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Abstract. We demonstrate that linear degeneracy is a necessary condition for

quasilinear systems of Jordan block type to possess first-order Hamiltonian structures.

Multi-Hamiltonian formulation of linearly degenerate systems governing delta-

functional reductions of the kinetic equation for dense soliton gas is established (for

KdV, sinh-Gordon, hard-rod, Lieb-Liniger, DNLS, and separable cases).
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1. Introduction

In this paper we study quasilinear systems

Rt + A(R)Rx = 0 (1)

where R = (R1, ..., Rn)T is the vector of dependent variables, A is an n× n matrix, and

t, x are the independent variables. We assume that the matrix A has upper-triangular

Toeplitz form,

A = λ0E +
n−1
∑

i=1

λiP i; (2)

http://arxiv.org/abs/2212.01413v3
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here E is the n × n identity matrix, P is the n × n Jordan block with zero eigenvalue

(note that P n = 0), and λ0, λi are functions of R. Explicitly, a three-component version

of system (1), (2) is








R1

R2

R3









t

+









λ0 λ1 λ2

0 λ0 λ1

0 0 λ0

















R1

R2

R3









x

= 0. (3)

More generally, in what follows we will allow the matrix A to be block-diagonal with

several upper-triangular Toeplitz blocks of the above type. We will refer to such

systems as being of Jordan block (Toeplitz block) type. Systems of this kind naturally

arise in applications as degenerations of hydrodynamic systems associated with multi-

dimensional hypergeometric functions [14], in the context of parabolic regularisation

of the Riemann equation [15], as reductions of hydrodynamic chains and linearly

degenerate dispersionless PDEs in 3D [19], in the context of Nijenhuis geometry [1],

and as primary flows of non-semisimple Frobenius manifolds [17]. It was shown in [26]

that integrable systems of Jordan block type are governed by the modified KP hierarchy.

An interesting integrable example of type (1) where the matrix A consists of several 2×2

Jordan blocks, arises as a delta-functional reduction of the kinetic equation for dense

soliton gas [18, 12].

Here we concentrate on systems (1) that can be represented in Hamiltonian form,

Ri
t +Bij δH

δRj
= 0,

where Bij is a Hamiltonian operator of Dubrovin-Novikov type,

Bij = gij(R)∂x + Γij
k (R)R

k
x. (4)

The conditions for operator (4) to be Hamiltonian were obtained in [6]. In particular,

if det(gij) 6= 0, then g is a contravariant flat metric and Γij
k = −gisΓj

sk are the

contravariant Christoffel symbols of the associated Levi-Civita connection. Thus, to

specify a Hamiltonian structure of type (4), it is sufficient to provide the corresponding

contravariant flat metric gij (as done in the examples below). Our results can be

summarised as follows.

• Suppose that the matrix A of system (1) consists of several upper-triangular

Toeplitz blocks (of the size > 1) with distinct eigenvalues. We prove that for a

system of this type to be Hamiltonian, it must be linearly degenerate (Theorem 1

of Section 3). Recall that system (1) is said to be linearly degenerate if the Lie

derivatives of its eigenvalues along the corresponding eigenvectors are zero. We

refer to Section 2 for the explicit form of conditions of linear degeneracy.

• In Section 4 we provide multi-Hamiltonian formulation for particularly interesting

examples of linearly degenerate systems (1) governing delta-functional reductions

of the kinetic equation for dense soliton gas [18, 12],

ft + (sf)x = 0,

s(η) = S(η) +
∫∞
0 G(µ, η)f(µ)[s(µ)− s(η)] dµ,
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where f(η) = f(η, x, t) is the distribution function and s(η) = s(η, x, t) is the

associated transport velocity; we refer to Section 4 for further details. The delta-

functional ansatz,

f(η, x, t) =
n
∑

i=1

ui(x, t) δ(η − ηi(x, t)),

leads to a quasilinear system for ui(x, t) and ηi(x, t) whose matrix consists of several

2× 2 upper-triangular Toeplitz blocks. Our analysis suggests that the requirement

of existence of a Hamiltonian structure restricts the form of the 2-soliton interaction

kernel G(µ, η):

G(µ, η) = p(µ)q(η)f [a(µ)− b(η)], (5)

where p, q, f, a, b are some functions of the indicated arguments. We establish the

existence of local Hamiltonian structures for delta-functional reductions of KdV,

sinh-Gordon, hard-rod, Lieb-Liniger, DNLS, and separable cases; note that all of

them fall into class (5).

Let us conclude this introduction with the example of an integrable hierarchy of

Jordan block type coming from the theory of associativity (WDVV) equations. The

following function,

F =
1

2
(u1)2u3 +

1

2
u1(u2)2 +

1

8

(u2)4

u3
,

has appeared in [20], Section 6, see also [17], eqn (3.18), as a non-semisimple WDVV

prepotential (we refer to the above papers for all specific WDVV-related aspects). With

this function F we associate two commuting systems (primary flows in the language of

WDVV equations),

u1t = (Fu2u3)x, u2t = (Fu2u2)x, u3t = (Fu1u2)x,

and

u1s = (Fu3u3)x, u2s = (Fu2u3)x, u3s = (Fu1u3)x.

In explicit form,

u1t = −3

2

(u2)2

(u3)2
u2x +

(u2)3

(u3)3
u3x, u2t = u1x + 3

u2

u3
u2x −

3

2

(u2)2

(u3)2
u3x, u3t = u2x,

and

u1s =
(u2)3

(u3)3
u2x −

3

4

(u2)4

(u3)4
u3x, u2s = −3

2

(u2)2

(u3)2
u2x +

(u2)3

(u3)3
u3x, u3s = u1x.

Introducing the variables R1 = − 1
u3 , R

2 = u2

u3 , R
3 = u1 + 1

2
(u2)2

u3 , we can rewrite these

commuting systems in the upper-triangular Toeplitz form,








R1

R2

R3









t

=









R2 −R1 0

0 R2 −R1

0 0 R2

















R1

R2

R3









x

(6)



4

and








R1

R2

R3









s

=









−1
2
(R2)2 R1R2 (R1)2

0 −1
2
(R2)2 R1R2

0 0 −1
2
(R2)2

















R1

R2

R3









x

, (7)

respectively. A general commuting flow of the hierarchy generated by systems (6), (7)

has the form








R1

R2

R3









τ

=









µ0 µ1 µ2

0 µ0 µ1

0 0 µ0

















R1

R2

R3









x

;

here µ0 = f, µ1 = −R1fR2 , µ2 = −(R1)2fR2R2 − R1fR3 where f(R2, R3) = p(R3) +

q(R3)R2+r(R3)(R2)2 is a quadratic polynomial in R2, and fR2 , fR3 , etc, indicate partial

derivatives. It follows from [20, 17] that this hierarchy is bi-Hamiltonian. In fact,

our calculations demonstrate that it possesses infinitely many compatible Hamiltonian

structures (4) with the flat contravariant metrics

gij = (R1)2







(−s′1 + 2R2s2 + 2s3)R
1 (R2)2

2 s2 +R2s3 + s4 s1
(R2)2

2 s2 +R2s3 + s4 s1 0

s1 0 0





, (8)

where s1, s2, s3, s4 are arbitrary functions of the variable R3.

2. Linearly degenerate systems of Jordan block type

Recall that a strictly hyperbolic quasilinear system is said to be linearly degenerate if

its eigenvalues (characteristic speeds) are constant in the direction of the corresponding

eigenvectors. Explicitly, Lriλ
i = 0, no summation, where Lri is the Lie derivative of the

eigenvalue λi in the direction of the corresponding eigenvector ri. Linearly degenerate

systems are quite exceptional from the point of view of solvability of the initial value

problem; they have been thoroughly investigated in the literature, see e.g. [21, 16, 22].

There exists a simple invariant criterion of linear degeneracy which does not appeal to

eigenvalues/eigenvectors. Let us introduce the characteristic polynomial of A,

P (λ) = det(λE −A) = λn + f1(R)λ
n−1 + f2(R)λ

n−2 + . . .+ fn(R).

The condition of linear degeneracy can be represented in the form [13],

∇f1 An−1 +∇f2 An−2 + . . .+∇fn = 0, (9)

where ∇f = ( ∂f
∂R1 , . . . ,

∂f
∂Rn ) is the gradient, and A

k denotes k-th power of the matrix A.

Equivalently, one can write (9) in the form

∇P (λ)|λ=A = 0. (10)

Note that condition (9) can be seen as a definition of linear degeneracy for arbitrary

quasilinear systems, not necessarily strictly hyperbolic.
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Proposition 1. For systems (1), (2) of Jordan block type, the condition of linear

degeneracy is equivalent to

∂λ0

∂R1
= 0. (11)

Proof:

For systems (1), (2), the characteristic polynomial takes the form

P (λ) = det(λE − A) = (λ− λ0)n,

and the condition of linear degeneracy (10) reduces to

0 = ∇P (λ)|λ=A = −n∇λ0(λ− λ0)n−1|λ=A = −n∇λ0(A− λ0E)
n−1.

It remains to note that the matrix (A− λ0E)
n−1 has only one nonzero element, namely

(λ1)n−1, in the upper right corner (since A is a single Jordan block, the coefficient λ1

must be non-zero). This ends the proof.

Remark. Note that, in full analogy with the strictly hyperbolic case, condition (11) is

equivalent to the requirement that the Lie derivative of the eigenvalue λ0 in the direction

of the corresponding (unique) eigenvector ∂
∂R1 vanishes.

Proposition 1 extends to the general case where the matrix A consists of several

upper-triangular Toeplitz blocks with distinct eigenvalues.

Proposition 2. Suppose that the matrix A has block-diagonal form with several blocks

Jα of type (2) with distinct eigenvalues λ0α. Then the condition of linear degeneracy is

equivalent to

∂λ0α
∂R1

α

= 0 ∀α, (12)

no summation.

Proof:

We will outline the proof in the case of two Jordan blocks; the general case is

analogous. For two Jordan blocks of size m1×m1 and m2×m2 with eigenvalues λ01 and

λ02, the characteristic polynomial takes the form

P (λ) = det(λE −A) = (λ− λ01)
m1(λ− λ02)

m2 ,

and the condition of linear degeneracy (10) reduces to

0 = ∇P (λ)|λ=A

= −m1∇λ10(λ− λ01)
m1−1(λ− λ02)

m2 |λ=A −m2∇λ20(λ− λ01)
m1(λ− λ02)

m2−1|λ=A

= −m1∇λ10(A− λ01E)
m1−1(A− λ02E)

m2 −m2∇λ20(A− λ01E)
m1(A− λ02E)

m2−1.

It remains to note that the matrix (A − λ01E)
m1−1(A − λ02E)

m2 has only one nonzero

entry, namely, (λ11)
m1−1(λ01 − λ02)

m2 , in the upper right corner of the m1 ×m1 diagonal

block. Similarly, the matrix (A − λ01E)
m1(A − λ02E)

m2−1 has only one nonzero entry,

namely, (λ12)
m2−1(λ02 − λ01)

m1 , in the upper right corner of the m2 ×m2 diagonal block.

This ends the proof.
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3. Linear degeneracy of Hamiltonian systems of Jordan block type

The main result of this section is as follows.

Theorem 1. Suppose that the matrix A of system (1) has block-diagonal form with

several blocks Jα of type (2) (of the size nα×nα with nα > 1) having distinct eigenvalues.

Then the existence of Hamiltonian structure (4) implies linear degeneracy.

Proof:

It was shown by Tsarev [24, 25] that system (1) admits Hamiltonian formulation

(4) if and only if the following conditions are satisfied:

gisAj
s = gjsAi

s, (13)

∇iA
j
k = ∇kA

j
i , (14)

where A = (Ai
j) is the matrix of the system and ∇ denotes covariant derivative in the

Levi-Civita connection of the metric g. Note that conditions (13) imply that, if A has

block-diagonal form with several upper-triangular Toeplitz blocks Jα having distinct

eigenvalues, then the metric g (with low indices) also has block-diagonal form with

(low-triangular) Hankel blocks gα of the same size. Here is the form of A and g in the

case of a single block of size 3× 3:

A =









λ0 λ1 λ2

0 λ0 λ1

0 0 λ0









, g =









0 0 r

0 r q

r q p









.

For definiteness, let us assume that A is an n × n matrix composed of two Toeplitz

blocks of the size m1 ×m1 and m2 ×m2, with distinct eigenvalues λ01 6= λ02 (the general

case is analogous). Let us suppose that the system has Hamiltonian structure (4), so

that Tsarev’s conditions are satisfied. Since g (with low indices) consists of two (low-

triangular) Hankel blocks, it follows that g1s = 0 for every s 6= m1 and gm1+1,s = 0 for

every s 6= n. As the inverse of a low-triangular Hankel matrix is an upper-triangular

Hankel matrix, for the metric with upper indices we obtain gm1s = 0 for every s 6= 1

and gns = 0 for every s 6= m1 + 1. By this, we obtain that Γm1
1s = Γn

m1+1,s = 0 for every

s. Keeping in mind that m1 > 1 and m2 > 1 and using the notation for the dependent

variables

(R1, . . . , Rn) = (R1
1, . . . , R

m1
1 , R1

2, . . . , R
m2
2 ),

by (14) we obtain (no summation on the repeated index m1):

0 = ∇1A
m1
m1

−∇m1A
m1
1 =

∂Am1
m1

∂R1
− ∂Am1

1

∂Rm1
+ Γm1

1s A
s
m1

− Γm1
m1s

As
1

=
∂Am1

m1

∂R1
=
∂λ01
∂R1

1

.

Analogously (no summation on the index n),

0 = ∇m1+1A
n
n −∇nA

n
m1+1 =

∂An
n

∂Rm1+1
=
∂λ02
∂R1

2

.
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By Proposition 2, the statement is proved.

Remark. A class of integrable systems of Jordan block type (that are not linearly

degenerate) was described in [26] in terms of the modified KP hierarchy. By the above

Theorem, none of these systems are Hamiltonian in the Dubrovin-Novikov sense.

4. Kinetic equation for soliton gas: reductions of Jordan block type

Our interest in systems of Jordan block type stems from the study of El’s integro-

differential kinetic equation for dense soliton gas [10, 11, 9]:

ft + (sf)x = 0,

s(η) = S(η) +
∫∞
0 G(µ, η)f(µ)[s(µ)− s(η)] dµ,

(15)

where f(η) = f(η, x, t) is the distribution function and s(η) = s(η, x, t) is the

associated transport velocity. Here the variable η is a spectral parameter in the Lax

pair associated with the dispersive hydrodynamics; the function S(η) (free soliton

velocity) and the kernel G(µ, η) (symmetrised phase shift due to pairwise soliton

collisions) are independent of x and t. The kernel G(µ, η) is assumed to be symmetric:

G(µ, η) = G(η, µ). Equation (15) describes the evolution of a dense soliton gas and

represents a broad generalisation of Zakharov’s kinetic equation for rarefied soliton gas

[27]. It has appeared independently in the context of generalised hydrodynamics of

multi-body quantum integrable systems [3]. In the special case

S(η) = 4η2, G(µ, η) =
1

ηµ
log

∣

∣

∣

∣

η − µ

η + µ

∣

∣

∣

∣

,

system (15) was derived in [10] as a thermodynamic limit of the KdV Whitham

equations. It was demonstrated in [18] that under a delta-functional ansatz,

f(η, x, t) =
n
∑

i=1

ui(x, t) δ(η − ηi(x, t)), (16)

system (15) reduces to a 2n× 2n quasilinear system for ui(x, t) and ηi(x, t),

uit = (uivi)x, ηit = viηix, (17)

where vi ≡ −s(ηi, x, t) can be recovered from the linear system

vi = −S(ηi) +
∑

k 6=i

ǫkiuk(vk − vi), ǫki = G(ηk, ηi), k 6= i. (18)

The special choice ηi(x, t) = const was discussed in [9]. In this case, the last n

equations (17) are satisfied identically, while the first n equations constitute an integrable

diagonalisable linearly degenerate system whose Hamiltonian aspects were explored in

[8]. The case of non-constant ηi(x, t) was investigated recently in [12]; in this case the

matrix of the corresponding system (17) is reducible to n Jordan blocks of size 2 × 2,

furthermore, it was shown that the system is integrable by a suitable extension of the
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generalised hodograph method of [24, 25]. Following [18], let us introduce the new

variables ri by the formula

ri = − 1

ui



1 +
∑

k 6=i

ǫkiuk



 .

In the dependent variables ri, ηi, system (17) reduces to block-diagonal form

rit = virix + piηix,

ηit = viηix,
(19)

i = 1, . . . , n, which consists of n Jordan blocks of size 2 × 2. Here the coefficients vi

and pi can be expressed in terms of (r, η)−variables as follows. Let us introduce the

n×n matrix ǫ̂ with diagonal entries r1, . . . , rn (so that ǫii = ri) and off-diagonal entries

ǫik = G(ηi, ηk), k 6= i. Note that this matrix is symmetric due to the symmetry of the

kernel G. Define another symmetric matrix β̂ = −ǫ̂−1. Explicitly, for n = 2 we have

ǫ̂ =

(

r1 ǫ12

ǫ12 r2

)

, β̂ =
1

r1r2 − (ǫ12)2

(

−r2 ǫ12

ǫ12 −r1
)

.

Denote βik the matrix elements of β̂ (indices i and k are allowed to coincide). Introducing

the notation ξk(ηk) = −S(ηk), we have the following formulae for ui, vi and pi [18]:

ui =
n
∑

k=1

βki, vi =
1

ui

n
∑

k=1

βkiξ
k, pi =

1

ui

(

n
∑

k=1

ǫki,ηi(v
k − vi)uk + (ξi)′

)

(20)

where we use the notation ǫki,ηi to indicate partial derivative with respect to ηi.

In what follows, we investigate Hamiltonian aspects of equations (19), with an

emphasis on the simplest nontrivial case n = 2. We establish the existence of local

Hamiltonian structures for all standard examples such as:

KdV soliton gas:

S(η) = 4η2, G(µ, η) =
1

ηµ
log

∣

∣

∣

∣

η − µ

η + µ

∣

∣

∣

∣

.

Sinh-Gordon soliton gas:

S(η) = tanh η, G(µ, η) =
1

cosh η coshµ

g2 cosh(η − µ)

4 sinh2(η − µ)
.

Hard-rod gas:

S(η) = η, G(µ, η) = −a.
Lieb-Liniger gas:

S(η) = η, G(µ, η) =
2g

g2 + (η − µ)2
.

DNLS soliton gas:

S(η) = η, G(η, µ) =
1

2
√
η2 − 1

√
µ2 − 1

log







(η − µ)2 −
(√

η2 − 1 +
√
µ2 − 1

)2

(η − µ)2 −
(√

η2 − 1−
√
µ2 − 1

)2





 ,
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Separable case:

S(η) arbitrary, G(µ, η) = φ(η) + φ(µ).

We refer to [10, 11, 2, 3, 4, 5, 23] for further discussion and references.

4.1. Hamiltonian formulation of two-component reductions (n = 1)

In this case system (19) is a single 2× 2 Jordan block,

rt = ξ rx − rξ′ ηx,

ηt = ξ ηx,

where ξ(η) is some function of the indicated argument; note that the phase shift ǫ does

not enter the system for n = 1. This system possesses infinitely many Hamiltonian

structures with the flat contravariant metric

gij =

(

f1r
4 + f2r

3 f3 r
2

f3 r
2 0

)

where f1, f2, f3 are arbitrary functions of the variable η (here superscripts of r denote

powers of r, not indices; this convention applies to section 4.1 only). The corresponding

Hamiltonian operator Bij has the form

Bij =

(

f1r
4 + f2r

3 f3 r
2

f3 r
2 0

)

∂x

+





(2f1 r
3 + 3

2
f2 r

2) rx +
1
2
(f ′

1 r
4 + f ′

2 r
3) ηx

(

1
2
f2 + f ′

3

)

r2 ηx

(3f3 r) rx − 1
2
f2 r

2 ηx 0



 .

4.2. Hamiltonian formulation of four-component reductions (n = 2)

The corresponding 4 × 4 system (19) has two Jordan blocks; setting ǫ12 ≡ ǫ in (20) we

have

v1 =
r2ξ1 − ǫξ2

r2 − ǫ
, v2 =

r1ξ2 − ǫξ1

r1 − ǫ
,

and

p1 =
ǫ2 − r1r2

r2 − ǫ

(

ξ1 − ξ2

r2 − ǫ
ǫ,η1 + (ξ1)′

)

, p2 =
ǫ2 − r1r2

r1 − ǫ

(

ξ2 − ξ1

r1 − ǫ
ǫ,η2 + (ξ2)′

)

,

where ξ1 = ξ1(η1), ξ2 = ξ2(η2) and ǫ(η1, η2) are functions of the indicated arguments.

Direct computation of Tsarev’s conditions (13), (14) can be summarised as follows. First

of all, condition (13) implies that the metric (with upper indices) has block-diagonal

Hankel form,

gij =













m1 n1 0 0

n1 0 0 0

0 0 m2 n2

0 0 n2 0













, (21)
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while condition (14) specifies the form of mi, ni as

m1 =
(−2s1 (r1 − ǫ) ǫ,η1 + g1 (r2 − ǫ)) (r1r2 − ǫ2)

2

(r2 − ǫ)3
,

n1 =
s1 (r1r2 − ǫ2)

2

(r2 − ǫ)2
,

m2 =
(−2 s2 (r2 − ǫ) ǫ,η2 + g2 (r1 − ǫ)) (r1 r2 − ǫ2)

2

(r1 − ǫ)3
,

n2 =
s2 (r1r2 − ǫ2)

2

(r1 − ǫ)2
,

(22)

where s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2) are some functions of the indicated

arguments (to be determined from the flatness conditions). Note that r1r2 − ǫ2 = det ǫ̂.

The analysis of flatness conditions depends on the explicit form of the 2-soliton

interaction kernel ǫ(η1, η2) entering the system, and is summarised on a case-by-case

basis (we only present the corresponding functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2)

from (22), as well as the corresponding Hamiltonian densities). We emphasise that all

examples discussed below are multi-Hamiltonian, possessing two or more compatible

Hamiltonian structures.

KdV soliton gas:

ξi(ηi) = 4(ηi)2, ǫ(η1, η2) =
1

η1η2
log

∣

∣

∣

∣

η1 − η2

η1 + η2

∣

∣

∣

∣

.

The requirement of flatness of metric (21) leads to the following expressions for the

functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2):

s1 = −(c1 + c2)η
1

4
, s2 = −(c1 + c2)η

2

4
,

g1 = c1r
1, g2 = c2r

2,

where c1, c2 are arbitrary constants. Based on the general form of conservation laws

from [12], we obtain the corresponding Hamiltonian density:

h = −8
(c1 + 2c2)(ǫ− r2)(η1)2 + (c2 + 2c1)(ǫ− r1)(η2)2

(c1 + 2c2)(c2 + 2c1)(r1r2 − ǫ2)
.

Note that only one structure from this two-parameter family generalises to arbitrary n,

namely, the one with c1 = c2 = c (without any loss of generality, we will set c = 1). The

corresponding flat metric (with upper indices) of Hamiltonian operator (4) consists of

n upper-triangular Toeplitz blocks,
(

mi ni

ni 0

)

,
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where

ni = − ηi

2(ui)2
, mi =

ηi

(ui)3

n
∑

j 6=i

ujǫ
ji
,ηi +

ri

(ui)2
,

and the Hamiltonian density is given by

h = −8

3

N
∑

i=1

ui(ηi)2;

here the variables ui are defined by formula (20).

Sinh-Gordon soliton gas:

ξi(ηi) = tanh ηi, ǫ(η1, η2) =
1

cosh η1 cosh η2
g2 cosh(η1 − η2)

4 sinh2(η1 − η2)
.

The requirement of flatness of metric (21) leads to the following expressions for the

functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2):

s1 = −c2
2
, s2 = −c2

2
,

g1 = (c1 + c2 tanh (η
1))r1, g2 = (−c1 + c2 tanh (η

2))r2,

where c1, c2 are arbitrary constants. The corresponding Hamiltonian density is given by

h =
(ǫ− r2)ψ1 + (ǫ− r1)ψ2

r1r2 − ǫ2

where

ψ1 = −2

∫

(

e
η1(c1−c2)

c2 + e
η1(c1+c2)

c2

)

tanh η1 dη1

c2(1 + e−2η1)
e
−

η1(c1+c2)
c2 ,

ψ2 = −2

∫

(

e
−

η2(c1−c2)

c2 + e
−

η2(c1+c2)

c2

)

tanh η2 dη2

c2(1 + e2η
2)

e
η2(c1+c2)

c2 .

Hard rod gas:

ξi(ηi) = ηi, ǫ(η1, η2) = −a = const.

The requirement of flatness of metric (21) implies that the functions s1(η
1), s2(η

2) in

(22) remain arbitrary, while g1(r
1, η1), g2(r

2, η2) specialise to

g1 = c1 (r
1)2 − 2c3r

1 − c2 a
2, g2 = c2 (r

2)2 + 2c3r
2 − c1 a

2,

where c1, c2, c3 are arbitrary constants. Thus, we have an infinity of local compatible

Hamiltonian structures parametrised by two arbitrary functions of one variable and

three arbitrary constants. The coefficients of the corresponding contravariant metric

(21) take the form

m1 =
(c1 (r

1)2 − 2c3r
1 − c2 a

2) (a2 − r1r2)2

(a+ r2)2
,
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n1 =
s1 (a

2 − r1r2)2

(a+ r2)2
,

m2 =
(c2 (r

2)2 + 2c3r
2 − c1 a

2) (a2 − r1r2)2

(a+ r1)2
,

n2 =
s2 (a

2 − r1r2)2

(a+ r1)2
.

The corresponding Hamiltonian density is given by

h =
(a+ r2)ψ1 + (a+ r1)ψ2

r1r2 − a2
+ σ1(η1) + σ2(η2)

where

ψ1 = c2k
(

ac1s
2
2σ

′′
2 − c3s

2
1σ

′′
1 − s1

(

s′1c3 − c1c2a
2 − c3

2
)

σ′
1 + c1

(

as2s
′
2σ

′
2 + aξ2c2 − ξ1c3

))

,

ψ2 = c1k
(

ac2s
2
1σ

′′
1 + c3s

2
2σ

′′
2 + s2

(

s′2c3 + c1c2a
2 + c23

)

σ′
2 + c2

(

as1s
′
1σ

′
1 + aξ1c1 + ξ2c3

))

.

Here

k =
1

c1c2(c1c2a2 + c23)
,

and σ1(η
1), σ2(η

2) are solutions of the following ODEs:

(s21) σ
′′′
1 + (3s′1s1) σ

′′
1 +

(

−c1c2a2 − c23 + (s′1)
2 + s1s

′′
1

)

σ′
1 + c1(ξ

1)′ = 0,

(s22) σ
′′′
2 + (3s′2s2) σ

′′
2 +

(

−c1c2a2 − c23 + (s′2)
2 + s2s

′′
2

)

σ′
2 + c2(ξ

2)′ = 0.

The formulae for contravariant metric for the hard rod gas generalise to the case of

arbitrary n > 2 in the obvious way:

mi =

(

cir
i − a

∑

k 6=i ck
)

(a+ ri)
∏

k 6=i(a+ rk)2
(det ǫ̂)2, ni =

si(η
i)

∏

k 6=i(a+ rk)2
(det ǫ̂)2.

Note that although this formula gives all Hamiltonian structures for the n > 2

hard rod gas, it gives only a subfamily thereof for n = 2, namely those for which

2c3 + a(c1 − c2) = 0.

Lieb-Liniger gas:

ξi(ηi) = ηi, ǫ(η1, η2) =
2a

a2 + (η1 − η2)2
.

The requirement of flatness of metric (21) leads to the following expressions for the

functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2):

s1 = c2, s2 = c2,

g1 = −c1r1, g2 = c1r
2,
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where c1, c2 are arbitrary constants. The corresponding Hamiltonian density is given by

h =
(2c1η

1 − 4c2)(ǫ− r2)− (2c1η
2 + 4c2)(ǫ− r1)

c21(r
1r2 − ǫ2)

.

DNLS soliton gas:

ξi(ηi) = ηi, ǫ(η1, η2) =
1

2
√

(η1)2 − 1
√

(η2)2 − 1
log







(η1 − η2)2 −
(

√

(η1)2 − 1 +
√

(η2)2 − 1
)2

(η1 − η2)2 −
(

√

(η1)2 − 1−
√

(η2)2 − 1
)2






.

This expression can be equivalently written in form (5),

ǫ(η1, η2) =
1

√

(η1)2 − 1
√

(η2)2 − 1
log coth

(

1

4
log

η1 + 1

η1 − 1
− 1

4
log

η2 + 1

η2 − 1

)

.

The requirement of flatness of metric (21) leads to the following expressions for the

functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2):

s1 = −c1
2
((η1)2 − 1), s2 = −c1

2
((η2)2 − 1),

g1 = (c1η
1 + c2)r

1, g2 = (c1η
2 − c2)r

2.

The Hamiltonian density is given by

h =
(ǫ− r2)ψ1 + (ǫ− r1)ψ2

r1r2 − ǫ2

where

ψ1 = −2(η1 + 1)α(η1 − 1)β

c1

∫

(η1 + 1)β(η1 − 1)αη1 dη1,

ψ2 = −2(η2 + 1)β(η2 − 1)α

c1

∫

(η2 + 1)α(η2 − 1)βη2 dη2,

and

α = −c1 − c2

2c1
, β = −c1 + c2

2c1
.

Separable case:

ξi(ηi) arbitrary, ǫ(η1, η2) = φ1(η
1) + φ2(η

2).

The requirement of flatness of metric (21) leads to the following expressions for the

functions s1(η
1), s2(η

2) and g1(r
1, η1), g2(r

2, η2):

s1 =
φ2
1c2 + 2c3φ1 + 2c4

2φ′
1

, s2 = −φ
2
2c2 − 2c3φ2 + 2c4

2φ′
2

,

g1 = (c1 + c3 + c2φ1)r
1, g2 = −(c1 − c3 + c2φ2)r

2,
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where c1, c2, c3 and c4 are arbitrary constants. The Hamiltonian density is given by

h =
(ǫ− r2)ψ1 + (ǫ− r1)ψ2

r1r2 − ǫ2

where

ψ1 = 2
√

c2φ
2
1 + 2c3φ1 + 2c4 e

K1(η1)
∫

φ′
1e

−K1(η1)ξ1

(c2φ2
1 + 2c3φ1 + 2c4)

3/2
dη1,

ψ2 = −2
√

c2φ
2
2 − 2c3φ2 + 2c4 e

K2(η2)
∫

φ′
2e

−K2(η2)ξ2

(c2φ
2
2 − 2c3φ2 + 2c4)

3/2
dη2;

here

K1(η
1) =

c1
√

2c2c4 − c23

arctan





c2φ1 + c3
√

2c2c4 − c23



,

K2(η
2) =

c1
√

2c2c4 − c23

arctan





c2φ2 − c3
√

2c2c4 − c23



.

We expect that, in the continuum limit, the above formulae would provide

Hamiltonian formulation of the full kinetic equation for dense soliton gas.
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