a Link. The link depicted (dark blue) adds an angle

potential over CG backbone beads.

14

Custom Protonation States and PTMs

Of the 20 common amino acids, there are four (GLU, ASP, LYS, HIS), which can readily change

their protonation state as a function of pH or environment. Whereas commonly those amino

acids are still considered to be in their pH7 protonation state, it is more appropriate to determine

their local pKa from for example continuum electrostatics.50 Subsequently the appropriate

charge of the amino-acid can be determined from that pKa and set for the simulation. Even

though recently more advanced methods became available for dynamically treating protonation

states51–53 – also at the Martini level54,55 – the fixed charge approach is still the most common

and for Martini most computationally efficient. However, the previous martinize version lacked

the functionality to treat protonation states for all amino acids. Only histidine protonation states

could be set interactively but only for two of three possible protonation states.

15

Figure 4 Workflows for identifying protonation states or PTMs exemplified on protonated

histidine. In route a) the residue name of the protonated histidine extracted from the atomistic

coordinates matches the residue name in the library and matches the fragment. Hence the

protonation state is correctly picked up. In route b) the residue name matches that of neutral

Histidine in the library. A mismatch of the fragments is recognized and the extra hydrogen is

labelled. Subsequently by matching the extra hydrogen to a modification of the histidine block

the protonated Histidine is recognized as neutral Histidine plus protonation modification and the

correct parameters for protonated Histidine are generated.

Other protonation states as defined by the atomistic structure coordinates or residue names

were ignored without warning. In addition, the interactive setting of protonation states becomes

very cumbersome for large protein complexes.

16

To overcome this problem and make protonation state handling easier and more robust, we

utilize a dual strategy in martinize2 to identify and correctly set the protonation states (see

Figure 4). In route a) the user provides atomistic structure coordinates with AA residue names

including those of non-default protonation states corresponding to the naming conventions used

in CHARMM56 or AMBER57. Protonation states can be obtained from online servers such as

H++58 or propKa59, for example. If the residue names are correctly given, they can be matched

against the parameters in the library and the CG residue obtains the correct protonation state. In

the alternative route b), the residue name is simply that of the default pH 7 amino acid, however,

the structure file contains an additional hydrogen. In the repair and identify step the chemical

graph of the amino acid is compared to the building blocks in the library and any unexpected

atoms are flagged. For example, in the case of protonated histidine, the additional hydrogen is

labeled (see Figure 4). Subsequently, martinize2 checks if there are any modifications that

would match the complete input graph if added to the original block. In the Histidine example,

the modification contains the additional hydrogen which together with the original histidine block

make up a protonated histidine. The modification also changes the mapping such that the

correct protonation state is set at the CG level. This route is more appropriate for example when

processing crystal structure files, which are not necessarily named according to any force field

convention. We have tested this feature on two protein structures taken from the PDB (1MJ5,

3LZT) and processed as described in the Methods section. In 1MJ5 there are six Histidine

residues of which one is predicted to be charged at pH 7. The others are neutral. However, they

are divided between the ε-tautomer (3 residues) and the δ-tautomer (2 residues). Martini 3

parameters are different for the two tautomers in contrast to Martini2, which is accordingly

recognized by martinize2. In addition, for lysozyme, we have considered residue GLU35

protonated, which would be appropriate at a pH of 6 or less. For both examples, the appropriate

protonation states and tautomers are generated at the CG level.

17

Figure 5 Example of automated identification of PTMs. CG Martini model of phosphorylated

Tyrosine found in the EGFR kinase activation loop. The mapped structure of the phosphorylated

residue is shown as beads overlying the atomistic structure.

The same procedure used for setting protonation states also applies to identifying any other

common PTM. Using this procedure, lipidation, phosphorylation, amination or acetylation can be

taken into account automatically. To demonstrate that martinize2 can handle PTMs, we have

implemented dummy parameters for testing of Tyrosine phosphorylations in the M2 force field

and generated a Martini topology for the EGFR kinase as an example (PDB 2GS2). Residue

TYR845 (see Figure 5), which is located in the activation loop of the EGFR kinase, is

phosphorylated when the kinase is activated.56 Martinize2 was able to convert the structure in

one go to M2 resolution. We note that at the time of writing the M3 force field is lacking

18

parameters for these PTMs and they are therefore not implemented in martinize2 yet. In this

case, a warning is issued by the program.

Expanding the Options of Elastic Network Fine-Tuning

Due to the limitations in most coarse-grained protein models (e.g. lack of explicit hydrogen

bonding directionality), the tertiary structure has to be enforced with a structural bias called

elastic network (EN).60 An EN for Martini proteins consists of weak harmonic bonds between

backbone beads of residues (within a chosen cut-off distance) and is generated after the

resolution transformation as a postprocessing step.39,41 Martinize offered only two types of EN

options, the regular model and the Elnedyn39 approach, both of which are also implemented in

martinize2. However, as the EN fixes the tertiary structure, changes in the structure upon, e.g.,

ligand binding are not captured. To improve protein models in this aspect recently Go-like

models have been applied to Martini.40 In a Go-like model the harmonic bonds are substituted

by custom Lennard-Jones (LJ) interactions that can dissociate, thereby allowing for some

tertiary structure changes. Within the scope of Martini, a workflow is available to replace the

elastic network with a Go model that is generated from a contact map.

Even though Go models offer better flexibility, they are currently limited to single monomeric

protein units and require some fine-tuning to get the optimal performance.40 Especially, for HT

workflows the EN approach is therefore the preferred option. To further improve upon the elastic

networks generated by the old martinize, martinize2 offers several options to fine-tune the EN

and get better behavior within the constraints of the EN approach. Besides the cut-off and force-

constant, martinize2 now implements a residue minimum distance (RMD). The RMD is defined

as a graph distance and dictates how far residues need to be apart in order to participate in

elastic bonds. Defining the RMD as a graph distance means that no bonds are generated

between residues that are for example bound by a disulfide bridge. It thus presents a more

19

rigorous implementation than in the previous version. Usually, the residue minimum distance is

3 in order to avoid the EN competing with the bonds, angles, and dihedrals between the

backbone beads.

Figure 6 Fine-tuning options for the elastic network. a) Elastic networks and backbone

bonds within the human insulin dimer when generated with the molecule or all-option. The dimer

consists of two chains colored in red and orange, which are connected by two disulfide bridges

shown in purple. EN bonds are generated between the two chains and within the chains. b)

Elastic network and backbone bonds within the insulin dimer when generated with the chain

option. In this case, no elastic bonds are generated between the two chains. They are only

connected by the disulfide bridge and non-bonded interactions. c) Elastic network within the

Ftsz protein, when generated for both the intrinsically disordered tail domains (orange) and

20

structural domain (red) d) Elastic network within the Ftsz protein when the EN is only generated

within the structural domain by defining the EN unit as going from resid 12 to 320.

We note that this is part of the Martini protein model and should not be changed. Additionally,

martinize2 allows to select which beads to generate the EN between. This option is needed for

Martini 2 DNA34, for example. Martini 2 DNA offers a stiff EN version, where also sidechain

beads are included. Furthermore, martinize2 allows to define where in the protein to apply the

elastic network. This is done with the EN unit option. The EN unit can be a molecule, chain, all,

or ranges of residue indices. The most trivial option is all in which case an EN is applied

between all protein molecules in the system. The option molecule and chain yield the same

network, if distinct molecules are also distinct chains. However, when two chains are connected

by a disulfide bridge, for example, they would be one Molecule in the martinize sense. On the

other hand, if the interface is not very well defined or more flexible, biasing the two chains

separately could improve the EN. In that case, the chain option can be used. This use-case is

shown for the human insulin dimer in Figure 6a and Figure 6b. The human insulin dimer

consists of two chains, which are connected by two disulfide bridges. If the molecule or all

option is used an EN is generated within the chains and between the chains (Figure 6b).

However, to avoid generating the EN between the two chains the chain option can be supplied

in which case the EN is only generated within chains. As the zoom-in on the tail part shows

there are no more bonds between the two chains in Figure 6b whereas there are in Figure 6a.

Furthermore, martinize2 allows the definition of regions of residue IDs where an EN should be

generated. This feature gives maximum flexibility and allows to bias structural regions of

proteins whereas an EN in intrinsically disordered regions (IDRs) can be avoided. For example,

Figure 6c and Figure 6d show the FtsZ protein of E-coli as predicted by alpha-fold.61,62 FtsZ

possesses a structural unit and two disordered tail domains. With the region option, martinize2

21

allows the generation of an EN only for the structural domain. Within the old martinize

superfluous bonds needed to be removed manually.

Finally, we note that martinize2 is now implemented in the Martini Database (MAD) GUI, which

offers a further utility to remove certain elastic bonds selectively.63 We note that this option is

only available for protein molecules at the moment.

Beyond Proteins: Incorporating other Molecules in Martinize2

Legacy martinize is only applicable to one category of molecule (i.e. proteins or DNA), which is

one of its biggest drawbacks even for setting up simple protein simulations. Martinize2 allows

the inclusion of new classes of molecules without adjusting the codebase. For instance, proteins

frequently have other molecular units associated such as ligands, cofactors, metal ions, or

lipids. The general workflow of martinize2 allows us to convert these molecules in one go

provided that the library files are present. In this way, no post-hoc step is needed, that maps

and parameterizes the system. Having a single step for topology generation greatly facilitates

HT workflows such as protein-ligand binding, one of the cornerstones of CADD.

22

Figure 7 Ligands, cofactors, and polymers transformed to CG Martini level. a) Flavin

Reductase with two FMNs and one NDP cofactor bound in the reference all-atom state and

mapped to Martini CG as indicated by the spheres. The inset shows a zoom onto FMN; b)

Lysozyme with benzene ligand bound in the reference all-atom structure and mapped to Martini

CG resolution; c) Crown ether with Martini beads shown on top of the all-atom structure; d)

Branched polyethylene at all-atom resolution (left) and Martini resolution (right) with the linear

chain part shown in gray and the branches in yellow.

We test this feature on two protein complexes. The first test case concerns Flavin Reductase

(see Figure 7a), which consists of two chains that have flavin mononucleotide ligands (FMN)

and one NAD cofactor bound (2BKJ). M2 parameters and mappings from the GROMOS force

23

field were previously published.64 Parameters and mappings have been added to the vermouth

database. Subsequently, the system could be converted in one step. During a short simulation,

the cofactors remain well bound, indicating that no inappropriate parameters or faulty

geometries were generated. Next, we created topologies and starting structures for Lysozyme

with a benzene molecule bound (1L84), using the M3 force field (Figure 7b). The protein and

ligand were again converted in one step and then simulated for a short period. As previously the

ligand stays bound, showing that the protocol generates reasonable starting structures and

correct parameters.

To fully leverage this new feature, ligand data files are required to be present. Thus, we

implemented mappings and parameters from a previously published small molecule database

for the Martini 3 force field.65 The set comprises 43 small molecules, which are often part of

drugs or drug precursors. All small molecules have corresponding parameters in the CHARMM

ligand database, which allows users to directly convert atomistic CHARMM simulations to

Martini. Mapping directly from crystal structures as present for example in the PDB or other

force fields is also possible. In these cases, the residue names may have to be adjusted to be

the same as in the CHARMM naming convention.

In addition to creating topologies for linear biopolymers, martinize2 is now also able to handle

topologically more complex molecules. For example, crown ether (Figure 7c) consists of six

polyethylene glycol (PEG) repeat units and is cyclic. To test whether martinize2 can handle

cyclic molecules of multiple repeat units it was converted to Martini2 resolution applying the

latest PEG parameters.66 The second example is branched polyethylene (PE), where we chose

a sequence that begins with two linear units followed by three branched ones and two linear

units after. Also, this molecule is converted to Martini2 resolution67 by martinize2 (Figure 7d).

24

Finally, we have set up instructions on how researchers can submit parameters to the database

allowing it to grow and support other researchers. In addition, martinize2 facilitates dynamic

linking of citations to parameters. With this mechanism, citations are printed at the end of the

run that dynamically includes citations to all parameters used in the final topology. Such a

system also allows researchers to easily receive credit for contributed parameters.

Complexity Benchmark

Figure 8 Summary of the successes and failures of the high-throughput pipeline. We ran

the pipeline on the 87084 structures from the template library used by the I-TASSER68 protein

prediction software of which 73% could be converted with martinize2. The other 26.4% failed

mostly due to missing coordinates, and unrecognized residues. For 100% of the converted

25

structures, a GROMACS run input file (i.e. tpr-file) could be generated, and on all but 13 of the

converted structures, an energy minimization could be performed.

To assess the robustness of martinize2 in a high-throughput use case, we processed the

template library used by the I-TASSER68 protein prediction software (Figure 8). At the time of

download (26 March 2021), the dataset contained 87084 protein structures. We processed each

of these structures with martinize2 to get M2.2 models with elastic networks. We then minimized

the energy of the CG protein in a vacuum to validate that the generated structures and topology

could be processed by GROMACS 2022.3.

Of the 87084 structures in the dataset, 63680 (73%) could be processed through the whole

workflow without error. The main cause of failure (25% of the structures) was missing

coordinates in the input structures. When all the atoms that compose a bead are missing from

the input, martinize2 can generate a topology but it cannot generate coordinates for the bead.

Note that if only some atoms are missing, then vermouth does estimate the position of the bead.

876 structures (1%) had missing coordinates in the backbone that prevented the use of

DSSP69,70. Finally, 802 input structures (1%) had at least one residue that was inconsistent with

the library. Upon further inspection, most of these structures contain malformed glycine residues

with an unexpected Cβ atom. Martinize2 detected these inconsistencies and emitted a warning

for each of them; warnings can be explicitly and selectively ignored, if they are not no output is

written to avoid subsequent workflow steps working with corrupted files.

All the 63680 input structures that were successfully processed by martinize2 could be

processed by the GROMACS pre-processor (grompp). However, 13 structures failed the energy

minimization. A visual inspection of some of these failing inputs shows the input atomistic

structures can be problematic. Erroneous interatomic distances (steric clashes or extended

bonds) lead to high energies in the CG systems, which causes a failure in the energy

26

minimization routine. Likely these starting structures are also not numerically stable in a

subsequent simulation.

Figure 9 Two examples of problematic atomistic protein structures flagged by martinize2.

a) the cysteine residue with too small O-O and O-C distances leads to superfluous bonds being

recognized. b) the incorrect interatomic distances in the histidine ring led to missing bonds

(transparent), an erroneous O-N bond connecting the histidine to a neighboring asparagine.

Additionally, a nitrogen atom is switched for an oxygen atom in asparagine.

As a second test case to assess the robustness of martinize2, we processed a subset of the

AlphaFold Protein Structure Database.61,62 200,000 randomly chosen unique protein structures

(see Supporting Information) were given to martinize2 and subsequently an energy minimization

was performed, if the structure could successfully be converted to coarse-grained

representation. Of the 200.000 structures in the dataset, 7 structures (see Supporting

Information) raised an error during the conversion step. Upon further (visual) inspection of the

problematic structures, we concluded that all errors were caused by inaccurate initial atomistic

coordinates. These inaccurate atomic positions caused bonds to not be identified or additional

27

superfluous bonds to be detected (Figure 9). In these cases, the unrecognizable residues were

detected and caused martinize2 to emit a warning. The remaining 199,993 successfully

converted structures could be processed by the GROMACS pre-processor (grompp) and it was

possible to perform an energy minimization.

Discussion

In the previous section, we have presented the vermouth python library for facilitating topology

generation and manipulation. For researchers to use vermouth as a framework for software

development it presents a clear API separated into data structures, parsers, and processors. In

addition, the library relies on only three permissibly licensed open-software projects namely

numpy71, scipy72, and networkx49. This allows researchers more freedom in licensing their code

and reduces the potential for bugs introduced by dependency changes. Furthermore, the central

data structure represents molecules as graphs. Representing molecules as graphs allows to

leverage algorithms from graph theory. Using graph theory for many of the workflows underlying

the Processors makes them faster and more robust towards edge cases. Even though applying

graph theory to molecules is not a new idea73–75, vermouth is specifically designed to also

handle coarse-grained level molecule transformation focusing on the Martini force field.

Therefore, vermouth presents additional functionality often lacking from other packages. For

example, the handling of virtual-sites, which are ubiquitous in many M3 molecules, is rigorously

handled in all Processors. As another more general example, the Processor applying

interactions between residues can automatically compute structural biases from the mapped

coordinates. Finally, the vermouth library adheres to the FAIR principles42,43 to allow adoption by

non-experts and ensure quality control. In particular, for both the vermouth library and

martinize2, continuous integration testing is implemented and code review is required. The

28

software is also semantically versioned, and it is distributed through established channels, most

notably the Python Package Index, and hosted openly on GitHub.

We have shown how vermouth was used to shape the martinize2 program. However, martinize2

is not the only program leveraging the power of the vermouth library. The polyply python suite is

another library and collection of command line programs built upon vermouth. Polyply enables

users to generate both atomistic and coarse-grained simulation input data, i.e. structures and

topologies, from sequence information. As such, it allows building system coordinates for

arbitrarily complex macromolecular systems and nanomaterials.45 Furthermore, the martini-sour

package54,76, which is currently under development, utilizes vermouth to convert topology files

from regular Martini to titratable Martini simulations. These examples already illustrate that

vermouth has the potential to indeed become the central framework for Martini software

development and possibly for other scientific software developments.

Martinize2 enables researchers to prepare simulation input files for arbitrary (bio)polymers,

starting from atomistic structure. We have shown in-depth examples focusing on protein-specific

applications, given that they are the most important target for martinize2. However, also more

complex non-biological molecules such as a cyclic crown ether and branched PE were

showcased to demonstrate the capabilities of martinize2. Furthermore, the user has complete

control over the data files used. The abstraction of force field data into Blocks, Modifications,

and Links allows researchers to reason about model intricacies in a structured manner. This

helps the development of optimized models and parameters for complex (polymeric) molecules,

as well as clearly defining in which combinations these are validated. The new program uses

algorithms from graph theory to identify atoms and assign the appropriate interactions. This

makes the program more tolerant towards its input so that the users have to worry less over

details such as atom names, or ensuring that all residues are in order and appropriately

numbered. In particular, martinize2 is capable of detecting and using protonation states and

29

PTMs and capping groups automatically. In addition, martinize2 allows to fine-tune the EN and

as it is not limited to proteins can also generate parameters for ligands, cofactors, or lipids.

In practice, there are decisions a user needs to make when using vermouth and martinize2,

especially for HT pipelines. Martinize2 detects but does not reconstruct atoms that are missing

from the input structures; these missing atoms can have adverse effects on the result. In the

most harmless cases, they only shift the position of a particle in the output structure. When all

the atoms for a particle are missing, then the program cannot compute a position for that

particle leading to an incomplete output where a particle does not have coordinates. Also, some

workflows depend on DSSP69,70 to assign secondary structures and some specific missing

atoms can prevent DSSP from working properly. In those cases, martinize2 issues a warning

whenever it cannot automatically take care of pitfalls. Handling of these cases is a central

difference between the new and old version. The old version either terminates with an undefined

error or, probably worse, runs and gives output that does not correspond to the atomistic

structure given as input. To illustrate the robustness of martinize2 towards problematic input, we

applied the program to the complete I-TASSER database (~87k structures) as well as a subset

of the AlphaFold Protein Structure Database (~200k structures). For the two benchmark cases,

martinize2 was able to issue a warning or error for all structures, which contained seriously

malformed residues. Of the first database only 13 structures failed in the energy minimization

due to problematic starting coordinates but not obviously malformed residues. In the second

benchmark set only 7 seriously malformed residues were identified, and all other structures

were successfully energy minimized. Thus, we consider martinize2 more robust and fit for HT

and high-complexity tasks.

Ultimately, the robustness comes at a price. Martinize2 uses a subgraph isomorphism to identify

atoms based on their connectivity, and then issues a warning or repairs the input. However,

subgraph isomorphism is an NP-complete problem77. As a result, martinize2 is significantly

30

slower than martinize. Nevertheless, considering the flexibility the new program offers, in

addition to the fact that it is still fast enough to process all entries in the I-TASSER data bank 68,

this is deemed to be acceptable. Even though martinize2 will most likely never be as fast as

martinize we note that many of the processes can still be optimized to yield further performance

increases. Aside from the performance limitations, vermouth, and martinize2 present some

other limitations as well. Both martinize2 and vermouth are currently only capable of writing

topologies in GROMACS format. However, our library does not use the MD parameters of the

produced topologies or calls GROMACS functions, so support for other MD engines can be

added in the future. In addition, since vermouth defines an API, it could even be integrated with

existing software such as OpenMM.78 Furthermore, the processor pipeline underlying martinize2

is currently hardcoded. Future improvements will focus on making the workflow defined by

martinize2 more flexible, in order to include the processor pipeline as part of the force field

definitions. This would enable the use of different pipelines for different force fields, allowing for

easier force field-specific post-processing.

Methods

Preparation of protein input files. Crystal structures were obtained from the RCSB for the

following proteins (3LZT; 2GS2; 2BKJ; 1L84; 3I40; 3IGM, 1MJ5) or the Alpha Fold Data Bank61

for FtsZ with the ID A0A7Y6D765. Hydrogens and missing heavy atoms were reconstructed

using the PRAS package, if appropriate.79 For 3LST and 1MJ5, the pKa and half-way titration

point were estimated using the propka package.59 For 3LST the GLU35 was protonated using

the CHARMM-GUI solution builder.35,80 The HIS-tag of 1MJ5 was removed.

AA simulations. For 2GS2 and 1L84 CHARMM AA parameters56 were created using the

CHARMM-GUI solution builder35,80 and a small equilibration simulation (20ns) was run before

31

the structures were converted with martinize2. The AA simulation used the recommended non-

bonded force settings as for CHARMM with GROMACS. 81 The temperature was maintained

using the v-rescale thermostat by Bussi et al.82 at 310K and pressure was maintained at 1 bar

using the Parrinello-Rahman83 barostat (t = 12 ps) after initial equilibration with the Berendsen84

barostat.

CG simulations. All CG MD simulations were run using GROMACS 2021.585 and the

recommended mdp parameters for Martini 286 and Martini 313 respectively. In particular, the

Lennard-Jones interactions were cut-off at 1.1 nm and electrostatics were treated with reaction-

field (cut-off 1.1 nm, dielectric constant 15). The time-step was 20 fs in all cases and the

production trajectories were run with the standard leap-frog integrator. Temperature was

maintained using the v-rescale thermostat by Bussi et al.82 at 310K with (t = 6 ps) and separate

coupling groups for solvent and proteins. The pressure was maintained at 1 bar using the

Berendsen barostat for equilibrations (t=6ps). The initial systems were solvated using the

polyply45 package or gmx solvate utility.

Complexity benchmark. The (Swiss-Prot) subset of the AlphaFold protein structure database

used for the complexity benchmark contained 542.378 pdb structure files at the time of

download (22 December 2022). The testing pipeline we used was written in Python and

randomly picked 200.000 structures which were given to martinize2. Possible errors during

conversion or the subsequent grompp and energy minimization steps were captured.

Code availability

All code can be found online at https://www.github.com/marrink-lab/vermouth-martinize. In

addition, all released versions are also published on the Python Package Index at

https://www.github.com/marrink-lab/vermouth-martinize

32

https://www.pypi.org/project/vermouth. The documentation is available at https://vermouth-

martinize.readthedocs.io/en/latest/index.html.

Data availability

Input files and commands required to reproduce the example test cases from this paper are

available on GitHub at https://github.com/marrink-lab/martinize-examples. MD trajectories and

benchmark data are available upon reasonable request from the corresponding authors.

References

(1) Marrink, S. J.; Corradi, V.; Souza, P. C. T.; Ingólfsson, H. I.; Tieleman, D. P.; Sansom, M.

S. P. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019.

(2) Yu, A.; Pak, A. J.; He, P.; Monje-Galvan, V.; Casalino, L.; Gaieb, Z.; Dommer, A. C.;

Amaro, R. E.; Voth, G. A. A Multiscale Coarse-Grained Model of the SARS-CoV-2 Virion.

Biophys J 2021, 120 (6), 1097–1104.

(3) Pezeshkian, W.; Grünewald, F.; Narykov, O.; Lu, S.; Arkhipova, V.; Solodovnikov, A.;

Wassenaar, T. A.; Marrink, S. J.; Korkin, D. Molecular Architecture and Dynamics of

SARS-CoV-2 Envelope by Integrative Modeling. Structure 2023, 31 (4), 492-503.e7.

(4) Dommer, A.; Casalino, L.; Kearns, F.; Rosenfeld, M.; Wauer, N.; Ahn, S.-H.; Russo, J.;

Oliveira, S.; Morris, C.; Bogetti, A.; Trifan, A.; Brace, A.; Sztain, T.; Clyde, A.; Ma, H.;

Chennubhotla, C.; Lee, H.; Turilli, M.; Khalid, S.; Tamayo-Mendoza, T.; Welborn, M.;

Christensen, A.; Smith, D. G.; Qiao, Z.; Sirumalla, S. K.; O’Connor, M.; Manby, F.;

Anandkumar, A.; Hardy, D.; Phillips, J.; Stern, A.; Romero, J.; Clark, D.; Dorrell, M.;

Maiden, T.; Huang, L.; McCalpin, J.; Woods, C.; Gray, A.; Williams, M.; Barker, B.;

https://www.pypi.org/project/vermouth
https://vermouth-martinize.readthedocs.io/en/latest/index.html
https://vermouth-martinize.readthedocs.io/en/latest/index.html
https://github.com/marrink-lab/martinize-examples

33

Rajapaksha, H.; Pitts, R.; Gibbs, T.; Stone, J.; Zuckerman, D. M.; Mulholland, A. J.;

Miller, T.; Jha, S.; Ramanathan, A.; Chong, L.; Amaro, R. E. #COVIDisAirborne: AI-

Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory

Aerosol. Int J High Perform Comput Appl 2023, 37 (1), 28–44.

(5) Pezeshkian, W.; König, M.; Wassenaar, T. A.; Marrink, S. J. Backmapping Triangulated

Surfaces to Coarse-Grained Membrane Models. Nat Commun 2020, 11 (1), 1–9.

(6) Autin, L.; Barbaro, B. A.; Jewett, A. I.; Ekman, A.; Verma, S.; Olson, A. J.; Goodsell, D. S.

Integrative Structural Modelling and Visualisation of a Cellular Organelle. QRB Discov

2022, 3, e11.

(7) Feig, M.; Sugita, Y. Whole-Cell Models and Simulations in Molecular Detail. Annu Rev

Cell Dev Biol 2019, 35 (1), 191–211.

(8) Im, W.; Liang, J.; Olson, A.; Zhou, H.-X.; Vajda, S.; Vakser, I. A. Challenges in Structural

Approaches to Cell Modeling. J Mol Biol 2016, 428 (15), 2943–2964.

(9) Stevens, J. A.; Grünewald, F.; van Tilburg, P. A. M.; König, M.; Gilbert, B. R.; Brier, T. A.;

Thornburg, Z. R.; Luthey-Schulten, Z.; Marrink, S. J. Molecular Dynamics Simulation of

an Entire Cell. Front Chem 2023, 11.

(10) Buch, I.; Harvey, M. J.; Giorgino, T.; Anderson, D. P.; De Fabritiis, G. High-Throughput

All-Atom Molecular Dynamics Simulations Using Distributed Computing. J Chem Inf

Model 2010, 50 (3), 397–403.

(11) Souza, P. C. T.; Limongelli, V.; Wu, S.; Marrink, S. J.; Monticelli, L. Perspectives on High-

Throughput Ligand/Protein Docking With Martini MD Simulations. Front Mol Biosci 2021,

8.

34

(12) Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B. L.;

Gapsys, V. GROMACS in the Cloud: A Global Supercomputer to Speed Up Alchemical

Drug Design. J Chem Inf Model 2022, 62 (7), 1691–1711.

(13) Souza, P. C. T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.;

Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M. H.; Wassenaar, T. A.; Kroon, P. C.; Melcr,

J.; Nieto, V.; Corradi, V.; Khan, H. M.; Domański, J.; Javanainen, M.; Martinez-Seara, H.;

Reuter, N.; Best, R. B.; Vattulainen, I.; Monticelli, L.; Periole, X.; Tieleman, D. P.; de

Vries, A. H.; Marrink, S. J. Martini 3: A General Purpose Force Field for Coarse-Grained

Molecular Dynamics. Nat Methods 2021, 18 (4), 382–388.

(14) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The

MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. Journal of

Physical Chemistry B 2007, 111 (27), 7812–7824.

(15) Marrink, S. J.; Monticelli, L.; Melo, M. N.; Alessandri, R.; Tieleman, D. P.; Souza, P. C. T.

Two Decades of Martini: Better Beads, Broader Scope. WIREs Computational Molecular

Science 2022.

(16) Abraham, M. J.; Melquiond, A. S. J.; Ippoliti, E.; Gapsys, V.; Hess, B.; Trellet, M.;

Rodrigues, J. P. G. L. M.; Laure, E.; Apostolov, R.; de Groot, B. L.; Bonvin, A. M. J. J.;

Lindahl, E. BioExcel Whitepaper on Scientific Software Development. Zenodo 2018.

(17) de Jong, D. H.; Singh, G.; Bennett, W. F. D.; Arnarez, C.; Wassenaar, T. A.; Schäfer, L.

V.; Periole, X.; Tieleman, D. P.; Marrink, S. J. Improved Parameters for the Martini

Coarse-Grained Protein Force Field. J Chem Theory Comput 2013, 9 (1), 687–697.

35

(18) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.

GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism

from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25.

(19) Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software

Challenges in Molecular Dynamics Simulations with GROMACS; 2015; pp 3–27.

(20) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.;

Simmerling, C.; Wang, B.; Woods, R. J. The Amber Biomolecular Simulation Programs. J

Comput Chem 2005, 26 (16), 1668–1688.

(21) Brooks, B. R.; Brooks III, C. L.; Mackerell Jr., A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.;

Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner,

A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma,

J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.;

Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM:

The Biomolecular Simulation Program. J Comput Chem 2009, 30 (10, Sp. Iss. SI), 1545–

1614.

(22) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;

Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J Comput

Chem 2005, 26 (16), 1781–1802.

(23) Machado, M. R.; Pantano, S. SIRAH Tools: Mapping, Backmapping and Visualization of

Coarse-Grained Models. Bioinformatics 2016, 32 (10), 1568–1570.

(24) Danne, R.; Poojari, C.; Martinez-Seara, H.; Rissanen, S.; Lolicato, F.; Róg, T.;

Vattulainen, I. DoGlycans –Tools for Preparing Carbohydrate Structures for Atomistic

36

Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. J

Chem Inf Model 2017, 57 (10), 2401–2406.

(25) Girard, M.; Ehlen, A.; Shakya, A.; Bereau, T.; de la Cruz, M. O. Hoobas: A Highly Object-

Oriented Builder for Molecular Dynamics. Comput Mater Sci 2019, 167, 25–33.

(26) Jo, S.; Cheng, X.; Lee, J.; Kim, S.; Park, S.-J.; Patel, D. S.; Beaven, A. H.; Lee, K. Il; Rui,

H.; Park, S.; Lee, H. S.; Roux, B.; MacKerell, A. D.; Klauda, J. B.; Qi, Y.; Im, W.

CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation. J Comput Chem

2017, 38 (15), 1114–1124.

(27) Qi, Y.; Ingólfsson, H. I.; Cheng, X.; Lee, J.; Marrink, S. J.; Im, W. CHARMM-GUI Martini

Maker for Coarse-Grained Simulations with the Martini Force Field. J Chem Theory

Comput 2015, 11 (9), 4486–4494.

(28) Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P. C.; Oostenbrink, C.;

Mark, A. E. An Automated Force Field Topology Builder (ATB) and Repository: Version

1.0. J Chem Theory Comput 2011, 7 (12), 4026–4037.

(29) Canzar, S.; El-Kebir, M.; Pool, R.; Elbassioni, K.; Malde, A. K.; Mark, A. E.; Geerke, D. P.;

Stougie, L.; Klau, G. W. Charge Group Partitioning in Biomolecular Simulation. Journal of

Computational Biology 2013, 20 (3), 188–198.

(30) Jorgensen, W. L.; Tirado-Rives, J. Potential Energy Functions for Atomic-Level

Simulations of Water and Organic and Biomolecular Systems. Proceedings of the

National Academy of Sciences 2005, 102 (19), 6665–6670.

(31) Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L. 1.14*CM1A-LBCC:

Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. J

Phys Chem B 2017, 121 (15), 3864–3870.

37

(32) Dodda, L. S.; Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W. L. LigParGen Web

Server: An Automatic OPLS-AA Parameter Generator for Organic Ligands. Nucleic Acids

Res 2017, 45 (W1), W331–W336.

(33) Vanommeslaeghe, K.; MacKerell, A. D. Automation of the CHARMM General Force Field

(CGenFF) I: Bond Perception and Atom Typing. J Chem Inf Model 2012, 52 (12), 3144–

3154.

(34) Uusitalo, J. J.; Ingólfsson, H. I.; Akhshi, P.; Tieleman, D. P.; Marrink, S. J. Martini Coarse-

Grained Force Field: Extension to DNA. J Chem Theory Comput 2015, 11 (8), 3932–

3945.

(35) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface

for CHARMM. J. Comput. Chem. 2008, 29 (11), 1859–1865.

(36) Uusitalo, J. J.; Ingólfsson, H. I.; Marrink, S. J.; Faustino, I. Martini Coarse-Grained Force

Field: Extension to RNA. Biophys J 2017, 113 (2), 246–256.

(37) Souza, P. C. T.; Thallmair, S.; Conflitti, P.; Ramírez-Palacios, C.; Alessandri, R.; Raniolo,

S.; Limongelli, V.; Marrink, S. J. Protein--Ligand Binding with the Coarse-Grained

{M}artini Model. Nat. Commun. 2020, 11, 3714.

(38) Herzog, F. A.; Braun, L.; Schoen, I.; Vogel, V. Improved Side Chain Dynamics in

MARTINI Simulations of Protein–Lipid Interfaces. J Chem Theory Comput 2016, 12 (5),

2446–2458.

(39) Periole, X.; Cavalli, M.; Marrink, S.-J.; Ceruso, M. A. Combining an Elastic Network With

a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular

Recognition. J Chem Theory Comput 2009, 5 (9), 2531–2543.

38

(40) Poma, A. B.; Cieplak, M.; Theodorakis, P. E. Combining the MARTINI and Structure-

Based Coarse-Grained Approaches for the Molecular Dynamics Studies of

Conformational Transitions in Proteins. J Chem Theory Comput 2017, 13 (3), 1366–1374.

(41) Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S.-

J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem Theory

Comput 2008, 4 (5), 819–834.

(42) Chue Hong, N. P.; Katz, D. S.; Barker, M.; Lamprecht, A.-L.; Martinez, C.; Psomopoulos,

F. E.; Harrow, J.; Castro, L. J.; Gruenpeter, M.; Martinez, P. A.; Honeyman, T.; Struck, A.;

Lee, A.; Loewe, A.; van Werkhoven, B.; Jones, C.; Garijo, D.; Plomp, E.; Genova, F.;

Shanahan, H.; Leng, J.; Hellström, M.; Sandström, M.; Sinha, M.; Kuzak, M.; Herterich,

P.; Zhang, Q.; Islam, S.; Sansone, S.-A.; Pollard, T.; Atmojo, U. D.; Williams, A.;

Czerniak, A.; Niehues, A.; Fouilloux, A. C.; Desinghu, B.; Goble, C.; Richard, C.; Gray,

C.; Erdmann, C.; Nüst, D.; Tartarini, D.; Ranguelova, E.; Anzt, H.; Todorov, I.; McNally,

J.; Moldon, J.; Burnett, J.; Garrido-Sánchez, J.; Belhajjame, K.; Sesink, L.; Hwang, L.;

Tovani-Palone, M. R.; Wilkinson, M. D.; Servillat, M.; Liffers, M.; Fox, M.; Miljković, N.;

Lynch, N.; Martinez Lavanchy, P.; Gesing, S.; Stevens, S.; Martinez Cuesta, S.; Peroni,

S.; Soiland-Reyes, S.; Bakker, T.; Rabemanantsoa, T.; Sochat, V.; Yehudi, Y.; WG, R. F.

FAIR Principles for Research Software (FAIR4RS Principles). 2022.

(43) Wilkinson, M. D.; Dumontier, M.; Aalbersberg, Ij. J.; Appleton, G.; Axton, M.; Baak, A.;

Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E.; Bouwman, J.; Brookes,

A. J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.;

Gonzalez-Beltran, A.; Gray, A. J. G.; Groth, P.; Goble, C.; Grethe, J. S.; Heringa, J.; ’t

Hoen, P. A. C.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S. J.; Martone, M. E.; Mons,

A.; Packer, A. L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.-

39

A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M. A.; Thompson, M.; van

der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft,

K.; Zhao, J.; Mons, B. The FAIR Guiding Principles for Scientific Data Management and

Stewardship. Sci Data 2016, 3 (1), 160018.

(44) Alibay, I.; Barnoud, J.; Beckstein, O.; Gowers, R. J.; Naughton, F.; Wang, L. MDAKits:

Supporting and Promoting the Development of Community Packages Leveraging the

MDAnalysis Library. 2022.

(45) Grünewald, F.; Alessandri, R.; Kroon, P. C.; Monticelli, L.; Souza, P. C. T.; Marrink, S. J.

Polyply; a Python Suite for Facilitating Simulations of Macromolecules and

Nanomaterials. Nat Commun 2022, 13 (1), 68.

(46) Empereur-Mot, C.; Pesce, L.; Doni, G.; Bochicchio, D.; Capelli, R.; Perego, C.; Pavan, G.

M. Swarm-CG : Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-

Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm

Optimization. ACS Omega 2020, 5 (50), 32823–32843.

(47) Wassenaar, T. A.; Pluhackova, K.; Böckmann, R. A.; Marrink, S. J.; Tieleman, D. P.

Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse

Grained to Atomistic Models. J Chem Theory Comput 2014, 10 (2), 676–690.

(48) Marx, V. When Computational Pipelines Go ‘Clank.’ Nat Methods 2020, 17 (7), 659–662.

(49) Hagberg, A. A.; Schult, D. A.; Swart, P. J. Exploring Network Structure, Dynamics, and

Function Using NetworkX. In Proceedings of the 7th Python in Science Conference;

Varoquaux, G., Vaught, T., Millman, J., Eds.; Pasadena, CA USA, 2008; pp 11–15.

(50) Bashford, D.; Karplus, M. PKa’s of Ionizable Groups in Proteins: Atomic Detail from a

Continuum Electrostatic Model. Biochemistry 1990, 29 (44), 10219–10225.

40

(51) Huang, Y.; Chen, W.; Wallace, J. A.; Shen, J. All-Atom Continuous Constant PH

Molecular Dynamics with Particle Mesh Ewald and Titratable Water. J Chem Theory

Comput 2016, 12 (11), 5411–5421.

(52) Donnini, S.; Tegeler, F.; Groenhof, G.; Grubmüller, H. Constant PH Molecular Dynamics

in Explicit Solvent with λ-Dynamics. J Chem Theory Comput 2011, 7 (6), 1962–1978.

(53) Bennett, W. F. D.; Chen, A. W.; Donnini, S.; Groenhof, G.; Tieleman, D. P. Constant PH

Simulations with the Coarse-Grained MARTINI Model — Application to Oleic Acid

Aggregates. Can J Chem 2013, 91 (9), 839–846.

(54) Grünewald, F.; Souza, P. C. T.; Abdizadeh, H.; Barnoud, J.; de Vries, A. H.; Marrink, S. J.

Titratable Martini Model for Constant PH Simulations. J Chem Phys 2020, 153 (2),

024118.

(55) Aho, N.; Buslaev, P.; Jansen, A.; Bauer, P.; Groenhof, G.; Hess, B. Scalable Constant

PH Molecular Dynamics in GROMACS. J Chem Theory Comput 2022, 18 (10), 6148–

6160.

(56) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmüller, H.;

MacKerell, A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically

Disordered Proteins. Nat Methods 2017, 14 (1), 71–73.

(57) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw,

D. E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field.

Proteins: Structure, Function, and Bioinformatics 2010, 78 (8), 1950–1958.

(58) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. v. H++ 3.0: Automating PK Prediction and

the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and

Simulations. Nucleic Acids Res 2012, 40 (W1), W537–W541.

41

(59) Olsson, M. H. M.; Søndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3:

Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions. J

Chem Theory Comput 2011, 7 (2), 525–537.

(60) Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. Coarse-

Grained Protein Models and Their Applications. Chem Rev 2016, 116 (14), 7898–7936.

(61) Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.;

Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen,

S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs,

N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold Protein

Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence

Space with High-Accuracy Models. Nucleic Acids Res 2022, 50 (D1), D439–D444.

(62) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;

Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl,

S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;

Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska,

M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu,

K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold.

Nature 2021, 596 (7873), 583–589.

(63) Hilpert, C.; Beranger, L.; Souza, P. C. T.; Vainikka, P. A.; Nieto, V.; Marrink, S. J.;

Monticelli, L.; Launay, G. Facilitating CG Simulations with MAD: The MArtini Database

Server. bioRxiv 2022.

(64) Sousa, F. M.; Lima, L. M. P.; Arnarez, C.; Pereira, M. M.; Melo, M. N. Coarse-Grained

Parameterization of Nucleotide Cofactors and Metabolites: Protonation Constants,

Partition Coefficients, and Model Topologies. J Chem Inf Model 2021, 61 (1), 335–346.

42

(65) Alessandri, R.; Barnoud, J.; Gertsen, A. S.; Patmanidis, I.; de Vries, A. H.; Souza, P. C.

T.; Marrink, S. J. Martini 3 Coarse-Grained Force Field: Small Molecules. Adv Theory

Simul 2022, 5 (1), 2100391.

(66) Grunewald, F.; Rossi, G.; de Vries, A. H.; Marrink, S. J.; Monticelli, L. Transferable

MARTINI Model of Poly(Ethylene Oxide). J. Phys. Chem. B 2018, 122 (29), 7436–7449.

(67) Panizon, E.; Bochicchio, D.; Monticelli, L.; Rossi, G. MARTINI Coarse-Grained Models of

Polyethylene and Polypropylene. Journal of Physical Chemistry B 2015, 119 (25), 8209–

8216.

(68) Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein

Structure and Function Prediction. Nat Methods 2015, 12 (1), 7–8.

(69) Kabsch, W.; Sander, C. Dictionary of Protein Secondary Structure: Pattern Recognition of

Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637.

(70) Touw, W. G.; Baakman, C.; Black, J.; te Beek, T. A. H.; Krieger, E.; Joosten, R. P.;

Vriend, G. A Series of PDB-Related Databanks for Everyday Needs. Nucleic Acids Res

2015, 43 (D1), D364–D368.

(71) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau,

D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van

Kerkwijk, M. H.; Brett, M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-

Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant,

T. E. Array Programming with NumPy. Nature 2020, 585 (7825), 357–362.

(72) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.;

Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.;

Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.;

43

Carey, C. J.; Polat, \.Ilhan; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold,

J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A.

H.; Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Contributors. SciPy 1.0: Fundamental

Algorithms for Scientific Computing in Python. Nat Methods 2020, 17, 261–272.

(73) Engler, M. S.; Caron, B.; Mark, A. E. Multiple-Choice Knapsack for Assigning Partial

Atomic Charges in Drug-Like Molecules. No. 16, 1–13.

(74) Engler, M. S.; El-kebir, M.; Mulder, J.; Mark, A. E.; Geerke, D. P.; Klau, G. W.

Enumerating Common Molecular Substructures. PeerJ Prepr 2017, 1–10.

(75) Cao, Y.; Jiang, T.; Girke, T. A Maximum Common Substructure-Based Algorithm for

Searching and Predicting Drug-like Compounds. Bioinformatics 2008, 24 (13), i366–i374.

(76) Sami, S.; Grünewald, F.; Souza, P. C. T.; Marrink, S. J. A Guide to Titratable Martini

Simulations. In A Practical Guide to Recent Advances in Multiscale Modeling and

Simulation of Biomolecules; AIP Publishing, 2023; pp 1–16.

(77) Cook, S. A. The Complexity of Theorem-Proving Procedures. In Proceedings of the third

annual ACM symposium on Theory of computing - STOC ’71; ACM Press: New York,

New York, USA, 1971; pp 151–158.

(78) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.;

Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B.

R.; Pande, V. S. OpenMM 7: Rapid Development of High Performance Algorithms for

Molecular Dynamics. PLoS Comput Biol 2017, 13 (7), e1005659.

(79) Nnyigide, O. S.; Nnyigide, T. O.; Lee, S.-G.; Hyun, K. Protein Repair and Analysis Server:

A Web Server to Repair PDB Structures, Add Missing Heavy Atoms and Hydrogen

44

Atoms, and Assign Secondary Structures by Amide Interactions. J Chem Inf Model 2022,

62 (17), 4232–4246.

(80) Lee, J.; Cheng, X.; Swails, J. M.; Yeom, M. S.; Eastman, P. K.; Lemkul, J. A.; Wei, S.;

Buckner, J.; Jeong, J. C.; Qi, Y.; Jo, S.; Pande, V. S.; Case, D. A.; Brooks, C. L.;

MacKerell, A. D.; Klauda, J. B.; Im, W. CHARMM-GUI Input Generator for NAMD,

GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the

CHARMM36 Additive Force Field. J Chem Theory Comput 2016, 12 (1), 405–413.

(81) Bjelkmar, P.; Larsson, P.; Cuendet, M. A.; Hess, B.; Lindahl, E. Implementation of the

CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction

Maps, Virtual Interaction Sites, and Water Models. J Chem Theory Comput 2010, 6 (2),

459–466.

(82) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J

Chem Phys 2007, 126 (1), 14101.

(83) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular

Dynamics Method. J Appl Phys 1981, 52 (12), 7182–7190.

(84) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.

Molecular Dynamics with Coupling to an External Bath. J Chem Phys 1984, 81 (8), 3684–

3690.

(85) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.

GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism

from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25.

(86) de Jong, D. H.; Baoukina, S.; Ingólfsson, H. I.; Marrink, S. J. Martini Straight: Boosting

Performance Using a Shorter Cutoff and GPUs. Comput Phys Commun 2016, 199, 1–7.

45

Acknowledgments

We would like to thank all users that tested the development versions and provided valuable

feedback, in particular the members of the SJM group and the participants of the Martini

Workshop 2021. We also thank Melanie König for her feedback on the manuscript and figures.

Work is supported by an ERC Advanced Grant (“COMP-O-CELLMIC-CROW-MEM”) to SJM.

PCTS acknowledges the support of the French National Center for Scientific Research (CNRS)

and the research collaboration with PharmCADD. JB acknowledges financial support from the

Agencia Estatal de Investigación (Spain), the Xunta de Galicia - Consellería de Cultura,

Educación e Universidade (Centro de investigación de Galicia accreditation 2019-2022

ED431G-2019/04 and Reference Competitive Group accreditation 2021-2024, CÓDIGO

AXUDA). The European Union (European Regional Development Fund – ERDF) and the

European Research Council through consolidator grant NANOVR 866559.

Author contributions

PCK and SJM conceived the project; PCK, JB, and FG implemented the described software;

PCK, JB, TAW designed the program structure; PCTS & FG designed the benchmark tests

used along the development of the code to guarantee the accuracy of the models; MvT ran the

protein benchmark test-case using the alpha-fold data-base, while JB ran and analyzed the

iTasser data-base; FG ran and analyzed all other test-cases. PCTS helped to implement the

force field files, and managed feedback from beta testers; PCK and FG wrote the manuscript,

with contributions from all authors. SJM provided guidance and supervision in the project.

46

Competing interests

The authors declare no competing interests.

1

Supplementary Information
Martinize2 and Vermouth: Unified
Framework for Topology Generation
P C Kroon1

F Grunewald1,*

M. van Tilburg1

J Barnoud1,3

P C T Souza1,2

T A Wassenaar1

S J Marrink1, *

1) Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,

Groningen, the Netherlands.

2) Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of

Lyon, Lyon, France.

3) 5CiTIUS Intelligent Technologies Research Centre, Rúa de Jenaro de la Fuente, s/n,

15705 Santiago de Compostela, A Coruña, Spain.

*) Corresponding authors

s.j.marrink@rug.nl

f.grunewald@rug.nl

mailto:s.j.marrink@rug.nl
mailto:f.grunewald@rug.nl

2

1 – Input Parsers & Output Writers

Table S1. Data Parsers object returned as well as format definition and extension

Extension Data Class Parser Name Input Format

.ff Links

Block

Modifications

read_ff in house force-field

format

.itp Block read_itp GROMACS topology file;

all [molecule] directive

content

.map Mapping read_mapping mapping file as defined

using backwards style

.pdb System read_pdb canonical PDB format

.gro Molecule read_gro Gromacs .gro file

Table S2. Data Writers and the object returned as well as format definition and extension

Input Format Data Class Parser Name Output Format

.gro System write_gro G96 gro file

.pdb System write_pdb PDB file

.top System write_top Pseudo topology file

3

.itp System write_itp GROMACS topology file;

all [molecule] directive

content

2 – Related Tools

Table S3. Limited overview of selected competing tools capable of generating MD topologies. “Force Field”
lists the force fields for which this tool can generate topologies without changing the source code. “Type of
system” describes the type of system this tool can generate topologies for. “External data files” means
whether the force field parameters used are included in separate data files, making it possible to easily
change them. “Notes” lists additional remarks and comments, “builds coordinates” means it is capable of
constructing coordinates for complete systems, rather than only for e.g. missing sidechains.

Name Force field Type of system External data

files

Notes

pdb2gmx20,21 Any AA/UA Linear polymers Yes

LEaP22 Any AA/UA Linear polymers Yes

CHARMM23 Any AA/UA Linear polymers Yes

psfgen24 Any AA/UA Linear polymers Yes

Martinize 125,26 Martini Proteins, DNA No

Sirah Tools27 Any CG Linear polymers Yes Performs

mapping only

DoGlycans28 AMBER, OPLS Sugars Yes Builds

coordinates

HOOBAS29 Multiple Multiple Yes No user interface,

builds

4

coordinates

CHARMM-GUI30–

32

Multiple Multiple No Web server, builds

coordinates

VerMoUTH/Marti

nize2

Multiple Multiple Yes This work

ATB33,34 GROMOS54a7

GROMOS54a8

Small molecules N/A Automatic de

novo

parametrization

LigParGen35–37 OPLS-AA

Small molecules N/A Automatic de

novo

parametrization

CGenFF38 CHARMM

General Force

Field

Small molecules N/A Automatic de

novo

parametrization

5

3 - Martinize2 Pipeline

In this section, we describe the pipeline underlying the martinize2 program in more depth highlighting

the algorithms used.

Step 1 Parse input. Reading different input file formats is trivial, and all that is needed is to select the

correct parser based on the file name provided. At the time of writing parsers are available for pdb and

gro files (coordinate files in Gromacs format). The input is commonly a list of atoms with associated

properties such as atom names, coordinates, and MRU (monomeric repeat unit) names. Sometimes the

input also provides information about bonds in the system, such as PDB ‘CONECT’ records. These will

be used if available. Otherwise, bonds will be added between the atoms based on simple geometric

criteria. At the very least we require MRU names and numbers, elements, and either coordinates or

bonds. In the end, the input has been parsed and transformed into an undirected graph with atoms as

nodes and bonds as edges.

Step 2 Identify and Repair. To identify the parsed atoms the current generation of tools takes the

combination of atom name and MRU name as leading, even though this is the most variable between

models. For instance, the atom names assigned in the experimental data often do not match the atom

names expected by the force field causing existing tools to either throw an error, or even produce

incorrect output. We identify atoms based on their MRU names, connectivity, and their elements by

overlaying the MRU with its canonical form (Figure 3 main paper).

Doing so allows us to identify deviations from the canonical structure such as PTMs, different

protonation states and capping groups. In addition, this method reveals which atoms are missing in the

input data, allowing us to reconstruct them. We rely on graph theory to perform the overlaying of input

and reference structures (see the dedicated section on graph algorithms below).

In order to do this, every MRU in the input molecule is overlaid with its canonical reference structure

with the constraint that the elements of corresponding atoms must be the same. To get the relevant

canonical structure it is assumed the MRU names in the input molecule are correct and that for each

MRU a corresponding block can be found in the library. If the corresponding block cannot be found an

6

error is raised and execution is terminated. Since the library files are designed to be human readable

and writable, users can add any data to the library they need.

In the best case finding the overlay is an induced subgraph isomorphism problem where Mr ⫇ Rr with

Mr an MRU of the input molecule and Rr the corresponding canonical form. However, this is treated as

a largest common induced subgraph problem (see below) since Mr can contain “unexpected” atoms not

described by Rr such as PTMs or capping groups. If there are multiple solutions, the solution where most

atom names correspond is taken. Either way, a correspondence between the input molecule and its

canonical form is obtained. This correspondence is used to a) identify and add missing atoms, b) correct

the atom names for the atoms that are there, and c) find which atoms are not described by the canonical

MRUs. It should be noted that in this paradigm PTMs, non-standard protonation states, termini, and

capping groups are all considered unexpected atoms and treated the same way.

Next, we try to identify all these unexpected atoms by overlaying them with modification template

graphs from the library (Figure 3b main paper). This is a graph covering problem where we aim to find

a minimal combination of templates that covers all unexpected atoms (see below). This does mean that

unless there is clear additional metadata there can be no missing atoms in the found modifications

since it is not known what they should look like beforehand. The found correspondences are then used

to correct the atom names. The MRUs these atoms are part of are labeled so that the correct mappings

and interactions can be applied later on. In the end, the input molecule is complete, has correct atom

names, and MRUs that deviate from the reference are labelled. At this point, all information contained

in the atom definitions in the input file and their connectivity has been used. Any atoms that could not

be recognized will be removed. A warning is issued to the user if this is the case.

Step 3 Resolution Transformation. The resolution transformation step maps the input molecule to the

desired output resolution (Figure 3c main paper). We must assume that these mappings are

many‑to‑many correspondences and that in a mapping from e.g. AA to CG a single AA atom can be

mapped to multiple CG beads. Unfortunately, this generalization prevents the use of methods

developed in graph theory for this problem so far1,2. Instead, we perform the transformation using the

same type of overlay we used to identify atoms in the input molecule. This requires a ‘Mapping’ object,

7

which consists of two molecular fragments at different resolutions, and a correspondence between their

particles. These Mapping objects are taken from a library. Including this resolution transformation step

in the pipeline makes vermouth resolution agnostic, capable of also generating CG topologies.

Mappings from the input force field to the required output force field are taken from the library.

However, since these mappings can cross MRU boundaries this is a graph covering problem. This is a

variant of the exact cover problem and therefore an NP-hard problem3,4. Because in this case it applies

to the full polymer, this is intractable. We sidestep this problem by approaching it as if it were an

induced subgraph isomorphism problem where all possible places a mapping fits on the input graph

are found, respecting the constraints that atom and MRU names must match. In addition, the mapping

may only cross MRU boundaries where it is explicitly allowed by the mapping. If mappings overlap an

error is raised. For every mapping that is applied interactions from the corresponding Block are added

to the output graph.

Once done, the found modifications can be mapped. First, the modifications are grouped together by

connectivity with their MRUs. This is done because with multiple modifications for a single MRU their

interactions may influence each other, e.g. (partial) charges in zwitterionic amino acids. Based on these

groups the modification mappings that apply to most of those modifications at once are found by

solving the exact set covering problem. The found modifications are then applied by finding the

corresponding subgraph isomorphisms. Warnings are issued if multiple modification mappings affect

the same particle or interaction.

Step 4 Create Topology. Left then is generating the topology. Generating the inter-MRU interactions

by applying the appropriate Links is a series of induced subgraph isomorphism problems where all

possible ways a link fits on the produced output graph are found. A link can be applied multiple times,

and can overlap with other links. Whenever a link is applied the interactions it defines are added to the

output graph. In addition to adding interactions, links can also change interactions already set by

blocks. For example, the particle type or partial charge may depend on neighboring MRUs. Because of

this, links are non-commutative, and the order in which they are applied matters. To resolve this, we

8

solve the subgraph isomorphism problems in the order the links are defined in the library (Figure 3d

main paper).

At this point the output graph represents a molecule at the desired resolution with most interactions

defined and coordinates can be generated. Usually, these can be trivially taken from the input

coordinates. However, in case atoms were missing in the input this might not be possible. In those cases,

we generate coordinates based on the coordinates of the neighboring atoms.

Step 5 Post-Processing. Post-processing can consist of any number of steps, and can perform all sorts

of force field specific dress-up. For example, it can create an elastic network5, or generate the

parameters required for Gō interactions6,7. These steps have access to the complete molecule with

coordinates and canonical atom names, even if they were missing in the input, and they have access to

the full topology with all associated interactions. Separating these steps out into separate Processors

helps to keep them independent of each other, and allowing for any type of post-processing helps in

making the program force field agnostic. There can be any number of this kind of processors depending

on what was requested by the user.

Step 6 Write Output. Lastly, the output topology and coordinate files have to be written. Since this is

just a matter of file formatting, this is trivial. Separating it out from the rest of the pipeline makes the

program agnostic of the MD engine used. At the time of writing vermouth is capable of writing Gromacs

compatible topologies.

4 - Graph algorithms

Steps 2-4, which form the core of vermouth rely heavily on graph algorithms, because molecules and

polymers can be very naturally described as undirected graphs8–11. In our case nodes correspond to

atoms, and edges to bonds between atoms. In addition, polymers can also be described as a coarser

graph, where nodes correspond to MRUs and edges to bonds between MRUs. Graph theory is a subfield

of mathematics that deals with graphs, making it a particularly powerful tool in the context of this work.

We primarily use methods from graph theory to identify atoms. First when curating the provided input

data (Step 2), but also when performing the resolution transformation (Step 3) and when applying links

9

(Step 4). Our primary tools for this are algorithms for finding induced subgraph isomorphisms12–15, and

for finding largest common induced subgraphs16,17.

Largest Common Induced Subgraph. When repairing the provided molecule correspondences

between the MRUs in the input molecule (Mr) and their canonical forms (Rr) are needed. In the case

where Mr is not a subgraph of Rr and contains atoms that are not described by Rr, this is a largest

common induced subgraph (LCIS) problem. The solution to this problem is the largest graph G that is

an induced subgraph of both Mr and Rr, and the correspondences between the nodes in G and Mr; and

between the nodes in G and Rr. This problem belongs to the class of NP hard problems3,4. A possible

solution to the LCIS problem is to approach it as a repeating subgraph isomorphism problem where

initially G = Mr, and nodes are removed from G in a breadth-first manner until an induced subgraph

isomorphism G ⫇ Rr is found16. Once a subgraph isomorphism between G and Rr is found the subgraph

is not shrunk further since that would always result in a smaller common subgraph. We have based our

implementation on the ISMAGS subgraph isomorphism algorithm13,18 since, generally, molecules can be

described as very sparse and (locally) symmetric graphs. The ISMAGS algorithm exploits these

properties and produces only symmetrically distinct answers which reduces the runtime significantly

compared to both other subgraph isomorphism algorithms, such as VF213 and other LCIS algorithms,

such as Koch’s17. Since our implementation of the ISMAGS is more generally applicable than just in the

context of vermouth we have collaborated with the authors of the popular Python graph library

NetworkX19 to include our implementation.

We extended our implementation of the ISMAGS algorithm to also solve the LCIS problem in order to

further exploit the symmetry breaking constraints used in the subgraph isomorphism problem. The

symmetry breaking constraints are used when finding subgraph isomorphisms (see 13) and when

shrinking the subgraph: when nodes are equivalent the node with the highest index is removed from G

preferentially. In addition, to ensure common subgraphs are preferentially found using nodes with a

lower index (analogous to the ISMAGS algorithm), the candidate subgraphs are sorted by their node

indices. In this way we obtain good performance because in our case it is generally true that: a) there

10

are only a few nodes not part of the reference, and b) those nodes have the highest node index. Because

of this we can terminate the algorithm after the first common subgraph is found.

To demonstrate how this works we consider an example where we will try to find all LCISs between

graph X and subgraph Y. The example is illustrated in Figure S1. Note that at this point the distinction

between “graph” and “subgraph” is arbitrary, except for symmetry detection and performance. Nodes

are represented by a letter that reflects their underlying attributes (e.g. atom type). We will consider

nodes compatible if they have the same letter, and we distinguish nodes with the same letter by

subscripts. First all symmetries in subgraph Y are found. This reveals A1 to be equivalent to A2. In the

first iteration we try to find a subgraph isomorphism between X and Y (Iteration 1). Since none can be

found, subgraph Y is shrunk. This yields the subgraphs in box “Iteration 2”. Since the subgraph made

from the nodes {A1, B, E, F} is symmetry equivalent to the subgraph made from nodes {A2, B, E, F}, only

the first is taken into consideration. Because no subgraph isomorphism can be found between X and

any of these four subgraphs for this iteration, they are shrunk further, resulting in seven subgraphs with

unique symmetries consisting of three nodes each. These are depicted in box “Iteration 3”. Of these

seven subgraphs, at least one is isomorphic to a subgraph of X ({A1, A2, B}), therefore all subgraph

isomorphisms between X and these seven subgraphs are exported in order and the algorithm is

terminated.

The algorithm presented is not without faults however: symmetry of X is not taken into consideration,

which could reduce the search space dramatically depending on the graphs in question. In addition,

some operations are performed multiple times. As an example, many of the subgraphs in Figure S1

contain the motif {A1, B} (in bold). This results in the subgraph isomorphism algorithm reaching the

conclusion that {A1, B} is isomorphic to {A1, B} and {A2, B} multiple times. This can be avoided by

starting the algorithm using small subgraphs, and growing them as the algorithm progresses. The results

of the smaller isomorphism problems can be used to restrict the search space of the larger ones. Since

in most of our cases Mr contains only a few nodes that are not isomorphic to nodes in the Rr we do not

expect a (large) performance gain. It may be worthwhile to implement an adaptive algorithm that

switches strategy after a few iterations of either strategy however.

11

Figure S1 Example of finding all LCISs between graphs X and Y. Greyed out nodes are not used (they

are excluded from the comparison by the shrinking step), but are depicted for clarity. Since nodes A1

and A2 in Y are symmetry equivalent not all subgraphs are taken into account. Those that are excluded

due to symmetry reasons are depicted in the box Symmetry pruned. Iteration 1: we try to find a subgraph

isomorphism between X and Y. None is found. Iteration 2: Y is shrunk to produce the graphs depicted.

We try to find subgraph isomorphisms between these and X. None are found. Iteration 3: all graphs from

iteration 2 are shrunk further. Since a subgraph isomorphism can be found between at least one of these

({A1, A2, B}) and X, the algorithm terminates afterwards. To highlight how often the algorithm discovers

that {A1, B} is subgraph isomorphic to X, it is shown in bold.

Graph Covering. To identify unexpected atoms, we need to cover all those atoms with known

fragments describing e.g. PTMs. We aim to find the solution where all unexpected atoms are covered

exactly once, preferentially using fragments with a lower index. In vermouth we sort the fragments by

size so that larger fragments are used preferentially. This is a variant of the exact cover problem, making

12

it NP hard3,4. We solve this problem by a recursive backtracking algorithm: in order, we try to fit the

fragments on the unexpected atoms until all are covered. If applying a fragment result in atoms that

can no longer be covered, the solution is rejected, and the next fit is tried.

4 - AlphaFold Benchmark

The following 7 structures from the AlphaFold benchmarks produced an error, which led martinize2 to

abort the input file generation:

AF-O80995-F1-model_v3.pdb
AF-Q58295-F1-model_v3.pdb
AF-B1GZ76-F1-model_v3.pdb
AF-A1ZA47-F1-model_v3.pdb
AF-J9VQ06-F1-model_v3.pdb
AF-F1QWK4-F1-model_v3.pdb
AF-P64653-F1-model_v3.pdb

A list of all surveyed models is available at https://github.com/marrink-lab/martinize-
examples/blob/master/AlphaFoldBenchmark/surveyed_models.txt .

References

1. Webb, M. A., Delannoy, J.-Y. & de Pablo, J. J. Graph-Based Approach to Systematic Molecular
Coarse-Graining. Journal of Chemical Theory and Computation acs.jctc.8b00920 (2018)
doi:10.1021/acs.jctc.8b00920.

2. Chakraborty, M., Xu, C. & White, A. D. Encoding and selecting coarse-grain mapping operators
with hierarchical graphs. The Journal of Chemical Physics 149, 134106 (2018).

3. Cook, S. A. The complexity of theorem-proving procedures. in Proceedings of the third annual
ACM symposium on Theory of computing - STOC ’71 151–158 (ACM Press, 1971).
doi:10.1145/800157.805047.

4. Karp, R. M. Reducibility among Combinatorial Problems. in Complexity of Computer
Computations 85–103 (Springer US, 1972). doi:10.1007/978-1-4684-2001-2_9.

5. Periole, X., Cavalli, M., Marrink, S.-J. & Ceruso, M. A. Combining an Elastic Network With a
Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition.
Journal of Chemical Theory and Computation 5, 2531–2543 (2009).

13

6. Poma, A. B., Cieplak, M. & Theodorakis, P. E. Combining the MARTINI and Structure-Based
Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions
in Proteins. Journal of Chemical Theory and Computation 13, 1366–1374 (2017).

7. Taketomi, H., Ueda, Y. & Gō, N. Studies on protein folding, unfolding and fluctuations by
computer simulation. I. The effect of specific amino acid sequence represented by specific inter-
unit interactions. International journal of peptide and protein research 7, 445–459 (1975).

8. Chung, F. Graph Theory in the Information Age. Notices of the AMS 57, 726–732 (2010).

9. Engler, M. S. et al. Enumerating common molecular substructures. PeerJ Prepr 1–10 (2017)
doi:10.7287/peerj.preprints.3250v1.

10. Engler, M. S., Caron, B. & Mark, A. E. Multiple-Choice Knapsack for Assigning Partial Atomic
Charges in Drug-Like Molecules. 1–13 doi:10.4230/LIPIcs.WABI.2018.16.

11. Cao, Y., Jiang, T. & Girke, T. A maximum common substructure-based algorithm for searching
and predicting drug-like compounds. Bioinformatics 24, i366–i374 (2008).

12. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D. & Ferro, A. A subgraph isomorphism algorithm
and its application to biochemical data. BMC Bioinformatics 14, S13 (2013).

13. Houbraken, M. et al. The Index-Based Subgraph Matching Algorithm with General Symmetries
(ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration. PLoS ONE 9, e97896 (2014).

14. Cordella, L. P., Foggia, P., Sansone, C. & Vento, M. An improved algorithm for matching large
graphs. Proceedings of the 3rd IAPR Workshop on Graph-Based Representations in Pattern
Recognition 219, 149–159 (2001).

15. Cordella, L. P., Foggia, P., Sansone, C. & Vento, M. A (sub)graph isomorphism algorithm for
matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1367–
1372 (2004).

16. Krissinel, E. B. & Henrick, K. Common subgraph isomorphism detection by backtracking search.
Software: Practice and Experience 34, 591–607 (2004).

17. Koch, I. Enumerating all connected maximal common subgraphs in two graphs. Theoretical
Computer Science 250, 1–30 (2001).

18. Demeyer, S. et al. The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph
Enumeration in Large Networks Using Optimized Search Trees. PLoS ONE 8, e61183 (2013).

19. Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics, and function using
networkx. in Proceedings of the 7th Python in Science Conference (SciPy2008) (eds. Varoquaux, G.,
Vaught, T. & Millman, J.) 11–15 (2008).

14

20. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

21. Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. Tackling Exascale Software Challenges
in Molecular Dynamics Simulations with GROMACS. in 3–27 (2015). doi:10.1007/978-3-319-15976-
8_1.

22. Case, D. A. et al. The Amber biomolecular simulation programs. J Comput Chem 26, 1668–1688
(2005).

23. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. Journal of Computational Chemistry 4, 187–217 (1983).

24. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. Journal of computational chemistry
26, 1781–802 (2005).

25. de Jong, D. H. et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J
Chem Theory Comput 9, 687–697 (2013).

26. Uusitalo, J. J., Ingólfsson, H. I., Akhshi, P., Tieleman, D. P. & Marrink, S. J. Martini Coarse-Grained
Force Field: Extension to DNA. J Chem Theory Comput 11, 3932–45 (2015).

27. Machado, M. R. & Pantano, S. SIRAH tools: mapping, backmapping and visualization of coarse-
grained models. Bioinformatics 32, 1568–1570 (2016).

28. Danne, R. et al. doGlycans –Tools for Preparing Carbohydrate Structures for Atomistic
Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. J Chem
Inf Model 57, 2401–2406 (2017).

29. Girard, M., Ehlen, A., Shakya, A., Bereau, T. & de la Cruz, M. O. Hoobas: A highly object-oriented
builder for molecular dynamics. Comput Mater Sci 167, 25–33 (2019).

30. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for
CHARMM. J Comput Chem 29, 1859–1865 (2008).

31. Jo, S. et al. CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem
38, 1114–1124 (2017).

32. Qi, Y. et al. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force
Field. J Chem Theory Comput 11, 4486–4494 (2015).

33. Malde, A. K. et al. An Automated Force Field Topology Builder (ATB) and Repository: Version
1.0. Journal of Chemical Theory and Computation 7, 4026–4037 (2011).

34. Canzar, S. et al. Charge Group Partitioning in Biomolecular Simulation. Journal of Computational
Biology 20, 188–198 (2013).

15

35. Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. 1.14*CM1A-LBCC: Localized Bond-
Charge Corrected CM1A Charges for Condensed-Phase Simulations. J Phys Chem B 121, 3864–
3870 (2017).

36. Jorgensen, W. L. & Tirado-Rives, J. Potential energy functions for atomic-level simulations of
water and organic and biomolecular systems. Proceedings of the National Academy of Sciences
102, 6665–6670 (2005).

37. Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an
automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res 45, W331–W336
(2017).

38. Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM General Force Field
(CGenFF) I: Bond Perception and Atom Typing. J Chem Inf Model 52, 3144–3154 (2012).

