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Abstract—Semantic communication is an emerging research
area that has gained a wide range of attention recently. Despite
this growing interest, there remains a notable absence of a
comprehensive and widely-accepted framework for character-
izing semantic communication. This paper introduces a new
conceptualization of semantic communication and formulates
two fundamental problems, which we term language exploitation
and language design. Our contention is that the challenge of
language design can be effectively situated within the broader
framework of joint source-channel coding theory, underpinned
by a comprehensive end-to-end distortion metric. To tackle the
language exploitation problem, we put forth three approaches:
semantic encoding, semantic decoding, and a synergistic com-
bination of both in the form of combined semantic encoding
and decoding. Furthermore, we establish the semantic distortion-
cost region as a critical framework for assessing the language
exploitation problem. For each of the three proposed approaches,
the achievable distortion-cost region is characterized. Overall,
this paper aims to shed light on the intricate dynamics of semantic
communication, paving the way for a deeper understanding of
this evolving field.

Index Terms—Semantic communication, joint source-channel
coding, semantic decoding, semantic encoding, large language
model.

I. INTRODUCTION

A. What is semantic communication?

One year after the birth of Shannon’s information theory
[1], Weaver classified a broad communication problem into
three levels [2]:

• Level A (The technical problem): How accurately can the
symbols of communication be transmitted?

• Level B (The semantic problem): How precisely do the
transmitted symbols convey the desired meaning?

• Level C (The effectiveness problem): How effectively
does the received meaning affect conduct in the desired
way?

Following Weaver’s formulation, we depict a communica-
tion process in Fig. 1 and expound on some key concepts
to be used throughout this paper. We will provide general
descriptions of these concepts here, and relegate their more
precise mathematical definitions in our context to Section III.

• Goal. Communication serves for a cooperative task be-
tween the transmitter and receiver. The task is the ultimate
goal of communication.

Y. Shao is with the State Key Laboratory of Internet of Things for
Smart City and the Department of Electrical and Computer Engineering,
University of Macau, Macau S.A.R. He is also with the Department of
Electrical and Electronic Engineering, Imperial College London. (E-mail:
ylshao@um.edu.mo).

Qi Cao is with Xidian-Guangzhou Research Institute, Xidian University,
Guangzhou, China (e-mail: caoqi@xidian.edu.cn).
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Figure 1. A broad communication process with three levels of problems.

• Meaning. At different phases of the task, the transmitter
can generate different meanings to be conveyed to the
receiver for achieving the ultimate goal. The intended
meaning can be an observation of the environment, an
instruction, a state update, etc.

• Message. Messages are the carriers of meaning and are
constructed following an agreed-upon language between
the transmitter and receiver.

• Symbol. Symbols refer to the coded channel symbols to
be transmitted to the receiver via the physical channel.

As shown in Fig. 1, effective/pragmatic communication
deals with the problem of generating the right meaning for
achieving the ultimate goal, considering the current states of
the transmitter, receiver, and the progress of the task; semantic
communication deals with the problem of how to construct
the right message to accurately convey the meaning based on
the agreed language; technical communication studies how to
design channel symbols for different messages such that the
messages can be reconstructed at the receiver as accurately as
possible.

Shannon provided an elegant solution to the technical prob-
lem [1], which further spawned the field of information theory.
In his solution, the amount of information in a message is
measured by the notion of “uncertainty”, which is inversely
proportional to the statistical probability of the message. Thus,
it is the probabilities, but not the meanings of messages matter
in Shannon’s theory. In contrast, semantic communication is
more concerned with the meaning that can be conveyed by a
message. We give two examples below to show the difference
between semantic and technical communications.

Example 1 (Successful technical communication but failed
semantic communication). Consider the communication be-
tween a farmer and his grandchild. The farmer says: “The
apple looks good”. The intended meaning of the farmer is
that the fruit “apple” looks good. His grandchild, however,
may interpret “apple” as the mobile phone. In this example,
technical communication succeeds since the message has been
perfectly transmitted to the receiver. Semantic communication,
however, fails due to misinterpretation – the same message can
convey different meanings in a language.
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Example 2 (Failed technical communication but successful
semantic communication). Consider the message transmission
from Bob to Ted, and then to Alice. Bob says: “Carol does
not like carrots”. Ted relays the message to Alice: “Carol
dislikes carrots”. In this example, technical communication
fails since the received message of Alice is different from the
original message transmitted by Bob. Nevertheless, semantic
communication succeeds because Alice knows “does not like”
is the same as “dislikes” in English – the intended meaning
of Bob is successfully conveyed.

B. Fundamental problems of semantic communication

The cornerstone of communication is an agreed language
among the parties involved. In Shannon’s theory, for example,
two key procedures for transmitting a message are source
coding and channel coding. In source coding, each message is
assigned a unique bit sequence (more generally, a sequence of
alphabet symbols) according to the statistical probability of the
message. In channel coding, structured redundancies are added
to the source-coded bit sequences to combat physical channel
impairments, yielding channel symbols to be transmitted to
the receiver. At the receiver, first the channel input is resolved
then the message is decoded.

The successful operation in Shannon’s approach relies on
the transmitter and receiver’s consensuses on 1) the statistical
distribution of messages; 2) the source code, e.g., the one-to-
one mappings between messages and bit sequences in lossless
source coding; and 3) the channel code, e.g., the algebraic
structures among coded symbols, before transmission. These
serve as the common ground for technical communication, and
we refer to them as technical language in the sequel.

Likewise, semantic communication relies on a common se-
mantic language between the transmitter and receiver for con-
veying the meaning. A typical example of semantic language
is the human language, e.g., English, as in Examples 1 and
2. Unlike hand-crafted technical language, semantic language
is often formed naturally over the course of interactions and
is much richer in expression and interpretation: a meaning
can be expressed by multiple messages and a message can be
interpreted as multiple meanings. The reason for such richness
can be attributed to:

1) Semantic communication pursues not only communi-
cation efficiency – which is the exclusive pursuit of
technical communication – but also elegance, charm,
comprehensibility, politeness, etc [3].

2) Semantic language has to be robust to the mismatched
or unagreed prior information between the transmitter
and receiver [4]. That is, the prior distribution of the
intended meaning may not be known to the receiver
before transmission.

Based on the above understanding of languages, we formu-
late two fundamental problems of semantic communication.

Problem 1 (Language exploitation). The transmitter and
receiver have agreed on semantic and technical languages.
When conveying an intended meaning, how to minimize the
misinterpretations of the receiver from the transmitter’s per-

spective (semantic encoding) or the receiver’s perspective
(semantic decoding)?

• Semantic encoding: How can the transmitter generate
the message such that the intended meaning can be
recovered at the receiver as accurately as possible while
the communication cost is minimized?

• Semantic decoding: Given a received message, how
can the receiver decode the intended meaning of the
transmitter without accurate prior information about the
meaning?

As noted by Weaver, “the semantic problems are concerned
with the interpretation of meaning by the receiver, as compared
with the intended meaning of the sender”, the first fundamental
problem emphasizes how to leverage the agreed language to
reduce misinterpretations of the receiver. An implication of the
language exploitation problem is that there is no negotiation
before the transmission. The only things that the transmitter
and receiver agree on are the semantic and technical languages.

Note that semantic encoding and decoding can also be used
at the same time, which we refer to as combined semantic
encoding and decoding (CSED). The language exploitation
problem resembles human communications.

Problem 2 (Language design). Assuming that the transmitter
and receiver are allowed to negotiate before the transmission,
how can the semantic and technical languages be designed to
efficiently convey the meaning of a semantic source?

The second fundamental problem concerns how to design
common languages or codebooks between the transmitter and
receiver to efficiently convey the meaning. Since the transmit-
ter and receiver are given full freedom to design the languages,
we can directly design the mappings between meanings and
channel symbols, to which joint source-channel coding (JSCC)
theory naturally applies. In other words, language design in
semantic communication falls into the scope of the classical
communication problem that researchers have been striving to
solve for decades – designing the communication system to
minimize a prescribed distortion measure between the trans-
mitted and reconstructed data. In technical communication, we
focus on sequences of equal likely bits and consider the block
error rate (BLER) as the measure of reconstruction quality.
Semantic communication, on the other hand, considers more
general sources (e.g., text [5], image [6], video [7], point cloud
[8]) and end-to-end distortion measures (e.g., classification
loss [5], [9], perceptual loss [10], goal-oriented distortions
[11], [12]).

As will be detailed in Section II, the language design
problem can be further divided into two classes of sub-
problems: joint semantic and technical language design, and
technical language design under a given semantic language. A
popular trend nowadays is leveraging data-driven techniques,
in particular deep learning (DL), to learn a common language
[5], [6], [13], [14]. In this approach, there is a training phase
and an evaluation phase. The training phase is essentially a
process of language negotiation/design between the transmitter
and receiver for a specific kind of source. When the training
is done, the agreed language, manifested as the neural encoder
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Figure 2. The framework of semantic communications. The language design
problem focuses on crafting a new set of languages for efficient commu-
nication between the transmitter and receiver for specific sources, aligning
with classical communication principles. In contrast, the language exploitation
problem addresses the nuanced challenges arising from discrepancies between
the transmitter and receiver, extending beyond the traditional communication
framework.

and decoder, is used in the evaluation phase for semantic
transmission. In general, data-driven solutions to the language
design problem are particularly useful in the case of analyti-
cally intractable distortion measures, a semantic source with
memory, and resource-constrained channels, to name a few.

C. Contributions and roadmap

In this paper, we provide a comprehensive exploration of
semantic communication, shedding light on its essence and
framing it within a general framework, as outlined in Fig. 2.
We emphasize that the core of semantic communication lies
in what we term the “semantic language”, which encompasses
the semantic encoder of the transmitter, the semantic decoder
of the receiver, and the collective knowledge base shared by
all communication parties.

Within the framework, we formulate two fundamental chal-
lenges intrinsic to semantic communication: language exploita-
tion and language design.
• Language exploitation pertains to scenarios where certain

elements of the semantic language are fixed and unalter-
able, necessitating the strategic design of other components
to efficiently convey intended meanings. This challenge
captures situations characterized by disparities between the
transmitter and receiver, with the primary objective being
to mitigate these disparities. A typical example of this
problem can be found in prompt engineering for large
language models (LLMs). In this context, the semantic
decoder of LLMs remains unchangeable, and the goal is
carefully engineer the semantic encoder of human beings
to effectively interact with the LLM [15].

• Language Design, on the other hand, ventures into the op-
timal crafting of the semantic language, striking a balance
between data transmission efficiency – often quantified in
terms of bits per sample or channel uses per sample –
and a versatile distortion metric. Here, the entire semantic
language, inclusive of the semantic encoder and decoder,
is open to design, allowing for their joint optimization
tailored to specific sources or channels. This approach
ensures consistency between the transmitter and receiver.
Applications of the Language Design problem encompass
a wide range of data sources, spanning text, images, video,
and point clouds, under the DeepJSCC paradigm.

Importantly, language design aligns with the classical prin-
ciples of communication and is within the scope of traditional
communication problems [16]–[18]. In contrast, language ex-
ploitation addresses the nuanced challenges that arise from
discrepancies between the transmitter and receiver, extending
beyond the boundaries of conventional communication frame-
works.

In this paper, we delve into the challenge of language
exploitation, exploring three key approaches to address it: se-
mantic encoding, semantic decoding, and a combined strategy
of semantic encoding and decoding. Moreover, we introduce
the semantic distortion-cost region as a pivotal metric for
assessing semantic communication performance. For each of
the three proposed approaches, the achievable regions are
meticulously characterized.

Roadmap – The remainder of this paper is articulated in
the following manner. Section II reviews the prior art on
semantic communication according to the problem of language
exploitation and language design. Section III defines some
basic semantic-related concepts and rigorously formulates the
language exploitation problem. Sections IV, V-A, and V-B
solve the language exploitation problem by semantic encoding,
semantic decoding, and CSED, respectively. A concrete exam-
ple to illustrate the essence of our formulation and solution is
given in Section VI. Discussion and extension are given in
Section VII. Section VIII concludes this paper.

II. RELATED WORKS

A. Language utilization

In the literature, there are relatively few research efforts
[19]–[22] devoted to formulating the theory of semantic com-
munication, perhaps owing to the lack of clear definitions of
semantics and languages. Among these few studies, the most
notable works are Carnap and Bar-Hillel’s characterization
of semantic information [19] and the follow-up attempt at
formulating semantic communication [20].

Carnap and Bar-Hillel’s work focused on how to define
semantic information and how to measure the amount of
semantic information contained in a message. To this end,

1) They defined a language system with messages being
limited to inductive logic. That is, messages can only
be declarative statements or propositions.

2) They measured the amount of semantic information car-
ried in a message by the probability that the message is
logically true.



4

In this context, the semantic entropy of a message s is
defined as

Hsem(s) = − log2
∑
w|=s

p(w), (1)

where w denotes a world model (e.g., a meaning under
Weaver’s formulation), |= denotes the propositional satisfac-
tion relation, and

∑
w|=s p(w) is the probability of all world

models in which s is true.
As can be seen, in Shannon’s theory, the information of a

message is governed by its statistical probability but not its
meaning (e.g., whether the message itself is true or false). By
contrast, in Carnap and Bar-Hillel’s formulation, the statistical
probability p(s) is irrelevant, and the semantic information of
s is determined by its logical probability

∑
w|=s p(w) under

their language system.
Following Carnap and Bar-Hillel’s characterization of se-

mantic information, the authors of [20] defined a complete
procedure of semantic communication and established seman-
tic source coding and semantic channel coding by mimicking
Shannon’s theory. They assumed the same logical language
system as [19]. In source coding, for example, the authors
proposed to merge semantically equivalent messages in the
language into a single message, thereby constructing a mini-
mum subset of the original set of messages with no semantic
loss. In particular, the minimum subset exhibits the minimum
entropy, and hence, the minimum expected coding length.

Although established under the specific logical language
system, the formulations and insights obtained in [19], [20]
shed light on forming a generic theory of semantic communi-
cation, and also inspire our work.

B. Language design

In the language design problem, the transmitter and re-
ceiver are allowed to negotiate both semantic and technical
languages. For now, the problem that receives wide attention
is the joint design of semantic and technical languages using
DL techniques.

1) Joint semantic and technical language design via DL:
In the basic form, the objective of DL-based semantic com-
munication is transmitting a specific kind of source beyond a
simple bitstream (e.g., text [5], image [6], video [7]), for which
DL techniques are utilized to design a common language. As
stated in the introduction, DL-based approaches consist of a
training phase for language design and an evaluation phase
for data transmission. The main research challenge is how
to learn an efficient language in the training phase tailored
for the considered source. To this end, various schemes, such
as DeepJSCC [5], [6], discrete-time analog transmission [14],
the information bottleneck approach [11], the goal-oriented
principle [23], the nonlinear transform [24], etc., have been
proposed. We refer readers to survey papers [16]–[18] for a
more detailed treatment of this line of work.

2) Technical language design under a given semantic lan-
guage: In addition to the joint design of semantic and tech-
nical languages, another interesting problem is the design of
technical language under a given semantic language. This line
of work is relatively few.

𝑠1
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𝑤1

𝑤2

𝑤𝑁
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𝑤4

𝒮𝒲

⋯ ⋯

𝑷: 𝑝 𝑠𝑚|𝑤𝑛
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⋯

𝑸: 𝑝 𝑤𝑛|𝑠𝑚

Figure 3. The main ingredients of a semantic language (W,S,P ,Q).

In [25], the authors proposed to optimize the communi-
cation system performance by taking the semantic content
of messages into account. There are three parties in their
framework: a transmitter, a receiver, and an influencer. The
transmitter aims to transmit a message (more precisely, the
meaning of the message) to the receiver, which, in turn,
decodes the message with the side information provided by the
influencer. To quantify the semantic distortion in the system,
the authors defined a semantic measure that quantifies the
similarity of messages. The transmitter and receiver have a
fixed set of encoding and decoding functions, respectively. In
this semantic communication system, the semantic language
and the semantic distortion among messages are given. To
deliver the meaning of a message, the transmitter and receiver
design the technical language, i.e., choose between the set
of encoding and decoding functions, thereby minimizing the
semantic distortion in the presence of the influencer.

In [26], the authors considered a semantic source with
an intrinsic state and an extrinsic observation, where the
transitions between the state and observation are determined.
The receiver is interested in both state and observation, thus
there are two distortions at the receiver with respect to the
reconstructed state and observation, respectively. The authors
characterized the trade-off between the two distortions under a
given code rate. Translating into our formulation, the intrinsic
state and extrinsic observation can be viewed as meaning
and message, respectively, and the semantic language is the
fixed (and known) mapping between state and observation.
The authors designed the technical language (codebook) to
strike a balance between the two distortions using techniques
from indirect rate-distortion theory and rate-distortion under
multiple distortion measures.

III. PROBLEM FORMULATION

This section formulates the language utilization problem
rigorously. We shall go through some basic semantic-related
definitions, such as language, channel, distortion, cost, etc.,
and define the problems of semantic encoding and decoding,
respectively. Let us set out to define semantic language, the
prerequisite of semantic communication.

A semantic language is a structured system that defines
the transformation between meanings and messages. In this
paper, we characterize a semantic language by four main
ingredients: word, syntax, expression, and interpretation. To
ease exposition, henceforth “language” refers specifically to
semantic language, unless specified otherwise.
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Figure 4. A human being develops his/her own language by learning from
the world.

Definition 3.1 (Words and syntax). Words are the smallest
elements of a message in a language. Words can be used on
their own or together to form a message. Syntax is a set of
rules that determine the arrangement of words in a message.

Definition 3.2 (The set of messages). The word and syntax of
a language determine the set of all possible messages, denoted
by S. Suppose S is finite or countably infinite, we define S ≜
{sm : m ∈ [M ]}, where sm denotes a message, M the number
of all possible messages, and we define [M ] ≜ {1, 2, . . . ,M}.

Definition 3.3 (The set of meanings). Suppose the messages in
S can convey a finite or countably infinite number of meanings.
We define the set of all possible meanings as W ≜ {wn :
n ∈ [N ]}, where wn denotes one meaning and N denotes
the number of meanings. Furthermore, we denote by p(wn)
the probability that the intended meaning of the transmitter is
wn.

Definition 3.4 (Expression). The expression of a language
defines a mapping from the set of meanings to the set of
messages, denoted by{

p(s|w) ∈ [0, 1] : w ∈ W, s ∈ S,
∑
s

p(s|w) = 1

}
. (2)

To simplify the notation, we write the mappings into a matrix
form as P ∈ IRN×M : the element on the n-th row and m-th
column of P is p(sm|wn) and each row of P sums to 1.

Definition 3.5 (Interpretation). The interpretation of a lan-
guage defines a mapping from the set of messages to the set
of meanings, denoted by{

q(w|s) ∈ [0, 1] : w ∈ W, s ∈ S,
∑
w

q(w|s) = 1

}
(3)

or the matrix form Q ∈ IRM×N . Each column of Q sums to
1.

Based on the above definitions, we denote a semantic
language by a 4-tuple (W,S,P ,Q), as illustrated in Fig. 3. As
can be seen, the words and syntax of the language formulate
the message set S. A meaning w ∈ W can be expressed by
a subset of messages {s : s ∈ S, p(s|w) > 0}, the cardinality
of which reflects the expressive redundancy of the language.
On the other hand, a given message s can be interpreted as a
subset of meanings {w : w ∈ W, q(w|s) > 0}, the cardinality
of which reflects the interpretation ambiguity of the language.

Definition 3.6 (Logically self-consistent language). A lan-
guage is logically self-consistent if and only if

q(w|s) = p(s|w)p(w)
p(s)

. (4)

In this paper, we do not impose any constraint on the logical
self-consistency of the language; and hence, q(w|s) does not
need to satisfy (4) and can be any mapping. The advantage
of such a formulation is that it encompasses a more practical
semantic communication scenario with mismatched expression
and interpretation.

Consider human communication as an example. The lan-
guage of a human being is acquired from the world through
interactions, which we refer to as the learning process. As
illustrated in Fig. 4, the language of the world is supported
by the knowledge of the world. Each person acquires both
knowledge and language from the world, thereby developing
a language system with its own message set and styles of
expression and interpretation. In other words, the language
of each agent can be treated as unique, i.e., a distinct pair
of mappings P and Q, which rely on the unique personal
experience. The communication between two human beings,
in this case, faces logical inconsistency, which is allowed in
our formulation.

Next, we define the semantic channel.

Definition 3.7 (Semantic channel). Consider the communi-
cation between a transmitter and a receiver. Suppose the
transmitted message is s ∈ S and the received message
is ŝ ∈ S .1 We characterize the technical channel by
the transition probabilities from s to ŝ and denote it by
{c(ŝ|s) ∈ [0, 1] : s, ŝ ∈ S,

∑
ŝ c(ŝ|s) = 1}, or the matrix form

C ∈ IRM×M . Given the process of expression and interpreta-
tion within the semantic language, the semantic channel can
be written as

Pr(ŵ|w) =
∑
s,ŝ

p(s|w)c(ŝ|s)q(w|ŝ). (5)

Our formulation abstracts technical communication as part
of the semantic channel, the quality of which is determined
by the manner technical communication is implemented (e.g.,
coding and modulation schemes, etc.).

As stated in Problem 1, semantic communication aims to
minimize the misinterpretations of the receiver, leveraging
the agreed semantic and technical languages between the
transmitter and receiver. This can be achieved either from the
transmitter’s perspective (semantic encoding) or the receiver’s
perspective (semantic decoding). In the following, we formu-
late both problems based on the above definitions.

Remark 1 (One-shot transmission). Unlike Shannon’s infor-
mation theory, which considers the transmission of a sequence
of i.i.d. messages, this paper considers one-shot transmission
(i.e., conveying one single meaning) from the transmitter to
the receiver. Further discussion on the joint transmission of a
sequence of meanings can be found in Section VII.

1More generally, one can define another message set Ŝ at the receiver and
define ŝ ∈ Ŝ.
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A. Semantic encoding

From the transmitter’s perspective, the semantic decoder at
the receiver is dictated by the interpretation of the agreed
language. The semantic encoding problem is thus how to
encode the intended meaning using messages to minimize
the misinterpretation at the receiver, considering the semantic
channel as well as the given semantic decoder. For a figurative
analogy, consider a mother talking to her son. The mother
knows the way her son would interpret her message. Therefore,
for the mother, semantic encoding is the problem of choosing
the best messages to express her meaning such that the
meaning can be precisely conveyed to the son. A practical
example of semantic encoding is video compression, wherein
international standards typically specify only the decoder [27].
The manufacturers are free to design the video encoders as
long as the encoded video can be decoded by the standardized
decoder. While we will assume that the stochastic semantic
channel and interpretation mappings are known by the encoder
in this work, a data-driven approach where this mapping can
be learned through interactions is left as a potential future
extension.

Definition 3.8 (Semantic encoding schemes). A semantic
encoding scheme is a mapping from the meaning set W to
the message set S, denoted by{

u(s|w) ∈ [0, 1] : w ∈ W, s ∈ S,
∑
s

u(s|w) = 1

}
, (6)

or the matrix form U ∈ IRN×M .

In principle, we can impose constraints on u(s|w) such that
the semantic encoding scheme complies with the semantic
language. For example, if the semantic encoding scheme must
comply with the interpretation, we can impose the constraint
“u(s|w) = 0 if p(s|w) = 0”; if the transmitter is not allowed to
deceive the receiver, we can impose the constraint “u(s|w) = 0
if q(w|s) = 0”; if the transmitter is not allowed to misdirect
the receiver, we can impose the constraint “u(s|w) ≥ u(s′|w)
if q(w|s) ≥ q(w|s′)”. In this paper, however, we consider a
general setup and do not impose any constraints on u(s|w).

To evaluate the performance of semantic encoding, we
introduce two metrics below, one is semantic distortion and
the other is semantic cost.

Definition 3.9 (Semantic distortion). Let w, ŵ ∈ W be the
transmitted and reconstructed meanings at the transmitter and
receiver, respectively. We define a semantic distortion measure
d(w, ŵ) : W×W → IR+, where IR+ is the set of non-negative
real numbers. The average distortion achieved by a semantic
encoding scheme U is given by

DU,Q =
∑

w,s,ŝ,ŵ

p(w)u(s|w)c(ŝ|s)q(ŵ|ŝ)d(w, ŵ). (7)

Definition 3.10 (Semantic cost). Each message is associated
with a cost. Semantically, the cost of a message can be its
conciseness, comprehensibility, or elegance. Technically, the
cost of a message can be the length of the corresponding bit se-
quence. In general, we define a cost function ℓ(s) : S → IR+,

𝑠1

𝑠𝑀 𝑠𝑀

𝑠1
𝑤1

𝑤2

𝑤𝑁

𝑤3

𝑤4

𝒮𝒲

⋯ ⋯

𝑢 𝑠|𝑤𝑝 𝑤 𝑐 Ƹ𝑠|𝑠

𝒮

⋯

𝑤1

𝑤2

𝑤𝑁

𝑤3

𝑤4

𝒲

⋯

𝑞 ෝ𝑤| Ƹ𝑠

𝑝 𝑠|𝑤 𝑐 Ƹ𝑠|𝑠 𝑣 ෝ𝑤| Ƹ𝑠

𝑎

𝑏

Semantic Encoding

Semantic Decoding𝑞 𝑤

𝑢 𝑠|𝑤 𝑐 Ƹ𝑠|𝑠 𝑣 ෝ𝑤| Ƹ𝑠𝑐 CSED𝑞 𝑤

Figure 5. A point-to-point semantic communication process with (a) semantic
encoding at the transmitter, (b) semantic decoding at the receiver, or (c)
combined semantic encoding and decoding at the transmitter and receiver,
respectively. We have assumed that the receiver has the same message and
meaning sets as the transmitter. More generally, we can define a new message
set Ŝ and a new meaning set Ŵ for the receiver.

∀s ∈ S . The average cost achieved by a semantic encoding
scheme U is

LU =
∑
w,s

p(w)u(s|w)ℓ(s). (8)

Without loss of generality, we assume S is an ordered set
throughout the paper such that for any two messages sm1

,sm2
,

m1,m2 ∈ [M ], we have ℓ(sm1
) ≤ ℓ(sm2

) if m1 < m2.
Given the above definitions, we are ready to describe a

point-to-point semantic communication process with semantic
encoding at the transmitter. As shown in Fig. 5(a), the trans-
mitter first generates a meaning w ∼ p(w). To convey w to
the receiver, the transmitter constructs a message s ∼ u(s|w)
following its semantic encoding scheme. After passing through
the semantic channel, the receiver observes ŝ ∼ c(ŝ|s) and re-
constructs a meaning ŵ ∼ q(ŵ|ŝ) following the interpretation
of the language. The main problem of semantic encoding is
to characterize the optimal encoding scheme that achieves the
best trade-off between the semantic distortion and semantic
cost.

B. Semantic decoding and combined semantic encoding and
decoding (CSED)

From the receiver’s perspective, the semantic encoder at
the transmitter is dictated by the expression of the agreed
language. The semantic decoding problem is thus how to
decode a received message to minimize semantic distortion,
considering the semantic channel as well as the given semantic
encoder at the transmitter. An analogy of semantic decoding
is a son talking to his mother. The mother knows the way
her son expresses his meaning and aims to find the best
way to interpret the received messages. Another example of
semantic decoding is reading a text. A reader tries to optimize
his/her semantic decoder to minimize the distortion between
the meaning intended by the writer and his/her interpretation.

Definition 3.11 (Semantic decoding schemes). A semantic
decoding scheme is a mapping from the message set S to
the meaning set W , denoted by{

v(w|s) ∈ [0, 1] : w ∈ W, s ∈ S,
∑
w

v(w|s) = 1

}
, (9)
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or the matrix form V ∈ IRM×N .

Similar to the semantic encoding problem, we do not impose
any constraints on v(w|s). To evaluate the performance of a
semantic decoding scheme, we define the semantic distortion
below.

Definition 3.12 (Semantic distortion of semantic decoding).
Let w, ŵ ∈ W be the transmitted and reconstructed meanings
at the transmitter and receiver, respectively. The average
distortion achieved by a semantic decoding scheme V is

DP,V =
∑

w,s,ŝ,ŵ

p(w)p(s|w)c(ŝ|s)v(ŵ|ŝ)d(w, ŵ). (10)

The point-to-point semantic communication process with
semantic decoding at the receiver is illustrated in Fig. 5(b).
Compared with semantic encoding, semantic decoding may
consider a potentially inaccurate prior distribution q(w) at
the receiver and a fixed semantic encoder P dictated by the
language. The goal is to find the optimal decoding scheme V ∗

such that the semantic distortion is minimized.
In the language utilization problem, the agreed language is

the only common ground between the transmitter and receiver
and there is no codebook negotiation. Therefore, semantic
encoding and decoding are essentially two decoupled problems
– jointly designing the semantic encoding and decoding falls
into the language design problem.

Nevertheless, the transmitter and receiver can perform se-
mantic encoding and decoding, separately, at the same time,
which we refer to as the combined semantic encoding and
decoding (CSED), as illustrated in Fig. 5(c). CSED will be
defined rigorously later in Section V-B.

IV. SEMANTIC ENCODING

Based on the formulation in Section III, this section focuses
on the semantic encoding problem. For a given semantic
language, our main goal in this section is to define and
characterize the semantic distortion-cost region (and function)
of semantic encoding.

A. Semantic distortion-cost region and function

A semantic encoding scheme can be evaluated from two
angles: semantic distortion and semantic cost. We next define
the semantic distortion-cost region for semantic encoding.

Definition 4.1 (The distortion-cost region of semantic encod-
ing). Consider a semantic language (W,S,P ,Q), a semantic
channel C, a message cost function ℓ(s) : S → IR+, and a
distortion measure d(w, ŵ) : W×W → IR+. A distortion-cost
pair (L,D) is achievable if there exists a semantic encoding
scheme U such that DU = D, LU = L. The distortion-cost
region Renc is the set of all achievable distortion-cost pairs
(L,D).

A trivial outer bound of the region is{
Lmin ≤ L ≤ Lmax,

Dmin ≤ D ≤ Dmax,
(11)

𝐿

𝐷

𝑅enc

𝐿min 𝐿max

𝐷min

P1

𝐷max

𝐷

𝑃1

P2 P3

P4

P2 P3

P4

Figure 6. An illustration of the distortion-cost region and function of semantic
encoding.

where
Lmin ≜ min

(L,D)∈Renc

L = min
s
ℓ(s), (12)

Lmax ≜ max
(L,D)∈Renc

L = max
s
ℓ(s), (13)

are the minimum and maximum costs, respectively, and

Dmin ≜ min
(L,D)∈Renc

D, Dmax ≜ max
(L,D)∈Renc

D, (14)

are the minimum and maximum achievable distortions with
semantic encoding, respectively.

The exact distortion-cost region, on the other hand, can be
more involved. For illustration purposes, we give a schematic
plot of the region in Fig. 6.

To characterize the region, we first define eight critical
points as follows:

P1 :

(
Lmin, min

(Lmin,D)∈Renc
D

)
, P2 :

(
min

(L,Dmin)∈Renc
L,Dmin

)
,

P3 :

(
max

(L,Dmin)∈Renc
L,Dmin

)
, P4 :

(
Lmax, min

(Lmax,D)∈Renc
D

)
,

P1 :

(
Lmin, max

(Lmin,D)∈Renc
D

)
, P2 :

(
min

(L,Dmax)∈Renc
L,Dmax

)
,

P3 :

(
max

(L,Dmax)∈Renc
L,Dmax

)
, P4 :

(
Lmax, max

(Lmax,D)∈Renc
D

)
,

Each of these eight points corresponds to a semantic en-
coding scheme. For example, P1 corresponds to the most
“accurate” encoding scheme with minimum cost, while P1
corresponds to the most “inaccurate” encoding scheme with
minimum cost. On the other hand, P2 corresponds to the most
“cost-efficient” encoding scheme that achieves the minimum
distortion, while P3 corresponds to the most “cost-inefficient”
encoding scheme that achieves the minimum distortion.

Since minimizing the distortion is the main concern of
semantic communication, we are particularly interested in the
lower-envelope of the region, i.e., the curve connecting P1,
P2, P3, P4 in Fig. 6. As with Shannon’s rate-distortion theory,
we define the distortion-cost function for semantic encoding.

Definition 4.2 (The distortion-cost function of semantic en-
coding). With semantic encoding, the minimum achievable
semantic distortion under an average message cost L is called
the distortion-cost function of semantic encoding and is given
by

D∗
U,Q(L) = min {D : (L,D) ∈ Renc} . (15)
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As illustrated in Fig. 6, the distortion-cost function of se-
mantic encoding consists of three segments in general, and we
denote them by (P1,P2), (P2,P3), and (P3,P4), respectively.
In (P1,P2), minimizing distortion and minimizing cost is a
trade-off; in (P2,P3), the minimum distortion is achieved; in
(P3,P4), minimizing distortion or cost boosts the other one.

Note that, in Shannon’s rate-distortion theory [28],
1) A lower compression rate implies a larger distortion,

and hence, there is a trade-off between distortion and
rate. This corresponds to the segment (P1,P2) in the
distortion-cost function of semantic encoding.

2) If a rate-distortion pair (R, D) is achievable, then the
rate-distortion pair (R′, D) is achievable for any R′ > R.
Thus, the rate-distortion (or distortion-rate) function is
convex and monotonic – Shannon’s rate-distortion func-
tion has no ‘boosting’ segment as in (P3,P4) in Fig. 6.

By contrast, the distortion-cost function of semantic encod-
ing is determined by the semantic language as well as the
exact forms of semantic cost and distortion. There can be an
additional boost segment (P3,P4) because a larger semantic
cost does not necessarily imply a smaller semantic distortion.
For an intuitive example, consider the communication between
a police officer and a suspect. The police officer wants to
know the suspect’s activities over a period. As the suspect’s
description increases, the police officer knows more and more
about the suspect’s activities, and the semantic distortion –
in which case the uncertainty of the suspect’s activities –
decreases. However, when the suspect over-describes some
details, the police may doubt the suspect’s motive and the
semantic distortion starts to increase. A more mathematical
example will be given in Section VI.

B. Characterizing the distortion-cost region

A semantic encoding scheme is a mapping from W to S.
To measure the expected distortion of mapping a meaning w
to a message s, we define

φ(w, s) ≜
∑
ŝ,ŵ

c(ŝ|s)q(ŵ|ŝ)d(w, ŵ). (16)

The distortion of a semantic encoding scheme U can be
written as

DU,Q =
∑
w,s

p(w)u(s|w)φ(w, s). (17)

To characterize the distortion-cost region for semantic en-
coding, we introduce a special class of semantic encoding
schemes: deterministic semantic encoding.

Definition 4.3 (Deterministic semantic encoding). A semantic
encoding scheme U is said to be deterministic if U maps
each meaning to a single message deterministically. Each row
of a deterministic encoding scheme U has only one non-
zero element. We denote a deterministic semantic code U by
∆i1,i2,...,iN , where i1, i2, ..., iN ∈ [M ] are the column indexes
of the non-zero elements in the rows of U . That is,

u(sm|wj) =

{
1, if m = ij ,

0, otherwise.
(18)

Algorithm 1 Discovering the six subsets of messages for a
meaning w.

1: Input: w; S.
2: Output: Sw and Sw;

3: S ′
w = S, sl = s1; S ′′

w = S , sr = sM ;
4: S ′

w = S, sl = s1; S ′′
w = S , sr = sM ;

5: for m = 2, 3, ...,M do
6: if φ(w, sl) ≤ φ(w, sm) then
7: S ′

w = S ′
w\sm;

8: else if ℓ(sl) == ℓ(sm) then
9: S ′

w = S ′
w\sl;

10: sl = sm;
11: else
12: sl = sm;
13: if φ(w, sr) ≤ φ(w, sM−m+1) then
14: S ′′

w = S ′′
w\sM−m+1;

15: else if ℓ(sr) == ℓ(sM−m+1) then
16: S ′′

w = S ′′
w\sr;

17: sr = sM−m+1;
18: else
19: sr = sM−m+1;
20: if φ(w, sl) ≤ φ(w, sm) then
21: S ′

w = S ′
w\sm;

22: else if ℓ(sl) == ℓ(sm) then
23: S ′

w = S ′
w\sl;

24: sl = sm;
25: else
26: sl = sm;
27: if φ(w, sr) ≤ φ(w, sM−m+1) then
28: S ′′

w = S ′′
w\sM−m+1;

29: else if ℓ(sr) == ℓ(sM−m+1) then
30: S ′′

w = S ′′
w\sr;

31: sr = sM−m+1;
32: else
33: sr = sM−m+1;
34: Sw = S ′

w ∪ S ′′
w, Sw = S ′

w ∪ S ′′
w.

Proposition 4.1. A semantic distortion-cost pair (L,D) can
be achieved by a stochastic encoding scheme U if and only
if (L,D) can be achieved by time sharing among a set of
deterministic encoding schemes in{

∆i1,i2,...,iN : ∀i1, i2, ..., iN ∈ [M ]
}
.

Proof. See Appendix A. ■
Proposition 4.1 suggests two important properties of the

distortion-cost region:
• Any point in the distortion-cost region can be achieved

by a set of deterministic semantic encoding schemes via
time sharing.

• The distortion-cost region Renc is a convex set. The dis-
tortion-cost function D∗

U,Q(L) is a convex function.
As a result, we only need to focus on the class of determin-

istic semantic encoding schemes to characterize the distortion-
cost region.
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Definition 4.4. For a meaning w ∈ W , we define six subsets
of S: S ′

w, S ′′
w, Sw, S ′

w, S ′′
w, Sw ⊆ S:

1) S ′
w is the smallest subset of S such that ∀s ∈ S , there

exists an s′ ∈ S ′
w that satisfies

ℓ(s′) ≤ ℓ(s), φ(w, s′) ≤ φ(w, s).

2) S ′′
w is the smallest subset of S such that ∀s ∈ S , there

exists an s′′ ∈ S ′′
w that satisfies

ℓ(s′′) ≥ ℓ(s), φ(w, s′′) ≤ φ(w, s).

3) Sw = S ′
w ∪ S ′′

w.
4) S ′

w is the smallest subset of S such that ∀s ∈ S , there
exists an s′ ∈ S ′

w that satisfies

ℓ(s′) ≤ ℓ(s), φ(w, s′) ≥ φ(w, s).

5) S ′′
w is the smallest subset of S such that ∀s ∈ S , there

exists an s′′ ∈ S ′′
w that satisfies

ℓ(s′′) ≥ ℓ(s), φ(w, s′′) ≥ φ(w, s).

6) Sw = S ′
w ∪ S ′′

w.

For a w ∈ W , the six subsets are defined based on the
properties of s. Take the subset S ′

w for example. Each of s
in S ′

w has the property that there exists no s′ ∈ S\{s} that
is more accurate and cost-efficient than s at the same time. It
will be shown later that, for each meaning w, we only need to
consider the messages in Sw and Sw to construct the deter-
ministic encoding schemes and characterize the distortion-cost
region of semantic encoding. The procedures to discover the
six sets for a w are described in Algorithm 1. The properties
of the six subsets are summarized in Appendix B.

Definition 4.5. For a meaning w ∈ W and two messages
s, s′ ∈ S, ℓ(s) ̸= ℓ(s′), we define a function

G(w, s, s′) =
φ(w, s′)− φ(w, s)

ℓ(s′)− ℓ(s)
. (19)

The function G is important in that it guides us to discover
a sequence of deterministic encoding schemes to characterize
the boundary of the distortion-cost region. Theorem 4.2 below
presents the main result of this section.

Theorem 4.2 (The distortion-cost region of semantic encod-
ing). Consider a semantic language (W,S,P ,Q), a semantic
channel C, a message cost function ℓ(s) : S → IR+, and a
distortion measure d(w, ŵ) : W ×W → IR+. The boundary
of the distortion-cost region of semantic encoding Renc is the
piecewise linear connection of T +T +2 distortion-cost pairs(
LU(t) , DU(t),Q

)
, t = 0, 1, 2, ..., T and

(
L
U

(t) , D
U

(t)
,Q

)
,

t = 0, 1, 2, ..., T , where
{
U (t) : t = 0, 1, 2, ..., T

}
and{

U
(t)

: t = 0, 1, 2, ..., T
}

are deterministic semantic encod-
ing schemes constructed in Algorithm 2.

Proof. See Appendix C. ■
Theorem 4.2 states that the boundary of the distortion-cost

region of semantic encoding is piecewise linear. The vertices
of the boundary can be achieved by the deterministic encoding
schemes constructed in Algorithm 2. Any non-vertex point on

Algorithm 2 Characterizing the distortion-cost region of se-
mantic encoding Renc.

1: Input: (W,S,P ,Q), ℓ(s), d(w, ŵ).
2: Output:

{
U (t),

(
LU(t) , DU(t),Q

)
: t = 0, 1, 2, ..., T

}
;

3:
{
U

(t)
,
(
L
U

(t) , D
U

(t)
,Q

)
: t = 0, 1, 2, ..., T

}
.

4: Step 1: Find Sw and Sw for each w ∈ W .
5: for n = 1, 2, ..., N do
6: Swn

,Swn
= Algorithm 1(wn,S).

7: Step 2: Construct a sequence of deterministic semantic
source coding schemes U (t) = ∆

i
(t)
1 ,i

(t)
2 ,...,i

(t)
N

, t =

0, 1, 2, ..., T .
8: t = 0;
9: Construct U (0) = ∆

i
(0)
1 ,i

(0)
2 ,...,i

(0)
N

, where i(0)n = min{m :

sm ∈ Swn
}.

10: while LU(t) < Lmax do
11: t = t+ 1;
12:

n(t),m(t) = argmin
n,m:sm∈Swn ,m>i

(t−1)
n

G
(
wn, si(t−1)

n
, sm

)
.

13: Construct U (t) = ∆
i
(t)
1 ,i

(t)
2 ,...,i

(t)
N

such that

i(t)n =

{
i
(t−1)
k , if n ̸= n(t);

m(t), if n = n(t).

14: T = t.
15: Step 3: Construct a sequence of deterministic semantic

source coding schemes U
(t)

= ∆
i
(t)
1 ,i

(t)
2 ,...,i

(t)
N

, t =

0, 1, 2, ..., T .
16: t = 0;
17: Construct U

(0)
= ∆

i
(0)
1 ,i

(0)
2 ,...,i

(0)
N

, where i
(0)
n = min{m :

sm ∈ Swn}.
18: while L

U
(t) < Lmax do

19: t = t+ 1;
20:

n(t),m(t) = argmax
n,m:sm∈Swn ,m>i

(t−1)
n

G
(
wn, si(t−1)

n
, sm

)
.

21: Construct U
(t)

= ∆
i
(t)
1 ,i

(t)
2 ,...,i

(t)
N

such that

i
(t)
n =

{
i
(t−1)
k , if n ̸= n(t);

m(t), if n = n(t).

22: T = t.

the boundary can be achieved by a stochastic encoding scheme
or the time-sharing2 of two deterministic encoding schemes
associated with the two closest vertices. The distortion-cost
function of semantic encoding D∗

U,Q(L) is also piecewise

2Time sharing means that the system alternates between two deterministic
encoding schemes over separate time intervals within the same communication
session.
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linear and can be characterized by
{
U (t) : t = 0, 1, 2, ..., T

}
.

To conclude this section, we emphasize that the transmitter
takes a proactive role in semantic communication, and hence,
semantic encoding is often more efficient than semantic decod-
ing as far as reducing distortion is concerned. In addition, the
transmitter has the exact distribution of the intended meanings
p(w), while the receiver may only have an inaccurate prior
q(w). The semantic cost is fully determined by semantic
encoding.

V. SEMANTIC DECODING AND COMBINED SEMANTIC
ENCODING AND DECODING

In Section V, we focused on semantic encoding from the
transmitter’s perspective. In this section, we study how to
reduce semantic distortion from the receiver’s perspective via
semantic decoding. Furthermore, we discuss the combined
semantic encoding and decoding in Section V-B.

A. Semantic decoding

In semantic decoding, the semantic encoder at the transmit-
ter is dictated by the expression of the agreed language P and
the receiver varies the mapping V to optimize the semantic
distortion

DP,V =
∑
ŝ,ŵ

v(ŵ|ŝ)ψp(ŵ, ŝ), (20)

where

ψp(ŵ, ŝ) ≜
∑
w,s

p(w)p(s|w)c(ŝ|s)d(w, ŵ). (21)

We first characterize the semantic distortion-cost region that
can be achieved by semantic decoding.

Definition 5.1 (The distortion-cost region of semantic decod-
ing). A distortion-cost pair (L,D) is achievable if there exists
a semantic decoding scheme V such that DP,V = D and
LP = L. The distortion-cost region Rdec is the set of all
achievable distortion-cost pairs (L,D).

Since the semantic encoder P is fixed, the achievable cost
of V is also fixed, i.e.,

LP =
∑
w

p(w)
∑
s

p(w|s)ℓ(s). (22)

Therefore, the distortion-cost region of semantic decoding is
a vertical line in the distortion-cost space.

Definition 5.2 (Deterministic semantic decoding). A semantic
decoding scheme V ∈ IRM×N is said to be deterministic if
V maps each message to a single meaning deterministically.
We denote a deterministic semantic decoding scheme V by
∆̃n1,n2,...,nM

, where n1, n2, ..., nM ∈ [N ] are the column
indexes of the non-zero elements in the rows of V .

Theorem 5.1 (The distortion-cost region of semantic decod-
ing). Consider a semantic language (W,S,P ,Q), a semantic
channel C, a message cost function ℓ(s) : S → IR+, and a

distortion measure d(w, ŵ) : W ×W → IR+. The distortion-
cost region of semantic decoding Rdec is the vertical line
between(

LP , DP ,∆̃n′
1,n′

2,...,n′
M

)
and

(
LP , DP ,∆̃n′′

1 ,n′′
2 ,...,n′′

M

)
,

where

n′m = argmin
n

ψp(wn, sm), (23)

n′′m = argmax
n

ψp(wn, sm). (24)

Proof. Omitted. ■
The distortion-cost region of semantic decoding gives all

achievable distortion-cost pairs with semantic decoding. How-
ever, unlike semantic encoding, the receiver may not have
accurate prior information on p(w). As a consequence, the
receiver may not be able to find the optimal semantic decoding
scheme ∆̃n′

1,n
′
2,...,n

′
M

that minimizes the distortion.
Under a potentially inaccurate prior distribution q(w), we

are interested in the semantic decoding scheme employed by
the receiver and the conditions under which this scheme is
optimal. In the following, we shall use the subscripts ‘p’ and
‘q’ to denote the statistics obtained under prior distributions
p(w) and q(w), respectively. For example, we have

ψq(ŵ, ŝ) ≜
∑
w,s

q(w)p(s|w)c(ŝ|s)d(w, ŵ), (25)

under the prior q(w).

Proposition 5.2 (Semantic decoding under inaccurate prior).
Consider the expression P at the transmitter, a semantic
channel C, and a prior distribution q(w) at the receiver. The
best semantic decoding scheme perceived by the receiver is
V ∗
q = ∆̃

n
(q)
1 ,n

(q)
2 ,...,n

(q)
M

, where

n(q)m = argmin
n

ψq(wn, sm). (26)

To simplify notation, we denote by ŵq(ŝ) the meaning that
a received message ŝ will be mapped to under prior q(w), i.e.,
ŵq(ŝ) = w

n
(q)
m

. The achieved distortion of V ∗
q can be written

as
DP ,V ∗

q
=
∑
ŝ

ψp(ŵq(ŝ), ŝ). (27)

On the other hand, if the true prior p(w) is available at the
receiver, the optimal decoding scheme is V ∗

p = ∆̃n′
1,n

′
2,...,n

′
M

and the minimum distortion is

DP ,V ∗
p
=
∑
ŝ

ψp(ŵp(ŝ), ŝ). (28)

The condition under which semantic decoding achieves
the optimal distortion DP ,V ∗

p
is non-trivial to establish for

a general distortion function. In the following, we consider
the Hamming distortion and study the condition under which
DP ,V ∗

q
= DP ,V ∗

p
.

Definition 5.3 (Hamming distortion). Hamming distortion
measures the probability of semantic error and is given by

d(w, ŵ) =

{
1, if ŵ ̸= w;

0, if ŵ = w.
(29)
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Figure 7. (a) Probability space in which αq(ŝ) resides is an equilateral
triangle when N = 3. (b) We partition the equilateral triangle into three
quadrilaterals. For a received message ŝ, the Hamming distortion of semantic
decoding is determined by whether αp(ŝ) and αq(ŝ) fall into the same
quadrilateral.

Proposition 5.3 (Semantic decoding with the Hamming dis-
tortion). Consider semantic decoding with a prior q(w) and
Hamming distortion. Semantic decoding achieves the optimal
distortion, i.e., DP ,V ∗

q
= DP ,V ∗

p
, if and only if

argmax
w

q(w)p(ŝ|w) ⊆ argmax
w

p(w)p(ŝ|w), ∀ŝ, (30)

where p(ŝ|w) ≜
∑

s p(s|w)c(ŝ|s).

Proof. See Appendix D. ■
A geometric interpretation of (30) is given as follows. First,

we normalize q(w)p(ŝ|w) to a distribution αq(ŝ) with each
element being

αq(ŝ, w) =
q(w)p(ŝ|w)∑
w q(w)p(ŝ|w)

, ∀w ∈ W. (31)

The probability space in which αq(ŝ) resides can be rep-
resented as a unit simplex. When N = 3, for example,
the probability space is an equilateral triangle, as shown in
Fig. 7(a). Based on the semantic decoding rule, we partition
the probability space into N regions, corresponding to the N
meanings in W . When N = 3, the equilateral triangle can
be partitioned into three quadrilaterals, as shown in Fig. 7(b).
Under the prior p(w) and q(w), semantic decoding yields M
points {αp(ŝ) : ŝ ∈ S} and {αq(ŝ) : ŝ ∈ S}, respectively.

In the above context, the geometric interpretation of (30)
is that αp(ŝ) and αq(ŝ) fall into the same region of the
probability space, ∀ŝ ∈ S . That is, under the Hamming
distortion, the optimality of semantic decoding is governed by
a “partition distance” between αp(ŝ) and αq(ŝ), i.e., whether
they fall into the same region, but not the conventional distance
measure between two probability distributions, such as the L1
or Kullback-Leibler (KL) distance.

Proposition 5.3 suggests that the condition that semantic de-
coding achieves the optimal distortion can be very demanding.
In actuality, semantic decoding V can yield even larger dis-
tortion than the original interpretation of the language Q. This
can be easily understood as the inaccurate prior information
q(w) may mislead the receiver. A real-life example of this
phenomenon is that when you talk to people with prejudice,
they immediately sound harsh, even if they do not mean it that
way.

Considering the Hamming distortion, the original interpre-
tation of the language Q yields a distortion of

DP ,Q =
∑
ŝ,ŵ

q(ŵ|ŝ)ψp(ŵ, ŝ) = 1−
∑
ŝ,ŵ

p(ŵ)p(ŝ|ŵ)q(ŵ|ŝ).

The gap between DP ,Q and DP ,V ∗
q

can be written as

DP ,Q −DP ,V ∗
q
= (32)∑

ŝ

(
p
(
ŵq(ŝ)

)
p
(
ŝ|ŵq(ŝ)

)
−
∑
ŵ

p(ŵ)p(ŝ|ŵ)q(ŵ|ŝ)

)
.

If the prior information is accurate, i.e., p(w) = q(w), we
have

DP ,Q −DP ,V ∗
q
= (33)∑

ŝ

(
max
w

p(w)p(ŝ|w)−
∑
ŵ

p(ŵ)p(ŝ|ŵ)q(ŵ|ŝ)

)
≥ 0.

and hence, DP ,V ∗
q

is strictly better than DP ,Q. In general,
however, DP ,Q −DP ,V ∗

q
can be negative – the wrong prior

leads to a semantic decoding scheme V worse than Q and it is
better to stick to the original interpretation of the language. In
this case, we propose two refinements on Q below to construct
an improved random semantic decoding scheme V .

Considering a received message ŝ, we define two subsets
Ŵ(ŝ) ⊆ W and W(ŝ) ⊆ W , where

Ŵ(ŝ) ≜
{
w : q(ŵ|ŝ) > 0

}
, (34)

W(ŝ) ≜
{
w : p(s|w)c(ŝ|s) > 0

}
. (35)

Proposition 5.4 (Refining the interpretation). A random se-
mantic decoding scheme V with DP ,V ≤ DP ,Q can be
constructed by refining the interpretation Q as follows. First,
let V = Q.

Refinement 1: If ∃ w′ ∈ Ŵ(ŝ), s.t.,

min
w∈W(ŝ)

d(w,w′) ≥ max
w∈W(ŝ),

w̃∈Ŵ(ŝ)\{w′}

d(w, w̃), (36)

we construct

v(w|ŝ) =

{
0, if w = w′,

q(w|ŝ)
1−q(w′|ŝ) , if w ̸= w′.

(37)

Refinement 2: If ∃ w′′ ∈ Ŵ(ŝ), s.t.,

max
w∈W(ŝ)

d(w,w′′) ≤ min
w∈W(ŝ),

w̃∈Ŵ(ŝ)\{w′′}

d(w, w̃), (38)

we construct

v(w|ŝ) =

{
1, if w = w′′,

0, if w ̸= w′′.
(39)

In the first refinement (37), there exists a w′ that is strictly
worse than any other w̃ ∈ Ŵ(ŝ). This is possible because the
interpretation of the language can be suboptimal for some dis-
tortion functions. In this case, we remove the mapping between
ŝ and w′ and assign the probability q(w′|ŝ) proportionally to
other w̃ ∈ Ŵ(ŝ). In the second refinement (39), there exists a
w′′ that is strictly better than any other w̃ ∈ Ŵ(ŝ). As a result,
we construct v(w|ŝ) such that ŝ is deterministically decoded
to w′′ regardless of q(w).
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B. Combined semantic encoding and decoding (CSED)

In the problem of language utilization, semantic encoding
and decoding are two decoupled processes since no negotiation
is allowed between the transmitter and receiver. We have
shown in Sections IV and V-A that the semantic distortion
can be reduced by either semantic encoding or decoding. A
natural question arises: what if the transmitter performs se-
mantic encoding and the receiver performs semantic decoding
simultaneously?

To answer this question, let us first define combined seman-
tic encoding and decoding (CSED) formally.

Definition 5.4 (CSED). In CSED, the transmitter adopts a
semantic encoding scheme

U =

T∑
i=0

ξiU
(i) +

T+T+2∑
i=T+1

ξi−T−1U
(i−T−1)

, (40)

where ξ ≜ {ξi ≥ 0 :
∑T+T+2

i=0 ξi = 1} is
a probability distribution;

{
U (i) : i = 0, 1, 2, ..., T

}
and{

U
(i)

: i = 0, 1, 2, ..., T
}

are deterministic semantic encod-
ing schemes derived from Theorem 4.2. The receiver performs
semantic decoding and obtains V ∗

q = ∆̃
n
(q)
1 ,n

(q)
2 ,...,n

(q)
M

fol-
lowing Proposition 5.2. The semantic distortion and cost of
CSED are given by

DU ,V ∗
q
=

∑
w,s,ŝ,ŵ

p(w)u(s|w)c(ŝ|s)v(ŵ|ŝ)d(w, ŵ). (41)

LU =
∑
w,s

p(w)u(s|w)ℓ(s). (42)

CSED leads to a new distortion-cost region.

Theorem 5.5 (The distortion-cost region of CSED). The
distortion-cost region of CSED Rcsed, defined as the set of all
achievable distortion-cost pairs (L,D) via CSED, is a convex
hull of the set of points:{

LU(i) , DU(i),V ∗
q
: i = 0, 1, 2, ..., T

}
,{

L
U

(i) , D
U

(i)
,V ∗

q

: i = 0, 1, 2, ..., T
}
.

Proof. Theorem 5.5 follows from the time sharing argument
that allows the system to interpolate among the performance
characteristics of different deterministic encoding schemes,
thereby enabling any point within the convex hull to be
reachable. ■

Correspondingly, we can define the distortion-cost function
of CSED as the infimum of Rcsed:

D∗
U ,V ∗

q
(L) ≜ inf {D : (L,D) ∈ Rcsed} . (43)

Given an average message cost L, the minimum distortion
achieved by semantic encoding is D∗

U ,Q(L). An interesting
question is whether D∗

U ,V ∗
q
(L) is smaller than D∗

U ,Q(L)? In
addition, when L = LP , whether D∗

U ,V ∗
q
(LP ) is smaller than

DP ,V ∗
q

or D∗
U ,Q(LP )? The answers to these questions are,

unfortunately, negative. This can be easily understood via a
counterexample.

Head nod

Head shake

𝒮𝒲 𝒲

Figure 8. The nod-shake example. Both semantic encoding and semantic
decoding is better than CSED.

Example 3 (The node-shake example). Suppose the mean-
ing set is W = {yes, no}, the message set is S =
{head nod, head shake}, and the costs of the two messages are
the same. The expression and interpretation of the semantic
language are quite opposite, as shown in Fig. 8. At the
transmitter, “head nod” stands for “yes” and “head shake”
stands for “no”, while at the receiver, “head nod” stands for
“no” and “head shake” stands for “yes”. Suppose the prior
distribution p(w) is known at the receiver and we consider
the Hamming distortion.

In this example, the Hamming distortion can be reduced to 0
with either semantic encoding or semantic decoding. However,
when both semantic encoding and decoding are performed,
the Hamming distortion is 1. This suggests that CSED does
not necessarily improve upon separate semantic encoding or
decoding.

In what follows, we consider an error-free semantic channel
and establish sufficient conditions under which CSED is better
than semantic encoding and decoding.

Theorem 5.6 (CSED with an error-free semantic channel).
Consider a semantic language (W,S,P ,Q), an error-free
semantic channel C, and a symmetric distortion measure
d(w, ŵ) = d(ŵ, w).

Under the conditions that
1) The receiver has perfect prior information, i.e., p(w) =

q(w).
2) The language is logically self-consistent, i.e., q(w|s) =

p(s|w)p(w)
p(s) .

3) ∀w,w′ ∈ W ,

argmin
s

φ(w, s) ∩ argmin
s

φ(w′, s) = ∅. (44)

4) ∀s, s′ ∈
{
s : u(s|w) > 0, s ∈ S, w ∈ W

}
,

argmin
w

ψq(w, s) ∩ argmin
w

ψq(w, s
′) = ∅. (45)

We have

D∗
U ,V ∗

q
(L) = min

U ′,V ′
DU ′,V ′(L), (46)

where U ′,V ′ can be any semantic encoding and decoding
schemes. In this case, CSED is better than both semantic
encoding and semantic decoding, i.e., D∗

U ,V ∗
q
(L) ≤ D∗

U ,Q(L)

and D∗
U ,V ∗

q
(LP ) ≤ DP ,V ∗

q
.

Proof. See Appendix E. ■

Remark 2. The CSED scheme discussed in Theorem 5.4 con-
sists of the semantic encoding scheme U and decoding scheme
V . In particular, U is optimized based on the interpretation Q
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Figure 9. A bug walking in the grid world.

of the language, and V is optimized based on the expression
P of the language.

We have shown in the node-shake example that this can lead
to a poorer performance than semantic encoding or decoding.
However, what if the transmitter is clever enough and predicts
that the receiver would improve its interpretation from Q to
V ? In this case, the transmitter can optimize P to U ′ based
on V , as opposed to Q. In the node-shake example, U ′ and
V would lead to zero Hamming distortion.

Following this idea, the receiver can further predict that
the transmitter would improve its expression from P to U ′

and optimize Q based on U ′ instead of Q, and so on. The
resulting Hamming distortion would alternate between 0 and
1, depending on how many times the transmitter and receiver
have thought about each other’s encoding and decoding
schemes. This phenomenon resembles human communication
– two smart people may not be able to communicate efficiently
as they would keep inferring each other’s expression and
interpretation and changing theirs continuously.

VI. SEMANTIC COMMUNICATION: AN EXAMPLE

This section gives a concrete example to illustrate semantic
communication formulated in this paper. Based on the agreed
semantic and technical languages, we show how semantic
encoding, semantic decoding, and CSED operate, respectively,
to reduce semantic distortion.

A. The grid world and languages

Example 4 (Grid world). We consider a world of square grids,
as shown in Fig. 9.

• The grids are indexed by (i, j), i, j ∈ {0, 1, 2}.
• A bug sets out from (0, 0) and walks towards one of the

two destinations A: (1, 2) and B: (2, 2).
• At each grid, the bug can only go up or right.
• There is a transmitter and a receiver. Only the transmitter

observes the trajectory of the bug.

The transmitter and receiver have agreed on semantic lan-
guage and technical language.

1) The message and meaning sets: There are two words ‘U’
and ‘R’ in the semantic language, representing the actions of
the bug (i.e., “up” and “right”). A message is composed of a
sequence of words, representing the sequential actions (i.e.,
a trajectory) of the bug starting from (0, 0). The message
‘URR’, for example, means that the bug goes up, right,
and right from (0, 0). The maximal number of moves in the

𝒰𝒰𝒰,ℛℛℛ,𝒰𝒰𝒰𝒰,𝒰𝒰𝒰ℛ,
𝒰𝒰ℛ𝒰,𝒰ℛ𝒰𝒰,𝒰ℛℛℛ,ℛ𝒰𝒰𝒰
ℛ𝒰ℛℛ,ℛℛ𝒰ℛ,ℛℛℛ𝒰,ℛℛℛℛ

𝐴

𝐵

𝒲
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𝒲

∅
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Figure 10. The expression and interpretation of the semantic language.

grid world is 4; hence, the number of possible messages is∑4
i=0 2

i = 31. The message set can be written as

Sall =
{
∅,U ,R,UU ,UR,RU ,RR,UUU ,UUR,URU ,

URR,RUU ,RUR,RRU ,RRR,UUUU ,UUUR,UURU ,
UURR,URUU ,URUR,URRU ,URRR,RUUU ,RUUR,
RURU ,RURR,RRUU ,RRUR,RRRU ,RRRR

}
where ∅ means no message is transmitted.

Given the message set, the transmitter can convey various
meanings such as the trajectory and the destination of the bug.
In this example, we assume the receiver is only interested
in the destination of the bug and define the meaning set as
W = {A,B} and p(A) = 1/3, p(B) = 2/3. We assume the
receiver has a prior distribution q(A) = 1/2 and q(B) = 1/2.

2) Error-free technical communication: For a given mes-
sage, the technical language maps the words ‘U’ and ‘R’ to
bit sequences ‘0’ and ‘10’, respectively. The set of channel
symbols can be constructed by substituting ‘U’ and ‘R’ in
Sall with ‘0’ and ‘10’, respectively.

The mappings between the messages and channel symbols
are one-to-one. Throughout this section, we assume that the
technical channel is error-free, and hence, the semantic channel
is also error-free – a transmitted message can be perfectly
received by the receiver. The generalization to an error-prone
technical channel is straightforward.

We consider the Hamming distortion. The cost function ℓ(s)
is defined as the length of the bit sequence associated with s.

3) Expression and interpretation: Given the message and
meaning sets, we illustrate the expression and interpretation of
the semantic language in Fig. 10. As can be seen, to convey
meanings in W , the class of messages

Snull =
{
UUU ,RRR,UUUU ,UUUR,UURU ,URUU ,

URRR,RUUU ,RURR,RRUR,RRRU ,RRRR
}

are illegitimate, and the class of messages{
UURR,URUR,URRU ,RUUR,RURU ,RRUU

}
are equivalent as they have the same cost and lead to the same
distortion. We can use a single message UURR to represent
them in order to simplify notation. This gives us a refined
message set

S = Sall\Snull =
{
∅,U ,R,UU ,UR,RU ,RR,UUR,URU ,
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Table I
EXPRESSION AND INTERPRETATION OF THE SEMANTIC LANGUAGE.

s q(A|s) q(B|s) p(s|A) p(s|B) ℓ(s)

∅ 1/3 2/3 1/9 1/19 0
U 2/5 3/5 1/9 1/19 1
R 1/4 3/4 1/9 1/19 2
UU 1/2 1/2 1/9 1/19 2
UR 1/3 2/3 1/9 1/19 3
RU 1/3 2/3 1/9 1/19 3
RR 0 1 0 1/19 4
UUR 1/2 1/2 1/9 1/19 4
URU 1/2 1/2 1/9 1/19 4
RUU 1/2 1/2 1/9 1/19 4
URR 0 1 0 1/19 5
RUR 0 1 0 1/19 5
RRU 0 1 0 1/19 5
UURR 0 1 0 6/19 6

RUU ,URR,RUR,RRU ,UURR
}
,

as shown in Fig. 10. Note that we have arranged them in
ascending order according to the message cost. Next, we define
the interpretation and expression, respectively.

Denoting by ϕA and ϕB the sets of trajectories that lead to
A and B, respectively, we have

ϕA =
{
UUR,URU ,RUU

}
,

ϕB =
{
UURR,URUR,URRU ,RRUU ,RURU ,RUUR

}
.

The interpretation of the semantic language is defined as

q(ŵ = w|ŝ) =
∑

s∈ϕw
ŝ ⊑ s∑

w∈W
∑

s∈ϕw
ŝ ⊑ s

(47)

where ŝ ⊑ s = 1 if ŝ is a prefix of s, and ŝ ⊑ s = 0,
otherwise. For example, suppose the received message ŝ = U ,
we have q(ŵ = A|U) = 2/5 because U is a prefix of two
messages in ϕA and three messages in ϕB . A complete list of
q(w|s) is given in Table I.

Correspondingly, for a meaning w, we define the expression
of the language p(s|w) as the uniform distribution over

{
s :

q(w|s) > 0
}

. Table I lists p(s|w), ∀w, s.
4) Semantic encoding: This subsection studies how to

reduce semantic distortion from the transmitter’s perspective
via semantic encoding. We shall follow Theorem 4.2 and
Algorithm 2 to characterize the semantic distortion-cost region
with semantic encoding.

For an error-free semantic channel and Hamming distortion
measure, the expected distortion of mapping a meaning w to
a message s can be written as

φ(w, s) =
∑
ŝ

c(ŝ|s)
∑
ŵ

q(ŵ|ŝ)d(w, ŵ) = 1− q(ŵ = w|s).

A list of φ(w, s) is given in Table II
To characterize the semantic distortion-cost region, the first

step is to construct the six subsets for w ∈ W . According to
Algorithm 1, the six subsets are given by

S ′(A) =
{
∅,U ,UU

}
, S ′′(A) =

{
UUR,UURR

}
,

S(A) =
{
∅,U ,UU ,UUR,UURR

}
,

S ′
(A) =

{
∅,RR

}
, S ′′

(A) =
{
UURR

}
,

Table II
φ(w, s) AND αq(w, s).

s φ(A, s) φ(B, s) αq(A, s) αq(B, s)

∅ 2/3 1/3 19/28 9/28
U 3/5 2/5 19/28 9/28
R 3/4 1/4 19/28 9/28
UU 1/2 1/2 19/28 9/28
UR 2/3 1/3 19/28 9/28
RU 2/3 1/3 19/28 9/28
RR 1 0 0 1
UUR 1/2 1/2 19/28 9/28
URU 1/2 1/2 19/28 9/28
RUU 1/2 1/2 19/28 9/28
URR 1 0 0 1
RUR 1 0 0 1
RRU 1 0 0 1
UURR 1 0 0 1

S(A) =
{
∅,RR,UURR

}
,

S ′(B) =
{
∅,RR

}
, S ′′(B) =

{
UURR

}
,

S(B) =
{
∅,RR,UURR

}
,

S ′
(B) =

{
∅,U ,UU

}
, S ′′

(B) =
{
UUR,UURR

}
,

S(B) =
{
∅,U ,UU ,UUR,UURR

}
,

The second step constructs a sequence of deterministic
encoding schemes that characterize the distortion-cost func-
tion. To simplify notation, we denote a deterministic encoding
scheme by a set with two elements in this example, where the
two elements correspond to the messages that A and B are
mapped to. First, we construct U (0) =

{
∅, ∅
}

, where

DU(0),Q = p(A)φ(A, ∅) + p(B)φ(B, ∅) = 4

9
,

LU(0) = p(A)ℓ(∅) + p(B)ℓ(∅) = 0.

To construct U (1), we first compute the G function and
choose w(1) and s(1) that minimizes the G function. In this
case, we have

G(w = A, ∅,U) = − 1

15
,

G(w = A, ∅,UU) = − 1

12
,

G(w = B, ∅,RR) = − 1

12
.

Therefore, we choose

w(1) = A, s(1) = UU , U (1) =
{
UU , ∅

}
, (48)

and

DU(1),Q = p(A)φ(A,UU) + p(B)φ(B, ∅) = 7

18
,

LU(1) = p(A)ℓ(UU) + p(B)ℓ(∅) = 2

3
.

Likewise, we can derive all the deterministic encoding
schemes and the achieved distortion and cost. Here, we omit
all the derivations and list the resulting encoding schemes in
Table III, based on which the distortion-cost region of semantic
encoding Renc is characterized in Fig. 11(a).
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Figure 11. The distortion-cost regions of (a) semantic encoding Renc, (b) semantic decoding Rdec, and (c) CSED Rcsed.

Table III
THE DISCOVERED ENCODING SCHEMES.

Encoding schemes D L

U(0) =
{
∅, ∅

}
4/9 0

U(1) =
{
UU , ∅

}
7/18 2/3

U(2) =
{
UU ,RR

}
1/6 10/3

U(3) =
{
UUR,RR

}
1/6 4

U(4) =
{
UUR,UURR

}
1/6 16/3

U(5) =
{
UURR,UURR

}
1/3 6

U
(0)

=
{
∅, ∅

}
4/9 0

U
(1)

=
{
RR, ∅

}
5/9 4/3

U
(2)

=
{
RR,UU

}
2/3 8/3

U
(3)

=
{
UURR,UU

}
2/3 10/3

U
(4)

=
{
UURR,UUR

}
2/3 14/3

U
(5)

=
{
UURR,UURR

}
1/3 6

5) Semantic decoding and CSED: Next, we study how
to reduce the distortion from the receiver’s perspective via
semantic decoding. We first characterize the distortion-cost
region of semantic decoding.

Under the Hamming distortion, we have ψp(ŵ, s) = p(s)−
p(ŵ)p(s|ŵ). The semantic decoding schemes ∆̃n′

1,n
′
2,...,n

′
M

and ∆̃n′′
1 ,n

′′
2 ,...,n

′′
M

can be derived from Theorem 5.1, as listed
in Table IV, and

D∆̃n′
1,n′

2,...,n′
M

≈ 0.3158, D∆̃n′′
1 ,n′′

2 ,...,n′′
M

≈ 0.6842,

LP ≈ 3.5887.

The distortion-cost region of semantic decoding Rdec is
plotted in Fig. 11(b). In this example, the receiver has an
inaccurate prior distribution. According to Proposition 5.2, we
derive the optimal decoding scheme perceived by the receiver
V ∗
q in Table IV. As can be seen, V ∗

q matches ∆̃n′
1,n

′
2,...,n

′
M

.
This is because Proposition 5.3 is satisfied. In this case,
semantic decoding with the inaccurate prior achieves the
optimal distortion, i.e.,

DP ,V ∗
q
≈ 0.3158,

as shown in Fig. 11(b). It is worth noting that, in this example,
the original interpretation of the language Q yields a distortion
of

DP ,Q = 1−
∑
s,w

p(w)p(s|ŵ)q(w|s) ≈ 0.3262.

Table IV
SEMANTIC DECODING SCHEMES.

s ∆̃n′
1,n

′
2,...,n

′
M

∆̃n′′
1 ,n′′

2 ,...,n′′
M

V ∗
q

∅ A B A
U A B A
R A B A
UU A B A
UR A B A
RU A B A
RR B A B
UUR A B A
URU A B A
RUU A B A
URR B A B
RUR B A B
RRU B A B
UURR B A B

Finally, when combining both semantic encoding and de-
coding, the new distortion-cost region of CSED Rcsed can be
obtained from Theorem 5.5, and we plot it in Fig. 11(c).

Remark 3 (Impact of encoding scheme selection on the
distortion-cost region of CSED). When characterizing the
distortion-cost function of semantic encoding, Algorithm 2
sequentially constructs T + 1 encoding schemes

{
U (t)

}
. At

a step t, it is possible to find several pairs of
(
n(t),m(t)

)
that are equally optimal as they yield the minimum G (see
line 12 of Algorithm 2). Likewise, when generating U

(t)
,

it is possible to find several pairs of
(
n(t),m(t)

)
that are

equally optimal as they yield the maximum G (see line 20 of
Algorithm 2). Although these equally optimal pairs correspond
to different encoding schemes, they finally yield the same
distortion-cost region for semantic encoding. Therefore, we
can randomly sample one from them in Algorithm 2. However,
the selection does have an impact on the distortion-cost
region of CSED. According to Definition 5.4 and Theorem
5.5, CSED and its distortion-cost region are determined by
the chosen semantic encoding schemes. Selecting different
semantic encoding schemes in Algorithm 2 leads to different
distortion-cost regions for CSED. For example, if we choose

w(1) = B, s(1) = RR, U (1) =
{
∅,RR

}
, (49)

in (48), the distortion-cost pair
(
2
3 ,

2
3

)
will change to

(
2
3 , 0
)
,

leading to reduced semantic distortion.
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VII. EXTENSION

Our formulation of semantic communication in this paper
can be extended in many ways. In the following, we highlight
a few interesting problems worth further investigation.

A. A technical comparison between language utilization and
the rate-distortion theory

Language utilization (semantic communication) and the
rate-distortion theory (technical communication) have different
roles in a broad communication process, as illustrated in Fig.
1, but they can be compared from a technical perspective.
The rate-distortion theory studies how to transmit a sequence
of i.i.d. random variables X1, X2, . . . , Xn, n→ ∞, in a lossy
fashion [28], [29]. To be comparable with language utilization,

1) We define a message set S that contains only typical
sequences: each message s ∈ S is a typical sequence of
infinite length and the cardinality of S is 2nH(Xn).

2) We treat “messages” and “channel symbols” in the rate-
distortion theory as “meanings” and “messages” in se-
mantic communication, respectively. The semantic cost
is the average length of channel symbols.

In the above context, the rate-distortion theory provides
the optimal design of semantic language (i.e., the mapping
between meanings and messages) to trade-off distortion and
cost, provided that codebook negotiation before transmis-
sion is allowed. In comparison, language utilization is about
“mismatch”. For example, the codebooks possessed by the
transmitter and receiver can mismatch, or the codebooks are
not optimized for the optimal transmission of S. In other
words, language utilization exploits a semantic language that
can be used for transmitting a variety of semantic sources
robustly. When transmitting a specific kind of source, language
utilization saves the cost of codebook negotiation, despite
its suboptimal performance when compared with the rate-
distortion theory (which tailors a codebook for the source).
An interesting problem is characterizing the trade-off between
the suboptimality of language utilization and the additional
cost one is willing to pay for codebook negotiation.

B. Multiple Transmissions

In the main body of this paper, we have primarily addressed
the scenario of one-shot transmission from a transmitter to
a receiver. An important and natural extension of this work
involves considering multiple transmissions, which introduces
additional complexity and opportunities for enhancing seman-
tic communication.

1) Transmission of a single meaning. When transmitting
a single meaning via multiple uses of the channel, the
choice of semantic encoding strategy becomes crucial.
One approach is repetition coding, where the same
semantic message is encoded and transmitted multiple
times. Alternatively, varying the encoding scheme across
different channel uses may enhance robustness against
noise and interference. The optimal strategy likely de-
pends on the channel characteristics and the specific
requirements for semantic fidelity. On the other hand, for

decoding the transmitted meaning, several joint decoding
strategies can be considered. Techniques such as major-
ity voting or maximum ratio combining offer potential
pathways to accurately infer the intended meaning by
aggregating information across multiple transmissions.
The effectiveness of each decoding approach will depend
on factors such as channel reliability and the correlation
between channel uses.

2) Transmission of infinite meanings. With an infinite num-
ber of meanings to be transmitted, multiple transmissions
provide a significant advantage by allowing the receiver to
gather p(ŝ) for the received symbols, thereby facilitating
the estimation of p(s) and p(w) via either direct inver-
sion or regularization techniques, such as LASSO and
Tikhonov regularization. In this scenario: i) Following the
semantic decoding approach outlined in Proposition 5.2,
we can achieve the optimal distortion DP ,V ∗

p
, optimizing

the fidelity of communicated meanings. ii) The receiver
can leverage the concept of typicality in the transmitted
sequence [29], focusing on decoding among sequences
that are “typical”, given the observed transmissions. This
approach takes advantage of statistical regularities in the
sequence of transmitted meanings, enhancing decoding
efficiency and accuracy.

C. Interaction-based transmission

In addition to the feedforward link from the transmitter
to the receiver, suppose there is a feedback link from the
receiver to the transmitter. The feedback can be active, for
which the receiver proactively feeds back some information to
the transmitter. The feedback can also be passive, for which
the transmitter senses the environment (e.g., the change of
the receiver’s behavior or the reflected waveform from the
receiver) to collect feedback information.

Under this setup, the transmitter and receiver can commu-
nicate in an interactive fashion [30]–[33].

1) Feedback-aided transmission. The feedback from the
receiver can be used to reduce the semantic distortion
and cost for the feedforward transmission. This is more
relevant to human conversations in real life. Consider
that Einstein tries to explain the theory of relativity
to a non-physicist. It is very likely that the listener
does not understand anything after one-shot transmission.
Nevertheless, through interactions, Einstein knows the
concepts that the listener is confused about and explains
these concepts in layman’s terms. Finally, the receiver is
able to understand the theory of relativity to some extent.

2) Semantic communication with no language agreement.
In the presence of the feedback link, communication is
possible even if the transmitter and receiver have no
agreed language, e.g., the transmitter does not know the
interpretation of the receiver and the receiver does not
know the expression of the transmitter. This can model
the hypothetical situation of trying to converse with an
alien. Through interactions, they can gradually learn each
other’s language. In particular, they can even form a
new language through interactions and it is interesting
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to characterize the expressibility and interpretability of
the learned language as a form of the semantic capacity
in conveying meanings.

3) Effective and goal-oriented communication. Effective
communication deals with the problem that what meaning
to generate for the optimal operation of the cooperative
task, considering the current states of the transmitter,
receiver, and the progress of the task [16], [34], [35]. In
this sense, interaction-based communication is a natural
fit for effective communication (and goal-oriented com-
munication) as the transmitter has to know the current
states of the transmitter, receiver, and the progress of the
task through feedback and sensing.

D. Network semantic communication

Beyond link-level communication, semantic communication
can be extended to communication networks, such as broadcast
channels, multiple-access channels, wiretap channels, relay
channels, and mesh networks, wherein a wide range of chal-
lenging but intriguing problems can be foreseen. For example,
in the case of a broadcast channel, the encoder may want to
transmit a certain meaning to set of receivers, each with a
different mapping to interpret its received message. This can
model the scenario for a teacher teaching to a classroom of
students with different levels, or a politician giving a speech
to a large number of citizens from different backgrounds.
In a network setting, we can also consider the extension
of the feedback model in the previous subsection to a two-
way communication system [36], [37], where two agents try
to communicate with each other simultaneously, with no or
partial knowledge about each other’s assumed languages.

VIII. CONCLUSION

This paper introduced a new framework for understanding
semantic communication. We provided clarity on the essence
of semantic communication and posed two fundamental chal-
lenges: language exploitation and language design. Notably,
the language design problem aligns with the principles of
the classical joint source-channel coding, where trade-offs
between data transmission rates and versatile distortion metrics
are of paramount importance. In contrast, this paper was dedi-
cated to unraveling the intricacies of the language exploitation
problem, which extends beyond the classical information the-
ory.

The key distinction between language exploitation and
established information theory lies in the existence of an
undesignable, yet universally agreed-upon, semantic language
shared among communication participants. Language exploita-
tion leverages this common semantic ground to reduce mis-
interpretation during communication. To achieve this, we
explored three key approaches: semantic encoding (pertaining
to encoding intended meanings at the transmitter), semantic
decoding (pertaining to reconstructing meaning from received
messages), and the combined semantic encoding and decoding
(CSED). Throughout the exploration, we meticulously char-
acterized the distortion-cost region attainable through these
strategies.

It is crucial to highlight that the notion of semantic language
extends far beyond human languages or animal sounds and
gestures. In a broader context, it encompasses any physical
phenomena, ranging from seismic waves and solar flares to
material responses to external stimuli. The process of language
exploitation can be applied universally, as it involves the
development of systems to harness, adapt to, or emulate
these natural phenomena. Such processes include, for example,
interacting with generative models like ChatGPT, simulating
an individual’s painting style, predicting earthquakes based on
seismic wave properties, or creating anthropomorphic robots,
to name a few.

APPENDIX A
PROOF OF PROPOSITION 4.1

We first prove the “if” part: for any stochastic encod-
ing scheme U , there are a series of deterministic encoding
schemes U1,U2, ... such that

LU =
∑
i

λiLUi
, DU ,Q =

∑
i

λiDUi,Q,

where λi ∈ [0, 1] and
∑

i λi = 1. We rewrite U as

U =
∑

i1,i2,...,iN

u(si1 |w1)u(si2 |w2)...u(siN |wN )∆i1,i2,...,iN .

Let δi1,i2,...,iN (sm|wn) be the element of ∆i1,i2,...,iN on
the n-th row and m-th column. We have

DU ,Q =
∑
n

p(wn)
∑
ŵ

d(wn, ŵ)
∑
m

u(sm|wn)q(ŵ|sm)

=
∑

i1,i2,...,iN

u(si1 |w1)u(si2 |w2)...u(siN |wN )

×
∑
n

p(wn)
∑
ŵ

d(wn, ŵ)
∑
m

δi1,i2,...,iN (sm|wn)q(ŵ|sm)

=
∑

i1,i2,...,iN

u(si1 |w1)u(si2 |w2)...u(siN |wN )D∆i1,i2,...,iN
,Q.

and

LU =
∑
n

p(wn)
∑
m

u(sm|wn)ℓ(sm)

=
∑

i1,i2,...,iN

u(si1 |w1)u(si2 |w2)...u(siN |wN )

×
∑
n

p(wn)
∑
m

δi1,i2,...,iN (sm|wn)ℓ(sm)

=
∑

i1,i2,...,iN

u(si1 |w1)u(si2 |w2)...u(siN |wN )L∆i1,i2,...,iN
.

Thus, the distortion-cost pair (LU , DU ,Q) can be achieved by
deterministic encoding schemes in{

∆i1,i2,...,iN : ∀i1, i2, ..., iN ∈ [M ]
}

via time sharing.
Now we prove the “only if” part. Let

A = {∆1,∆2, ...,∆|A|}
⊆ {∆i1,i2,...,iN : ∀i1, i2, ..., iN ∈ [M ]]}
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be an arbitrary but fixed set. We define a distribution (λ1, λ2,

..., λ|A|), where λi ∈ [0, 1] and
∑|A|

i=1 λi = 1. Denote

L =

|A|∑
i=1

λiL∆i
, D =

|A|∑
i=1

λiD∆i,Q.

Now we construct a stochastic encoding scheme U such that
L = LU and D = DU ,Q. By letting

u(s|w) ≜
|A|∑
i=1

λi∆i(s|w), (50)

for any w, s, we have u(s|w) ≥ 0 and∑
s

u(s|w) =
∑
s

|A|∑
i=1

λi∆i(s|w) =
|A|∑
i=1

λi
∑
s

∆i(s|w)

=

|A|∑
i=1

λi × 1 = 1.

Therefore, U is a legitimate encoding scheme. Further,

LU =
∑
n

p(wn)
∑
m

u(sm|wn)ℓ(sm)

=
∑
n

p(wn)
∑
m

|A|∑
i=1

λi∆i(s|w)ℓ(sm)

=

|A|∑
i=1

λi
∑
n

p(wn)
∑
m

∆i(s|w)ℓ(sm)

=

|A|∑
i=1

λiL∆i
= L

and

DU ,Q =
∑
n

p(wn)
∑
ŵ

d(wn, ŵ)
∑
m

u(sm|wn)q(ŵ|sm)

=
∑
n

p(wn)
∑
ŵ

d(wn, ŵ)
∑
m

|A|∑
i=1

λi∆i(s|w)q(ŵ|sm)

=

|A|∑
i=1

λi
∑
n

p(wn)
∑
ŵ

d(wn, ŵ)
∑
m

∆i(s|w)q(ŵ|sm)

=

|A|∑
i=1

λiD∆i,Q = D.

The proposition is proved.

APPENDIX B
PROPERTIES OF THE SIX SUBSETS

This appendix summarizes some properties of the six sub-
sets in Definition 4.4.

Proposition B.1 (Orders of S ′
w, S ′′

w and S ′
w, S ′′

w). For any
meaning w ∈ W , the sets S ′

w, S ′′
w and S ′

w, S ′′
w satisfy

1) ∀ sm1
, sm2

∈ S ′
w,m1 < m2, we have

ℓ (sm1) < ℓ (sm2) , φ (w, sm1) > φ (w, sm2)

2) ∀ sm1 , sm2 ∈ S ′′
w,m1 < m2, we have

ℓ (sm1
) < ℓ (sm2

) , φ (w, sm1
) < φ (w, sm2

)

3) ∀ sm1
, sm2

∈ S ′
w,m1 < m2, we have

ℓ (sm1
) < ℓ (sm2

) , φ (w, sm1
) < φ (w, sm2

)

4) ∀ sm1
, sm2

∈ S ′′
w,m1 < m2, we have

ℓ (sm1) < ℓ (sm2) , φ (w, sm1) > φ (w, sm2) .

Proof. We prove 1) by contradiction. For a give w ∈ W ,
suppose that there exist sm1

, sm2
∈ S ′

w,m1 < m2 such that
one of the following two conditions holds.

• φ (w, sm1
) ≤ φ (w, sm2

)
• ℓ (s) ≥ ℓ (s′), φ (w, sm1

) > φ (w, sm2
)

Note that m1 < m2 implies that ℓ (sm1
) ≤ ℓ (sm2

). The
two conditions above are respectively equivalent to the two
conditions below.
(a) ℓ (s) ≤ ℓ (s′) , φ (w, sm1

) ≤ φ (w, sm2
)

(b) ℓ (sm1
) = ℓ (sm2

), φ (w, sm1
) > φ (w, sm2

)

If (a) holds, sm2
should be removed from S ′

w. If (b) holds,
sm1

should be removed from S ′
w. Therefore, S ′

w is not the
smallest subset of S satisfying the conditions in Definition
4.4. The proofs of 2) to 4) are similar to 1) and are omitted.
■

Proposition B.2. For a given w, and the associated S ′
w, S ′′

w

and S ′
w, S ′′

w. Define

mw,1 = min
{
m : sm ∈ S ′

w

}
,mw,2 = max

{
m : sm ∈ S ′

w

}
,

mw,3 = min
{
m : sm ∈ S ′′

w

}
,mw,4 = max

{
m : sm ∈ S ′′

w

}
,

mw,1 = min
{
m : sm ∈ S ′

w

}
,mw,2 = max

{
m : sm ∈ S ′

w

}
,

mw,3 = min
{
m : sm ∈ S ′′

w

}
,mw,4 = max

{
m : sm ∈ S ′′

w

}
.

It holds that
1) ℓ

(
smw,1

)
= Lmin and

φ
(
w, smw,1

)
= min

s′:s′∈S,ℓ(s′)=Lmin

φ(w, s′).

2) φ
(
w, smw,2

)
= mins′∈S φ (w, s′) and

ℓ
(
smw,2

)
= min

s′:s′∈S,φ(w,s′)=φ(w,smw,2)
ℓ (s′).

3) φ
(
w, smw,3

)
= mins′∈S φ (w, s′) and

ℓ
(
smw,3

)
= max

s′:s′∈S,φ(w,s′)=φ(w,smw,3)
ℓ (s′).

4) ℓ
(
smw,4

)
= Lmax and

φ
(
w, smw,4

)
= min

s′:s′∈S,ℓ(s′)=Lmax

φ(w, s′).

5) ℓ
(
smw,1

)
= Lmin and

φ
(
w, smw,1

)
= max

s′:s′∈S,ℓ(s′)=Lmin

φ(w, s′).

6) φ
(
w, smw,2

)
= maxs′∈S φ (w, s′) and

ℓ
(
smw,2

)
= min

s′:s′∈S,φ(w,s′)=φ(w,smw,2)
ℓ (s′).
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7) φ
(
w, smw,3

)
= maxs′∈S φ (w, s′) and

ℓ
(
smw,3

)
= max

s′:s′∈S,φ(w,s′)=φ(w,smw,3)
ℓ (s′).

8) ℓ
(
smw,4

)
= Lmax and

φ
(
w, smw,4

)
= max

s′:s′∈S,ℓ(s′)=Lmax

φ(w, s′).

Proof. The proofs of the eight conditions are similar and
thus we only prove 1) in the following. We first prove that
ℓ
(
smw,1

)
= Lmin. It is sufficient to prove that

min
{
ℓ (m) : sm ∈ S ′

w

}
= Lmin.

Let Ŝw ≜ {ŝ ∈ S : ℓ (ŝ) = Lmin}. Suppose Ŝw ∩ S ′
w = ∅. By

Definition 4.4, for any s′ ∈ Ŝw ⊆ S \ S ′
w, there exists an

s ∈ S ′
w such that

ℓ (s) ≤ ℓ (s′) , φ (w, s) ≤ φ (w, s′) .

Thus, Lmin ≤ ℓ (s) ≤ ℓ (s′) = Lmin which implies that s ∈
Ŝw. Thus, Ŝw ∩ S ′

w ̸= ∅. On the other hand, s ∈ S ′
w, i.e.,

s ∈ Ŝw ∩ S ′
w ⊆ Ŝw ∩

(
S \ S ′

w

)
= ∅, which does not hold.

Therefore,

ℓ
(
smw,1

)
= min

{
ℓ (m) : sm ∈ S ′

w

}
= Lmin.

Now we prove that

φ
(
w, smw,1

)
= min

s′:s′∈S,ℓ(s′)=Lmin

φ(w, s′).

Proposition B.1 shows that for any sm1
, sm2

∈ S ′
w, m1 < m2,

we have ℓ (sm1) < ℓ (sm2). Thus,
∣∣∣Ŝw ∩ S ′

w

∣∣∣ = 1, i.e.,

Ŝw ∩ S ′
w =

{
smw,1

}
.

If |Ŝw| = 1, then clearly 1) holds. Otherwise, by Defini-
tion 4.4, ∀ s′ ∈ Ŝw \

{
smw,1

}
⊆ S \ S ′

w, there exists an
s ∈ S ′

w such that

ℓ (s) ≤ ℓ (s′) , φ (w, s) ≤ φ (w, s′) .

Since ℓ (s′) = Lmin, we have ℓ (s) = Lmin, i.e. s = smw,1
.

Thus, φ
(
w, smw,1

)
≤ φ (w, s′) for any s′ ∈ Ŝw. ■

Proposition B.3. For any i = 1, 2, 3, 4, it holds that
• Pi = (LUi

, DUi,Q
), where U i = ∆mw1,i,mw2,i,...,mwN,i

• Pi = (LUi
, DUi,Q

), where U i = ∆mw1,i,mw2,i,...,mwN,i
.

Definition B.1. We define

Ψ′ ≜
{
∆i1,i2...,iN : ∀n, sin ∈ S ′

wn

}
,

Ψ′′ ≜
{
∆i1,i2...,iN : ∀n, sin ∈ S ′′

wn

}
,

Ψ ≜
{
∆i1,i2,...,iN : ∀n, sin ∈ Swn

}
,

Ψ
′
≜
{
∆i1,i2...,iN : ∀n, sin ∈ S ′

wn

}
,

Ψ
′′
≜
{
∆i1,i2...,iN : ∀n, sin ∈ S ′′

wn

}
,

Ψ ≜
{
∆i1,i2,...,iN : ∀n, sin ∈ Swn

}
,

Ψ ≜
{
∆i1,i2,...,iN : ∀n, sin ∈ Swn

∪ Swn

}
.

It is easy to see that Ψ′ ∪Ψ′′ ⊆ Ψ and Ψ
′ ∪Ψ

′′ ⊆ Ψ.

Lemma B.4. For any U = ∆i1,i2...,iN , the following four
conditions hold.

1) ∃ Ul,d ∈ Ψ′ such that DU ,Q ≥ DUl,d,Q and LU ≥ LUl,d
.

2) ∃Ur,d ∈ Ψ′′ such that DU ,Q ≥ DUr,d,Q and LU ≤ LUr,d
.

3) ∃ Ul,u ∈ Ψ
′

such that DU ,Q ≤ DUl,u,Q and LU ≥ LUl,u
.

4) ∃Ur,u ∈ Ψ
′′

such that DU ,Q ≤ DUr,u,Q and LU ≤ LUr,u .

Proof. The proofs of the four conditions are similar. We only
prove 1). By Definition 4.4, for any n, we can find an i′n such
that si′n ∈ S ′

wn
and

ℓ
(
si′n
)
≤ ℓ (sin) , φ

(
w, si′n

)
≤ φ (w, sin) .

Let Ul,d = ∆i′1,i
′
2...,i

′
N

, we have DU ≥ DUl,d,Q and LU ≥
LUl,d

. ■

APPENDIX C
PROOF OF THEOREM 4.2

Before proving Theorem 4.2, we first give some properties
of the G function in Definition 4.5.

Lemma C.1. For any a1, a2, b1, b2 ∈ IR, where b1, b2 > 0,
the following three arguments are equivalent:

1) a1

b1
≥ a2

b2
.

2) a1+a2

b1+b2
≥ a2

b2
.

3) a1

b1
≥ a1+a2

b1+b2
.

Define three vectors [a1, b1]
⊤, [a2, b2]

⊤ and
[a1 + a2, b1 + b2]

⊤. Lemma C.1 follows directly from
the relative magnitudes of the angles of the three vectors.

Corollary C.2. For any n = 1, 2, . . . , N and s′, s′′, s′′′ ∈
Swn

, where ℓ (s′) < ℓ (s′′) < ℓ (s′′′), the following three
arguments are equivalent.

• G (wn, s
′, s′′) ≤ G(wn, s

′, s′′′).
• G (wn, s

′, s′′) ≤ G(wn, s
′′, s′′′).

• G (wn, s
′, s′′′) ≤ G(wn, s

′′, s′′′).
The following three arguments are equivalent:

• G (wn, s
′, s′′) ≥ G(wn, s

′, s′′′).
• G (wn, s

′, s′′) ≥ G(wn, s
′′, s′′′).

• G (wn, s
′, s′′′) ≥ G(wn, s

′′, s′′′).

Lemma C.3. For any a1, a2, ..., aK , b1, b2, . . . , bK , c ∈ IR and
b1, b2, ..., bK > 0, where K > 0, we have

1) max
k∈[1,K]

ak

bk
≥

∑
k ak∑
k bk

≥ min
k∈[1,K]

ak

bk
.

2) ak

bk
≥ c, ∀k implies that

∑
k ak∑
k bk

≥ c.

3) ak

bk
≤ c,∀k implies that

∑
k ak∑
k bk

≤ c.

Algorithm 2 constructs a sequence of deterministic encoding
schemes that shape Renc. In this process, two key steps are
lines 2 and 20, which indicate the next encoding scheme at a
time step t. Next, we analyze these two steps.

Definition C.1. For t = 1, 2, 3, . . . , T , we define

G(t) ≜ min
n,m:sm∈Swn ,m>i

(t−1)
n

G
(
wn, si(t−1)

n
, sm

)
.

For t = 1, 2, 3, . . . , T , we define

G
(t)

≜ max
n,m:sm∈Swn ,m>i

(t−1)
n

G
(
wn, si(t−1)

n
, sm

)
.
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Lemma C.4. G(t) is a non-decreasing function of t =

1, 2, ..., T and G
(t)

is a non-increasing function of t =
1, 2, ..., T .

Proof. We first prove that G(t) is a non-decreasing func-
tion. It is sufficient to prove that G(t) ≤ G(t+1) if for
any t = 1, 2, ..., T − 1. Recall that sm(t) ∈ Sw

n(t)
and

sm(t+1) ∈ Sw
n(t+1)

. If n(t+1) ̸= n(t), then by Algorithm 2,

i
(t)

n(t+1) = i
(t−1)

n(t+1) . Therefore,

G(t) = min
n,m:sm∈Swn ,m>i

(t−1)
n

G
(
wn, si(t−1)

n
, sm

)
≤ min

m:sm∈Sw
n(t+1)

,m>i
(t−1)

n(t+1)

G

(
wn(t+1) , s

i
(t−1)

n(t+1)

, sm

)

= min
m:sm∈Sw

n(t+1)
,m>i

(t−1)

n(t+1)

G

(
wn(t+1) , s

i
(t)

n(t+1)

, sm

)
= G(t+1).

Now we consider the case when n(t+1) = n(t). Since

G(t) = G

(
wn(t) , s

i
(t−1)

n(t)

, s
i
(t)

n(t)

)
≤ G

(
wn(t) , s

i
(t−1)

n(t)

, s
i
(t+1)

n(t)

)
,

by Corollary C.2, we have

G(t) ≤ G

(
wn(t) , s

i
(t)

n(t)

, s
i
(t+1)

n(t)

)
= G(t+1).

Likewise, it can be proven that G
(t)

is a non-increasing
function. ■

Lemma C.5. For any n = 1, 2, ..., N , t = 1, 2, ..., T and
sm ∈ Swn

,

1) m > i(t)n implies that

G(t+1) ≤ G
(
wn, si(t)n

, sm

)
.

2) m < i(t)n implies that

G(t) ≥ G
(
wn, sm, si(t)n

)
.

Proof. Condition 1) holds since

G(t+1) = min
n′,m′:sm′∈Sw

n′ ,m
′>i

(t)

n′

G
(
wn′ , s

i
(t)

n′
, sm′

)
≤ min

m′:sm′∈Swn ,m′>i
(t)
n

G
(
wn, si(t)n

, sm′

)
≤ G

(
wn, si(t)n

, sm

)
.

Now we prove that 2) holds. By letting

t̃ = min
{
t′ : n(t

′) = n,m < i(t
′)

n

}
,

we have
i
(t̃−1)

n(t) ≤ m < i(t̃)n ≤ i(t)n

G(t̃) = G
(
wn, si(t̃−1)

n
, s

i
(t̃)
n

)
.

Now we prove that

G(t̃) ≥ G
(
wn, sm, si(t̃)n

)
. (51)

If m = i
(t̃−1)

n(t) , (51) holds. Otherwise, if m > i
(t̃−1)

n(t) , then by
Condition 1) we just proved, it holds that

G
(
wn, si(t̃−1)

n
, s

i
(t̃)
n

)
= G(t̃) ≤ G

(
wn, si(t̃−1)

n
, sm

)
.

Combining Corrollary C.2, (51) holds. Therefore, (51) holds
for all m.

If t = t̃, then 2) holds. Otherwise, if t̃ < t, then we define

T ≜
{
t′ : n(t

′) = n, t̃+ 1 ≤ t′ ≤ t
}
.

We rewrite T =
{
t1, t2, . . . , t|T|

}
, where

t̃ < t1 < t2 < . . . < t|T| ≤ t.

By Lemma C.3, we have

G(t̃) ≤ G(t1) ≤ G(t2) ≤ . . . ≤ G(t|T|) ≤ G(t).

That is,

G(t̃) ≤
φ
(
wn, si(t1)

n

)
− φ

(
wn, si(t1−1)

n

)
ℓ
(
s
i
(t1)
n

)
− ℓ

(
s
i
(t1−1)
n

)
≤
φ
(
wn, si(t2)

n

)
− φ

(
wn, si(t2−1)

n

)
ℓ
(
s
i
(t2)
n

)
− ℓ

(
s
i
(t2−1)
n

)
≤ . . .

≤
φ

(
wn, s

i
(t|T|)
n

)
− φ

(
wn, s

i
(t|T|−1)

n

)
ℓ

(
s
i
(t|T|)
n

)
− ℓ

(
s
i
(t|T|−1)

n

)
≤ G(t)

Note that i(t1−1)
n = i(t̃)n , i

(t|T|)
n = i(t)n and i(tτ−1)

n = i(tτ−1)
n for

any 2 < τ < |T|. We have

G(t̃) ≤
φ
(
wn, si(t1)

n

)
− φ

(
wn, si(t̃)n

)
ℓ
(
s
i
(t1)
n

)
− ℓ

(
s
i
(t̃)
n

)
≤
φ
(
wn, si(t2)

n

)
− φ

(
wn, si(t1)

n

)
ℓ
(
s
i
(t2)
n

)
− ℓ

(
s
i
(t1)
n

)
≤ . . .

≤
φ

(
wn, s

i
(t|T|)
n

)
− φ

(
wn, s

i
(t|T|−1)
n

)
ℓ

(
s
i
(t|T|)
n

)
− ℓ

(
s
i
(t|T|−1)
n

)
= G(t).

(52)

From Lemma C.3 and (52), we have

G(t̃) ≤
φ

(
wn, s

i
(t|T|)
n

)
− φ

(
wn, si(t̃)n

)
ℓ

(
s
i
(t|T|)
n

)
− ℓ

(
s
i
(t̃)
n

) ≤ G(t).
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Note that

φ

(
wn, s

i
(t|T|)
n

)
− φ

(
wn, si(t̃)n

)
ℓ

(
s
i
(t|T|)
n

)
− ℓ

(
s
i
(t̃)
n

) = G

(
wn, si(t̃)n

, s
i
(t|T|)
n

)

= G
(
wn, si(t̃)n

, s
i
(t)
n

)
.

We have
G(t̃) ≤ G

(
wn, si(t̃)n

, s
i
(t)
n

)
≤ G(t). (53)

By (51) and (53), we have

G
(
wn, sm, si(t̃)n

)
≤ G

(
wn, si(t̃)n

, s
i
(t)
n

)
.

Combining Corollary C.2, it holds that

G
(
wn, sm, si(t)n

)
≤ G

(
wn, si(t̃)n

, s
i
(t)
n

)
. (54)

By (53) and (54), we finally have

G
(
wn, sm, si(t)n

)
≤ G(t).

■

Corollary C.6. For any t = 1, 2, ..., T and any sm ∈ Sw
n(t)

,

1) m > m(t) implies that

G
(t+1) ≥ G (wn(t) , sm(t) , sm) .

2) m < m(t) implies that

G
(t) ≤ G (wn(t) , sm, sm(t)) .

To ease exposition, we next define a J function. The
connections between the G and J functions will be revealed
later in Lemma C.7.

Definition C.2. For any U and U ′, where LU ′ ̸= LU , we
define

JQ (U ,U ′) ≜
DU ′,Q −DU ,Q

LU ′ − LU
.

J (t) ≜ JQ

(
U (t−1),U (t)

)
.

J
(t)

≜ JQ

(
U

(t−1)
,U

(t)
)
.

Lemma C.7. For any t = 1, 2, ..., T , J (t) = G(t); for any
t = 1, 2, ..., T , J

(t)
= G

(t)
.

Lemma C.8. For any U = ∆i1,i2...,iN ∈ Ψ, where Ψ is
defined in Definition B.1,

1) LU(t) < LU , t = 1, 2, ..., T , implies that

J (t+1) ≤ JQ(U (t),U)

2) L
U

(t) < LU , t = 1, 2, ..., T , implies that

J
(t+1) ≤ JQ(U

(t)
,U).

Proof. We first prove 1). Recall that U (t) = ∆
i
(t)
1 ,i

(t)
2 ...,i

(t)
N

for
any t. Then

JQ

(
U (t),U

)
=

∑
n p (wn)φ (wn, sin)−

∑
n p (wn)φ

(
wn, si(t)n

)
∑

n p (wn) ℓ(sin)−
∑

n p (wn) ℓ(si(t)n
)

=

∑
n p (wn)

(
φ (wn, sin)− φ

(
wn, si(t)n

))
∑

n p (wn)
(
ℓ (sin)− ℓ

(
s
i
(t)
n

)) .

Denote

I0 =
{
n : in = i(t)n

}
.

I+ =
{
n : in > i(t)n

}
.

I− =
{
n : in < i(t)n

}
.

a1 =
∑
n

p (wn)
(
φ (wn, sin)− φ

(
wn, si(t)n

))
.

b1 =
∑
n

p (wn)
(
ℓ (sin)− ℓ

(
s
i
(t)
n

))
.

a2 =
∑
n∈I−

p (wn)
(
−φ (wn, sin) + φ

(
wn, si(t)n

))
.

b2 =
∑
n∈I−

p (wn)
(
−ℓ (sin) + ℓ

(
s
i
(t)
n

))
.

Then
JQ

(
U (t),U

)
=
a1
b1
. (55)

For any n ∈ I0, we have in = i(t)n , and then

φ (wn, sin)− φ
(
wn, si(t)n

)
= ℓ (sin)− ℓ

(
s
i
(t)
n

)
= 0.

Note that

0 < b1 + b2 =
∑
n∈I+

p (wn)
(
−ℓ (sin) + ℓ

(
s
i
(t)
n

))
.

It holds that I+ ̸= ∅. For any n ∈ I+, we have ℓ (sin) >

ℓ
(
s
i
(t)
n

)
. Then, by Lemma C.5,

G(t+1) ≤ G
(
wn, si(t)n

, sin

)
=
φ (wn, sin)− φ

(
wn, si(t)n

)
ℓ (sin)− ℓ

(
s
i
(t)
n

)
=
p (wn)

(
φ (wn, sin)− φ

(
wn, si(t)n

))
p (wn)

(
ℓ (sin)− ℓ

(
s
i
(t)
n

)) .

By Lemma C.3, we have

G(t+1) ≤

∑
n∈I+

p (wn)
(
φ (wn, sin)− φ

(
wn, si(t)n

))
∑

n∈I+
p (wn)

(
ℓ (sin)− ℓ

(
s
i
(t)
n

))
=
a1 + a2
b1 + b2

.

(56)
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When I− = ∅, 1) holds by (55) and (56). Therefore, we only
need to consider the case where I− ̸= ∅. For any n ∈ I−, we
have ℓ (sin) > ℓ

(
s
i
(t)
n

)
, and by Lemma C.5,

G(t) ≥ G
(
wn, si(t)n

, sin

)
=
φ (wn, sin)− φ

(
wn, si(t)n

)
ℓ (sin)− ℓ

(
s
i
(t)
n

)
=
p (wn)

(
−φ (wn, sin) + φ

(
wn, si(t)n

))
p (wn)

(
−ℓ (sin) + ℓ

(
s
i
(t)
n

)) .

By Lemma C.3, we have

G(t) ≥ a2
b2
. (57)

By (56), (57) and Lemma C.4, we have

a2
b2

≤ G(t) ≤ G(t+1) ≤ a1 + a2
b1 + b2

.

Finally, 1) holds by Lemma C.1.
The second part of Lemma C.8 can be proved in a similar

fashion. ■

Definition C.3. Theorem 4.2 characterizes a region using the
distortion-cost pairs of T +T +2 semantic encoding schemes{
U (t) : t = 0, 1, 2, ..., T

}
and

{
U

(t)
: t = 0, 1, 2, ..., T

}
. We

denote the region by R̃enc, the piecewise linear connection
of
(
LU(t) , DU(t),Q

)
, t = 0, 1, 2, ..., T by a function D(L),

and the piecewise linear connection of
(
L
U

(t) , D
U

(t)
,Q

)
, t =

0, 1, 2, ..., T by a function D(L).

Corollary C.9. For any L′, L′′ ∈ [Lmin, Lmax], where L′ < L′′,
we have

J (t′) ≤ D(L′′)−D(L′)

L′′ − L′ ≤ J (t′′),

J
(t

′
) ≥ D(L′′)−D(L′)

L′′ − L′ ≥ J
(t

′′
)
,

where

t′ ≜ min
{
t : LU(t) ≥ L′

}
, t′′ ≜ min

{
t : LU(t) ≥ L′′

}
t
′
≜ min

{
t : L

U
(t′) ≥ L′

}
, t

′′
≜ min

{
t : L

U
(t) ≥ L′′

}
.

Proof. If t′ = t′′, it is straightforward that

J (t′) =
D(L′′)−D(L′)

L′′ − L′ = J (t′′).

If t′ < t′′, then

D(L′′) = D(L′) +
(
DU(t′) −D(L′)

)
+

t′′−1∑
t=t′+1

(
DU(t) −DU(t−1)

)
+
(
D(L′′)−D

U(t′′−1)

)
= D(L′) + J (t′)

(
LU(t′) − L′

)

+

t′′−1∑
t=t′+1

J (t)
(
LU(t) − LU(t−1)

)
+ J(t

′′)
(
L′′ − L

U(t′′−1)

)
.

By Lemma C.4 and Lemma C.7, we have

J (t′) ≤ J(t
′+1) ≤ . . . ≤ J(t

′′).

Then,

D(L′) + J (t′)
(
LU(t′) − L′

)
+

t′′−1∑
t=t′+1

J(t
′)
(
LU(t)−LU(t−1)

)
+ J(t

′)
(
L′′−L

U(t′′−1)

)
≤ D̃(L′′)

≤ D(L′) + J (t′′)
(
LU(t′) − L′

)
+

t′′−1∑
t=t′+1

J(t
′′)
(
LU(t)−LU(t−1)

)
+ J(t

′′)
(
L′′−L

U(t′′−1)

)
.

That is,

D(L′)+J (t′) (L′′−L′) ≤ D̃(L′′) ≤ D(L′)+J(t
′′) (L′′−L′) .

Finally,

J (t′) =
D̃(L′′)− D̃(L′)

L′′ − L′ = J (t′′).

The proof of the second part is similar. ■

Lemma C.10. D(L) is convex and D(L) is concave. The
region R̃enc is convex.

Proof. We first prove that D(L) is convex. It is sufficient to
prove that for any L′, L′′ ∈ [Lmin, Lmax] and λ ∈ (0, 1), we
have

D
(
L̂
)
≤ λD(L′) + (1− λ)D(L′′)

where L̂ = λL′ + (1 − λ)L′′. Let t′ = min {t : LU(t) ≥ L′},
t′′ = min {t : LU(t) ≥ L′′} and t̂ = min

{
t : LU(t) ≥ L̂

}
. If

L′ = L′′, then the inequality holds. Otherwise, without loss
of generality, assume L′ < L′′. Then, L′ < L̂ < L′′. By
Corollary 3.11, we have

D
(
L̂
)
−D(L′)

L̂− L′
≤ J (t̂) ≤

D(L′′)−D
(
L̂
)

L′′ − L̂
,

which implies that

D
(
L̂
)
≤ D(L′) + J(t̂)

(
L̂− L′

)
,

D
(
L̂
)
≤ D(L′′) + J(t̂)

(
L̂− L′′

)
.

Thus,

D
(
L̂
)
= λD

(
L̂
)
+ (1− λ)D

(
L̂
)

≤ λ
(
D(L′) + J(t̂)

(
L̂− L′

))
+ (1− λ)

(
D(L′′) + J(t̂)

(
L̂− L′′

))
= λD(L′) + (1− λ)D(L′′)

+ J(t̂)
(
L̂−

(
λL′ + (1− λ)L′′))

= λD(L′) + (1− λ)D(L′′).
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Likewise, it can be proven that D(L) is concave. Now we
prove that the region R̃enc is convex. It is sufficient to prove
that, for any (L′, D′), (L′′, D′′) ∈ R̃enc and λ ∈ (0, 1), it holds
that

(L̂, D̂) ∈ R̃enc.

where L̂ = λL′ + (1 − λ)L′′ and D̂ = λD′ + (1 − λ)D′′. It
is equivalent to proving that

D
(
L̂
)
≤ D̂ ≤ D

(
L̂
)
.

Since (L′, D′), (L′′, D′′) ∈ R̃enc, we have

D(L′) ≤ D′ and D(L′′) ≤ D′′.

On the other hand, D(L) is convex, indicating that

D
(
L̂
)
≤ λD(L′) + (1− λ)D(L′′)

≤ λD′ + (1− λ)D′′ = D̂.

Likewise, we can also prove that D̂ ≤ D
(
L̂
)

. The lemma is
proved. ■

We are now ready to prove Theorem 4.2. The achievability
can be easily established. According to Algorithm 2, for any
L ∈ [Lmin, Lmax], (L,D(L)) and (L,D(L)) are in Renc.
Moreover, Proposition 4.1 shows that Renc is a convex region.
Thus, for any L ∈ [Lmin, Lmax] and D ∈ [D(L), D(L)], we
have (L,D) ∈ Renc. Therefore, R̃enc ⊆ Renc.

Next, we prove the converse, i.e., Renc ⊆ R̃enc. As-
suming that there exists an encoding scheme U∗ such that
(LU∗ , DU∗,Q) ∈ Renc and (LU∗ , DU∗,Q) /∈ R̃enc. Propo-
sition 4.1 indicates that (LU∗ , DU∗,Q) can be achieved by
the time sharing of a set of deterministic encoding schemes.
Denoted by A the set containing all these encoding schemes.
Recall from Lemma C.10 that the region R̃enc is convex.
Therefore, there exists at least one deterministic encoding
scheme U ′ ∈ A such that (LU ′ , DU ′,Q) ∈ Renc and
(LU ′ , DU ′,Q) /∈ R̃enc. Otherwise, (LU∗ , DU∗,Q) ∈ R̃enc,
which contradicts the assumption.

By Lemma B.4, there exist four points
Ul,d,Ur,d,Ul,u,Ur,u ∈ Ψ such that

• DU ′,Q ≥ DUl,d,Q and LU ′ ≥ LUl,d
;

• DU ′,Q ≥ DUr,d,Q and LU ′ ≤ LUr,d
;

• DU ′,Q ≤ DUl,u,Q and LU ′ ≥ LUl,u
;

• DU ′,Q ≤ DUr,u,Q and LU ′ ≤ LUr,u .
Hence, there exists at least one encoding scheme

∆ ∈ {Ul,d,Ur,d,Ul,u,Ur,u} ⊆ Ψ

such that one of the following two statements holds.
1) D∆,Q < D(L∆);
2) D∆,Q > D(L∆).

Otherwise, (LU ′ , DU ′,Q) ∈ R̃enc.
We first assume that statement 1) holds. Proposition B.3

shows that
(
LU(0) , DU(0),Q

)
= P1. Thus Lmin < L∆. Oth-

erwise, D∆,Q ≥ D(L∆), which contradicts statement 1). Let
t = max{t′ : LU(t′) < L∆}. Thus, LU(t) < L∆ ≤ LU(t+1) .

Let λ =
L∆−L

U(t)

L
U(t+1)−L

U(t)
, we have λ ∈ (0, 1] and

L∆ = (1− λ)LU(t) + λLU(t+1) .

From Lemma 3.10, it holds that

J (t+1) ≤ JQ(U (t),∆).

As a result,

D∆,Q ≥ (1− λ)DU(t),Q + λDU(t+1),Q = D (L∆) .

This contradicts statement 1). Therefore, statement 1) does
not hold. Similarly, it can be proven that statement 2) does
not hold either.

Overall, any encoding scheme U∗ with (LU∗ , DU∗,Q) ∈
Renc must satisfy (LU∗ , DU∗,Q) ∈ R̃enc. The region charac-
terized by Theorem 4.2 is exactly the distortion-cost region of
semantic encoding Renc.

APPENDIX D
PROOF OF THEOREM 5.6

Under the Hamming distortion measure, ψq(ŵ, ŝ) can be
refined as

ψq(ŵ, ŝ) =
∑
w,s

q(w)p(s|w)c(ŝ|s)d(w, ŵ)

=
∑
w,s

q(w)p(s|w)c(ŝ|s)− q(ŵ)
∑
s

p(s|ŵ)c(ŝ|s)

= q(ŝ)− q(ŵ)p(ŝ|ŵ),

where q(ŝ) ≜
∑

w,s q(w)p(s|w)c(ŝ|s).
Likewise, we have ψp(ŵ, ŝ) = p(ŝ) − p(ŵ)p(ŝ|ŵ), where

p(ŝ) ≜
∑

w,s p(w)p(s|w)c(ŝ|s).
Following Proposition 5.2, semantic decoding gives us

ŵq(ŝ) = argmin
ŵ

ψq(ŵ, ŝ) = argmax
w

q(w)p(ŝ|w), (58)

DP ,V ∗
q
=
∑
ŝ

ψp

(
ŵq(ŝ), ŝ

)
= 1−

∑
ŝ

p
(
ŵq(ŝ)

)
p
(
ŝ|ŵq(ŝ)

)
.

(59)
An intuitive explanation of (58) and (59) is as follows.

Under the prior distribution q(w), (58) is simply the maximum
a posteriori (MAP) decoding for a given ŝ. When the decoding
scheme is determined, a received message ŝ is decoded to
ŵq(ŝ). As a result, the probability of successful decoding is
the summation

∑
ŝ p
(
ŵq(ŝ)

)
p
(
ŝ|ŵq(ŝ)

)
with each term being

the probability of transmitting ŵq(ŝ) and receiving ŝ. The
Hamming distortion, i.e., the semantic error, is then given by
(59).

Likewise, for the true prior p(w), we would have

ŵp(ŝ) = argmax
w

p(w)p(ŝ|w), (60)

DP ,V ∗
p
= 1−

∑
ŝ

p
(
ŵp(ŝ)

)
p
(
ŝ|ŵp(ŝ)

)
. (61)

Comparing (61) and (59), DP ,V ∗
q
= DP ,V ∗

p
if and only if

(30) holds. Note that ŵq(ŝ) and ŵp(ŝ) in (60) and (58) are the
solutions to the left- and right-hand sides of (30), respectively,
but they are not necessarily the only solutions. Therefore, (30)
does not imply ŵq(ŝ) = ŵp(ŝ).
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APPENDIX E
PROOF OF THEOREM 5.6

The distortion-cost function of CSED D∗
U ,V ∗

q
(L) can be

achieved by the deterministic encoding schemes
{
U (i) : i =

0, 1, 2, ..., T
}

and the linear combination of two contiguous
U (i) and U (i+1). Thus, (46) holds for any point on D∗

U ,V ∗
q
(L)

provided that we can prove (46) for all U (i).
Under conditions 1) and 2), we have

φ(w, s) =
ψp(ŵ, s)

p(s)
.

When operated with CSED, for a meaning w ∈ W , we
define the encoded message s and the decoded message ŵ
under encoding and decoding schemes U ∈

{
U (i) : i =

0, 1, 2, ..., T
}

and V ∗
q , respectively, as

[s|w] = argmin
s

φ(w, s),

[ŵ|s] = argmin
w′

ψq(w
′, s) = argmin

w′
φ(w′, s).

We further define the subset of messages that W is mapped
to as

[S|W] = {[s|w] : w ∈ W} .

From conditions 3) and 4), we first prove that the mappings
between W and [S|W] and that between [S|W] and W are
one-to-one.

We prove this by contradiction. Suppose the mappings
between W and [S|W] are not one-to-one, condition 3) gives
us |[S|W]| > N . On the other hand, from 4), we have
N = |W| ≥ [S|W]. Contradiction. The mappings between
W and [S|W] are thus one-to-one. Likewise, it can be proven
that the mappings between [S|W] and W are also one-to-one.

Next, we prove

d
(
w,
[
ŵ|[s|w]

])
= min

w′
d(w,w′), ∀w ∈ W. (62)

First, we sort W =
{
w(n) : n = 1, 2, ..., N

}
accord-

ing to mins φ(w, s) such that w(n1) ≤ w(n2) implies that
mins φ(w(n1), s) ≤ mins φ(w(n2), s). Eq. (62) can be proved
by induction.

For w(1), U maps it to

[s|w(1)] = argmin
s

φ(w, s),

and V ∗
q maps [s|w(1)] to

w(β) = argmin
w

φ
(
w, [s|w(1)]

)
.

where β ≥ 1. If β > 1,

φ
(
w(β), [s|w(1)]

)
≤ φ

(
w(1), [s|w(1)]

)
.

Since φ
(
w(β), [s|w(1)]

)
= φ

(
w(1), [s|w(1)]

)
contradicts the

condition 4), we have

φ
(
w(β), [s|w(1)]

)
< φ

(
w(1), [s|w(1)]

)
,

which means β ≤ 1, and hence, β = 1. This proves that

w(1) =
[
ŵ
∣∣[s|w(1)

]]
.

For any 1 < n < N , we assume w(n) =
[
ŵ
∣∣[s|w(n)

]]
and

prove w(n+1) =
[
ŵ
∣∣[s|w(n+1)

]]
in the following.

For w(n+1), let

w(β) =
[
ŵ
∣∣[s|w(n+1)

]]
= argmin

w
φ
(
w,
[
s|w(n+1)

])
,

we prove below that β = n+ 1.
First, β < n+ 1 contradicts 4). If β > n+ 1,

φ
(
w(β), [s|w(n+1)]

)
≤ φ

(
w(n+1), [s|w(n+1)]

)
,

and
min
s
φ
(
w(n+1), s

)
≤ min

s
φ
(
w(β), s

)
.

Since mins φ
(
w(n+1), s

)
= φ

(
w(n+1),

[
s|w(n+1)

])
, we

have

min
s
φ
(
w(n+1), s

)
= min

s
φ
(
w(β), s

)
=

φ
(
w(β),

[
s|w(n+1)

])
= φ

(
w(n+1),

[
s|w(n+1)

])
.

As a result,[
s|w(n+1)

]
∈ argmin

s
φ
(
w(n+1), s

)
∩ argmin

s
φ
(
w(β), s

)
.

This contradicts 3).
Therefore, β = n+ 1 and w(n+1) =

[
ŵ
∣∣[s|w(n+1)

]]
.

In conclusion, we have d
(
w, [ŵ |[s|w] ]

)
= minw′ d(w,w′),

∀w, and hence,

DU ,V ∗
q
(L) =

∑
w,s,ŵ

p(w)u(s|w)v(ŵ|s)d(w, ŵ)

=
∑
w

p(w)d
(
w, [ŵ |[s|w] ]

)
=
∑
w

p(w)min
w′

d(w,w′)

≤ min
U ′,V ′

DU ′,V ′(L),

for U (i), i = 0, 1, 2, ..., T .
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